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I. Models of innovation diffusion 

 

A basic puzzle posed by innovation diffusion is why long lags occur between an 

innovation’s first appearance and its general acceptance within a population.  Among the 

factors that have been suggested are delays in acting on information, a desire to conform, 

learning from others, and changes in external factors such as prices.  There is an 

extensive literature on this phenomenon that spans economics, sociology, and marketing.1  

Although the models are highly varied, a common theme is that delay results in part from 

heterogeneity among potential adopters.  People may realize different benefits and costs 

from the innovation, or they may hear about it at different times, have different amounts 

of information, different predispositions to conform, and so forth.   Nevertheless, most of 

the extant models incorporate heterogeneity in a very restricted fashion, say by 

considering two homogeneous classes of agents, or by assuming that the heterogeneity is 

described by a particular class of distributions.2  

 

The purpose of this paper is three-fold.  First, it will be shown that the benchmark models 

in economics, marketing, and sociology proceed from fundamentally different 

assumptions that lead to key differences in their dynamical structure. Second, each type 

of model can be formulated at a high level of generality that allows for essentially any 

distribution of heterogeneous characteristics without losing analytical tractability. Third, 

each model leaves a distinctive ‘footprint’ in its pattern of acceleration that holds with 

few or no restrictions on the distribution of characteristics. The reason is that they have 

fundamentally different structures that details in the underlying distributions cannot 

overcome.  

 

                                                 
1 For general overviews see Vijay Mahajan and Robert A. Peterson (1985), Mahajan, Eitan Muller, and 
Frank M. Bass (1990), Paul A.Geroski (2000),  Paul Stoneman (2002), Everett M. Rogers (2003), and 
Thomas W. Valente (1995, 1996, 2005).   
2 See in particular Abel Jeuland (1981), Richard Jensen (1982), Massoud Karshenas and Stoneman (1992), 
and Geroski (2000). 
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We shall consider three broad classes of models – contagion, social influence, and social 

learning – that are drawn from the literature on marketing, sociology, and economics 

respectively.3  The focus of attention will be on situations where the dynamics are driven 

from within, that is, there are internal feedback effects from prior to future adopters.   

Diffusion models that are driven mainly by external factors, such as price and quality 

changes, obviously depend on the exogenous rates of change in these factors, so much 

less can be said about them from an a priori standpoint.4 

  

1. Contagion.  People adopt when they come in contact with others who have already 

adopted, that is, innovations spread much like epidemics. 

 

2. Social influence. People adopt when enough other people in the group have adopted, 

that is, innovations spread by a conformity motive.    

  

3. Social learning. People adopt once they see enough empirical evidence to convince 

them that the innovation is worth adopting, where the evidence is generated by the 

outcomes among prior adopters. Individuals may adopt at different times due to 

differences in their prior beliefs, amount of information gathered, and idiosyncratic costs. 

  

Of the three categories of models, social learning is certainly the most plausible from an 

economic standpoint, because it has firm decision-theoretic foundations: agents are 

assumed to make rational use of information generated by prior adopters in order to reach  

 

 

 

                                                 
3 Some of these ideas have also been applied in anthropology; see in particular Robert Boyd and Peter J. 
Richerson (1985) and Joseph Henrich (2001).  
4 These are sometimes called “moving equilibrium” models; see in particular David (1966, 1969, 1975, 
2005), David and Trond E. Olsen (1984, 1986) and Stoneman (2002).  There are also hybrid models in 
which the dynamics are driven by a combination of external and internal factors. The most common 
example is the Bass model, which will be considered in section 3.  
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a decision.5  By contrast, the contagion and social influence models are based on the 

notion of exposure rather than on utility maximization.  Why then should economists be 

concerned with them?  One reason is that they are the most prominent models in the 

literature outside of economics, so it is worth understanding how they work in a general 

setting.  A second reason is that we would like to know whether adoption curves 

generated by social learning differ from those generated purely by exposure, that is, 

whether we can distinguish empirically between the two explanations.  

 

We shall find that under certain conditions this is indeed the case. To make progress on 

this question, however, we need to formulate the aggregate dynamics of each class of 

model at a high level of generality without making restrictive assumptions about the 

distribution of individual characteristics.  This is particularly challenging in the case of 

social learning models, where there are multiple sources of heterogeneity, including 

different costs of adoption, different prior beliefs, and different amounts of information-

gathering. It turns out that all of these considerations can be folded together in a simple 

dynamical equation that is easy to analyze.  

 

One limitation of the analysis is the use of a “mean-field” approach in which the 

population is assumed to be infinitely large and encounters between individuals are 

purely random.  If the population is finite and agents interact through a fixed social 

network, the aggregate dynamics are substantially more complex and may depend on the 

topology of the network. The extent to which our results can be generalized to this case is 

an interesting question that will be left to future work.6   

 

                                                 
5 There is a large literature on social learning but the specific assumptions are highly varied . See among 
others Sushil Bikchandani, David Hirshleifer, and Ivo Welsh (1992), Abhijit Banerjee (1992), Alan Kirman 
(1993),  Glenn Ellison and Drew Fudenberg (1993, 1995),  Sandeep Kapur (1995),  Venkatesh Bala and 
Sanjeev Goyal (1998),  Lones Smith and Peter Sorensen (2000),  Kalyan Chatterjee and Susan H. Xu 
(2004), Banerjee and Fudenberg (2004), and Charles F. Manski (2004).  However, relatively little prior 
work has been done on the implications of social learning for the shape of the adoption curve.  Notable 
exceptions are Henrich (2001), Jensen (1982), and Dunia Lopez-Pintado and Duncan J. Watts (2008).    
6 For models of diffusion in social networks see Lawrence E. Blume (1993, 1995), Bala and Goyal (1998), 
H. Peyton Young (2003), Chatterjee and Xu (2004), Robin Cowan and Nicholas Jonard (2004), Matthew 
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The main results on shape and acceleration patterns can be summarized as follows.  

 

1.  A process that is driven purely by inertia must decelerate from start to finish, that is, 

the adoption curve is strictly concave. Acceleration -- in particular S-shaped curves -- 

cannot be explained solely by delay no matter how the rates of inertia are distributed in 

the population.7 

 

2. A process that is driven purely by contagion typically accelerates initially and then 

decelerates as it approaches saturation (the curve is S-shaped), but it cannot accelerate 

beyond the fifty percent adoption level.  When everyone is alike, the hazard rate (the rate 

at which non-adopters become adopters) is linear and increasing in the current number of 

adopters.  From this it follows that the hazard rate must be non-increasing relative to the 

number of adopters.  Less obviously this result holds for any joint distribution of 

‘infection’ rates from a combination of internal and external sources. This forms a 

significant and testable implication of the contagion model, as we shall see in section 6. 

  

3. A process that is driven purely by social influence can either decelerate or accelerate 

initially, but in the latter case it typically accelerates at a super-exponential rate for some 

period of time.       

 

4.  A process that is driven purely by learning from the experiences of others (social 

learning with direct observation) usually begins slowly and may even decelerate initially.  

If such a process does eventually accelerate, it typically does so at a super-exponential 

rate for some period of time.   Moreover, the overall rate at which adoption proceeds is a 

monotone increasing function of the expected payoffs from adoption.  

                                                                                                                                                 
O. Jackson and Brian W. Rogers (2007),  Jackson and Leeat Yariv (2007), Benjamin Golub and Jackson 
(2008), and Fernando Vega-Redondo (2007). 
7This feature of inertia models distinguishes them from contagion models, as was pointed out in the classic 
study of medical innovation by James S. Coleman, Elihu Katz, and Herbert Menzel (1957, 1966). It is also 
a well-known feature of heterogeneous duration models (Tony Lancaster and Stephen Nickell, 1980; James 
J. Heckman and Burt Singer, 1982; Heckman, Richard Robb, and James R. Walker, 1990).  We draw 
attention to it here because it shows in a particularly transparent way how restrictions on shape can hold 
irrespective of the distribution of individual characteristics (in this case the inertia rates).  
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These results provide a general framework for assessing the relative plausibility of 

different mechanisms that could be driving a given diffusion process.   It is not an 

identification strategy, which is virtually impossible with aggregate-level data and 

difficult enough with micro-level data.   Rather, our results establish restrictions on the 

shape of adoption curves that are associated with particular explanatory mechanisms.  

The overall plausibility of a given explanation should be examined in conjunction with 

other information about the specific nature of the process, e.g., whether it was driven 

largely by internal communication among members of a population or by external 

sources such as advertising campaigns, whether payoffs played a prominent role (as in 

new production methods), or conformity was the main motive (as in new fashions).   We 

outline how this framework can be applied empirically using Bryce Ryan and Neal C. 

Gross’s classic study of the diffusion of hybrid corn in the 1920s and 1930s (Ryan and 

Gross, 1943).  While the data in this study are rather limited, it illustrates how the 

approach can be brought to bear on actual cases, and also highlights the kinds of data that 

one would need to conduct a full-fledged empirical analysis.   

 

II. Inertia 

 

Before launching into a discussion of the three main models, it will be useful to consider 

a much simpler reason why innovations take time to diffuse, namely, people sometimes 

delay in acting on new information.   This hypothesis leads to a particularly tractable 

model that has been studied in other contexts, notably heterogeneous duration models 

(see among others Lancaster and Nickell, 1980; Heckman and Singer, 1982; Heckman, 

Robb, and Walker, 1990).   We include it here because it forms a useful foil for the 

models to come later; furthermore all of the other models include inertia as one of the 

parameters, so this is by far the simplest case to analyze.  

 

First, consider a model of delayed adoption in which there is no heterogeneity among the 

agents.   Let λ  > 0  be the instantaneous rate at which any given non-adopter first adopts. 



 7

Let ( )p t  be the proportion of adopters at time t , and let us set the clock so that (0) 0p = .  

The function ( )p t  is called the adoption curve.   Assume for simplicity that once agents 

have adopted the new technology, they do not switch back to the old technology within 

the time frame of the analysis.  Then the expected motion is described by the ordinary 

differential equation ( ) (1 ( ))p t p tλ= − , which has the solution ( ) 1 tp t e λ−= − given the 

initial condition (0) 0p = .   

 

Notice that this curve is concave throughout; in particular, it is not S-shaped.  It is a rather 

remarkable fact that this remains true when any amount of heterogeneity is introduced.  

To see this, suppose that ( )ν λ  is the distribution of λ  in the population.  Then the 

expected trajectory of the process is given by  

 

  (1)                                                   ( ) 1 tp t e dλ ν−= − ∫ .                                                    

 

Differentiating (1) twice over, we see that ( ) 0p t <  irrespective of the distribution ( )ν λ .  

The intuition is straightforward: agents with high values of λ  tend to adopt earlier than 

those with low values of λ .  It follows that the average value of λ  in the current 

population of non-adopters is non-increasing, and the number of such individuals is 

strictly decreasing.  Thus the flow of new adopters is strictly decreasing.   

 

This simple example illustrates the kinds of results that hold in more complex situations: 

the structure of the model has implications for the shape of the curve that remain true 

even when an arbitrary amount of heterogeneity is introduced. 

 

III. Contagion 

 

Contagion refers to a process in which people adopt a new product or practice when they 

come in contact with others who have adopted it.  An everyday example would be a new 

fashion that spreads because people imitate those who have already adopted. The 
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resulting dynamics are similar to those of an epidemic; indeed, some of the models are 

borrowed directly from the epidemiology literature.   In the context of innovation 

diffusion it is common to use a two-parameter model that allows for contagion from 

within the group at one rate, and from sources outside the group at a different rate.  This 

is known as the Bass model of new product diffusion (Bass, 1969, 1980) or the mixed-

influence diffusion model (Mahajan and Peterson, 1985). In the context of a new fashion 

in clothing, for example, these two rates would correspond to seeing other people on the 

street who are wearing it, and seeing television ads that promote it.8  

 

Let us begin by describing the homogeneous version of the model, later we shall 

introduce heterogeneity.  Let λ  be the instantaneous rate at which a current non-adopter 

‘hears about’ the innovation from a previous adopter within the group, and let γ  be the 

instantaneous rate at which he ‘hears about’ it from sources outside of the group.  We 

shall assume that λ and γ  are nonnegative, and that not both are zero.  In the absence of 

heterogeneity, such a process is described by the ordinary differential equation  

( ) ( ( ) )(1 ( ))p t p t p tλ γ= + − , and the solution is  

 

 (2)                                 ( ) ( )( ) [1 ] /[1 ]t tp t e eλ γ λ γβγ βλ− + − += − + ,  0λ > .                                       

 

When contagion is generated purely from internal sources ( 0γ = ) this boils down to the 

ordinary logistic function, which is of course S-shaped.9  When  innovation is driven 

solely by an external source ( 0γ >  and 0λ = ), we obtain the pure inertia discussed 

earlier.  When both γ  and λ  are positive, we can choose β  in expression (2) so that 

(0) 0p = ; namely, with 1/β γ=  we obtain 

 

(3)                                            ( ) ( )( ) [1 ] /[1 ( ) ]t tp t e eλ γ λ γλ γ− + − += − + / . 

                                                 
8 Some forms of internet advertising attempt to exploit internal feedback effects by informing members of a 
target group how many other members of their group have already adopted.  
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This model has spawned many variants, some of which assume a degree of heterogeneity, 

such as two groups with different contagion parameters (Karshenas and Stoneman, 1992;  

 

Geroski, 2000), while others employ distributions from a specific parametric family, such 

as gamma distributions (Jeuland, 1981).  

 

In fact, we can formulate a fully heterogeneous version that is analytically tractable and 

places virtually no restrictions on the joint distribution of the parameters.   Specifically, 

let μ  be the joint distribution of the contagion parameters λ  and γ .   Assume for 

analytical convenience that μ  has bounded support, which we may take to be 2[0,1]Ω = .   

(Rescaling λ  and γ  by a common factor is equivalent to changing the time scale, so this 

involves no real loss of generality.)  The only substantive restriction that we shall place 

on μ  is that, averaged over the whole population, external influence is positive 

( 0dγ γ μ
Ω

= >∫ ), for otherwise the process cannot get out of the initial state (0) 0p = .    

 

Let ( )p tλ γ,  be the proportion of all type- ( )λ γ,  individuals who have adopted by time t .   

Then the proportion of all individuals who have adopted by time t  is  

 

(4)                                                          ( ) ( )p t p t dλ γ μ,= ∫ .                                               

  

(Hereafter integration over Ω  is understood.) Each subpopulation of adopters ( )p tλ γ,  

evolves according to the differential equation  

 

 (5)                                          ( ) ( ( ) )(1 ( ))p t p t p tλ γ λ γλ γ, ,= + − .                                       

 

                                                                                                                                                 
9 The logistic model was common in the early work on innovation diffusion; see for example Zvi Griliches 
(1957) and Edwin Mansfield (1961). 
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This defines an infinite system of first-order differential equations coupled through the 

common term ( )p t .   We can reduce it to a single differential equation by the following 

device: let ( ) ln(1 ( ))x t p tλ γ λ γ, ,= −  and observe that (5) is equivalent to the 

system ( ) ( ( ) )x t p tλ γ λ γ, = − +  for all ( )λ γ, .  From this and the initial condition 

(0) 0xλ γ, =  we obtain 

(6)                                        
t

0 0
( ) ( ( ) ) ( )

t
x t p s ds p s ds tλ γ λ γ λ γ, = − + = − −∫ ∫ .                       

 

From the definition of ( )x tλ γ,  it follows that 

(7)                                                         
( )

( ) 1
x t

p t e dλ γ μ,= − ∫ ,                                              

 

that is, ( )p t  satisfies the integral equation 

 

(8)                                                     0
( )

( ) 1
t

t p s ds
p t e d

γ λ
μ

− − ∫= − ∫ . 

 

In other words, the current number of nonadopters 1 ( )p t−  decays according to a 

weighted average of exponential functions, where the exponent depends on the elapsed 

time t and the average adoption level up to t.   Starting from the initial condition 

(0) 0p = , one can solve for ( )p t  by successive approximation.  

 

In this model the hazard rate ( ) /(1 ( ))p t p t−  may be increasing or decreasing depending 

on the relative importance of the internal and external sources of contagion.   It turns out, 

however, that the hazard rate cannot increase relative to the current number of adopters, 

that is, the ratio ( ) /[ ( )(1 ( ))]p t p t p t−  must be nonincreasing. Furthermore, if contagion 

from external sources is present, the ratio must be strictly decreasing.   We shall call this 

ratio the relative hazard rate.   
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When the parameters λ γ,  are fixed, it is obvious that that the relative hazard rate is 

nonincreasing, indeed this follows at once from the equation ( ) ( ( ) )(1 ( ))p t p t p tλ γ= + − .  

The claim is not so obvious when the parameters are heterogeneously distributed, 

including the possibility that λ  and γ  are negatively correlated: people who are heavily 

influenced by outside sources (high γ ) might be less susceptible to information from 

inside sources (low λ ), and so forth.  

 

Proposition 1.  Suppose that diffusion is driven by heterogeneous contagion with positive 

external influence. Then the hazard rate decreases relative to the number of adopters, 

which implies that the process cannot accelerate beyond 1/ 2p =  . 

                                                                                                                  

The last statement follows immediately from the prior one, because if ( )p t  were to 

accelerate beyond ½, then at that point the numerator of ( ) /[ ( )(1 ( ))]p t p t p t−  would be 

increasing and the denominator would be decreasing, contradicting the assertion that the 

hazard rate decreases relative to the number of adopters (this is proved in the Appendix).   

 

We remark that there are perfectly reasonable S-shaped curves that do not satisfy the 

monotonicity condition in proposition 1.  Consider, for example, an adoption process 

described by the differential equation ( ) ( )(1 ( ))ap t p t p t= − , which was first proposed as 

a model of innovation diffusion by Christopher J. Easingwood, Mahajan, and Muller 

(1981, 1983).   When 1a > , 1( ) /[ ( )(1 ( )] ( )ap t p t p t p t−− =  is strictly increasing, hence 

Proposition 1 shows that such a process cannot arise from a contagion model with any 

amount of heterogeneity.   Nevertheless, it is possible to generate an S-shaped curve from 

a contagion model -- in fact from a homogeneous contagion model – whose overall 

appearance is very similar (see Figure 1).  
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Figure 1.  Two adoption curves: the solid line is generated by 1.1( ) (1 )p t p p= −  and 

(0) 0.01p = , the dashed line by a Bass model with .75λ = and .0025γ = . 
 
 
IV. Social influence 
                                                      

The sociological literature on innovation stresses the importance of social pressure on 

individual decisions about whether to adopt.  In the standard model individuals are 

assumed to have different ‘thresholds’ that determine whether they will adopt as a 

function of the number (or proportion) of others in the population who have already 

adopted.    The dynamics of these models were first studied by Thomas C. Schelling 

(1971, 1978), Mark Granovetter (1978), and Granovetter and Roland Soong (1988); for 

more recent work in this vein see Michael W. Macy (1991), Valente (1995, 1996, 2005), 

Peter Sheridan Dodds and Watts (2004, 2005), Damon Centola (2006), and Lopez-

Pintado and Watts (2008).   

 

For each agent i , suppose that there exists a minimum proportion 0ir ≥  such that i  

adopts as soon as ir  or more of the group has adopted.  (If 1ir >  the agent never adopts.)  

This is called the social threshold of agent i .  The precise meaning of these thresholds 

varies from one context to another; broadly speaking we can think of them as degrees of 

responsiveness to social influence. A concrete example would be the transmission of 

rumors: some people would need to hear the rumor from many people to pass it on while 

others might only need to hear it once.  Another is fashion: some people need to see only 

a few others wearing a new kind of clothing in order to try it, whereas others will wait 
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until the fashion is widespread before jumping on the bandwagon. A key feature of such a 

model is that the adoption depends on the innovation’s current popularity rather than on 

how good or desirable the innovation has proven to be.10  The latter is the basis of social 

learning models, which we shall take up in the next section. 

 

We wish to model the aggregate dynamics without assuming a specific parametric form 

for the distribution of thresholds.  To this end, let ( )F r  be the cumulative distribution 

function of thresholds in some given population.   At time t the proportion of people 

whose thresholds have been crossed is ( ( ))F p t .  Of these, ( )p t  have already adopted, so 

the proportion whose thresholds have been crossed but have not yet adopted is 

( ( )) ( )F p t p t− . Let 0λ >  be the instantaneous rate at which these people convert.  Then 

the adoption process is described by the differential equation 

 

 (9)                                               ( ) [ ( ( )) ( )], 0p t F p t p tλ λ= − > .                                       

 

Assume that (0) 0F >  and let b  be the first fixed point of F , that is, the smallest number 

in (0, 1] such that ( )F b b= , if any such exists; otherwise let 1b = .   We then have 

( )F p p>  for all [0, )p b∈ .   Since (9) is a separable ordinary differential equation, we 

obtain the following explicit solution for the inverse function 1( )t p x−= : 

  

(10)                              [0, ),x b∀ ∈      1

0
( ) (1/ ) /( ( ) )

x
t p x dr F r rλ−= = −∫ .                        

                                                                                       
 

Notice that the right-hand side is integrable because ( )F r  is monotone nondecreasing 

and ( )F r r−  is bounded away from zero for all r  in the interval [0, ]x  whenever x b< .   

(The constant of integration is zero because of the initial condition (0) 0p = .)  As x b→ , 

the right-hand side of (10) goes to infinity, which implies that the adoption curve 

                                                 
10Popularity is a factor in some of the economics models of diffusion; see in particular Ellison and 
Fudenberg (1993, 1995).  
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approaches b  asymptotically. In particular, the adoption process peters out as it 

approaches the first fixed point of F  . 

 

This phenomenon is illustrated in figure 2.  Here we assume that the thresholds are 

normally distributed to the right of the origin, and there is a point mass at the origin 

corresponding to the subset of innovators -- the people who are willing to adopt even 

when no one else adopted.   Notice that the adoption curve asymptotes to 0.50p = , 

which is the first fixed point of F .  There is nothing special about the normal distribution 

in this regard; similar results hold for any c.d.f. where it first crosses the 45o - line.   

 

The adoption curve in figure 2 is concave, but this is by no means necessary or even 

typical for this family of models.  Figure 3 illustrates an entirely different adoption curve 

that is generated by a truncated normal with smaller mean and variance. An interesting 

feature of this curve is that it accelerates very sharply in the early stages; indeed it can be 

shown that it grows at a faster-than-exponential rate up to 0.10p = .    

 

We claim that whenever the process starts in the left tail of the distribution the curve must 

have one of two shapes: either it decelerates initially, or it accelerates initially at a super-

exponential rate.  To see why this is so, consider the basic dynamic equation in (9).  

Assume that (0) 0F >  and that F  has a continuous density ( )f p  defined for all 

(0,1]p ∈ .  (Note that the density is not defined at the origin because there is a point mass 

there.)   Differentiating (9) with respect to t  and dividing through by ( )p t , which by 

assumption is positive, we obtain 

 

(11)                                                    ( ) / ( ) [ ( ( )) 1]p t p t f p tλ= − .                                       

 

In other words, the relative acceleration rate traces out a positive linear transformation of 

the underlying density.  It follows that the process accelerates initially if and only if the 

initial density is large enough, that is, ( ) 1f p >  in a neighborhood of the origin.  Suppose  
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Figure 2.  Density, c.d.f., and social threshold adoption curve generated by  N(.50, .25) 
and λ  = 4. 
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further that ( )f p  is increasing in a neighborhood of the origin, that is, the process starts 

in the left tail of the distribution of thresholds.  Then (11) shows that the relative 

acceleration rate ( ) / ( )p t p t  is also strictly increasing, that is, the adoption curve exhibits 

super-exponential growth.11  This phenomenon results from the compounding of two 

effects.   First, as more and more people adopt, the amount of information available to the 

remainder of the population increases.  Second, the number of people persuaded by each 

additional bit of information increases as the process moves up the left tail of the 

distribution. 

 

These conclusions continue to hold when λ  is heterogeneously distributed according to 

some distribution function ν λ( ) .   Since λ  is a scaling parameter, there is no real loss of 

generality in assuming that the support of ν  lies in (0, 1].  Let ( )F pλ  be the cumulative 

distribution of thresholds p  conditional on λ , and assume that the conditional density 

( )f pλ  exists for every (0,1]p ∈ .  The following proposition is proved in the Appendix. 

 

Proposition 2.  Suppose that diffusion is driven by a heterogeneous social threshold 

model, where  there is a positive mass of individuals who are prepared to adopt when no 

one else adopts, and the threshold densities ( )f pλ  are positive and increasing in a 

common neighborhood of zero for all λ .  If the process accelerates initially then it 

accelerates initially at a super-exponential rate for some period of time.  

    

V.  Social learning 

 

A notable limitation of the contagion and social influence models is that they provide no 

clear reason why people would adopt an innovation given that others have adopted it.  In 

this section we consider a class of learning models in which the adoption decision flows 

directly from the rational evaluation of evidence. Specifically, let us suppose that an 

                                                 
11 Growth is exponential if ( ) / ( )p t p t is constant, super-exponential if ( ) / ( )p t p t  is strictly increasing, 
and sub-exponential if ( ) / ( )p t p t  is strictly decreasing. 
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agent adopts if he has reason to believe the innovation is better than what he is doing 

now, where the evidence comes from directly observing the outcomes among prior 

adopters. For example, when a new product becomes available -- e.g., a new type of 

medication (antibiotics) or a new communication technology (cellphones) -- people will 

want to see how it works for others over a period of time before trying it themselves.   

These are variously known as social learning models or social learning models based on 

direct observation.   

 

There is a sizable theoretical literature on social learning, but it is difficult to summarize 

due to the great diversity in behavioral and informational assumptions that different 

authors use. Some assume that payoff outcomes among prior adopters are fully 

observable, while others assume only that the act of adoption is observable (the latter are 

usually called herding models).  Some assume that agents can recognize others’ types, 

while others assume that types cannot be identified.  There are also significant differences 

in the relevant characteristics that authors choose to focus on, including heterogeneity in 

risk aversion, discount rates, and amount of information.12    There is considerable 

empirical evidence, however, that learning from the experience of others does in fact 

occur.13  

 

Here we shall make a number of simplifying assumptions in order to get a handle on an 

issue that has not received much previous attention in this literature, namely, what do the 

short-run aggregate dynamics of a heterogeneous learning model look like, and do they 

differ qualitatively from the dynamics generated by other classes of models?  

 

To make some progress on this question let us make the following assumptions: i) 

payoffs are observable; ii) payoffs generated by different individuals and/or at different 

points in time are independent and equally informative; iii) agents are risk-neutral and 

                                                 
12 See among others Bikchandani, Hirshleifer, and Welsh (1992), Banerjee (1992), Kirman (1993), Ellison 
and Fudenberg (1993, 1995), Kapur (1995), Bala and Goyal (1998), Smith and Sorensen (2000), Chatterjee 
and Xu (2004), Banerjee and Fudenberg (2004), Manski (2004), Golub and Jackson (2008). 
13 Andrew Foster and Mark Rosenzweig (1995), Kaivan Munshi (2004), Timothy G. Conley and 
Christopher R. Udry (2005).  
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myopic; iv) there is no idiosyncratic component to payoffs due to differences in agents’ 

types, but agents may have different costs (not necessarily observable); v) there are 

differences in agents’ prior beliefs about how good the innovation is relative to the status 

quo; vi) there are differences in the average number of people they observe and hence in 

the amount of information they have; vii) the population is fully mixed.   Many other 

complicating factors could be introduced, such as discounting, one-time switching costs, 

risk aversion, imperfect observability, restricted information acquisition (such as through 

social networks), but these extensions would distract from the main point, which is to 

identify the dynamic characteristics of a fairly general class of learning models without 

attempting to formulate the most general such model. 

  

We claim that, under the above assumptions, the dynamical system has a surprisingly 

simple structure.  One can reduce the various types of heterogeneity to a composite index 

that measures the probability of a given agent adopting, conditional on the amount of 

information that has been generated thus far in the population.  The equation of motion  

of such a process turns out to be analogous to the one obtained for the social influence 

model, except that here the relevant state variable at time t  turns out to be the integral of 

the adoption curve up through t , 
0

( )
t
p s ds∫ , rather than the level of adoption ( )p t .14  The 

reason is that 
0

( )
t
p s ds∫  measures the cumulative information generated by all prior 

adopters from the time they first adopted, which is the relevant variable in the learning 

context.    

 

To illustrate how such a model works, let us walk through a particular example using a 

standard normal-normal updating framework.  This is chosen mainly for its 

computational transparency; similar results hold under alternative assumptions.15  

Assume that the payoff from the innovation is a normally distributed random variable X  

                                                 
14 Recall that the integral of the adoption curve also featured in the heterogeneous contagion model (see 
equation (8)). 
15 Jensen (1982) and Lopez-Pintado and Watts (2008) study the case where the outcome variable is 
binomial  (payoffs are “high” or “low”). They assume that agents pay attention only to current outcomes, 
not the cumulative amount of information generated from earlier periods. 
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with mean 0μ >  and variance 2σ , which is i.i.d. among agents and time periods.  We 

shall interpret μ  as the mean payoff gain per period from using the innovation as 

compared to the status quo technology.  Each agent is assumed to have an idiosyncratic 

variable cost ic  of using the innovation, so he adopts if and only if he believes that the 

mean payoff per period is at least ic  (thus he may switch back if after receiving more 

information he believes that the mean payoff is less than ic ).  

 

If everyone knew the true value of μ  from the outset, then everyone would adopt for 

whom ic μ< .  This is the efficient outcome.   Ex ante, however, people do not know the 

true value of μ ; furthermore, they may start with substantially different beliefs (based on 

their prior private information) about what the true value is.  As more information comes 

in, they update their beliefs.  If this information is sufficiently favorable, more people 

will adopt, which creates a still-larger base of information, which causes even more 

people to adopt, and so on.  This is the essential logic driving the learning dynamics.   

 

To continue with our example, suppose that each agent i  has a prior belief about the 

unknown mean μ  and unknown precision 21/ρ σ=  such that: i) the marginal of ρ  is 

gamma-distributed, and ii) for each value of ρ  the conditional distribution of μ  is 

normal with mean 0iμ  and precision iρτ .  (This is a standard normal-normal updating 

model; see Morris De Groot (1970).)   Low values of iτ  reflect flexibility in beliefs, that 

is, relatively little evidence is needed to shift  'i s  belief about the mean by a given 

amount.  Low values of 0iμ  reflect pessimism about the payoffs from the innovation.   In 

particular, if i  initially believes that the mean is less than his costs, 0i icμ < , he will not 

want to adopt.  As more information comes in, however, his posterior estimate of the 

mean, itμ , may increase sufficiently that he changes his mind.  The point at which this 

happens depends, among other things, on how much information i  collects and how 

flexible his beliefs are.   
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At a given point in time t , agent i  will have seen (or heard about) a random assortment 

of prior outcomes depending on the chance encounters he had with other members of the 

population.  In a continuous-time setting the total “number” or measure of prior outcomes 

up to time t  is given by the integral under the adoption curve, namely, 
0

( ) ( )
t

r t p s ds= ∫ .  

Assuming that i  is equally likely to see any particular outcome, we can model 'i s  flow 

of information by a Poisson arrival process. In particular, let itN  be a Poisson random 

variable representing the number of 'i s  observations up to time t , where [ ] ( )it iE N r tβ=   

and the parameter iβ  is a measure of the extent to which i  “gets around.”16   

Let itn  denote the realization of itN , and let itx  denote the mean payoff among these itn  

observations.  Given our assumptions, itx  is normal with mean μ  and standard deviation 

/ itnσ .   In the normal-normal updating framework, 'i s  Bayesian posterior estimate of 

the mean, itμ , can be expressed very simply as a convex combination of 0iμ  and itx , 

namely,  

 

(12)                                                        0it it i i
it

it i

n x
n

τ μμ
τ

+
=

+
 .                                       

 

In other words, the posterior estimate is just a weighted average of the prior and the 

observed mean, where the weight on the mean is the number of independent observations 

that produced it.   

  

Given our assumption that i  is myopic, she is prepared to adopt once itμ  is at least equal 

to her variable ic , which by (12) is equivalent to  

 

(13)                                                      0( ) ( )it i it i i ix c n cτ μ− ≥ −  .                                         

                                                 
16 If agents were embedded in a fixed social network, the analogous parameter would be the number of 
other agents with whom a given agent is connected. In this case, however, the aggregate amount of 
information ( )r t  will generally not be sufficient to describe the state of the system; the dynamics of the 
process will depend on the specific network topology.  See Golub and Jackson (2008).    
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By assumption ( )( / )it it itx n zμ σ− =  is (0,1)N , hence (13) can be re-written as 

 

(14)                                              0( ) ( )it
i it i i i

it

z c n c
n

σ μ τ μ+ − ≥ − . 

 

To make sense of this expression, let us focus on the subpopulation of agents for whom 

adoption is worthwhile, 0 { : }iP i cμ= > , and substitute the expected value [ ] ( )it iE n r tβ=  

into (14).  After rearranging terms we obtain 

 

 (15)                                               0 ( ))( )( )
( ) ( )

iti i i

i i i i

r t zcr t
c c

στ μ
β μ μ β

−
≥ −

− −
.                                   

Define 'i s  resistance level (or information threshold) to be the expected value of the 

right-hand side of this inequality, namely, 

 

 (16)                                                              0( )
( )

i i i
i

i i

cr
c

τ μ
β μ

−
=

−
 .                                              

 

We shall say that an agent is of type i  if she has the vector of characteristics 

( 0, , ,i i i ic τ β μ ).  From (15) and (16) we see that an agent of type i  is increasingly likely to 

adopt as ( )r t  passes the threshold ir .   Moreover, this threshold has a natural 

interpretation: agents with high ir  are those who are initially pessimistic that the 

innovation will cover their costs ( 0i ic μ−  is large), inflexible in their initial beliefs ( iτ  is 

large),  marginally  profitable ( icμ −  is low), and relatively uninformed ( iβ  is small). 

 

The precise form of expressions (15) and (16) is not essential for our purpose however: 

the key point is that each agent i  has a response function ( )i rφ , which represents the 
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probability that i believes the innovation is worth adopting, given that the total amount of 

information generated by the prior adopters equals r .17  

 

Let us now abstract from this particular example and take the notion of a response 

function as a primitive of the learning model.   Suppose that each agent in the population 

has a “type” i  that is characterized by a response function : [0,1]i Rφ + → , where ( )i rφ  is 

the probability that 'i s  information threshold has been crossed when the total amount of 

information generated by the prior adopters is r .  For ease of interpretation we shall 

assume that the functions ( )i rφ  are monotone nondecreasing, though this is not actually 

necessary for some of the results to follow.   Notice that a given individual will typically 

know only a small fraction of the prior outcomes, that is, r  is a state variable that 

represents a common pool of information but it is not common knowledge.  

 

Assume that there are countably many types in the population, and let ip  be the 

proportion of i -types.18   When the total information generated by prior adopters equals 

r , the proportion of the population whose thresholds have been crossed is given by the 

function 

 

(18)                                                                 ( ) ( )i i
i

F r p rφ= ∑  .                                         

 

                                                 
17 In the present case, the response function has the following explicit representation. Given that ( )r t r= , 

itn  is Poisson-distributed with mean i rβ .   Given a realization 0itn k= > , the mean observed payoff, itx , 

is normal with mean μ  and variance 2 / kσ .   Let Φ  denote the standard normal c.d.f.  Then the 
probability that 'i s  posterior estimate exceeds 'i s  costs, i.e., the probability that (13) holds, is  
 

 (17)                                               0

1

( ) ( ) ( )
( ) [( ]

!

i rk

i i i i i

k

i

r e c k c
r

k k

ββ μ τ μ

σ σ
φ

−∞

=

− −
= Φ −∑ .      

            
18 Alternatively we could assume that the types are uncountable and distributed according to a density; this 
makes no material difference in the subsequent analysis.  
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( )F r  is a monotone nondecreasing function which we can interpret as a notional 

distribution function of agents’ information thresholds.  We allow for the possibility that 

some agents have an infinite threshold, hence lim ( )r F r→∞  may be less than one. 19        

 

Recalling  that 
0

( ) ( )
t

r t p s ds= ∫ , it follows that the aggregate dynamics is described by 

the differential equation 

  

(19)                                            
0

( ) [ ( ( ) ) ( )], 0
t

p t F p s ds p tλ λ= − >∫ .                                

 

 

Observe that (19) is analogous to the dynamical equation (9) defining a social threshold 

model, except that in the present case the argument of F  is the integral of the adoption 

curve rather than the adoption curve itself. This arises because agents use all past 

information generated by previous adopters rather than just the most recent information. 

Note that this formulation hinges on our assumption that payoff information is equally 

informative no matter when it was received. If this were not the case, for example if 

payoffs received in earlier time periods were less valuable, the defining equation would 

have to be modified accordingly.20   

 

The cumulative feature of the social learning model has some important implications for 

the shape of the adoption curve.   Compared to the social influence model acceleration is 

initially quite weak; in fact in a neighborhood of the origin the process strictly 

                                                 
19 The closest model to this one in the literature is due to Dodds and Watts (2004, 2005). They consider a 
cumulative-dose model of infection with heterogeneity in the thresholds at which agents become infected 
(including social as well as biological interpretations of infection), though their analysis of the dynamics 
emphasizes different features from the ones considered here.  
20 If payoff information is discounted at some rate 0δ > , the dynamical equation takes the form 

( )

0
( ) [ ( ( ) ) ( )]

t t sp t F e p s ds p tδλ − −= −∫ .  Note that when δ  is large, this process is similar to the social 

influence model.  Another modification is to allow for joint heterogeneity in λ  and r; this extension is 
straightforward and is left to the reader. 



 25

decelerates irrespective of the distribution generating it.   To see why this is so, 

differentiate equation (19) to obtain the acceleration equation  

 

(20)                                                  (1/ ) ( ) ( ) ( ( )) ( )p t p t f r t p tλ = − .                                   

 

By assumption (0) 0p =  and the solution ( )p t  is continuous, so the first term is close to 

zero when t is close to zero.  However, the second term is bounded away from zero when 

t is close to zero, because (19) implies that (0) (0) 0p Fλ= > .   Hence 

 

(21)                                            2
0

lim ( ) (0) ( (0)) (0) 0
t

p t F f p pλ+→
= − + < .                       

 

More generally, when we compare (20) with the acceleration equation for the social 

influence model, namely, (1/ ) ( ) ( ) ( ( )) ( )p t p t f p t p tλ = − , we see that the former has 

weaker initial acceleration than the latter because ( )p t  is initially positive whereas ( )p t  

is initially zero. The result may be an extended period of weak growth in the early phases 

of social learning.   The reason is that the initial block of optimists (0)F  exerts a 

decelerative drag on the process: they contribute at a decreasing rate as their numbers 

diminish, while the information generated by the new adopters gathers steam slowly 

because there are so few of them to begin with.21   Figure 4 illustrates this phenomenon 

for the same density that generated the social thresholds adoption curve in Figure 3.   

                                          

                                                 
21Initial deceleration does not necessarily occur, however, if observations are bunched at particular points in 
time. An example would be an agricultural innovation (e.g., a new type of crop) that is tried once in each 
growing season, and whose outcomes farmers observe at the end of the season. This case will be discussed 
further in section 6.      
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Figure 4.  Adoption curve generated by social learning, a normal distribution of 

                  information thresholds N(.10, .01), and λ = 4.  

 
Next we shall investigate the behavior of the relative acceleration rate ( ) / ( )p t p t . To 

avoid uninteresting technical complications let us assume that the density is well-behaved 

near the origin, that is, 
0

(0) lim ( ) 0
r

f f r+→
= > , and that f ′  is continuous and bounded.   

Define 

 

(22)                                                       ( ) (1/ ) ( ) / ( )t p t p tφ λ= .                                           

 

From (20) we deduce that 

 

 

(23)                                                 ( ) ( ( )) ( ) / ( ) 1t f r t p t p tφ = − .                                           

 

Differentiating (23) we obtain 

 

(24)                         2 2( ) ( ( )) ( ) / ( ) ( ( )) ( ( )) ( ) ( ) / ( )t f r t p t p t f r t f r t p t p t p tφ ′= + − .               

 

As 0t +→  the first term in (24) goes to zero, because by assumption f ′  is bounded, 

( ) 0p t → , and (0) 0p > .  The third term also goes to zero.  However, 

( ( )) (0) 0f r t f→ > , so the second term is positive in the limit. It follows from continuity 
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that ( )tφ  is strictly positive on some initial interval 0 t T≤ ≤ .  In the region near the 

origin where ( ) 0p t < , this says that the relative acceleration rate is becoming less 

negative.    

 

Now suppose that at some time 0t  the process begins to accelerate.  If at this point the 

density is increasing, then 0( ( )) 0f r t′ > , and it follows from (24) and continuity that ( )tφ  

is positive for some interval of time beginning at 0t . In other words, if the density is 

increasing when the process begins to accelerate (assuming it ever does accelerate), then 

the process undergoes a period of super-exponential growth. 

 

Proposition 3.  Suppose that diffusion is driven by social learning, where there is a 

positive mass of individuals who adopt even when no one else adopts ( (0) 0F > ), and the 

distribution of resistances has a density ( )f r  that is bounded away from zero near the 

origin and has a continuous bounded derivative.  Then initially the process decelerates 

whereas the relative acceleration rate strictly increases.  If the process begins to 

accelerate, and if the density is increasing at that point, then the process undergoes a 

period of super-exponential growth.   

  
 

Propositions 2 and 3 show that both the social influence model and the social learning 

model can exhibit periods of super-exponential growth.  This is consistent with 

observations by various authors that adoption curves often exhibit a sudden take-off 

phase after a slow start (Ryan and Gross, 1943; Henrich, 2001; Maarten C. M. Vendrik, 

2003; Rogers, 2003).  The above propositions are more specific in predicting super-

exponential growth, and they clarify why one would expect it theoretically.  Theory also 

suggests why the curves generated by social influence and social learning will differ in 

other respects.  One difference is that, in a social learning model, the speed of adoption at 

a given point in time depends on adoption levels at earlier points in time, whereas in a 

social influence model this is not the case.  Given sufficiently detailed adoption data this 

effect could be tested by regression analysis with lagged variables.   
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A second distinction between the models is the way in which the resistance thresholds are 

constructed.  In a social influence model the thresholds reflect differences in a single 

scalar parameter (people’s tendency to conform), whereas in a social learning model they 

reflect differences in a variety of factors, including prior beliefs, amount of information 

gathered, and the payoff gain from the innovation.  Some of these factors are 

unobservable and would be difficult estimate even with micro-level adoption data. 

However, the payoff gain -- the parameter μ  in the social learning model -- can 

sometimes be estimated from the data, as we shall see the next section.    

 

The key point to observe is that higher average payoffs from adoption shift the individual 

response functions upward: for a given “number” of prior outcomes r  in the population, 

the probability ( )i rφ  that any given individual i  adopts increases the higher the potential 

payoff gain μ .  Thus if we consider two distinct populations { }1, 2  such that one has a 

higher mean payoff than the other, say 2 1μ μ> , then all else being equal the resistance 

distributions satisfy 2 1( ) ( )F r F r≥  for all r .  ( 1F  first-order stochastically dominates 2F .)  

Under these circumstances, adoption occurs more rapidly in population 2 than in 

population 1, that is, the solutions satisfy 2 1( ) ( )p t p t≥  for all t .22   This is one way to 

evaluate the plausibility of the social learning model without knowing much about the 

distribution of the learning parameters.  

 

 

                                                 
 
22 Consider the dynamical equations ( ) [ ( ( )) ( )],  1, 2i i i ip t F p t p t iλ= − = . Let 1 2( ), ( )p t p t  be the solutions, 

which we assume to be continuous.  Note that 2 1(0) (0)p p≥ , because by assumption 2 1(0) (0)F F≥  and 

1 2(0) (0) 0p p= = .  Suppose, by way of contradiction, that 2 1( ) ( )p t p t<  at some time 0t > .  By 

continuity there is a time 0t >  such that 2 1( ) ( )p s p s≥  for all s t≤  and 2 1( ) ( )p t p t< . Therefore 

2 10 0
( ) ( )

t t

p s ds p s ds≥∫ ∫  and 2 2 1 10 0
( ( ) ) ( ( ) )

t t

F p s ds F p s ds≥∫ ∫ , from which it follows that 2 1( ) ( )p t p t≥ , a 

contradiction.   
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VI. The diffusion of hybrid corn 

 

Diffusion data that permit definitive tests of the preceding propositions are not easy to 

come by.  One reason is that an adoption curve must be charted at frequent time intervals 

in order to conduct tests of statistical significance. Consider, for example, a product or 

practice that took ten years to go from introduction to completion.  If the adoption level is 

measured annually, there will be only ten data points, only nine first differences, and only 

eight second differences; furthermore the errors in successive differences will not be 

independent.  Of course, the situation would be different if we had monthly or weekly 

data over a period of ten years, but there appear to be very few data sets of this sort in the 

literature. Moreover, the data that do exist tend to be for new products where mass 

advertising played a critical role.  In these cases it is difficult to sort out the relative 

importance of internal and external sources of information, though the mixed-influence  

contagion model is certainly a step in that direction.  

 

Fortunately, there exist some data that are sufficiently detailed to carry out a preliminary 

analysis of the ideas discussed above.    The example we choose here is Ryan and Gross’s 

classic study of the diffusion of hybrid corn in two Iowa communities (Ryan and Gross, 

1943).  This work prompted a number of later studies on innovation diffusion, including 

Zvi Griliches’s analysis of hybrid corn diffusion across the midwestern and southern 

United States (Griliches, 1957).  Although the latter is more comprehensive in its 

geographical coverage, the study by Ryan and Gross has several advantages for our 

purposes.   First, it was carried out at the community level, whereas the adoption curves 

in Griliches’s study were aggregated over several counties and involved scores of 

dispersed communities.  Second, Ryan and Gross provided the proportion of hybrid corn 

adopters, whereas Griliches gave the proportion of acreage planted in hybrid corn, which 

(among other things) biases the results toward large landowners.  Third, the Ryan and 

Gross data covered the critical start-up phase in the 1920s, which was absent in 

Griliches’s analysis.  Finally, Ryan and Gross’s study included important related 

information, such as the year that farmers first learned about the new technology and the 

sources from which they learned about it.   These data provide additional contextual 
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details that, together with the shape of the curve itself, allow us to assess the relative 

plausibility of different diffusion mechanisms. 

 

The adoption curve is shown in Figure 5.   Particularly noteworthy features are the long 

choppy start, which lasted for some six years (1927-32), followed by a sharp acceleration 

for about four years (1933-36), and then a rapid deceleration as nearly 100 percent 

acceptance levels were reached in 1941.23   

 

Ryan and Gross repeatedly emphasize that natural conservatism was one of the key 

reasons why farmers delayed so long in adopting a technology that could have 

substantially increased their profits.  Indeed, their survey data reveal that, although at 

least two-thirds of the farmers had heard about the advantages of hybrid corn as early as 

1931, only about 8 percent had adopted by then.  Thus pure inertia could well have been 

the explanation for the long delay.  Nevertheless, the shape of the curve suggests that this 

was not the case.  The reason is that, in a pure inertia model with heterogeneous levels of 

inertia, the adoption curve must be concave throughout.  This hypothesis can be rejected 

with reasonable confidence, since there was deceleration in only one of the first ten time 

periods, and sharp acceleration in most of them.   Thus, although inertia may have been a 

contributing factor, it was unlikely to have been the sole factor.  

 

Another interesting aspect of Ryan and Gross’s survey is that farmers reported their 

sources of information about the new technology, and identified the sources they believed 

were most influential in their decision to adopt. Whereas seed salesmen were listed as the 

most common original source of knowledge, neighbors were listed as the most influential 

in deciding whether to implement it.  This is broadly consistent with the three classes of 

models under consideration, all of which posit that adoption results from an internal 

feedback loop between earlier and later adopters.   

 

                                                 
23 These features have been noted by other authors, notably Henrich (2001), who explains them by a 
combination of learning from direct experience and biased cultural transmission. 
 



 31

 
 

  0.0    0.4     1.4     3.0     4.6     6.9     7.3     9.6    15.8   24.0   38.0   62.0   79.0   93.0   98.5  99.7 
1926 1927  1928  1929  1930  1931  1932  1933  1934  1935  1936  1937  1938  1939  1940  1941 
 

Figure 5.  Percent of adopters of hybrid corn in two Iowa communities, 1926-41 (from 
Ryan and Gross, 1943, fig. 4). 
 

Let us consider the contagion model first.   This posits that adoption decisions are driven 

by a combination of internal and external influences, where external influence operates at 

a constant rate and internal influence operates at a rate proportional to the current number 

of adopters.  We know that this model generally produces S-shaped curves, but we also 

know that the curve has a particular property: the hazard rate must be nonincreasing 

relative to the current number of adopters.  (It can be verified that this property also holds 

in the discrete-time version.)   

 

To check this, let tp  be the proportion of adopters at the end of period t , and let 

1t t tp p+Δ = −  be the rate of change at t .   Then / (1 )t t t tH p p= Δ −  should be 

nonincreasing in t , and strictly decreasing if there is any outside influence.   tH  is the 

piecewise linear curve shown in figure 6. 

 

To test whether it is monotone nonincreasing, let us fit a cubic polynomial using OLS 

(the smooth line in figure 6).    
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Figure 6.  Cubic polynomial (smooth line) fitted by OLS to the relative hazard 
rate / (1 )t t t tH p p= Δ − (jagged line).    

The overall fit is very good (R2 = .86), and the quadratic and cubic coefficients differ in 

sign at a highly significant level.   We therefore have reason to believe that tH  is not a 

monotone function, which is corroborating evidence against the contagion hypothesis.  

Of course this is not the same as saying that there is no contagion effect, merely that this 

effect by itself is unlikely to have produced the Ryan and Gross data. 

Next let us consider the social influence and social learning models.  Ryan and Gross 

argued that the balance of evidence from the survey suggested some form of learning by 

farmers: “In some sense the early acceptors provided a community laboratory from which 

neighbors could gain some vicarious experience with the new seed over a period of some 

years” (ibid, p. 16).   This is precisely the effect posited in the social learning model.   Is 

social learning consistent with the shape of the curve?  The answer is affirmative.  Indeed 

the curve has two features that are quite typical of social learning models: there is a long 
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slow start-up followed by very rapid acceleration. We remind the reader why this is so: in 

the early phases adoption is driven mainly by people who are already convinced that the 

new technology is a good idea but who may delay due to inertia; once this effect is 

overcome there is rapid acceleration caused by the accumulation of information provided 

by prior adopters, combined with the rising number of people at the margin who are 

persuaded by the new information.  

Unfortunately, the curve does not have enough data points to carry out tests of 

significance, but we can make a rough estimate of the relative acceleration rate in the 

following way.  First compute the average slope over successive three-year intervals in 

order to smooth out the data.  Then compute the relative acceleration rate as the ratio of 

successive slopes minus unity.24  The results are shown in table 1 for three different ways 

of grouping the data.  In every case the relative acceleration rate rises sharply from the  

second to the third period. (Recall that in an exponential growth model the relative 

acceleration rate would be constant.)  While this is not proof of super-exponential 

acceleration, it is certainly consistent with it.  

 

These features provide corroborating evidence for social learning, but they certainly do 

not constitute identification.  For example, we cannot rule out the possibility that in the 

mid-1930s there was an exogenous shock (e.g., a price war among seed companies) that 

caused the sudden uptick.25   Moreover, the sharp rise in acceleration is equally consistent 

with the social influence model.   In this case, however, there is evidence from another 

source – namely Griliches’s study – that social influence was probably not the sole 

explanation. The reason is that, in a social learning model the rate of adoption depends on 

the potential gain from adoption, whereas in a social influence model this is not the case.  

One of Griliches’s main findings was that in the midwestern states generally (including 

                                                 
24 If tΔ  is the slope in period t , then 1 1( ) / / 1t t t t t+ +

Δ − Δ Δ Δ Δ= −  is an estimate of  the relative 
acceleration rate at t . 
25 It is worth noting, however, that Griliches investigated whether price changes in hybrid seed could 
explain the rates of adoption in various parts of the Midwest (including Iowa), and he found no significant 
effect (Griliches, 1957, p.503).  
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Iowa), the rate of adoption in each region was positively correlated with the estimated 

monetary gain from adoption, just as the social learning model predicts. 

 

Interval iΔ  1 / 1i i+Δ Δ −  
1927-29 1.0 -- 

1930-32 1.4 1.4 

1933-35 5.6 4.0 

1936-38 18.3 3.3 

1928-30 1.4 -- 

1931-33 1.7 1.2 

1934-36 9.5 5.6 

1937-39 18.3 1.9 

1929-31 1.8 -- 

1932-34 3.0 1.7 

1935-37 15.4 5.1 

1938-40 12.2 0.8 

 
Table 1.  Relative acceleration rate measured over three-year intervals. iΔ  is the average 

annual change (in percent) over the ith  interval, and relative acceleration is  1 / 1i i+Δ Δ − . 
 

Putting all of this information together, we can say that social learning is consistent with 

the observed pattern of diffusion of hybrid corn, although we cannot say that it was the 

sole explanatory factor.  However, we can also say with some confidence that inertia and 

contagion were probably not the sole explanatory factors (and given Griliches’s findings 

neither was social influence).    

 

While the Ryan and Gross study is quite limited in scope, it highlights some of the issues 

that would need to be addressed in a more complete empirical analysis.  First, one would 

need a curve – or set of curves -- that are measured at frequent time intervals.  The reason 

is that one requires an accurate estimate of the acceleration pattern at precisely the point 
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where acceleration is most rapid, hence frequent observations in this part of the curve are 

crucial for running tests of significance. Second, one needs data that cover the whole 

lifecycle of the adoption process, including the very early phases when adoption is just 

getting started.  Many of the data sets in the literature are quite weak in this respect; the 

reason, of course, is that researchers are not likely to focus their attention on an 

innovation until it is already well underway. 

 

Third, the framework developed here applies to situations where there is informational 

feedback between members of a group who interact more or less at random.  If 

information flows through a fixed network, say between individuals who are near 

neighbors (in a geographical or social sense), then a different analysis will be required.  

(Ryan and Gross did not say whether farmers learned more or less uniformly from others 

in the community, or mainly from their immediate neighbors.)  Fourth, we have restricted 

our attention to social learning models in which people can directly observe outcomes 

generated by other adopters. In the case of hybrid corn this assumption seems reasonable; 

indeed Ryan and Gross specifically say that farmers looked at their neighbors’ fields to 

assess the viability of the new technology (Ryan and Gross, 1943, p.16).  In situations 

where direct observation is not possible, one would need an analog of the theory in which 

inferences are made indirectly.  

 

Finally, the Ryan and Gross study highlights the importance of having supporting data 

about the agents’ sources of information and the reasons they delayed in acting on it.  

These contextual details, combined with an analysis of the shape of the curve, have the 

potential to discriminate between alternative diffusion mechanisms even when detailed 

micro-level data are unavailable.    
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APPENDIX 

 

Proof of Proposition 1.  Define the function ( )H t = ( ) / ( ) ( ) /[ ( )(1 ( ))]h t p t p t p t p t= − ; 

this is well-defined for all 0t >  because by assumption (0) 0p γ= > , hence ( ) 0p t >  

when 0t >  .  We need to show that ( ) 0H t < . 

 

For each parameter pair ( )λ γ,  let ( ) (1 ( ))q t p tλ γ λ γ, ,= −  denote the proportion of the 

( )λ γ, -population that has not yet adopted by time t .  The proportion of the total 

population that has not adopted by t  is therefore  

 

(A1)                                                      ( ) ( )q t q t dλ γ μ,= ∫ .                                                  

 

For each ( )λ γ,  we have 

 

(A2)                                               ( ) ( ( ) ) ( )p t p t q tλ γ λ γλ γ, ,= + .                                           

 

Integration with respect to μ  yields  

 

(A3)                                               ( ) [ ( ) ( ) ( )] ( )p t t p t t q tλ γ= + ,                                                           

 

where 

 

(A4)                           1( ) ( ) ( )t q t q t dλ γλ λ μ−
,= ∫  and 1( ) ( ) ( )t q t q t dλ γγ γ μ−

,= ∫ .                  
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Note that ( )tλ  and ( )tγ  are the expected values of λ  and γ  in the population of non-

adopters at time t .   It follows that 

 

(A5)                                        ( ) ( ) /[ ( ) ( )] ( ) ( ) / ( )H t p t p t q t t t p tλ γ= = + .                             

 

Claim:     

(A6)                                        For every 0t > , ( ) ( ) ( ) 0t p t tλ γ+ ≤ .                                                               

 

Proof of claim.  For every 0t >  we have 

 

(A7)                                
2

( ) [ ( ) ][ ( ) ]
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

λ μ λ μ μ
λ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫

,                        

and 

(A8)                                
2

( ) [ ( ) ][ ( ) ]
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

γ μ γ μ μ
γ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫

.                         

 

To show that ( ) ( ) ( ) 0t p t tλ γ+ ≤ , multiply (A7) by ( )p t  and add it to (A8); after 

simplifying we obtain the equivalent condition  

 

(A9)    [ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫ [ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,− +∫ ∫ 0≤ .     

 

We need to show that (A9) holds for every 0t > .   (Notice that t  does not vary in this 

expression; t  is fixed and integration is taken with respect to λ  and γ .)  We know from 

(A2) that ( ) ( ( ) ) ( )q t p t q tλ γ λ γλ γ, ,= − +  for every λ γ, , and t .   Substituting this into (A9) 

we obtain  

 

(A10)                  2[ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫ 2[ ( ( ) ) ( ) ]p t q t dλ γλ γ μ,≥ +∫ .            
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Fix 0t >  and define the random variables  

 

(A11)                                  ( ( ) ) ( )X p t q tλ γλ γ ,= +  and ( )Y q tλ γ,= .                               

 

The realizations of X  and Y  are determined by random draws from μ .   Thus (A10) 

follows directly from Schwarz’s inequality: 2 2 2[ ] [ ] ( [ ])E X E Y E XY≥ .  This establishes 

the claim.   

 

We can now apply this result to show that ( )H t  is strictly decreasing in t for all 0t > .  

Differentiating ( )H t  we obtain 

 

(A12)                                         2( ) ( ) ( ) / ( ) ( ) ( ) / ( )H t t t p t t p t p tλ γ γ= + − .                          

 

By the above claim, ( ) ( ) ( ) 0t p t tλ γ+ ≤ , so division by ( ) 0p t >  yields 

( ) ( ) / ( ) 0t t p tλ γ+ ≤ .    Thus the sum of the first two terms on the right-hand side of 

(A12) is nonpositive.   But the last term is strictly negative, because ( ) 0tγ >  for all 0t >  

given the initial condition (0) 0γ γ= > .   Hence ( ) 0H t <  as was to be shown. 

 

Proof of Proposition 2.  The equations of motion are   

 

(A13)                                                 ( ) [ ( ( )) ( )]p t F p t p tλ λ λλ= − ,                                      

 

where the initial conditions are (0) 0.pλ =   By assumption (0) 0Fλ > , hence ( ) 0p tλ >  

for all sufficiently small 0t >  and 

 

(A14)                                              ( ) / ( ) [ ( ( )) 1]p t p t f p tλ λ λλ= −  .                                    
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By hypothesis the functions ( ( ))f p tλ  are strictly increasing on some common 

neighborhood of the origin 0 ( )p t p< < .   It follows that, for every λ  and all t  in a 

suitable interval (0, ]T , 

 

(A15)                                             2( ) / ( ) ( ( ) / ( )) 0p t p t p t p tλ λ λ λ− > . 

 

Hence we have 

 

(A16)                                                           ( ) ( ) ( )p t p t p tλ λ λ> ,                                       

 

(A17)                                                  ( ) ( ) ( ) ( )p t p t d p t d p tλ λ λν ν> =∫ ∫ .                        

 

By Schwarz’s inequality,  

 

 (A18)                              1/ 2( ) ( ) ( ( ) ( ) ) ( ) ( )p t p t p t d p t d p t p t dλ λ λ λν ν ν= ≥∫ ∫ ∫ .             

 

Combining this with (A17) we conclude that ( ) ( ) ( )p t p t p t> , which implies that 

[ ( ) / ( )] 0d p t p t
dt

> , that is, ( ) / ( )p t p t  is strictly increasing on (0, ]T .  This concludes the 

proof of Proposition 2. 

 

 

 

 


