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a b s t r a c t 

A non-trivial, transitive and reflexive binary relation on the set of lotteries satisfying independence that 
also satisfies any two of the following three axioms satisfies the third: completeness, Archimedean and 
mixture continuity (Dubra, 2011). This paper generalizes Dubra’s result in two ways: First, by replacing 
independence with a weaker betweenness axiom. Second, by replacing independence with a weaker 
cone-monotonicity axiom. The latter is related to betweenness and, in the case in which outcomes 
correspond to real numbers, is implied by monotonicity with respect to first-order stochastic dominance. 

© 2015 Elsevier B.V. All rights reserved. 
1. Introduction 

Building on a theorem of Schmeidler (1971), Dubra (2011) 
proved that a non-trivial, transitive and reflexive binary relation 
on the set of lotteries satisfying independence that also satisfies 
any two of the following three axioms satisfies the third: complete-
ness, Archimedean and mixture continuity. In this paper we gen-
eralize Dubra’s result by replacing independence with the weaker 
betweenness axiom.1 In addition, we show that if outcomes cor-
respond to real numbers (e.g., monetary prizes) then Dubra’s re-
sult still holds even if instead of independence we only assume 
monotonicity with respect to first-order stochastic dominance. In 
fact, we prove the result replacing independence with a weaker 

✩ We thank Juan Dubra and an anonymous Associate Editor for very useful and 
insightful comments.
∗ Corresponding author at: Department of Economics, Johns Hopkins University, 

United States. 
E-mail address: karni@jhu.edu (E. Karni). 

1 Safra (2014) studied the representations of axiomatic theories that include 
betweenness and depart from the completeness axiom. Karni and Zhou (2014) 
examined representations of weighted utility theory (which satisfies betweenness) 
without completeness. 
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axiom dubbed cone-monotonicity. Cone-monotonicity axiom is 
weaker than monotonicity with respect to first-order stochastic 
dominance and independence, and is related to (but not implied 
by) the betweenness axiom. 

In the next section we introduce the analytical framework and 
the axioms whose interrelation constitutes the focal point of this 
work. The relations among the continuity conditions and com-
pleteness with betweenness are analyzed in Section 3. In Section 4 
we introduce the cone-monotonicity axiom and analyze the re-
lations among the continuity conditions and completeness under 
cone-monotonicity. In Section 5 we discuss the relations between 
cone-monotonicity and betweenness and the relations between 
cone-monotonicity and monotonicity with respect to first order 
stochastic dominance. Concluding remarks appear in Section 6. 

2. The analytical framework 

Let X be a finite set of k outcomes, denote by ∆(X) the set of all 
probability measures on X , and by aff∆(X) the affine hull of ∆(X). 
For each p, q ∈ ∆(X) and α ∈ [0, 1] define αp+(1 − α) q ∈ ∆(X ) 
by (αp + (1 − α) q) (x) = αp (x) + (1 − α) q (x), for all x ∈ X . 

Let < be a binary relation on ∆(X) and denote by ≻ and by ∼ the 
asymmetric and symmetric parts of <, respectively. We list below 
some well-known properties that < might satisfy. 

http://dx.doi.org/10.1016/j.mathsocsci.2014.12.007
mailto:karni@jhu.edu
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(A.1) Non-trivial partial order < is reflexive and transitive with a 
non-empty asymmetric part. 

The relations among the next three axioms are the focal point of 
our analysis. 
(A.2) Archimedean For all p, q, r ∈ ∆(X ), if p ≻ q then there 

exist α, β ∈ (0, 1) such that αp + (1 − α) r ≻ q and 
p ≻ βq + (1 − β) r . 

(A.3) Mixture continuity For all p, q, r ∈ ∆(X) the sets 

{α ∈ [0, 1] | αp + (1 − α) r < q} and 

{α ∈ [0, 1] | q < αp + (1 − α) r}

are closed. 
(A.4) Completeness For all p, q ∈ ∆(X ), either p < q or q < p. 

3. Continuity, completeness and betweenness 

The next axiom is a weakening of the independence axiom.2 

(A.5) Betweenness For all p, q ∈ ∆(X), r ∈ {p, q} and α ∈ (0, 1), 

p < q ⇐⇒ αp + (1 − α) r < αq + (1 − α) r. 

Clearly, this implies that similar equivalences hold for ≻ and ∼. 
This statement of the betweenness axiom demonstrates to what 

extent it is a weakening of the independence axiom (as r is not 
restricted to the set {p, q}). Moreover, Axiom (A.5) implies the 
following more common statements of the betweenness property 
(see Chew, 1989 and Dekel, 1986): For all p, q ∈ ∆(X), α ∈ (0, 1) 
p < q H⇒ p < αp + (1 − α) q < q 

and 

p ≻ q H⇒ p ≻ αp + (1 − α) q ≻ q. 
When < is complete (A.5) is implied by them. 

Our first result generalizes the theorem of Dubra (2011) by re-
placing independence with betweenness. Formally, 

Theorem 1. Suppose that < is a non-trivial partial order on ∆(X ) 
satisfying betweenness. Then any two of the three axioms (A.2)–(A.4) 
imply the third. 

Proof. (a) Suppose that < satisfies Archimedean and complete-
ness. Let p, q, r ∈ ∆(X ) and consider the set A = {α ∈ [0, 1] |
αp + (1 − α) r < q}. Without loss of generality assume that p < r 
(by completeness, either p < r or r < p) and note that, by between-
ness, αp + (1 − α) r < βp + (1 − β) r for all 1 > α > β > 0. If A = 
∅ then we are done. Otherwise, define α ∗ = inf{α ∈ A}. If α ∗ ∈ A 
then, by betweenness, A = [α ∗ , 1] and hence A is closed. Assume 
that α ∗ 

∉ A and note that, by definition, for every ε ′ > 0 there 
exists ε ∈ 0, ε ′ satisfying (α ∗ + ε) p + (1 − (α ∗ + ε)) r < q. By 
betweenness, this implies [α ∗ + ε, 1] ⊂ A and hence (α ∗ , 1] ⊂ A. 
Next note that if α ∗ p + (1 − α ∗ ) r < q does not hold then, by com-
pleteness, q ≻ α ∗ p + (1 − α ∗ ) r and hence, by Archimedean, there 
exists β ∈ (0, 1) such that q ≻ β (α ∗ p + (1 − α ∗ ) r) + (1 − β) p. 
But       

∗ ∗ ∗ β α p + 1 − α r + (1 − β) p = α ∗ + (1 − β) 1 − α p   
∗ 

+ 1 − α ∗ + (1 − β) 1 − α r 

while α ∗ + (1 − β) (1 − α ∗ ) ∈ (α ∗ , 1]; a contradiction. 
The proof that {α ∈ [0, 1] | q < αp+(1 − α) r} is closed follows 

by the same argument. 
(b) Suppose that < satisfies mixture continuity and complete-

ness. Let p, q, r ∈ ∆(X) and suppose that p ≻ q. Mixture continu-

2 For clarity, here is the version of the independence we refer to: For all p, q, r ∈ 
∆(X) and α ∈ (0, 1), 

p < q ⇐⇒ αp + (1 − α) r < αq + (1 − α) r. 
ity implies that the set Aq 
= {β ∈ [0, 1] | q < βp + (1 − β) r} is 

closed and p ≻ q implies that 1 ∉ Aq. Hence, [0, 1] r Aq is a non-
empty open subset of [0, 1]. Take α ∈ [0, 1) r Aq and note that, by 
completeness, αp + (1 − α) r ≻ q. 

The proof that there exists β ∈ (0, 1) r Ap for which p ≻ 
βq + (1 − β) r is similar.3 

(c) Suppose that < satisfies Archimedean and mixture continu-
ity. We show first that, for all p ∈ ∆(X ), the sets B̄ (p) = {q ∈ 
∆(X) | q < p} and W (p) = {q ∈ ∆(X) | p < q} are closed and the ¯ 
sets B (p) = {q ∈ ∆(X) | q ≻ p} and W (p) = {q ∈ ∆(X) | p ≻ q}
are open relative to ∆(X). 

Fix p ∈ ∆(X). If B̄ (p) is a singleton there is nothing to prove. 
We therefore assume it is not and start by showing that B̄ (p) is 

1 2 ¯ convex. Take p , p ∈ B (p) and let pα 
= αp2 

+ (1 − α) p1 for 
1 2some α ∈ (0, 1). Note that we cannot assume that either p < p

2 ior p < p1 holds. If for some i ∈ {1, 2} p ∼ p then, for j ≠ i and 
by transitivity, pj < pi and hence, by betweenness, pα < p. Other-

iwise, assume that p ≻ p, for both i = 1, 2, and consider the set 
A = {β ∈ [0, 1] | βp1 

+ (1 − β) pα < p} (A ≠ ∅ by construction). 
∗Denote β ∗ = inf{β ∈ A}, p = β ∗ p1 

+ (1 − β ∗ ) pα and note that, 
∗by mixture continuity, β ∗ ∈ A. If p = pα (that is, if β ∗ = 0) then 
∗ pα < p and we are done. Assume p ≠ pα and note that, by an ar-

gument similar to one used in part (a), Archimedean implies that
∗ p ∗ is not strictly preferred to p. Hence p ∼ p. Finally by transitiv-

ity, both p1 < p ∗ and p2 < p ∗ hold and, by betweenness, pγ < p for 
all γ ∈ [0, 1]. Hence pα < p and B̄ (p) is convex. 

Next choose q ∈ ∆(X) in the boundary of B̄ (p), let {qn} ⊂ B̄ (p) 
be a sequence that converges to q, let r belong to the relative in-
terior of B̄ (p) and let Nε̄ (r) be an open ε̄-ball around r whose in-
tersection with aff 

 
B (p) 

 
is a subset of B̄ (p). By construction, for a ¯ 

εfixed ε ∈ (0, ε̄) rn 
= r +

∥qn−q∥ (q − qn) ∈ Nε̄ (r) ∩ B̄ (p) and, by 

the convexity of B̄ (p), 

εn ∥qn 
− q∥ nq̄ = qn 

+ r < p. 
ε + ∥qn − q∥ ε + ∥qn − q∥ 

qn ε ∥qn−q∥Next observe that, as ¯ = qn belongs to the 
ε+∥qn−q∥ q + 

ε+∥qn−q∥ r , ¯ 
line segment connecting r and q and, by construction, the sequence 
q̄n converges to q. By mixture continuity, q < p and hence B̄ (p) is 
closed. 

The proof that W (p) is closed follows by a similar argument. ¯ 
Consider next the set B (p).4 If B (p) = ∅ then there is nothing 

to prove. Suppose that it is not and observe that, by arguments sim-
1 k−1 

∈ilar to the above, B (p) is convex. Take q ∈ B (p) and r , . . . , r k−1 
∆(X ) such that r i − q span aff (∆ (X )). By Archimedean, for i=1   
each r i there exists αi 

∈ (0, 1) satisfying q + αi r i − q ≻ p.  
Next, if there exists γ i > 0 such that q − γ i r i − q ∈ ∆(X)  
then, by Archimedean, there exists β i 

∈ 0, γ i satisfying q −  
β i r i − q ≻ p. If such γ i does not exist (this happens if q belongs 

to the boundary of ∆(X )) then for this i we define β i 
= 1. Let  k−1 

α = min αi, β i and note that, by convexity, the convex hull  i=1  k−1of q + α r i − q , q − α r i − q contains the intersection of i=1 
aff (∆ (X )) with an open ball Nε (q) around q. Hence, q is an interior 
point of B (p) and B (p) is open. 

By similar argument, W (p) is open. 
Since ∆(X) is a connected topological space these observations, 

in conjunction with the theorem of Schmeidler (1971), imply that 
< is complete. � 

3 Note that betweenness was not used in this part. Under completeness, mixture 
continuity is stronger than Archimedean. 
4 In this part of the proof we follow in the footsteps of Dubra (2011). 
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4. Continuity, completeness and cone-monotonicity 

For our second result, we replace the betweenness axiom with 
an axiom dubbed cone-monotonicity. Although this axiom seems 
weaker than betweenness (and indeed is satisfied by some be-
tweenness relations), this implication does not always hold (see 
the discussion below). As we explain later, all relations that 
are monotone with respect to the partial relation of first-order 
stochastic dominance satisfy cone-monotonicity.5 

(A.6) Cone-monotonicity Every p ∈ int∆(X ) has a non-empty 
cone Cp 

⊂ aff∆(X) − {p}, open relative to aff∆(X) − {p}, 
such that for all r ∈ ∆(X ), 

r − p ∈ Cp 
H⇒ r ≻ p, 

p − r ∈ Cp 
H⇒ p ≻ r 

and r − p ∈ Cp 
⇐⇒ r − p ∈ Cr . 

Let r >Cp p denote r − p ∈ Cp. 

Theorem 2. Suppose that < is a non-trivial partial order on ∆(X) 
satisfying cone-monotonicity. Then, on int∆(X), any two of the three 
axioms (A.2)–(A.4) imply the third. If, in addition, mixture continuity 
holds on ∆(X) then completeness holds on ∆(X ). 

Note that non-triviality is implied by cone-monotonicity. It is 
left in the statement of the theorem for ease of exposition. 

Proof. (a) Suppose that < satisfies Archimedean and completeness 
on int∆(X). Let p, q, r ∈ int∆(X ) and consider the set A = {α ∈ 
[0, 1] | αp + (1 − α) r < q}. If A is either empty or finite then we 
are done. Otherwise let α ∗ be an accumulation point of A (that is, 
there exists a sequence {αn} ⊂ A r {α ∗} that converges to α ∗) and 

∗denote pn 
= αnp + (1 − αn) r and p = α ∗ p + (1 − α ∗ ) r . Assume, 

∗by way of negation, that p < q does not hold. By completeness, 
∗ ∗ q ≻ p . As p ∈ int∆(X), cone-monotonicity implies the 

∗existence of p̄ ∈ int∆(X) satisfying p̄ >Cp ∗ p . By Archimedean,
∗there exists β ∈ (0, 1) such that q ≻ βp̄ + (1 − β) p and, 

∗ ∗since Cp is a cone, βp̄+ (1 − β) p >Cp ∗ p . By cone-monotonicity, 
∗ ∗ βp̄ + (1 − β) p >Cβp̄+(1−β)p ∗ p and hence, by the openness of 

∗ 
Cβp̄+(1−β)p , there exists an open ε-ball Nε (p ∗ ) satisfying Nε (p ∗ ) ∩ 

∗ ′ aff∆(X) ⊂ ∆(X) such that βp̄ + (1 − β) p >Cβp̄+(1−β)p ∗ p for all 
′ ∗ ′ p ∈ Nε (p ∗ )∩aff∆(X). By cone-monotonicity βp̄+(1 − β) p ≻ p

′ and, by transitivity, q ≻ p ′ , for all p ∈ Nε (p ∗ ) ∩ aff∆(X ). But, for 
sufficiently large n, pn 

∈ Nε (p ∗ ) ∩ aff∆(X) and hence q ≻ pn; a 
contradiction. 

The proof that {α ∈ [0, 1] | q < αp+(1 − α) r} is closed follows 
by the same argument. 

(b) The proof that Archimedean is implied by mixture continu-
ity and completeness is identical to that of Theorem 1 part (b) (note 
that the betweenness property is not needed there and that the 
proof holds for the entire ∆(X)). 

(c) Suppose that < satisfies Archimedean and mixture continu-
ity on int∆(X ). We begin by showing that, for all p ∈ int∆(X), 
the sets B̄int (p) = {q ∈ int∆(X) | q < p} and W̄ int (p) = {q ∈ 
int∆(X) | p < q} are closed relative to int∆(X), and the sets 
Bint (p) = {q ∈ int∆(X) | q ≻ p} and W int (p) = {q ∈ int∆(X) |
p ≻ q} are open relative to int∆(X). Then we use Schmeidler’s 
theorem to derive completeness of < on int∆(X ). Finally, we show 
that, if mixture continuity holds on ∆(X ), < on ∆(X) is also com-
plete. 

Fix p ∈ int∆(X) and note that, by cone-monotonicity, the in-
tersection of Cp and int∆(X) is relatively open and non-empty and 

5 All our cones are assumed to be ‘nonnegative’ (i.e., closed under nonnegative 
scalar multiplications). 
hence B̄int (p) is not a singleton. If q is an interior boundary point of 
B̄int (p), that is if q ∈ ∂ B̄int (p) ∩ int∆(X) (∂ denotes the boundary), 
then let {qn} ⊂ B̄int (p) be a sequence that converges to q. By cone-
monotonicity the intersection of Cq and int∆(X) is non-empty and 
there exists r satisfying r >Cq q. Using cone-monotonicity again, 
r >Cr q and, by the relative openness of Cr , there exists an open ε-

′ ball Nε (q) satisfying Nε (p ∗ ) ∩ aff∆(X) ⊂ ∆(X) such that r >Cr q , 
′ for all q ∈ Nε (q) ∩ aff∆(X). This implies that for n sufficiently 

large, r >Cr qn . Hence, by cone-monotonicity r ≻ qn and, by tran-
sitivity, r < p. Since Cq is a cone, for all α ∈ (0, 1], rα 

= αr + 
(1 − α) q >Cq q and hence, by similar arguments, rα < p. There-
fore, the set {α ∈ [0, 1] | αr + (1 − α) q < p} contains the inter-
val (0, 1] and hence, by mixture continuity, includes 0. Therefore 
q ∈ B̄int (p) and B̄int (p) is closed in int∆(X ). 

The proof that W int (p) is closed in int∆(X) follows by similar ¯ 
arguments. 

Next consider the set Bint (p) and note, again, that p ∈ int∆(X ) 
implies Bint (p) ≠ ∅. Choose q ∈ Bint (p) and r satisfying 
q >Cq r . By Archimedean there exists α ∈ (0, 1) such that qα 

= 
αq + (1 − α) r ≻ p. Since Cq is a cone, q >Cq qα which im-
plies q >Cqα qα . Hence there exists an open ε-ball Nε (q) satisfy-

′ ′ ing Nε (q) ∩ aff∆(X ) ⊂ ∆(X ) such that q >Cqα qα for all q ∈ 
′ Nε (q) ∩ aff∆(X). By cone-monotonicity and transitivity q ≻ p. 

Hence Nε (q) ∩ aff∆(X) ⊂ Bint (p) and Bint (p) is open in int∆(X). 
By similar arguments, W int (p) is open in int∆(X ). 
Since int∆(X ) is a connected topological space, by Schmeidler 

(1971), these observations imply that < is complete on int∆(X ). 
Finally, we show that if mixture continuity holds on ∆(X) then 

completeness extends to the entire set ∆(X). 
Let q ∈ ∂∆ (X), p, r ∈ int∆(X ) and consider the set A = {α ∈ 

[0, 1] | αq + (1 − α) r < p}. If 1 is an accumulation point of A 
then, by mixture continuity, q < p. Otherwise, by completeness on 
int∆(X), there exists ᾱ < 1 such that p < αq+(1 − α) r , for all α ∈ 
(α,¯ 1). By mixture continuity, p < q. Hence either q < p or p < q. 

Next let q, p ∈ ∂∆ (X), r ∈ int∆(X) and consider the set 
A = {α ∈ [0, 1] | αq +(1 − α) r < p}. If 1 is an accumulation point 
of A then, by mixture continuity, q < p. Otherwise, since all points 
αq+(1 − α) r are interior points when α ∈ [0, 1) then, by the pre-
ceding argument, there exists ᾱ < 1 such that p < αq + (1 − α) r 
for all α ∈ (α,¯ 1) and again, by mixture continuity, p < q. Hence < 
is complete on ∆(X ). � 

5. Cone-monotonicity, betweenness and stochastic dominance 

To analyze the relationships between cone-monotonicity and 
betweenness we make the following definition. A binary relation 
< on ∆(X) is non-trivial at p ∈ ∆(X) if there exists q ∈ ∆(X ) 
such that either p ≻ q or q ≻ p holds. The following proposition 
serves to clarify the relation between cone-monotonicity and 
betweenness. 

Proposition 1. Suppose that < is a non-trivial partial order on ∆(X ) 
satisfying betweenness, mixture continuity and Archimedean. Let p ∈ 
int∆(X) and denote 

C (p) = {λ (q − p) | λ > 0, q ∈ ∆(X ) and q ≻ p}. 

If < is non-trivial at p then the cone C (p) is non-empty, open relative 
to aff∆(X) − {p}, and satisfies 

B (p) = (p + C (p)) ∩ ∆(X) 
W (p) = (p − C (p)) ∩ ∆(X) 

where B (p) = {q ∈ ∆(X) | q ≻ p} and W (p) = {q ∈ ∆(X ) | p ≻ 
q}. 
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Proof. Fix p ∈ int∆(X) at which < is non-trivial. First note that, 
′ ′′ by betweenness, if p belongs to the open line segment q , q then 

′ ′′ q ≻ p ⇔ p ≻ q . Hence B (p) is non-empty. 
It can be shown (see Safra, 2014 for details) that, by 

betweenness, r ∈ B (p) if and only if p+λ (r − p) ∈ B (p) for all λ > 
0 and p+λ (r − p) ∈ ∆(X). Then, from the proof of Theorem 1 part 
(c) it follows that B (p) is convex and open. Hence, the equivalences 

B (p) = (p + C (p)) ∩ ∆(X ) , W (p) = (p − C (p)) ∩ ∆(X) 

are satisfied. � 

Proposition 1 implies that a partial order that satisfies between-
ness, Archimedean and is non-trivial at every p ∈ int∆(X) also sat-
isfies cone-monotonicity (just define Cp 

= C (p)). It is immediate 
to verify that, for such relations (on int∆(X)), Theorem 1 is implied 
by Theorem 2.6 In addition, it is easy to verify that, for non-trivial 
partial orders, independence implies cone-monotonicity (indepen-
dence implies that non-triviality at a given point extends to the en-
tire ∆(X ) and that all cones C (p) are identical). 

The next example demonstrates that non-triviality at every p ∈ 
int∆(X ) does not follow from the betweenness property. 

Example. Let X = {0, 1, 2} and consider the incomplete partial 
order satisfying betweenness defined by 

p < q ⇐⇒ Vj (p) > Vj (q) for j = 1, 2 

where  
p (i) w (i) i 

iV1 (p) =  , w (1) = 1, w (0) = w (2) = 0.5 
p (i) w (i) 

i 

is a weighted utility function that ranks 2 at the top and 0 at the 
bottom and 
V2 (p) = p (i) (2 − i) 

i 

in an expected utility function that ranks 0 at the top and 2 at the 
bottom. As can be seen in Fig. 1, < is not non-trivial at p for all 
p ∈ {αδ1 + (1 − α) (0.5δ2 + 0.5δ0) | α ∈ [0, 1]}. 

To analyze the relationships between cone-monotonicity and 
monotonicity with respect to first-order stochastic dominance, we 
assume that X ⊂ R and, without loss of generality, let x1 < x2 < 
· · · < xk. For each p ∈ ∆(X), we denote by pi the probability the 
lottery p assigns to xi, i = 1 . . . , k. Then p ∈ ∆(X) is said to strongly 
dominate q ∈ ∆(X) with respect to first-order stochastic dominance 
if, for all j = 1, . . . , k − 1 

j j  
pi < qi. 

i=1 i=1 

We denote this relation by p >1 q and say that a preference relation 
< on ∆(X) satisfies monotonicity if, for all p, q ∈ ∆(X), 

p >1 q H⇒ p ≻ q. 
To see that monotonicity implies cone-monotonicity, let  k j  

C = h ∈ Rk hi = 0, hi < 0, j = 1, . . . , k − 1 
i=1 i=1 

and note that cone-monotonicity is satisfied for Cp 
≡ C , for all 

p ∈ ∆(X). Hence, when X ⊂ R, Theorem 2 applies to partial 
orders that satisfy monotonicity. Note that such orders are quite 
common, as monotonicity is usually assumed in most economic 

6 Since (given completeness) mixture continuity is stronger than Archimedean, 
part (b) in the proof of Theorem 1, the only one that does not assume Archimedean, 
requires neither betweenness nor cone-monotonicity. 
Fig. 1. No lottery is strictly preferred to p. The better-than sets of q and r, B(q) and 
B(r), respectively, are depicted. 

applications. It should also be mentioned that the partial relation of 
first-order stochastic dominance satisfies independence (indeed, 
this was utilized in the proof of Theorem 2, parts (a) and (c)). More 
on this can be found in Dubra and Ok (2002). 

6. Concluding remarks 

The implication of continuity for completeness, as appeared in 
the theorem of Schmeidler (1971) is inherited by the theorem of 
Dubra (2011) and the two theorems in this paper. Karni (2011) 
showed that, starting with a strict preference relation, these results 
depend crucially on the definition of the weak preference relation. 
In particular, if the weak preference relation is defined as in 
Galaabaatar and Karni (2013) (that is, for all q, p ∈ ∆(x), q 
is weakly preferred over p if every r ∈ ∆(X) that is strictly 
preferred over q is strictly preferred over p), then Archimedean and 
mixture monotonicity no longer imply completeness, regardless 
of whether the preference relation satisfies independence. If we 
start with a weak preference relation, as we do in this note, a 
different definition of the strict preference relation is required 
to overcome the difficulty posed by incompleteness. Consider, 
for instance, a reflexive and transitive preference relation < with 
a non-empty asymmetric part that satisfies the independence 
axiom. Such preference relation has a representation as follows7: 
For all p, q ∈ ∆(X ) , p < q if and only if x∈X u (x) p (x) ≥ 

x∈X u (x) q (x), for all u ∈ U, where U is a set of real-valued 
functions on X . For each u ∈ U, define an induced preference 
relation on ∆(X) as follows: p <u q if and only if x∈X u (x) p (x) ≥ 

x∈X u (x) q (x) and let ≻u be the asymmetric part of <u. Then 
<= ∩u∈U <u and ≻̂ = ∩u∈U ≻u. For all p ∈ int∆(X), the set {q ∈ 
∆(X) | q≻̂ p} is equal to the relative interior of {q ∈ ∆(X) | q < p}
and, as a result, Archimedean and mixture monotonicity no longer 
imply completeness. Similar argument applies if the independence 
axiom is replaced by betweenness or cone monotonicity. 
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