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ABSTRACT
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1. Introduction
1.1. Motivation and literature review

Two of the assumptions of expected utility theory seem less
satisfactory than the others, those of completeness and indepen-
dence. Completeness requires that decision makers are able to
compare and express clear preferences between any two risky
prospects, while independence requires that decision makers
rank prospects only by their distinct characteristics, disregarding
their common aspects.

That the completeness axiom may be too demanding was
recognized from the outset by von Neumann and Morgenstern
(1947) who say that “It is conceivable - and may even in a way be
more realistic - to allow for cases where the individual is neither
able to state which of two alternatives she prefers nor that they
are equally desirable.” Aumann (1962), who was the first to study
expected utility theory without the completeness axiom, claims
that “Of all the axioms of utility theory, the completeness axiom
is perhaps the most questionable. Like others of the axioms, it is
inaccurate as a description of real life; but unlike them, we find
it hard to accept even from a normative viewpoint.” Later studies
by Dubra et al. (2004), and, most recently, Galaabaatar and Karni
(2012) all conclude that the departure from completeness axiom
leads to expected multi-utility representations.

Experimental evidence, such as the Allais paradox, motivated
developments in the 1980s of theories of decision making under
risk that depart from the independence axiom. These theories
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include Quiggin's (1982) anticipated utility theory, Chew and
MacCrimmon's (1979) weighted utility theory, Yaari's (1987) dual
theory, Dekel's (1986) implicit weighted utility, and Gul's (1991)
theory of disappointment aversion.

Thus far, the only works that simultaneously depart from
both the completeness and independence axioms are Maccheroni
(2004) and Safra (2014). Maccheroni (2004) showed that without
the completeness axiom, the representation theorem in Yaari's
dual theory entails the existence of a set of probability transfor-
mation functions such that one risky prospect is preferred over
another if and only if its rank-dependent expected value is larger
according to every probability transformation function in that set.
Safra (2014) studied a general model of decision making under
risk that has the betweenness property> and showed that without
completeness, the representation theorem entails the existence
of a set of continuous functionals displaying betweenness such
that one risky prospect is preferred over another if and only
if it is assigned a higher value by every element in this set.
Weighted utility theory, the subject of this work, also displays
the betweenness property but is more structured and therefore
calls for a different analysis.

The objective of this paper is to study weighted utility theory
without the completeness axiom. Introduced by Chew and Mac-
Crimmon (1979) and Chew (1983, 1989), weighted utility theory
is based on a natural weakening of the independence axiom to
a ratio substitution property, allowing the outcomes to hold dif-
ferent degrees of salience for the decision maker, captured in the
representation by the namesake weight function. Incompleteness

2 See Karni and Schmeidler (1991) for a review of this literature.

3 Models of decision making under risk with the betweenness property
include Chew (1983), Dekel (1986), and Gul (1991).
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Fig. 1. Weighted utility.

in weighted utility theory may thus be the result not only of
indecisive tastes, captured by a set of utility functions that rank
the outcomes differently, but also of conflicting perceptions of
the alternatives presented, captured by a set of weight functions
that represent different transformations of the probabilities, or
some combination of both. We begin by analyzing the general
multiple weighted expected utility model, and follow with the
two special cases of multiple utilities paired with a single weight
function, or a single utility paired with multiple weights. We also
discuss some behavioral implications of the model in the context
of portfolio choice.

1.2. An informal review

To set the stage and develop some intuition, we begin with
an informal review. Let X = {x1, ..., xp} be the set of outcomes,
and denote the set of lotteries over X by A(X) = {p € R :
> ex PX) = 1).% Denote by 8, the degenerate lottery that assigns
X € X unit probability mass. Let > be a strict preference relation
over A(X), that is, an irreflexive and transitive binary relation
which may or may not be negatively transitive. If > is negatively
transitive, implying completeness, but violates the independence
axiom and instead satisfies only the weaker substitution axiom of
Chew (1989), then there exist a utility function u and a positive
valued weight function w mapping X to R, such that, for all
p, q € A(X),

D xex PX)wXUX) 3,y gX)w(X)u(x)
ZXEX p(x)w(x) erx q(x)w(x) '

For example, if n = 3 and &, > 8x, > &, the indifference map
induced by (1) is depicted in Fig. 1. The indifference curves all
emanate from a source point o lying outside the simplex.

Fig. 1 depicts a decision maker that attaches greater weight to
the extreme outcomes x; and x3 than to the median outcome x5,

p>q= (1)

4 For each p.q € AX) and « € [0, 1], define ap + (1 — «)g € A(X) by
(ap + (1 — a)g)(x) = ap(x) + (1 — a)g(x) for all x € X. Then A(X) is a convex
subset of the linear space R".
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Fig. 2. Multiple utilities.

indicating that the former have more influence on her evaluation
of any particular lottery than their probability would justify. The
degree of risk aversion would vary across the simplex and thus
the decision maker would exhibit Allais-type behavior, being will-
ing to take risks when she feels she has nothing to lose that she
would otherwise avoid if her alternatives were more attractive.
The extent of this distortion depends on the proximity of the
source point o to the simplex and as it is moved farther away
from the diagram, approaches the parallel indifference map of
expected utility.

Now suppose that > is also incomplete. As in multiple ex-
pected utility models with independence such as those of Dubra
et al. (2004), and Galaabaatar and Karni (2012), the preference
relation cannot be meaningfully characterized with indifference
curves, as two lotteries that are not strictly comparable are not
necessarily equivalent. Consider the lottery p in Fig. 2, let B(p) =
{re AX):r > p}and W(p) = {r € A(X) : r < p} respectively
denote the upper and lower contour sets of p, and observe that
they are demarcated by rays emanating from a pair of distinct
source points o' and o?. Unlike in classic weighted utility theory,
these rays are not indifference curves, but indicate only that
no two lotteries lying on a single ray are strictly comparable,
a relation which is not transitive and hence not an equivalence
relation.

Nevertheless these incomparability curves do inherit many of
the properties of indifference curves from the weighted utility
setup. As each set of such curves converges at a source point, each
in turn has a weighted linear utility representation as in (1), with
the two sources o' and o® respectively corresponding to utility
and weight pairs (u', w) and (u?, w). As the diagram indicates, for
any lottery to be strictly preferred to p it must lie above both of
the incomparability curves intersecting p, and thus the preference
relation has a multiple weighted expected utility representation,
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Fig. 3. Multiple weights.

with a set of utilities ¢/ = {u’, u?}.

2 xex Px)w(x)u(x) N 3 vex AE)w(x)u(x)
> vex PX)w(x) D vex AX)w(x)

P> q &= , Yued.

(2)

Two other aspects of this setup are noteworthy. Firstly, every
point on the line segment connecting o' and o? also projects
a set of incomparability curves, always lying between the rays
projected by the two endpoints. Any such point 0 would thus
also be a source point and correspond to some utility u*, which
could be included within ¢4 without altering the preference rela-
tion it represents. The location of 0 between o' and o? implies
that u* would be some convex combination of u' and u?, and
thus could not contradict any ordering jointly established by
these utilities. This leads us to conclude that, just as in multiple
expected utility models with independence, the representation
will only be unique up to some closed convex hull, though as
the utilities here are not linear we will need to adopt a slightly
different approach to establish this result.

Secondly, the line segment connecting the source points o'
and o? is parallel to that connecting the best and worst outcomes
8y, and 8,,. Hence these sources are equidistant from the simplex
and represent different utilities paired with the same weight
function. As the incomparability curves projected from o' are
everywhere steeper than those projected from o2, u! is uniformly
more risk averse than u?. This naturally leads us to consider the
dual case, where a single utility function is paired with multiple
weight functions.

Fig. 3(a) depicts such a case, where there are a pair of source
points o' and 0? corresponding to utility-weight pairs (u, w!) and
(u, w?). Here the utility functions are identical, as the incompa-
rability curves drawn from both sources through &, coincide and
thus rank the median outcome identically, but as o? is closer to
the simplex, w? represents a greater deviation from the uniform
weights of expected utility theory. Fig. 3(b) depicts a similar
case, where there are again two sources o' and o2, and two
corresponding utility-weight pairs (u, w') and (u, w?), but here 0®
is located on the other side of the simplex. This produces incom-
parability curves that fan in rather than out, and indicating that
X, is weighted more heavily than the extreme outcomes, rather
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than less. The preferences depicted in either incomparability map
would have a representation consisting of the single utility u and
multiple weights W = {w!, w?}.
Y eex POW(X)u(x)

3 ex PXw(x)

D _xex X)w(X)u(x)

erx a0 Ywew.

p>=q <+

(3)

Note that in the multiple weight case depicted in Fig. 3(a), anal-
ogously to the multiple utility case depicted in Fig. 2, we may
include in W the weight function w* corresponding to any point
0* on the line segment connecting o' and o? without altering the
preferences. However, attempting the same in Fig. 3(b) would
be invalid, as it would produce source points lying within the
simplex. In this case, we can instead include any source points
lying on the line defined by o' and o? but not on the segment
connecting them, effectively connecting o' to 0® through the
point at infinity, as any of these would produce incomparability
curves that lie between those projected from the endpoints and
hence their inclusion would not alter the representation.

Finally, we consider the general case that incorporates both
multiple utilities and multiple weights, as depicted in Fig. 4. Here
the four source points £2 = {0'', 0'?, 0*!, 0??} correspond to pairs
of utility and weight functions v = {(u', w'), (u', w?). (12, w'),
(u?, w?)} and the preferences depicted have the representation

erx p(X)w(x)u(x) ngx q)w(x)u(x)
Prie= erx p(x)w(x) erx q(x)w(x) (4)
V(u, w) ev.

Here the set of utility-weight pairs is separable,as V = x W =
{u', u?} x {w', w?), though this need not be the case generally.
Any point lying in the convex hull of £2 would map to a utility-
weight pair that could be included in V without altering the
preferences represented. Therefore, this representation admits
any of the models considered so far as special cases, with the
single utility or single weight cases in (2) and (3) if respectively ¢/
or W are singletons, weighted utility if V is a singleton, multiple
expected utility if every element of W is a constant function, and
finally expected utility if all of these hold.

The next section introduces the basic model. Section 3 de-
tails the general multiple weighted expected utility model, with
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Fig. 4. Multiple weighted expected utility.

the special cases of a single utility or single weight covered in
Section 4. Section 5 discusses behavioral implications of the the-
ory and Section 6 investigates potential experimental designs.
Concluding remarks appear in Section 7 and the proofs are col-
lected in Section 8.

2. Analytical framework

2.1. Preference structure

Forn > 3, let X = [x1,...,X,} be a set of outcomes,” and
AX) = {p € R : D wex D(x) = 1} the set of lotteries over
X. Let > be a binary relation on A(X), which we refer to as a
strict preference relation. The preference relation = is said to be
bounded if there are best and worst outcomes X,x € X such
that 8 = p = &, for all p € A(X) \ {6x, &}, which we assume
throughout.® Number the elements in X in nondecreasing order
of preference, so that x = x; and X = x,,.

If the strict preference relation > is negatively transitive,
then its negation —(p > q) defines the complete and transitive
weak preference relation p < ¢. The multiplicity of the utility
representation thus depends on this assumption being relaxed.
Defining the incomparability relation p = q as the conjunction
of =(p > q) and —(p < @), we obtain a relation that is not
necessarily transitive and thus not necessarily an equivalence re-
lation, unlike the indifference relation this would normally define
under completeness.” Intuitively, the inability to rank a pair of
alternatives does not necessarily mean that the decision maker
considers them to be equivalent, but rather may imply that she
evaluates them by multiple criteria that disagree on their ranking.

5 Ifn=1then X is a singleton and there is no decision to be made, and if
n = 2 we will only have best and worst outcomes, so that the entire space of
lotteries will be strictly ranked.

6 Generally speaking, > is bounded if there are p,p € A(X) such that
p > p > p for all p € A(X)\ {p,p}. However, anticipating the monotonicity
of the strict preference relation described below, there is no essential loss in
our definition.

7 we may still define weak preference and indifference relations that have
the usual properties by following Galaabaatar and Karni (2013) and letting p = q
if r = p impliesr =g, and p~q if p=q and p < q.
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We assume throughout that > is a continuous strict partial
order.

(A.1) (Strict Partial Order) The preference relation > is irreflex-
ive and transitive.

The following axiom is a slight strengthening of the usual
Archimedean axiom, disposing with the requirement that a strict
ranking p = q = r exists, and admitting the possibility that two
of these lotteries may be incomparable instead.

(A.2) (Strong Archimedean) For all p, q,r € A(X) if p > g then
there is ¢ € (0, 1) such that ap+(1—a)r = gand ifp < q,
there is &’ € (0, 1) such that «'p + (1 — «")r < q.

The next axiom asserts that a probability mixture of two
lotteries must be ranked between them. It characterizes a class
of models including expected, weighted, and implicit weighted
utility theory.®

(A.3) (Betweenness) For all p,q € A(X)and @ € (0, 1), p > q if
and only if p = ap + (1 — a)g > q.

Forevery « € [0, 1], let &, = ady, +(1 —a)dy,, then if p < &,
then we can interpret « as a utility value that may be assigned
to p. For every p € A(X), let A(p) = {& € [0,1] : p = &}
denote the range of utility values assigned to p, measured along
the line connecting the best and worst outcomes. The following
proposition establishes that each of these utility ranges is a closed
interval.

Proposition 1. For all p € A(X), there are «, & € [0, 1] such that
A(p) = [a, &].

In the standard expected utility and multi-utility models, ap-
plying the independence axiom at this step produces the desired
representations.

2.2. Partial substitution

At the core of weighted utility theory is the weak substitution
axiom that replaces the independence axiom.”

(Weak Substitution) For all p, g € A(X), p ~ ¢ if and only if for
every 8 € (0, 1) there is ¥ € (0, 1) such that gp + (1 — B)r ~
yq+(1—y)rforallr e AX).

The weak substitution axiom can be equivalently expressed as
a ratio substitution property.

(Ratio Substitution) For all p, g € A(X), p ~ q if and only if there

is © > 0 such that for every g € (0, 1), Bp+(1—B)r ~ %
for all r € A(X).
That these are equivalent can be shown by setting t = %

This odds ratio is interpreted as the weight of p relative to that of
g. If = is complete, a weighted linear utility function can thus
be obtained by finding, for each x; € X, the unique o such
that 8y, ~ &, and 7; satisfying ratio substitution between these
two lotteries, and for any p € A(X) repeatedly applying weak
substitution to obtain

. p171€a1 + Z?:Z piaxi Z?:l pitiz;cuf
p= Zpini ~ m e~ ——
P M+ YD > i PiTi (5)
=Ly e = Cop-
i1 Piti

8 See Dekel (1986) for an example and Chew (1989) for a review of this
class of models.

9 See Chew (1989).
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By betweenness, the above implies that for any p,q € A(X), p >
q < ap > ag, so that we obtain a weighted utility representation
by setting u(x;) = «; and w(x;) = t; fori = 1,..., n. The critical
step in this construction lies in exploiting the transitivity of the
indifference relation ~.

For preferences > that are not necessarily complete, we con-
sider a modification that replaces the indifference relation ~ with
the incomparability relation <.

(A.4) (Partial Substitution) For all p,q € A(X), p < q if and
only if for every g € (0, 1) there is ¥ € (0, 1) such that
Bp+(1—B)r <yq+(1—y)r forallre AX).

It is noteworthy that if > satisfies betweenness (A.3) and
partial substitution (A.4) then a betweenness property holds for
the incomparability relation =.1° The next lemma establishes the
analogous ratio substitution property in our setup.

Lemma 1. If > satisfies (A.1)-(A.4) then, for all p,q € A(X), p
if and only if there is t > 0 such that for every B € (0,

Bp+ (1= p)r = EEEEL forall r € A(X).

For any pair of incomparable lotteries, define the set of sub-
stitution odds ratios as

=q
1),

Prg+(1—B)r
Br+(1-4)

]

T(p.q) = ir >0:8p+(1—B)r =
(6)
VBe(0,1),re A(X)}.

By Lemma 1, T(p, q) # @ if and only if p < q. Under complete-
ness, weak substitution implies that for every 8 € (0. 1) we have
a unique y € (0, 1), which can be seen by picking any r > g and
applying betweenness. Therefore the odds ratio ¢ must be unique
as well. This is not the case here, however, as = is intransitive
and hence T(p, q) is not necessarily a singleton. Consequently,
lotteries may have a range of weights in addition to a range of
utility values.

e

Proposition 2. For all p,q € A(X) such that p
7,7 > 0 such that T(p, q) = [t, T].

We can now attempt to replicate the construction of the utility
representation as in (5). For every i = 1, ..., n, consider picking
some «; € A(Sy,) and 7; € T(8y,, &), and then repeatedly applying
partial substitution to yield

q, there are

p= ip,(; _ Pimide, + Z?:z Pidy; - = 2?21 Pitide;
: 2 i0x; Pt + Z?:z pi Z?:l DiTi o
=Ly pineg = oy
Y Pt

However, as =< is intransitive, (7) does not necessarily imply that
P = {a,- Intuitively, if > is negatively transitive, then every o;
and t; is unique, so that we can obtain for any p the unique «, by
simply taking the weighted convex combination as in (5). Under
incompleteness, while we know that each x; € X has utility range
A(dx;), if we arbitrarily select {1, ..., an} € ]—[;’ZlA(b‘xi), these
values need not be assigned by the same utility function, and
hence the «, produced by (7) need not belong to A(p). It is the

10 7o see this, suppose p = q then, by (A4) and letting r = q, for every
B € (0,1) there is y € (0,1) such that fp+ (1 — B)g =< yq+(1—y)g = q.
Likewise, as q = p, let r = p then for every g € (0, 1) there is y € (0, 1) such
that gp + (1 — B)g = yp + (1 — y)p = p. Hence for every g € (0, 1), we have
that p = Bp + (1 — B)g = gq. Suppose next that —(p = q), then by (A.3) either
p>=pp+(1—pla=qorp=<pp+(1—p)g=<q, for every g € (0. 1). Hence,
that p = q if and only if p =< Bp+ (1 — B)q =< q for every B € (0, 1).
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converse, that every ¢, € A(p) can be constructed from some
{aeg, ..., o) € ]_[;’:1A(5xf ), that we need to show to ensure that
the preference relation can be represented by a set of weighted
linear utility functions.

Intuitively, (A.4) states that, for any pair of incomparable lot-
teries p =< ¢, there is some odds ratio t = 0 that represents
the relative weight of p to that of g, although this is now not
necessarily unique which allows for the representation to be
multi-weight as well as multi-utility. The axiom requires that the
decision maker applies this weighting consistently throughout
the space of lotteries, ensuring that any non-linearity is indeed
due to weighting outcomes differently rather than some other ex-
planation such as disappointment aversion or rank dependence.
Specifically, given two incomparable lotteries p =< g, the set of
odds ratios T(p, q) cannot depend on the third lottery r that they
are mixed with. Therefore it cannot be the case for r,s € A(X)
that every v > 0 such that for every 8 € (0, 1), Bp + (1 — B)r =<
M , that there is some g € (0, 1) such that Sp+(1—8)r >

Br+(1-
BRI o gy 4 (1 - pyr < IR

5 (F) That is, the relative
importance that the decision maker attaches to p over g cannot
depend on whether they are being mixed with r or s. In Section 6
we describe an experiment design to test partial substitution
axiom.

2.3. Source space

As discussed in the introduction, a preference relation with a
multiple weighted expected utility representation can be visual-
ized as a set of lotteries with incomparability curves projected
from a set of source points lying outside the simplex. Suppose
we have p, q € A(X) such that p < g, and some t € T(p, q). By
definition, for every g € (0, 1) and r € A(X), the line defined by
Bp + (1 — B)r and % is an incomparability curve. All of
these curves converge at some source point o. As its location can
depend on neither 8 nor r, we have that

1
= m[ﬁP'F(l—ﬁ)r]
A1 —1) Bt +(1—p8)
p—1q
T1-1°

Define the source space £2 as the collection of all such source
points,

2=]o-

The following proposition asserts that £2 fully characterizes the
incomparability relation =< and, consequently, the preference re-
lation > as well. It states that any line connecting two lotteries is
an incomparability curve if it is projected from some source point
0€ f2.

p—1q
1—1

:pxmreTWAﬁ- (9)

Proposition 3. Forevery p,q € AX), p <
thato =1 € Q.

q if there is T > 0 such

For each p define @(p) = {(ap, 7p) : ap € A(p), p € T(P, Lop)}
as the collection of utility-weight pairs, each defining a source
point oy P Tolep € £2. A utility function over X is given

1-1p

by a collection of utlllty weight pairs {(¢;, 7))L, corresponding
to each of the degenerate lotteries {6,}!, such that (cp, 1) =

(—Zz'%] pj,r.i?f- P pm) € &(p), for any lottery p € A(X). Define
i—1Piti =
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the set of all such collections as

v = {{(“i‘s ri)}L] :(ap~ rp) = ( zl: 1p;)‘ri:xl Zprrr) € (I'
i=1F171

Vpe A(X)} .
(10)
Every ¢ = {(¢; w '1’)}" 1 € ;’J/ defines a weighted linear utility
ST ;‘ay,
function. Letting of’ = —g,,‘ € £2 denote the source point

that i associates with outcome X;, we have that for every p ¢
A(X),

v
pP—7 s“aw 'I’
of = y o Xl - ” cQ. (11)

1- Tz? Y pi(l -1 ")

That is, each source point associated with any lottery p is also
a weighted convex combination of elements of {0;’”}?:1.” Col-
lecting these points forms a subset of the source space, 0¥ =
{of}p@(x) C 2 which characterizes a function pair (u¥, w¥).
Therefore, to establish the representation theorem, we need to
show that the collection of these subsets covers the source space
UMW 0¥ = £2. In other words, the collection of function pairs
¢ fully characterizes the incomparability map and, by extension,
the preference relation > itself.

3. Representation
3.1. Existence

Before presenting the main theorem, we first establish some
preliminary results. For any collection P € A(X), let £(P) = {q =
D per TP : T € R,Vp € P} be the linear manifold spanned
by the lotteries in P,'2 and define A(P) = £(P) N A(X). Any
collection P € A(X) of lotteries constitutes an incomparability set
if p < q for any p,q € A(P), thus forming the natural higher
dimensional analogue to the incomparability curves encountered
so far. As &y, > &y, implies that >~ is non-empty, even the

11 By definition of i, we have that
v Pl
of = ——~
11
Z, 1p1 x, (Z. 1 PiT; )CZ" pir¥ ¥
_ XL, i, ,’
- n Rz
1T—(CimT)
n N n W Xl r"w (a‘.-w
Y by — Qi Pt ) oo
1— (Tl pir’)
L Py, — 7 8,9)
— 1
Yop(1-1")
n v B ( v
Z, 1P|(] -7 )

E?:l pi(1— .[i_‘tf)
Y=t o
== e

Zi*] pi(1— T )

]2 Recall that p = (p(x;), - .-, p(x,)) € R™.
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maximal incomparability set cannot span the entire simplex, so
that A(P) C A(X) and is at most of dimension n — 2.3

Suppose we start with any single lottery p € A(X)\ {8,, 8x, 1
then we can find some other lottery g such that p < q. Applying
the partial substitution axiom, this relation implies the existence
of a set of incomparability curves converging at a source point
0, which is collinear with p and ¢. If p = g, then the line
defined by this pair of lotteries A({p.q}) is an incomparability
curve originating from o. If n = 3, then each source point o
characterizes a weighted utility function and we can construct
our representation by locating all of them. However, if n > 3
then constructing a weighted utility requires stringing together
a number of source points into a structure that projects higher
dimensional incomparability sets. Lemma 2 shows that if p =< g
and n > 3, we can find some r € A(X)\ A({p,q}) that is
incomparable to both p and g as well as any lottery in A({p, q}),
so that A({p. q. r}) defines an incomparability plane.

Lemma 2. If > satisfies (A.1)-(A.4) and n > 3 then, for all p,q €
A(X), the following statements are equivalent:

(i) p=aq.

(ii) There exists r € A(X)\ A({p, q}) such that ,\p+(1—A)g <r
for all » € R such that Ap + (1 — X)q € A({p, q}).

(iii) There exists r € A(X)\ A({p. q}) and 1, Tq > 0 such that for
all & € R such that Ap+(1—2X)q EA?(E? f)}r)ffff ,E;j)se (0, 1),
BIAD + (1= 2)q] + (1 — B)s = Rt el ee, for all
s € AX).

(iv) There exists 1 € A(X)\
p'.q" € A(p.q.1}).

By Lemma 2, every source point that projects a set of incomparability
curves itself lies on a line on which every point is a source point.
Such a source line in turn projects a set of incomparability planes.
The natural next step is to generalize this property, allowing us to
construct a set of source points that will fully characterize a utility
function.

A({p, q}) such that p’ = ¢, for all

Lemma 3. If > satisfies (A.1)-(A.4), then for all P C A(X) such that
dim A(P) < n — 2, the following statements are equivalent:

(i) p < q forall p,q € A(P).

(ii) There exists r € A(X) \ A(P) such that p = r, for every
p € A(P).

(iii) There exists 1 € A(X) \ A(P) and {tplper S R,y such
that for all {mp}pep S Ry such that ) .7, = 1, and

_ B chpﬂpfp)r‘f’(l*ﬁ)s

pre.n), ﬁ(ZPE” 7op) + (1= f)s = ﬁ(zpcl’ﬂpw)ﬁl*ﬁ) '
foralls e A(X).

(iv) There exists r € A(X)\ A(P) such that p” = ¢/, for all
p'.q € AP U{r}).

Starting with any pair of incomparable lotteries, we can repeatedly
apply Lemma 3 to add incomparable lotteries until, after a finite
number of repetitions, we obtain a maximal incomparability set P
of dimension n — 2. The following lemma shows that every such P
maps to some collection yr € W.

Lemma 4. If > satisfies (A.1)-(A.4), then forall p,q € AX), p=q
; : : z?:ﬂifiw”?’ _ pa 1q:’w"w
if and only if there is Yy € ¥ such that == 7 - .
b it 1

Lemma 4 establishes ¥ # @ as long as the incomparability
relation is itself nonempty. Furthermore, this result is only nec-
essary to establish the representation in the case where n > 3.

13 s Z:!:ID(XE) = 1 for every p € A(X), dimAX) = n — 1, and if
A(P) € A(X), dim A(P) < dim A(X).
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However, if n 3, then the result still holds since @(dy,) and
@(8y,) are singletons by construction and therefore every ¢ € ¥
will assign oz'f =0 a;” 1, and rl'# t;f' 1, so that
each (ay, 12) € @(8,) maps to a weighted utility v € W. Thus
constructing the set of utilities from ¥, any two lotteries are
incomparable if and only if there is some weighted utility that
assigns them equal value, which leads directly into our central
result.

Lemma 4 also implies that whenever p and g are incomparable
there exists { € W that assigns the same weighted utility to
both. Consequently the elements of ¥ collectively gives us the
representation in Theorem 1.

Theorem 1. A binary relation > over A(X) is bounded and satisfies
(A.1)-(A.4) if and only if there is a closed and bounded set V of utility
u: X +— R and weight w : X +— Ry function pairs (u, w) such
that for every p € A(X)\ {8x,. 6x, },

u(xn) > % u(x,), ¥(u, w) e V. (12)
And for every p, q € A(X),
Y ex PEOwEu(x) D o qlx)w(x)u(x)
PPl Ty P L dulx) | (13)
V(u,w)e V.
Moreover the set of utilities t{ = {u : (u, w) € V} and weights

W = {w : (u, w) € vV} are closed and bounded.
3.2. Uniqueness

Having established the existence of a utility representation,
we now turn our attention to the question of uniqueness. As our
model lies at the convergence of weighted utility and expected
multi-utility theory, our uniqueness result naturally incorporates
elements of the uniqueness results found in both. From weighted
utility theory, we know that taking an affine transformation of a
utility function u will not preserve its weighted linearity, and we
must instead apply a rational affine transformation to both u and
the associated weight function w jointly.

Proposition 4. For utility and weight function (u, w) and constants
a, b, ¢, d such that ad > bc, define the rational affine transformation
(&, @) = (2 wicu + d1). Then for every p, g € A(X),

m7
D wex POW(X)u(x) - 3 ex GX)w(x)u(x)
erx p(x)w(x) erx q(x)w(x)
erx plx)i(x)t(x)
Y e (14)
3 ex Ax)B(A)i(x)
> =2
Y xex Q(X)(x)

The utility functions we construct from ¥ are normalized, with
(W’ (x1), w¥(x1)) (0, 1) for the worst outcome and (u¥(x,),
w¥(x,)) = (1, 1) for the best, for every yy € W. The following
proposition shows that any function pair (u, w) has a rational affine
transformation (i, w) that is similarly normalized, which in turn
maps to some collection v € V.

Proposition 5. Let the collection V represent >. Then for every
(u, w) € V there is a normalized rational affine transformation
(i1, 1) such that {(fi(x;), D(x;)}L, € .

For any V, define the normalized set as ¥ (@, @)
(u, w) € V}. In expected multi-utility theory, if we have a set
i of normalized utilities, then the preferences it represents are
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identical to those represented by taking the closure of the convex
cone spanned by (¢/) and all the constant functions, (see Dubra
et al. (2004)), as the incomparability curves generated by taking
a linear combination Au; + (1 — A)u, of utilities uq, up € I will
lie between those corresponding to u; and u, and will not alter
the preference ordering.

A similar idea exists here, as for example in Fig. 4 the repre-
sentation is identical whether we take as our source space only
the four points {041, 012, 031, 053} or the entire shaded area £2,
as any incomparability curves projected from the interior of £2
will not form the boundary of the upper or lower contour sets
B(p) and W(p) for any p € A(X). However, we cannot speak of
a convex hull as such because we cannot simply take convex
combinations of weighted linear functions that simultaneously
preserve weighted linearity while maintaining the preference
ordering. 4

To overcome this difficulty, we focus on a neighborhood
around some p € A(X) and invoke the notion of local utility

: K ok - k. Deex PO (X)
functions. For every (u",w") € Vv, let u, = S PR

and wf == Y, p(x)wX(x), and, following Chew and Nishimura

(1992), define the local utility function ﬂ’; : X +— R induced by

the weighted utility functional'® as
whuk — ﬂ';)

P ﬁ)s

As linear utilities are invariant up to a positive affine transforma-

tion, let

k
uP

~ko.

ii (15)

= whilt 4 ik = whuk + (1 — wh)ig. (16)
Then uy is a normalized linear approximation of (u¥, w¥) around
p. so that taking the expectation of uf at p gives uf.'®

Collecting all such uf gives a set 24, = {uj : (u¥, w*) € V} of lo-
cal utility functions that form a local multi-utility representation

at p, that is,

p=q e pXuplx) > Y qlxup(x). Yu, € .

xeX

(17)
xeX

As betweenness ensures the incomparability curves extend lin-
early in every direction, the local utility representation is valid

14 Given (u!, w'), (u?, w?) € ¥ and 1 & (0, 1), we could take a direct convex
combination by setting uv* = Au' + (1 — A)u? and w* = iw' + (1 — Aw?.
Unless w' = w?, this would not preserve weighted linearity. Alternatively, we

) . N 1,1 2,2
could take the weighted convex combination and set u* = At M-l :Ei E::_;_.“

w* = Jw'+(1—21)w?. This however would not necessarily preserve the ordering
of lotteries, as u*(x;) > u"()q) for k = 1,2 does not imply u*(x;) > uk(xj).

To grasp this, observe that since 1]’; is Gateaux differentiable, invoking the
analysis of Machina (1982) we have

and

%ﬂﬁ (1—e)p+ag) .

Y eex 1000 — p 0] wk ) [uk (x) — af ]
Y ex P wk (x) '

Tilgn the local utility function at p is ﬁip‘..

Since w*(x1) = w*(x,) = 1, we have that uf(x;) = u*(xy) = 0 and
u';(x,,) = u¥(x,) = 1. Furthermore,

D pauf(x)

xeX

= pxwtxut(x) + [1 -3 p(x)wk(x):|

xcX xeX
Y ex p(x)w"(X)uk(X)]

. [ _ e PO ()
> cex PX)wk(x) :

T ek Pwk(x)
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for any ¢ € A(X), not just in an e-neighborhood of p. Define
(I/?p) as the closure of the convex cone spanned by the set L7p and
the constant function.'” As 7, consists of linear utility functions,
it is easy to verify that (Iftp) is an identical local multi-utility
representation at p.

Proposition 6. For every p € A(X) there is a closed convex set (Iflp)
of utilities up : X +— R such that for every q € A(X),

pqe= > pXup(x) > Y ql)up(x), Yup € (). (18)

xeX xeX

As each (b?p) is a local multi-utility representation of > at p, we can
define the set of utility and weight pairs (u, w) that map to some
U, € (Up) around every p as (V) = {(u, w*) : uf € ),V p €
A(X)). We refer to (V) as the exhaustive set of normalized utility
and weight pairs that agree everywhere with the ordering of lotteries
prescribed by =. The uniqueness theorem presented below asserts
that two utility representations are identical if and only if they are
characterized by identical exhaustive sets.

Theorem 2. For j = 1, 2, let >J be a binary relation over A(X) that
has a multiple weighted expected utility representation by a set V/
of utility u : X + R and weight w : X +— R, function pairs
(u, w). The preference relations > and =2 are identical if and only

if (1) = (V2).

Fig. 5 illustrates the uniqueness theorem.

In Fig. 5(a), the two utility representations V' and V? have
identical exhaustive sets (V') = (V?). This is demonstrated in the
diagram by the corresponding source spaces £2! in and £22 having
identical weighted convex hulls'® so that the preferences they
represent are everywhere identical >'=:2. Projecting incompa-
rability curves from source points o' = 2!\ £2% or 0? = 2%\ 2!
does not alter the ranking. On the other hand, in Fig. 5(b) the two
representations are not identical, as the weighted convex hulls of
the corresponding source spaces overlap only partially, and hence
(V1) # (V?) and ='#2. Indeed we can observe that p <' g and
p='r butp=?gandp>r.

4. Special cases

Weighted utility theory with incomplete preferences admits
incompleteness arising either from conflicting perceptions, rep-
resented by multiple weight functions, or from indecisive tastes,
represented by multiple utility functions. Thus, the general frame-
work we have devised admits a pair of special cases, those of
multiple utilities paired with a single weight function vV = t/ x {w}
or a single utility paired with multiple weights V = {u} x W. Each
of these may be regarded as a partial completion of an incomplete
preference relation.

17" The closure is with respect to the R" topology.

A . 8, e 8 2t
18 Given two source points o' = 22— and 0? = =22 and « €0, 1],

take their weighted convex combination as

k(1 —1"e! + (1 —k)(1 —12)0?
k(1 —t) 4+ (1 —xk)1—12)
K8y = T'501) + (1 = k)E — T78,2)
K(1—tH)+(1—k)1—12)

N 1 2
8y, — It (1 = K)T°1E o101 411 ye2a?
rr i (1—x )2

1—[rkt! +(1—«k)7?]

o*

We can then define the weighted convex hull as (2) = {0* : 0,0 € 2.k €
[0, 1]}. Note that this operation is only meaningful for n = 3, as in higher
dimensions elements of Vv would map to subsets rather than points of £2.
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In non-expected utility, local risk attitudes are captured by
the local utility functions and global risk attitude depends on
the variations of the local risk attitudes, as in Machina (1982).
In weighted utility, the utility and weight functions play distinct
roles, with the shape of the utility function capturing the decision
maker’s risk attitude while the weight function captures the
nature and degree of the variation in local attitudes. Specifically,
the weight function reflects the extent to which the indifference
map exhibits the fanning in or fanning out structure described by
Machina (1982).19

A decision maker with multiple utility functions and a single
weight function has incomplete preferences solely due to her
indecisive risk attitude, and has no more difficulty evaluating a
lottery than she would evaluating each of its possible outcomes.
On the other hand, a decision maker with a single utility function
and multiple weight functions is sure of her risk attitude, but
is indecisive when comparing lotteries because she is unsure
of how to perceive randomness, and thus cannot always rank
lotteries properly even if she knows how she would rank their
components.

4.1. Multiple utilities

A decision maker whose preference relation is represented by
multiple utilities paired with a single weight function is inde-
cisive about the valuation of each of the outcomes in X, but is
confident of how much importance to attach to these outcomes
when evaluating any lottery p € A(X). For example, the decision
maker may have several utilities exhibiting varying degrees of
risk aversion, but is sure of how much attention she should pay to
each of the possible payoffs. To ensure that a preference relation
> has such a representation, we adopt a stronger variant of the
partial substitution axiom.

(A.5) (Parallel Substitution) For all p,q € A(X), p < q if and
only if for every g € (0, 1) there is a unique y € (0, 1),
such that Bp+ (1 — B)r < yq+ (1 —y)rforall r € A(X).

Under this assumption, for every p =< q there must be a unique
substitution ratio T(p, q) = {1p4). The following lemma shows
that for every p we can pair a unique weight 7, with any of the
utility values ap, € A(p).

Lemma 5. If = satisfies (A.1)-(A.3), (A.5) then, for all p € A(X),
there is t, = 0 such that ®(p) = A(p) x {z,}.

This result leads directly into the following representation
theorem.

Theorem 3. A binary relation > over A(X) is bounded and satisfies
(A.1)-(A.3), (A.5) if and only if there is a closed and bounded set U4
of utility functions u : X — R and a weight function w : X — R,
such that for every p € A(X)\ {8, dx, ),

u(x,) > % > u(x;). Yu e U. (19)
And for every p, q € A(X),
D eex PXwXulx) >, ¢ qx)wx)ulx)
, v .
P75 —ww . Y awut) Y
(20)

This representation is unique up to the same transformation as in
Theorem 2.

19 Fanning out reflects a decision maker who underweights the median
outcome relative to the extremes, corresponding to monotonically increasing
local risk aversion with respect to first order stochastic dominance, whereas
fanning in reflects an overweight of the median outcome and hence decreasing
local risk aversion with respect to first order stochastic dominance.
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X1

Fig. 5. Uniqueness.

4.2. Multiple weights

A decision maker whose preferences are represented by a
single utility function paired with multiple weight functions is
confident of how she would evaluate all of the outcomes in X, but
is indecisive over how much importance each of these outcomes
carries when evaluating a lottery p € A(X). Such a decision maker
is sure of her tastes, but when trying to compare alternative
lotteries is unable to determine what aspects to focus on and
attach more weight to. To ensure that a preference relation has
such a representation, we impose the following axiom.

(A.6) (Partial Completeness) >~ is negatively transitive over {5y :
xeX}U{g, - a €]0,1]}.

It is immediate that (A.6) implies that for each x € X there is
a unique « € [0, 1] such that &y = &,. Thus, every degenerate
lottery has only a single utility value so that A(y,) = {oj} for
every i = 1,...,n, but may take multiple weight values so that
T(8x;, £;) need not be a singleton, and hence non-degenerate
lotteries p € A(X) \ X may still have multiple utility values.
Imposing this assumption leads to a single utility, multiple weight
representation.

Theorem 4. A binary relation = over A(X) is bounded and satisfies
(A.1)-(A4), (A.6) if and only if there is a utility functionu: X +— R
and a closed and bounded set W of weight functions w : X — Ry
such that for every p € A(X)\ {8x,, 6%, 1,

u(xp) > —Zfii(;g::gzgx) >u(x;), Yw e W. (21)
And for every p, q € A(X),
Y oeex PXwXulx) Y o ax)w(x)u(x) v
Pra= T ou Y €W
(22)

Again, this representation is unique up to the same transformation
as in Theorem 2.
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5. Behavioral implications
5.1. Inertia

To illustrate the differences between the two sources of in-
decisiveness, recall that the main empirical manifestation of in-
completeness is inertia. Given an alternative a in some choice
set, there is a range of non-comparable alternatives that will not
be accepted if they were offered in exchange for a. In weighted
utility theory with incomplete preferences, the nature of inertia
depends on the source of indecisiveness. Specifically, if her in-
decisiveness is due to conflicting risk attitudes then the decision
maker displays inertia everywhere. By contrast, if the source of
her indecisiveness is incomplete perception then the decision
maker displays inertia everywhere except at degenerate lotteries
8,. These observations have testable implications. For example,
the subject in an experiment may receive &, by default and be
offered the opportunity to trade it for some lottery &,. Using
standard experimental methods it is possible to verify if the
subject switches at a single «, thus indicating preferences that
can be described by a multiple weight representation, or choose
to hold on to 8, over a range «, indicating that a multiple utility
representation is more appropriate.

5.2. Portfolio selection

To further illustrate the applicability of multiple weighted
utility models, consider a simple example of portfolio choice.
Let there be two states s = 1,2 whose probabilities are p and
1 — p, respectively, and corresponding Arrow securities as; each
paying one dollar contingent on the realization of state s. Let r
be the relative price of a; in terms of shares of a;. Consider a
weighted utility maximizing decision maker whose utility and
weight functions are u and w respectively, and is endowed with
zp shares of each security. Her problem is to choose the portfolio
(21, 22) to maximize p”’(zl‘ﬂjg;318:33%%’“2) subject to the budget
constraint z; 4 rz; = zp + 1zp.

Denote by D; the set of cumulative distribution functions with
a compact support /] € R. A weighted utility maximizing decision
maker evaluates the lottery F € D; by the weighted utility
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dF
functional U(F) % and attaches weight W(F)
il

fw )dF(t). Following Chew and Nishimura (1992), the local
unhty function is the Gateaux derivative at F.

w(t)[u(t) — U(F)]

W(F)

Hi—u.w)(f) _ (23)

The decision maker displays local risk aversion at F if the uFu -w)
is monotonic increasing and concave, and displays global risk
aversion if she displays local risk aversion at all F € D;. The
decision maker’s problem is to choose an optimal portfolio along
the path

FClz) = {paz, +(1—p3

2+

z2g—21 z] 1Z1 € [0 Zo + rZO] (24)
If r = =B, then the Arrow securities are fairly priced and all
weighted-utility maximizers whose utility function u is mono-
tonic increasing and concave, would choose an optimal port-
folio position, (z},z}) = (20.20).°° If r > 1’%”, then every
weighted-utility maximizer would choose a portfolio position,
(27, z3) such that z§ > z; and zJ < z,. Moreover, suppose there
two weighted- ut111ty max1mlzmg decision makers characterized
by utility-weight pairs (u, w) and (ii, w), where everywhere along

the path of portfohos the local ut111ty ui”‘f ) dlsplays greater risk
(u,w) (0, w) (G, W)

aversion than uy/, .. Therefore, z;"™" > z;""“and ;" <z, 7,
so that the more r1sk averse dec1sior1 maker takes a less risky
position closer to the certainty line, that is, holding fewer shares
of a;.

Thus far we reviewed some results concerning the simple
portfolio choice of weighted-utility maximizing decision mak-
ers whose preference relations are complete. When a weighted-
utility maximizer’'s preference relation is incomplete, there is a
set V of utility-weight pairs that must agree in order for one
r151<y Erospect to be strictly preferred over another. Let Z

Ziw) ) (u,w) € V)} be the set of optimal portfo-
110 pOSlth[lS corresponding to each of the pairs of utility and
weight functions (u, w) € V. Since the various utility-weight
pairs represent distinct risk attitudes, the portfolio positions in
Z are non-comparable. Hence, the decision maker exhibits in-
decisiveness with regard to the portfolio positions in Z, which
may be resolved by random choice. However, once the decision
maker chooses a portfolio composition it becomes the status quo
or default position, and she displays inertia by avoiding making
portfolio adjustments for some range of variations in the relative
price r. Inertia was suggested by Bewley (2002) and may be
summarized by the dictum “if in doubt do nothing.”

This situation is depicted in Fig. 6 where the set of optimal
portfolios corresponds to the interval 2 = [(z}, z5), (2. z)]. On

this interval, the decision maker has randomly chosen (z'lv’,z:’!”),
which is now the status quo position. As the upper contour set
at (z’lv’, z’zw) has a kink, some variations in r will not induce port-
folio adjustment, because the distinct pairs (u, w) € V disagree
on the desirable adjustments. On the other hand, the decision
maker would exhibit inertia only with respect to increasing r at
(24, zl) and inertia only with respect to decreasing r at (z}, z%).
By contrast to the expected multi-utility model, where the set
of local utilities is the same everywhere and hence the decision
maker displays equal inertia everywhere, in the we1ghted multi-
utility model the set of local utilities 1 = {u”"‘ D (u,w) €
V} varies along the portfolio path F(-|z1). As each of the local
utilities u(“ ") ¢ 14 may show distinct patterns of variation in
risk attltude depending on the reference point F, these differences

(u,w) (u,w)

20 Note that on the certainty line, the weight function plays no role in defining
risk attitude.
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may result in variations along the portfolio path both in the
range of indecisiveness and the degree of inertia with respect to
changes in r.

6. Experimental design

Consider an experiment designed to test whether the pattern
of choices displayed by subjects is consistent with the predictions
of the model. Of particular interest is the consistency of the
choices with the partial substitution axiom (A.4), which is the
critical assumption that provides the weighted utility structure.

6.1. Challenges

If we were to assume that the subjects’ preferences were
complete, it is relatively straightforward to design an experiment
to test if the substitution axiom holds, since the incomparability
relation =< would manifest an equivalence relation ~ which can
be elicited from participants as follows. Let x; < X2 < X3, where
xi, i =1, 2, 3 are dollar amounts and suppose that p, = 8x, ~ {a,
and p3 = 18y, + 28, ~ {uy- Then by Lemma 1 there is 7, > 0

such that
1 1
5T28a, + 50x
2 2
p3 ~ 2 = = {l; PO | i;ctg (25)
1 1 3 2%27 5
32t 3 T,
2723

Therefore 1, =

5x2 + 6)(1, we have that

1
5T + 18
o 2 280y + 50x

D1 l‘['2+l :{ %1'2“2 =é-d1' (26)
2 2 1541
Hence
1 1—a3
o = %1’2(12 _ 2('13—&'2)0[2 _(]—a3)a2 (27)
1 =
el HEE) e

Therefore, according to weighted utility it must be the case that
P1 ~ Ca,- For example, if the subject expresses that 8y, ~ 16x3 +
18, and 28y, + 285, ~ 28y, + &y, then she must also set 55, +
186, ~ 8, + 20y, 21 Any other preference constitutes a violation
of weighted utility theory. In other words, if the incomparability
curves fan out in the lower half of the simplex then they must
also fan out in the upper half as well, so that the decision maker
maintains the underweighting of the median outcome x; relative
to the extremes regardless of whether it is being mixed with
something desirable or not.

When the subject’s preference relation is incomplete, how-
ever, there are some practical difficulties associated with eliciting
in an experimental setting. We describe below an elicita-
tion scheme and an experiment designed to test the model of
weighted utility with incomplete preferences.

~—
=

6.2. Elicitation

let 0 < x; < X3 < X3, where x;, i = 1,2,3 are dollar
amounts. Consider the following scheme designed to elicit the
range of utility values A(p) = {@ € [0,1] : p = &,} of a lottery
p = Z 1 Dix,- The mechanism involves three stages. At time
t = 0 the subject is required to report two numbers, a,d €
[0, 1] such that ¢ < @, and a random number, a, is drawn from
a uniform distribution on [0, 1]. In the interim period, t = 1, the
subject is awarded the lottery p if a < a and if a > @ the subject is

21 Here oy =

1. @3 =2, and therefore o) =
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Fig. 6. Portfolio selection.

awarded the lottery ¢, = adx, +(1 —a) 8y,. Ifa < aand a € [a, q],
then the subject is allowed to choose between the lottery p(6) =
Z?:1 pidx—e and the lottery ¢, (7)) = adx,—o +(1 — a) dx,—9, where
6 = 0. In the last period, t = 2, the outcome of the lotteries is
revealed, and all payments are made.

At time t = 1 the subject who considers p and ¢, to be incom-
parable must nevertheless make a choice. We propose that costly
procrastinating is justified by the subject’s expectation that she
will receive a signal that would resolve her indecision. While the
signal generating stochastic process is not specified, the subject
behaves as if some (u, w) € V was selected and this utility-weight
pair governs the subject’s choice. Thus, we may regard the set v
as the canonical signal space and suppose that the signal (u, w)
is drawn according to some unspecified probability measure
on V.22 In the interim period the subject chooses the alternative
that maximizes the weighted utility functional corresponding to
signal (u, w).

The following theorem asserts that, under this mechanism, it is
incentive compatible for the subject to truthfully report her range
Ap).

Theorem 5. Suppose that the subject’s preference relation = satisfies
(A.1)-(A.4) then, given the aforementioned mechanism and p €
A(X), there is & > 0 such that, for all 6 € [0. &), the subject’s unique
dominant strategy is to report a = «(p) and a = «(p).

6.3. Consistency

Let py = 38, + 38, P2 = Oy, and p3 = 38y, + 38x,. For
every a3 € A(p3), there is a; € A(py) and 1, € T(p3, &y, ) such that
P2 = &y, and

1 1
_ 2728w, + 30k,

y= 22 (28)
32t3

= g%fzﬂ'z‘F% = -(‘13'

1 1
27272

As before, we have 1, o However, without knowledge of
the structure of the source space we cannot be sure of which a3
corresponds to the same utility function that assigns a» to p, and
therefore the possible range of weights associated with this value

: ].

22 Karni and Safra (2016) axiomatized a general random choice behavior
model of this nature.

1—63 ]—g3

T(p2. &oy) € [ (29)

— s
3 — 0y O3 — O
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Likewise, for every a; € A(p;) there are a; € A(pz) and 7, €
T(pz. &a,) such that

1 1

1ot + 18
o 2 Zfﬂfz ? X1 (30)
i‘[’z + 3

If 3 € A(p3) and a; € A(pz) correspond to the same utility
function, then o = % € A(py).

Fori = 1, 2, 3, apply the elicitation scheme to determine the
range and note that by Theorem 5, [g;, G;] = [e;, @;]. The subject’s
responses for [a;, d3] to those of [a,, @] restrict the range that
[a,,a,] may take while still adhering to the model. However,
the compatible range for [a,, @] depends on how we match the
elements of [a5, 3] to those of [a,, @y], so that

e ]
o ]

Therefore, in order for the subject to adhere to multiple weighted
utility, her range for p; must adhere to the bounds

|

Fig. 7 depicts a possible result of this experiment.

Let [a,, d>] and [a5, as] be the ranges elicited for p; and ps,
respectively. Observe that this is insufficient to determine the
utility representation, as there are several possible source spaces
that would produce the same ranges for p, and ps, but different
ranges at p;. Choosing the pair of source points {o', 0%} gives us
the narrow range [gf, 651] at pq, while choosing {03, 0*} produces
identical behavior at p, and p5 but yields the wider range [g?, H"f]
at py. Indeed we may choose a number of other configurations for
the source space, up to the entire shaded area £2 that would be
compatible with the ranges [g,, 2] and [a,, as] and yield a range
at py bounded by the two extreme cases. Therefore, the range
[a,. ] we elicit at p; must obey [a}, @] < [a,.@] € [a%,@]. For
example, suppose that we elicit [a,. @] = [£. 2] and [g;, @3] =
[‘5‘, %]. Then, the range of utility values we elicit for p; must lie

(1—a3)ay (1—ay)a;

1—a, 1—a

31
1-a3)a, (1-—ay)a, 1)

1—a, 1—a,

(1—ga3)a, (1—as)a;
1—a, 1—-0,

:| Clay, al

c (1_63)22 (1—93)52
=L 1-g,  1-@

(32)
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ol

93

Fig. 7. Eliciting utility ranges.

within the bounds [Z. 1] € [a,.@] € [4£. 5] Otherwise the

multi-weight multi-utility model is falsified.

6.4. Special cases

The ranges of [g;, a;] for i = 1,2, 3 may also be used to test
the hypothesis that the subject's preference relation falls under
one of the special cases of our model.

If the subject’s preference relation has single weight multi-
utility representation then the upper limits of the ranges all
correspond to one utility and the lower limits of ranges to an-
other, both of which assign the same weight to é,,. Therefore, the
subject has a single weight, multi-utility representation if there is
a single weight o > 0 that satisfies

1 1 1_ =
G iTzﬂz + 3 . i‘[zaz + 3 G = il’zﬂz
T l'[z‘l'l’ =T l'fz‘l‘l’ 1_—1‘52—“1,
2 2 2 2 2 2
1 (33)
27252
4 = [
22T 3
This implies that
1—53 1—a El a
Ty = — — = =3 = — — = =1 . (34)
3 —0y 43—0 dy— Oy 4 —04

If any of these qualities fails to hold then the hypothesis that
the subject’s preference relation has a single-weight multi-utility
representation is falsified.

If the subject’s preference relation has a multi-weight single
utility representation, the middle outcome p, has only a single

[#. %] and ldt.a})
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utility value a, = a; = a, while a3 > g5 and a; > g,, and there
is a range of weights [t,, T] such that

1— 1 1 1 1
_ 5T202 + 5 3002 +35 _ 53T,02
3 = =—=, a,= a, = s
T Iy, I BT L RS
2 2 38273 31T 35
T (35)
57202
a4 —
=1 lf + 1°
2t27T 2
Thus,
=l 4 o _1te & (36)
2= =—, Iy= = =
as — az ﬂz—gl’ : a; —az ay — g

If this implication fails to hold then the hypothesis that subject’s
preference relation has a multi-weight single utility representa-
tion is falsified.

Furthermore, if T, = 7, = 1, 50 that @3 = 10 + 1, a4
1a, + 1, @ = 10, and a; = 1a,, the subject’s preferences
obey the independence axiom and thus have an expected multi-
utility representation. If there is a; = @; = g; fori = 1,2, 3 and

1-a3 32(]—101' then the preferences are complete and have

T2 = o

3—a3
a weighted utility representation. If both of these conditions hold,
so that a3 = 1a, + 1 and a; = 1a, then the subject adheres to

expected utility theory.

7. Concluding remarks

In this paper, we consider a model of decision making un-
der risk for preferences that satisfy neither independence nor
completeness. Specifically we characterize a utility representa-
tion by the agreement of a set of utilities, as in multiple utility
theory, each of which is weighted linear in the probabilities, as
in weighted utility theory, thus uniting these separate strands
in the literature under a unified framework. This multi-weight,
multi-utility representation admits two special cases with distinct
interpretations due ambivalent risk attitudes or incognizance of
the relative salience of the possible outcomes. By directly impos-
ing additional axioms that eliminate either of these possibilities,
we obtain special cases where the multiplicity in the representa-
tion is restricted to either the utility or weight functions alone.
The general framework we have devised thus serves as a useful
foundation for studying decision making under risk from a variety
of different perspectives.

8. Proofs
8.1. Proofs of propositions

8.1.1. Proof of Proposition 1

Fix p € A(X), then as > is bounded, {« : p < ¢} is bounded
and, as p < 1 = &z, non-empty, so that @ = inflw : p < &}
exists. Suppose that for o’ < @ we have p < ¢, then by (A.2)
there is B € (0. 1) such that p < BZy + (1 — B)8; = &,». Since
a” = Ba’ < @, this contradicts the definition of &. Now suppose
that some for o’ > @ we have —(p < &), then for all ¢” < o'
we have —(p < ¢uv) orelse p < ¢ur < o, which implies that
o < infla : p < &) = @, a contradiction. Thus =(p < &) if
and only if o' < @. Likewise, {& : p > ¢} is bounded and, as
p > o = 8, non-empty, so that & = sup{e : p > &, } exists. By a
similar argument, —(p > ¢,/) if and only if ¢’ > «. Therefore, we
have that p =< ¢, if and only if ¢’ € [¢,@]. O
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8.1.2. Proof of Proposition 2
Fix p,q € A(X) such that p =< q. We first show that T(p, q)
is bounded. Suppose not, then letting r = 8z we have for every

B € (0,1) that Bp + (1 — B)r = lim,_, % g, but as

r > q and thus, by (A.2), Bp+(1—8)r > g for g sufficiently small,
this is a contradiction. Hence t cannot approach co and therefore
T(p, q) is bounded. Now, for every r € A(X), define

' _ . _ pra+(—Br
Mp.q.r)=7>0:38 pp+(1-pr > 2 —p
. B _ Brg+(1—B)r
Tp.q.r)=y7>0:38, Bp+(1—B)r Brr(1—p)
1—
I(p,q,r) =t > 0:V8B, ﬁp+(1—ﬁ)rxH

Let R = {r € AX) : =(r =< p) v —(r = q)} denote the set of all
lotteries that are comparable with either p or g. We will establish
that for every r € R, T(p, q. r) is a closed interval [z,, T,], and for
every r ¢ R, there is s € R such that T(p, g, r) 2 T(p, q, s). Taken
together these will allow us to conclude that T(p, q) is given by
the intersection of closed intervals and is hence itself a closed,
and bounded, interval.

Suppose r € R. Then if r > g, define T, = infT!(p, g, r) and
7, = supTR(p, q, r)>* Suppose that for v/ < 7, we have 7’ €
TYp. g, r), then there is t” € TYp.q.r) such that t”/ < t/ < T,
contradicting the definition of 7,.2> Now suppose that for t/ = 7,
we have t° ¢ TYp,q.r), then we must have " ¢ TXp,q,r)
for every t” < t/*° and therefore ¢/ < infT!Xp,q.1) = T\, a
contradiction. Thus ' € TXp, g, r) if and only if " > T,, and by
a similar argument t’ € T%(p, ¢, r) if and only if v’ < z,. This
implies that " € T(p, q,r) if and only if " € [z,, T,].

If r < g, then we can define 7, = infTR(p,q,r) and z,
sup TX(p. q, r)27 and apply a similar argument to the above. If
r = q and either r > p orr < p, we can again repeat the argument
above by switching p and ¢ and noting that t’ € T(p, g, r) if and
only if % € T(q, p,r). Thus for every r € R, T(p. q,r) is a closed
interval [z,, 7, ].

Now suppose r ¢ R. Then if there is ' € A({p, q. r}) such that
1’ > q, there are &, @ € [0, 1] such that r’ = Alap+(1—a)r]+(1—
A)q > q, so that by betweenness we have s = ap + (1 —a)r > q.
This implies that there is s € R such that T(p. q.r) 2 T(p, q. 5).°
A similar result follows if we have s € A({p. q., r}) such that s < q.
Likewise, if there is s € A({p,q,r}) such thats > pors < p,

24 Let7, =00 if THp.q.r) = & and 7, =0if TR(p,q,r) = @.

25 fr e THp, q,r) then there is B € (0,1) such that fp + (1 — B)r =
ﬁ!;f"((]l g" This implies by (A.2) that there is A € (0, 1) such that
, Br'g+H(1-p)r
N AN Zar ]+ (1=
D —pr > .
ABT + (1B +(1-2)

_ Aptla+(1—AB)r

TR H(1-AB)
Letting t” = W < v’ completes the argument.

26 Otherwise if some 7"

Br"q1(1-f)r
Bp+ (=B > ey > Goraoe

27 As before, let T, = oo if TR(p,q.r) = @ and , = 0 if T!(p, q.1) = &.
28 pick 7 € T(p,q,s) and for any g € (0,1), let B’ = B+ (1 — B)x so that

€ TYp,q.r), then for some B € (0,1) we have
Lr g8 implying 7’ € TH(p, q, ) as well.

p=pp+(1—-B)s=pp+(1—pF)randletqg = % Then we have that
o Bra+ (=P _ pra+(1—flap+ {1 - )1 —a)r
Topr+(1-p) pr+(1-p)

_ (A =plp + BT +(1- 8¢
(1—=Bla+BIpT+(1—p)]
By betweenness, the above implies that p’ = @', and taking the odds ratio gives
us T € T(p,q,r).
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we repeat the argument again noting that t € T(p, q,r) if and
only if % e T(g,p,r), so that T(p, q,r) 2 T(p, g, s) if and only if
T(q.p.r) 2 T(q,p.s).

Now suppose that for s € A({p.q.r}) we have s < p and
s =< q. If for some # € (0, 1) we have s > 6p + (1 — #)q, then
by betweenness p =< 6p + (1 — 6)q and by the argument above,
T(p.Op + (1 — O0)q.r) 2 T(p.Op + (1 — B)q, s), which in turn
implies T(p.q.r) 2 T(p.q.s).?° A similar result follows if for
some 6§ € (0, 1) we have s < 6p + (1 — #)g. Finally, if for all
s € A({p,q,r})and 6 € (0, 1) we have s =< Op + (1 — 6)q, then
T(p.q.r) =R, " so that T(p.q.r) 2 T(p.q.s) for all s € R.

By definition we have that T(p,q) = ﬂrEA T(p, g, r). Note
that T(p, q) is bounded if any T(p.q.,r) is bounded which we
can establish by setting r = &.>' Since for every r ¢ R there
is s € R such that T(p,q,r) 2 T(p, q.s), we have that T(p, q) =
(Mrex TP 0. 1) = (eglz, Tr]- Letting T = sup, gz, and T
inf..g Ty, we have that T(p,q) = [z, T]. O

8.1.3. Proof of Proposition 3

Suppose that for p,q € A(X) there is ¢ > 0 such that o
E=1 € 2. Since 0 € £2, there are p’, ¢’ € A(X) such that p’ < ¢’
and ' € T(p'. q') such that

_p—t1q _p-17q
T 1-r 1=
Suppose that the line defined by p and q intersects the interior

of the simplex so that there are A,, A,, assuming without loss of
generality that A, > 4,, such that

U= iyp+ (1 —Ay)q € intA(X),

V= A,p+ (1 — A,)q € intA(X),
u— AuTH(1—Ay) .

0= AptH(1-2y) _ u—rtv

Ayt (1 ku):l - ]_ % ’

1= [mm—xu)

Pick Ay /&~ A, so that T ~ 1. Define s’ to be the intersection of the
lines p’u and q'v. Then as u and v are close together, we have

o G-u-a-i
- T -1
‘1_ "o _‘l_’\ r Al
B b 0 el Ul 2L RSPV
T—1

29 we can show that for any t € A(X) there is a one to one mapping from
T(p,q.t) to T(p,6p + (1 —H)gq, t) by noting that, again by betweenness,

pp+ (1Bt
Tlfp+(1 = Bl + (1 - BB + (1 - B[ 55
o7 + (1 -8t +(1— B
_ Brlbp +(1 -8l + (1 — pllfr + (1 — &)l
Br+(1—B)ft +(1-06)]
Taking the odds ratio of the above, we conclude that t € T(p, g, t) if and only if
7 € T(p. 6p+(1—6)g. t). Thus T(p. 6p+(1—6)g. 1) 2 T(p. €p+(1—-6)q. 5)
if and only if T(p,q,r) 2 T(p, q,s).
30 pick Bec(0,1)and lets=Bp+(1—B)r,and forany t > 0 let # = ﬁ

E= and invoking betweenness yet again

Brai(1-p)x
TH1-5)

Then, by assumption, Sp+(1— A
we have that

o=

_ Lo+ (=B — p0 - o) [5F]
pp+(1—pir = T
_prat(1-pr
Br+(1—p)

This implies that t € T(p, q, r) for every 7 > 0.
31 Since for any B € (0,1) we have r = Bp + (1 — B)r, by (A2) there is

Y € (0, 1) such that ¥aq+ (1 —er = Bp + (1 — B)r, implying 7, > %

Likewise for any ¥ € (0, 1) we have r > yq + (1 —¥])r, so there is # € (0, 1)

such that gp + (1 - B)r =yq+(1— r/(1-7)

y)r so that T, < B
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1-17

u=——p -5 = Bp’ + (1 - B)s’
- T 1—1
(1=, T—1 . .
= s = 1—7p)s.
a—epd Ty =79 T0=7)
— y/(=yp)
Since p’ < q" and 1’ B ﬁ)eT(p q'), we have
2 By Q+(1_ )S
4= dap (1 = u)q = il 4+ (1= P < PZL DY
BT +(1—B)

=lp+ (1= =0.

Therefore since A, > A,, if p > g then by betweenness u > v, a
contradiction, so —(p > q) and by a similar argument —(p < q),
hence p =< q.

Now suppose that the line defined by p and q lies entirely on
the boundary of the simplex. Then pick t € intA(X) such that
t = pand t > g and, for every n, let

p

=
Il
| —
-
+
S
—_
|
| —
S—
=

Thus lim,_, ~ p" = p and lim,_, ~, " = q. For each n, we have that
the line p"q" intersects A(X)? and can verify that

p =4+ (1-1)7]g"

1-[+(1=1
Hence, by the argument above p" =< ¢" for everyn = 1,2,....
Suppose that p > g, then there is s € A(X) such thatp > s > q.

By betweenness, since t > p every p" > p > s. By the strong
Archimedean, since s > ¢ there is « € (0. 1) such that s >

1-1

aq+(1—a)t. Hence, for any n > = “1_‘1037 then ; 1" lr > o
we have s > wq + (1 — a)t > g". By tran51t1v1ty, p" ,; q", a
contradiction. Thus —(p > gq) and, by a similar argument, —(p < q)
sothatp=<gq. O
8.1.4. Proof of Proposition 4

Define v = wu, so that for p € A(X) we may write

p(x1)
Vip) | _ | vix1) v(Xn) —p
W(p) w(x1) w(xn) : ’
p(xn)
Up) = St P V()
Yhpxdw(x)  W(p)
For p, q € A(X), we have that U(p) > U(q) if and only if
W(pIW(q)[U(p) — U(q)] = V(p)W(q) — V(q)W(p)
_ V(q)
W(p) Wi(q)
=|vp Vq|=|VP| > 0.

Now consider a positive affine transformation
v | ) V() | _ @ b v(xq) v(xy)

| w(xy) wx,) |~ |c d]|w(x;) w(xy)

=AvV
This implies that U(p) > U(q) if and only if [VP| = |A||VP| > 0,

so that the ranking of lotteries is unchanged as long as |A| > 0,
orad —bc >0. O
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8.1.5. Proof of Proposition 5

Let V represent =, pick any pair (u, w) € V, and let v = wiL.
We begin by showing that there exists a normalized function pair
(&1, w) for which (u, w) is a rational affine transformation, so that

there are a, b, ¢, d such that

v(xy) v(xa)| _|a bf|0x) U(x,)| _|a bf|O0 1
w(xy) wkxy)| " |c d||wx) wkx)| |c dfl1 1|
Solving for these constants, we see that we indeed have a positive
rational affine transformation as long as u ranks the best element
xn above the worst x;. To grasp this claim, observe that

a b]_[otx) vx)]fo 177"

c d| 7 Jwx) wlxy)||1 1
_ [U(Xn) — v(x1) U(Xl):|
Tl w(xg) — wxy) wxg)

Hence,

a

3{ = wlruk) — vl — vl we) — ()]

= w(x)wx, ulx,) — ulx;)] > 0.

Inverting this matrix, we transform (u, w) back to the normalized
(0, ).

:

w(xy)
bl B | —w(xn) — w(xi)]
d} —wl)[v(xa) — v(x

—v(x1)
v(xn) — v(x1) |
D] = v(x1)lw(xn) — w(x)]

w(x1) —w(xp)u(xy)
—lw(xn) — wx1)l - wlxn)u(xn) — wx1)u(x:)
w (e Jw(xn)[u(xn) — u(x1)] '
For any x € X, we have that

807 _[a ] [ox)
wx)| " |c d w(x)
i w(xy) —w(xq)u(xq) w(x)u(x)
| —[w(xn) — wlxe)]  wxnu(xn) — w(xgJu(x1) w(x)
w(x)w(xp)[u(xn) — u(xq)]
[ wx w)[u(x) — ulx;)]
| w(xn)w(X)[u(xn) — ux)] + wx:)w)[u(x) — ulx1)]

w(xy Jw(xn)[u(xn) — u(x1)]
This gives us the utility and weight functions

w(xXq Jwx)ulx) — u(x;)]
w (X Jw([u(xn) — u(x)] + wxw[u(x) — ulx;)]’
—wxn)w()[u(xn) — u(x)] + wlx)wl)[u(x) — ulxq)]
B w(x1)w(Xn)u(Xn) — ulx1)] ’
(0, 1) and ((x,), W(xn)) =

w(x)

It is easily verified that (1i(x;), W(x;)) =
(1, 1). Now for every p € A(X), define

Do p(xi ) (xi)i(x;) _ Yo piTicti
EI’ L p(x) () Y PiTi

Zp Y (x Zp,t, = 1.

Since the thlllty function is normalized by assumption, we have,
for any «,

U(p) =

=y,

{i(gy) = 22l E

ol

Xn) 4 (1 — a)ib(xq)i(x;)
Xn) + (1 — )i (xy) B
aw(x,) + (1 —a)w(x;) = 1.

W(&)
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Fig. 8. Proof of Lemma 1.

As U(p) = U(éap) and W(p) = rplﬁ/(q‘,p), we have for every

B e(0,1)and r € A(X) that
- BW()0(p) + (1 — BW(r)U(r)
UBp+(1—p))= — =

PP o BW(p) + (1 — B)W(r)

_ B, )0(,) + (1= AWO(r)
BT W(5y) + (1 - BIW(r)
70(181}15% (1—/3)!‘)
Bl B +(1-8) )
This implies that every Sp + (1 — B)r = %m so that
(ap, Tp) € @(p) for every p € A(X). Hence, {(i(x;), w(x;))}!,
(e, )}, e¥. O

8.1.6. Proof of Proposition 6
Let ¥ be a normalized set of utilities that represents =, and for
every (u*, w*) € v, define

3 vex POOwH)uk(x)
> e POWH(x)

Around any lottery p € AX), let if = UXp) and 14, = {u}
whuk + (1 — w*)iiy : (u¥, w*) € v} be the set of normalized local
utilities. For every q € A(X), let

= qaukx) =Y qx)wk(x

xeX xeX
= Wk(q)u*(q) + 11 — WK(@)I1U*(p).
Up(q) =

Since Ux(p) = UX(p), we have Uk(p) — W @)[UX(p) —
Uk(q)). Thus p = ¢ if and only if Uk(p ) > UMgq) for every
(u¥, w*) € ¥, which in turn holds if and only if U¥(p) > UXq)
for every u € up Denote the closure of the convex hull of up by

(dp) = CI{U; = Zugel:{p ﬂkug : Zu’f,eb}p k= 1}, then

UN(p) > UJ(q). Yu € U, <= U7 (p)

= D> 7Up) > Y U =

k17 K 17
upeldp upeUp

Uk(p) =

W) = plw'(x)

xeX

k

uk(x) + 1 — w () p)

UZ(q). Yuj € (th).

Therefore, p >~ q if and only if every U7 (p) > U7 (q), completing
the proof. O

8.2. Proofs of lemmas

8.2.1. Proof of Lemma 1

Fix p,qg € A(X) such that p g. Fix r € A(X) and pick
B,y € (0, 1) that satisfy partial substitution so that s := Bp +
(1 =8y = yq+(l — y)r == t. Now pick g8’,y" € (0, 1) such

that 7 : ;/E} ﬁ§ = - ”' proving the proposition requires

A/(1
showing that u := 8'p + (1 —,B)r =y'q+(1—y)r =

As depicted in Fig. 8, the extensions of the lines st and uv
intersect at some source point lying outside of the simplex on

—
=
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the extended line pq, located at 0 = %. Draw parallel lines
from s and r such that the line from s intersects uv at some
point s’, and extending ps’ intersects the line from r at some 1/,
and let t’ denote the intersection of uv and gr’. By Desargues’
theorem, the triangles rst and 1’s't’ are perspective from the line
opq, and hence the lines 1/, ss’, and tt" are parallel. This implies
that s’ = Bp+(1—8)"and t' = yq+(1—y)r’, and hence by weak
substitution that s =< t’. Since both s" and t’ lie on uv, we have
by betweenness that u =< v as well, completing the proof. O

8.2.2. Proof of Lemma 2

We will show that (i) = (ii) = (iii) = (iv) = (i).
(i) = (ii) Pick p,q € A(X) and suppose that p =< g, and pick
€ AX)\ A({p., q}).*? Letting T = 88,, + (1 — #)F and
r = 88, + (1 — 6)F, we have for 6 sufficiently large that
T > p,q > r. As we are now working in a space where 7
and r are the best and worst elements, we can analogously
define ¢] ar + (1 — a)r for every « € (0,1) and
A; {a € [0,1] = Ap + (1 — A)g = wail} for every
A € [0, 1]. By Proposition 1, we have that each A; is a
closed interval [ak,ak] If A* = (), Ax = &, then there
are Ay, Ay and o« € (0, 1) such that o, > o' > @,,, so that
Mp+(1—=241)g = = dap+ (1 — lz)q By betweenness,
if A1 > Ay then p = ¢, and if 1 < A, then p < q. As either
would contradict p < g, we must have that A* # @, so
letting r = ¢ for any o € A* establishes the result.

= T

(if) = (iii) Pick p,q € A(X) such that p =< q and p1c1< any ¥ €

T(p, q), so that there is a source point 0* = pl 4 ¢ Q. Pick
r,r € A(X) such that ¥ > p,q > r, then by the preceding
argument, there is r = of + (1 — «)r € A(X) such that
every Ap + (1 — l)q = r. We need to show that there are

Tp, Ty > 0 such that every A, +(1—4)7y € T(Ap+(1—2)q).

For every 4, let p;, = Ap+(1—2)gand tj = At* +(1—14),
then since t* € T(p, q) we have that

O*fp—r*q [Ap+(1—x)g]l — [At* + (1 — 1)]g
1—1* 1—[AT* + (1 —A)]
_P7ha o
1—17

This implies by Proposition 3 that ;7 € T(p,, q). We now
claim that there is some 74 € T(q, r) such that for every A,
7,7 € T(ps. 7). Suppose not, then since by Proposition 2
T(pr.1) = [1,.Tal ancl T(g.r) = [r Tq4l, there is A such
that ¥ > j—* or i)} < ; Assume the former without loss

of generality then there are t, <14

4 and t; > T, such that

T = * .Lets =T > r, then we have that since 7, > T,
0, = p’ H ¢ £2, so that for some p € (0. 1),
or—+(1—p8)s
:ﬁp1+(1—,8)s>—'8 : a=p =r'
Br, +(1-8)
__fa _ /(-y)
Now let y = BT so that = 5 Since 7, < T,
0, = —2
1

q
}/‘L'éi‘ +(1—vy)s .
—

yrp+(1—y)

Since by construction tj = t;
we have that pj >

¢=yqg+(1—yk=<

q, ', taking the above together
r"=r1" > q.But 7y € T(p,, q) implies

32 That such f exists is implied by the dimensionality of A(X).
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p; = q'. This is a contradiction. Thus we must have that
< z— a similar argument shows 7} > 2. Therefore,
Q

there is - Ty € [1,, T4l such that 7ty € T(p,, r) for every A.
Letting 7, = 1"ty € T(p, r), this implies [At* +(1—1)]ty =
Aty +(1—=A)tg € T(Ap+(1—24)q, r) for every 4, completing
the proof.*3

(iii) = (iv) Pick p, q € A(X) such that p = g, and by (iii) there is
r € A(X) and 7, Ty > 0 such that every At, + (1 — )75 €
T(Ap + (1 — X)g. r). This defines a line of source points

Ap+(1—2A)g — [Atp + (1 — A)gglr
O(p,q) =140, = a2 €01
®.a) { g T—[rt) + (1 — M), [0, 11
C 52.
Now pick p’.q" € A({p,q.r}) then there are 7, r?’ >0
such that we can define source points 0;, = pli’fr and
! I P
0 = 193" Now let 1/ = 2 and 4] = L, then we
—Tq Tq T
have that
. (T =)o, + (1 =21 = 75)0;
0, =
¢ (1—TJ+{1—1’)(1—T4)
(P —1r) — r—‘i(q’ —1,7) f_ g
= = =P copagc e
(1-g)- 50— -7
By Proposition 3 this implies that p =< ¢ and 7} €
T(p'.q).>
(iv) = (i) This is immediate. O

8.2.3. Proof of Lemma 3
Again, we will show that (i) = (ii) = (iii) = (iv) = (i).

(i) = (ii) Suppose that P is an incomparability set, then if dim
A(P) < n — 2 we can pick 7 € A(X)\ A(P)*® and let
T =668, +(1—0)f and r = 6y, + (1 — #)F, such that for

33 This argument is illustrated in Fig. 9, showing the contradiction when the
claim is violated for A = 1, so that t*7, ¢ T(p,r). For every p.q € A(X) let
S(p.q)={o= ”1 ff : 7 € T(p, q)} the range of source points on the line defined
by p and q. For any p € AX), let I(p) = {r' =aT + (1 —a)r < p:a € [0, 1]}
the range of mixtures of r and r to which p is incomparable, then r € I(p) and
7 € T(p,r) implies that r' = ‘Hérj“ 2;r € I(Bp + (1 — B)F). As shown in Fig. 9, if
o* € S(p, q), then we must be able to draw a line from it that intersects both
S(p,r) and S(g,r), or else there are o, 0} ¢ £2 that indicate I(p’) and I(q') are
disjoint, so that p’ > ¢ which in turn would imply o* ¢ £2.

34 Letp = P+ jq@ + (1 — p1p — pg)r and q' := vpp + veq + (1 — vp — vg)r

and 1, = ppTp + pqTq + (1 — pp — pg) and 7y = vpTy +vg7g + (1 —vp —1vy). Then,

' 'r
o
171:,J

_ Lop + 1qq + (1 = p1p — )1 = [1tpTp + fqTq + (1 = ptp — pg)lr

T—[ppTp + HgTq + (1 — f1p — p1g)]

HpPt+igd | | BpTptigTg r
Hptug HptHg

1 | #eletieTy
Kptig

Letting A;J = +u show that o € O(p, q) < £2, and by a similar
argument 0 € £2.

35 As Fig. ‘10 shows, for any p’, ¢ € A({p. q, r}) we can draw a line connecting
these two lotteries that intersects the source line O(p, q) at some o;.

36 Again, 7 exists by the dimensionality of A(X).

(i) =
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o*

Fig. 9. Proof of Lemma 2 [(ii) = (iii)].

Fig. 10. Proof of Lemma 2 [(iii) = (iv)].

0 sufficiently close to 1,7 = p > r, for every p € A(P). For
everyp € A(P)letAy ={a:p=af+(l1—a)r}= [a,. @pl.
If A* = [VpeamAr = @, then there are pi,p2 € A(P)
and o such that @, > &' > @p,. But this implies that

pP1 > p2, a contradiction. Picking any ¢« € A* # @ and
letting r = oF + (1 — a)r establish the result.

(iii) Fix r € A(X) \ A(P) satisfying (ii). Pick P, =
{1, ..., Pk} € P such that A(P,) = A(P), then it will be
sufficient to show that there are (tq,...,7) € Rk++ such
tlzat f;)r every q = Z};lﬂjpj € AP), Ty = ZLHTJ‘TJ‘ €
T(q,r).

Claim For any ¢ < k, let P, = {p;....
(t1,..., 1) € R, such that for every (7. ...,

, p¢}, then there is
ﬂg) S Rﬂ_
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satisfying Zle 7 = land q = Z_f:] mip; € A(Pe), we
have that 7, = Zf;l T € T(q, 7).

Proof We establish this property by induction. If £ = 1
then the simplex is a singleton A({p:}) {p1} so the
property is trivially satisfied by picking any ; € T(py,1).
For the inductive step, suppose £ < k and we have such
(t1.....7) € RS, and let 7y = Y, m;7; for every q €
A(Py).

By Lemma 2, for every q1, g2 € A(P¢) we have that q; =< ¢z

and 2L € T(qy, q3).>7 Pick any p € P\ A(P,). Since P is an
o

incorn%)arability set, p =< q for any q € A(P;). By Lemma 2

we have that

Z) =l eT(p,r): Ay + (1= Mg € T(Ap + (1 = A)q, 1),

Viel0,1]} # @.

Suppose that Z; ﬂqez\(ng = o, then there are

1.G2 € A(P,) and 7 such that minZ' > 7, > maxz’.

Since by Lemma 2, 1, € Zg if and only if é c T(p,q),

< min Zg‘ implies that i < minT(p, q;), and therefore
0

7

and 7, > max Z,? implies - 2
Tgy

!
T

that ",‘ > max T(qy, p),3®
Tp
maxT(p, q;). Letting s =T > p, for B (0, 1) we have that

B(%)p+(1-ps
(%) +a-p

Ba1+(1—pB)s >

>ﬁ(?—;3(%?qz+(1—ﬁ)s
TENERTRT

()@t -ps

p(@)ra-s

This contradicts —* € T(q1, ¢2). Hence Z; # @. let p =
Pe+1 and pick any 74 € Z;m, then we have that the
set (7y,...,7ey1) € R has the desired property.*® This

completes the proof of the claim. O

Returning to the proof of the lemma, set £ = k and choose
(t1,.-., rk)inR‘;Jr that satisfies the claim. Then for every
p = Z}‘:l mip; € P, letting 7, = Z;‘zljfjtj establish the
result.

(iii) = (iv) Fix r € A(X)\ A(P) and {tp}per € Ry, satisfying
(iii). Pick q1,q2 € A(P U {r}), then fori = 1,2, ¢; =

Oir + (1 — 6;)q; for some q; := ZpeA(p) 7pip € A(P). Let

T = D pep TpiTp € T(gj,7) and i = 6; + (1 — 6;)7/, then
L5040 ¢ . By (i),
— L)g5. ). Thus,

there is a source point at 0; = =
we have that At; + (1 —A)r; € T(qu1 +(1

37 Following the proof of Lemma 2, this is seen by invoking (iii) for A =
1

T
1qu
p-tq _ 14

= = -1-

38 Note that 7 e T(p, q) if and only if —i €T(q,p), as o=

39 £l p L :
For any q = Zj:l 7ipj, let & = meyq and ¢ = =L, Then since
=17
T €4, € Zi,.,, we have that > i = Ateyr + (1 — M)ty € T(Apes +

(1—-2)g',r)=T(q,r).
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letting t* = 7! and A* = = we have that
A1 —=11)o1 + (1= 2")(1 = 12)02

A1 —1)+ (1 =251 —13)

*

@ —nr) - (g2 — 12r) g — T co
(1-1)- (1 -1) 11—t .
By Proposition 3, this implies that ¢; = ¢2 and t* €
T(q1. q2).

(iv) = (i) This is immediate. O
8.2.4. Proof of Lemma 4

Fix p,q € A(X). By repeated application of Lemma 3, we
have that p =< q if and only if they both belong to the same
maximal incomparability set P € A(X) with dim A(P) = n — 2.
As boundedness of > implies §,, > p > &, for every p €
A(X), by betweenness there is a unique « € (0, 1) such that
£, € A(P). Hence, for every i = 2,...,n — 1 there exists some
Pi = Aiby + (1 — A)cy, € A(P) N A({X;, X1, X,}). By Lemma 3,
this implies that there exist {rj,.... 7, ,} such that every 7/ €
T(pi, &) and hence (o, 7/) € @(p;). Let liit,»’ +(1-1,) and

o = rff,:illii'))a’ = ["f’iJr(l"*;il_)]r‘i”“’Af)Hf. Then we have
o — Sy — Tiley Ml + (1= 1i)gg, — [MiTi + (1 — 49)1E,
’ 1—r, 1= [hmi 4+ (1= 44)]
Piotibe oo
1 -1

This implies that every («j, ;) € ®(8y,).
This argument that follows is shown in Fig. 11.* For ev-

ery p == Y.L md, € A(X), there are linearly independent
(P2.....0n1) © P q = Y1) alpi € A(P) such that p' =
1'q + (1 — &)y This implies that
- -1
, St altla «— ,
(or. 7g) = (% Yo
Y WY S

r) Iliil 1_)%9' —
—(Z ﬁflr[ o Zn[kn i)])
o At 4+ (1= A4)] —

€ o(q).

M rgat(1-1)8"

PEATRY we have

Letting 1.'1; = )Jré +(1—2)and ozl’, =

o - P = tplal B (Mg + (1= 2)ge] — [Mrgta + (1= 2)co]
P11 1— M7, +(1— 1)
= % € 52.
This implies (ap tp) € @(p’). Furthermore, letting (¢, 7;) =

(0, 1) and («y. t;) = (1, 1), we have that
n—1

p=N i Thide + (1= 1)+ (1 —

i=2

n
M)y = Z by,
i=1

40 The existence of a maximal incomparability set P implies that A(P) crosses

every triangle A({x;, x;, x,}), formed by the best and worst outcomes along with
some third outcome x; € X, at some p;. Furthermore, as betweenness implies
that we may have at most one ¢, € A(P), every p; = {,, so that we may find a
source point o; in the usual manner. Drawing a line from o; through &, allows
us to find the utility weight pair (w;, 1) for x;. By the result of Lemma 3, every
point on the line connecting two source points is itself a source point U;. and
drawing this through any lottery p’ € A(X) produces the pair (a‘g, ri;) which is
in turn a linear combination of the (w;, ;).
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Fig. 11. Proof of Lemma 4.

A ZF_ZI ?T’Dxm-oti 4+ (1 =281+ (1 — 1o’
MY i+ (1= + (1=

(

n1
A Z J'r;[l{[i +(1

— A+ (1= 3\'))

_ l 131'1:,0[,
ZI 1 7TiTi

Since the above holds for any p € A(X), the collection {(«;
ey,

Returning to the proof, we have that for every p. g € A(X) that
p = q if and only if they lie on some maximal incomparability
set P, which defines {(u;, 1)}, € . Since there is a unique
« € [0, 1] for which p,q, ¢, € P, we must have op = ¢g = «,
which completes the proof. O

Z n,a) € @(p

i=1

r!)}; 1

8.2.5. Proof of Lemma 5

Fix p € A(X) and («!, 1), (e?, T2) € @(p). If T} # 72, let
g = 20 — vt
(1—tH1r2e? — (1 —12)tlal’
. ﬁ*‘flﬂtl ﬁ*rzaz 1'20[2 _ TIC!I
af = = =
ﬁ*‘[l—l-[]—ﬁ*) ;3*1'24'(1—;3*) 1—2_1.1
2 1y 1,1
1% *__1 * (T -7 )I’ o
= 1— = ]
‘ pro+l A (1—1Hr2a?2 — (1 - t2)rla!
(1.2_1.1)1.20{2
1;2*: *TZ—F 1— B*) = .
P ( A (1—1tHr2a?2 — (1 — t2)rlal

Then for j = 1, 2, we have

g PP BP0 — B8]~ (BT, + (1 — B*)8y,]
T 1o 1—[B*d +(1— B*)]
_ B A= B T
1 — o=
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This implies that (a*, t*) € ®(B*p + (1 — B*)x,) forj = 1,2,
but as t! # 72 implies 1% # 72* this would violate (A.4), so
we must have ! = 72 Hence, there is a unique 7, such that
ap € A(p) implies (ap, 7p) = @(p) = A(p) x {1p}. O

8.3. Proof of Theorem 1

(Necessity) Suppose that there is such a closed V that represents
>. Then for any (u¥, wk) € v, define

D eex POW (0¥ (x) o k
> xex POwk(x) p)= gp(x)w (x)

Hence p > q if and only if UXp) = UXgq) for every
(u*, wk) e V. It is easily verified that U* is weighted
linear.*! To show that > is bounded, let X = x, and x = x;
and noting that for every p € A(X), uk(x,) > UX(p) > u*(x1)
for every (u¥, w*) € v implies 8y, > p > &y,.

uk(p) =

To show that - satisfies (A.1), note that for every p € A(X),
—(UK(p) = UXp)), so = is irreflexive, and that for every
p.q. 7 € AX), Up) > UXq) = U¥(r) implies UX(p) >
UX(r), so > is transitive.

A.2), pick p.q,r € A(X) such
Lwk) e v

To show that >~ satisfies (
that p > g, then UXp) > UXq) for every (u¥
If UX(q) > U¥(r), define a* € (0, 1) such that

Uk p + (1 = a¥)r)

AWHPIUK(p) + (1 — WHIUKT)
=U
FWHp) + (1 = aWH(T) (@
k_ WU (q) — UX(r)]
WAPURp) — UKq)] + WHOIUNG) = UK

If UXq) < U*(r) then pick any ¥ € (0, 1). Pick any
o > infie wheva then Uk(ap 4+ (1 — «)r) = U¥(q) for
every (uk w*) € vV and hence ap+(1—a)r > q. By a similar
argument, there is o’ € (0, 1) such that ¢ > «'p+(1—«')r.

To show that > satisfies (A.3), pick p, g € A(X) such that
p = g, then U%(p) = UX(q) for every (u*, w*) € v, so that
for any o € (0, 1),
aW*(p)UX(p) + (1 — @)W (q)U*(q)

aWk(p) + (1 — a)W¥(q)
= UNap + (1 — a)q) > UX(q).

This implies that p > ap + (1 — «)q > q.

Ut(p) >

To show that > satisfies (A.4), pick p, q € A( ) such that

p = q. This implies that there are (u', w'), (u?, w?) € v

such that U'(p) = U'(q) and U%(p) < Uz(q) Define

AW (p)U'(p) + (1 — A)W3(p)U*(p)
AW(p) + (1 — 2)W2(p)

WH(p) = aW'(p) + (1 — A )W?(p).

U*p) =

’

41 por every p,q € A(X) and A (0, 1), we have that

UM(hp + (1 A)g)
3 eex (AP + (1 = R)g)w*(x)uk(x)
Y ex(Ap + (1 — R)g)(x)wk(x)
A3 cex PEOWREIECO] 4+ (1 — A) [3 o ax)w* ()u*(x)]
A2 ey PXwH)] + (1 — 1) [ 3y ax)wk(x)]
AWKp)UH(p) + (1 — )W (q)UM(q)
AWK(p) + (1 — 2)Wk(q)
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Then there is some A € [0, 1] such that U*(p) = U*(q). For
every f§ € (0 1) fix ¥ € (0, 1) such that the odds ratio

%El ﬂg = Then for every r € A(X), we have
" BWH(p)U*(p) + (1 — BIW(r)U*(r)
u* 1-B)r) =
(Bp+(1—pB)r) W) £ (1= BIWHT)
_ BiEBWHQUMQ) + (1 = WHIUMr)
T AERWg (1 - AWAD)
(1 — )W rUXr)

q
_ yWHQUMg) +
yWHq) + (1 — y)WA(r)
=UMyq+(1—y)).

Thus we can have neither that Sp+(1—8)r = yq+(1—y)r
nor that Sp+(1—8)r < yq+(1—y)r.Hence, Sp+(1—8)r =<
yq+ 1=y

(Sufficiency) Suppose > is bounded and satisfies (A.1)-(A.4).
Then, for every ¥ € ¥ we can construct utility and weight
funcnons by letting u¥(x;) a,- and w¥(x;) ¥ for

..... n. By construction and Propositions 1 and 2,
] € [o;, ;] and le € [z, 7i] foreveryi = 1,...,n.
Therefore, each u¥ and w¥ is bounded, and thus ¢/ = {u¥ :
Y ew}and W= {w¥ : € ¥} are closed and bounded.
For every p € A(X), set

v

Uw(p): o = Z?:lpfrfwa? _ Z?:]p(xi)w(xi}u(xi)
’ Z?;]pi v Z? 1 D )w(x;)
n
qu):ﬂ;’y:zpif; Zp w(x;).
i=1

Now suppose that p = ¢ then, by Lemma 4, we have that
for every v € ¥, U"”( ) # U¥(qg). Suppose that, for some
v e ¥, UY(p) < U¥(q), then we can pick some r > p > q
and B € (0, 1) such that U¥(8p + (1 — B)r) = UY(q). By
Lemma 4, this would imply that Sp + (1 — 8)r = q. But
betweenness implies r > Sp + (1 — B)r > p > q. Thus we
must have that U¥(p) > U¥(q), for every ¥ € ¥.

Now suppose U¥(p) > U¥(q) for every ¢ € ¥. Then, by
Lemma 4 —(p =< q) and by the argument above —(p < q), so
we conclude that p > g. Hence p > q if and only if U¥(p) >
U¥(q) for every € W. Furthermore, by construction, for
every ¥ € W, a,‘f/ 1 and a}l' = 0. Hence for every
p € A(X) we have that u¥(x,) > U¥(p) = u¥(x;) for every
V¥ e W, Letting Vv = {(u¥, w¥) : ¢ € W) establishes the
representation, and since ¢/ and W are closed and bounded,
Visas well. O

8.4. Proof of Theorem 2

(Necessity) Suppose that (VA ) = (vz) = V*, then for every p €
A(X) we have that ({h) = @) = {u, = wu + (1 — w)i, :
(u, w) € vt} = U,. By Proposition 6, this implies that for

any q € A(X),
p-'ge= Y pux) > Y qxuplx
xeX

xeX
2

This implies that >1=>2.

Vupeu —p>q.

(Sufficiency) Suppose, without loss of generality, that there is
(u*, w*) € (V') \ (V?). Then for some p € A(X) we have
that up = w*u* + (1 — w*)i; € (@) \ (). Then by the
separating hyperplane theorem, there is g € A(X) such that

> Ipx) - >0z ) [p(x)— (x). Vup € (i)

xeX xeX

]up
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This implies on one hand that >, p(x)up(x) > >, q(x)
uy(x) for every u, € (Zf{z), 50 that p >? q, but on the
other hand that 3, p x)u < D eex qx , so that
as uy € (Mp) we have —(p > q) Hence - ¢>
_Therefore, we conclude that >'=>? if and only if Wl =
(V%). O

8.5. Proof of Theorem 3

(Necessity) Suppose that ¢/ and w represent >. Then for every

uk e u, let
3 cex POOw(x)uk(x)
Uk(p) = =2 =Y pxw(x)
Y eex P(X)w(X) ;
Letting V = U x {w}, by Theorem 1 we have that > is

bounded and (A.1)-(A.3) are satisfied. To show that (A.5)
is satisfied, pick p,q € /_‘\(X) such that p =< ¢, then there
are u', u? € u such that Ul(p) = UY(q) ancl U?(p) < U%(q).

Forevery g € (0, 1), fix t = m%} g) = W(q then for every
re AX),
BW(p)U'(p) + (1 — B)W(r)U'(r)
u' 1-B)r)=
Bp 0= = sy + (= pwir)
. ﬁw—”W( UNg)+ (1= B)W(r)u'(r)
T BEREW()+ (1 - gW(r)
_yW(q ) (@) + (1 = y)W(ru'(r)
W(g) + (1 —y)W(r)
= U‘(Vq +(1—=y)r).
Likewise, U%(Bp + (1 — B)r) < U%(yq + (1 — y)r), which
implies that gp + (1 — B)r < yq + (1 — y)r. To show
that the substitution ratio r = % is unique let r =

Wip)

8x,» then for ¢/ < there is 8 € (0,1) such that

wiq)
uk(p + (1 — B)r) < U* (%) for all u* e u,

and likewise for 7/ > W(P) there is B € (0, 1) such that
Uk begsi py

UkBp +(1— B)r) > ) ) for all u* € u. This

implies that 7, and therefore y, is unique, so that (A.5) is
satisfied.

(Sufficiency) Suppose that > is bounded and satisfies (A.1)-
(A.3), (A.5). Then by Theorem 1 we have a representation
by Vv = {(u¥,w¥) : ¢ e ¥}. By Lemma 5, for every
x; € X there is r; > 0 such that @(3y,) = A(dy,) x {7}, and
thus w¥(x;) = 7; == w(x;) for every ¥ e ¥. Thus letting
U = {u¥ : € ¥}, we have that V = ¢ x {w}, so that >
has the desired representation.

This completes the proof. O
8.6. Proof of Theorem 4

(Necessity) Suppose we have u and W that represent >. Then for
every wk e W, let

ng}( p(x)wk(x)u[}()
3 ex POOWH)

Letting V = {u} x W, by Theorem 1 we have that > is
bounded and (A.1)-(A.4) are satisfied. To show that (A.6)
is satisfied, for every x; € X set o; = % so that for
every wk € W we have UX3,) = u(x) = au(x,) + (1 —
a)u(x;) = U(g,) if and only if o = «;.

Ut(p) =

W p) = ) plxjw(x

xeX
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(Sufficiency) Suppose that > is bounded and satisfies (A.1)-
(A4), (A.6). Then by Theorem 1 we have a representation
by v = {(u¥, w¥) : v e &). By (A6), for every x; € X
there is a «; such that @(8,,) = {o;} x T(8, &), and
thus u¥(x)) = «; = u(x;) for every ¢ € w. Thus letting
W = {w" : ¥ € ¥}, we have that V = {u} x W, so that >
has the desired representation.

This completes the proof. O
8.7. Proof of Theorem 5

Fix p € A(X) and suppose that the subject reports a > @(p).
If a < @(p) or a > a then the subject’s payoffs are p and
4, Tespectively, regardless of whether he reports a or @(p). If
a € (a(p), a], then the subject’s payoff is a choice between the
lotteries p () and the lottery &, (f). Had she reported «(p) instead
of @ her payoff would have been ¢,. By stochastic dominance,
Ca > ¢a(P) and, since a > w(p), ¢u > Carp). Thus, by definition of
a(p), &o > p (). Consequently, the subject is worse off reporting
a instead of @(p).

Suppose that the subject reports a < «a(p). Ifa < aora >
«(p) the subject’s payoffs are p and ¢, respectively, regardless
of whether she reports a or a(p). If a € [a, «(p)), the subject’s
payoff is a choice between p (f) and &, (f). Had she reported
«(p) instead of a her payoff would have been p. By stochastic
dominance, p > p (#), and, by definition of a(p), a < a(p) implies
that ¢y > ¢4 Hence, by definition, p > ¢, > ¢, (#). Thus, the
subject is worse off reporting a instead of «(p).

Suppose that the subject reports @ € (a(p),@(p)). If a €
(a, @ (p)], the subject’s payoff is ¢, whereas had she reported
@ (p) she would have the opportunity to choose between the
lottery p (f) and the lottery &, (¢). The subject chooses p(f) if the
signal (u, w) € V indicates that p (f) > ¢, (f) so that

S piulx — 0w (x; — 6)
L piw (i — 6)
au(x; — 0w (x3 — 0) + (1 — au(x; — 6)w (x; — 6)
g aw (x3 — 0) + (1 — a)w (x; — ) ’

Otherwise the subject chooses £4(6).
let B={(u, w) € V| p(#) > ¢ (#)} then the subject’s payoff

is
3 o
T©) :=[ Zi:1p'3“("= Blw (xi —0)
B Y biw (X —0)

-]
V\B

X du(u, w).

dp (u, w)

au(xs — 0)w (x3 —0) + (1 —a)u(xy — 0)w (x; — 0)
aw(x3 — )+ (1 —a)w (x; —0)

But by definition of B,

_ [ X pulxw (x)
B YL piw (X))
+/ au(x3Jw (x3) + (1 — a)u(x)w (x1)
WB aw (x3) + (1 — a)w (x1)

7(0) dp (U, w)

dpe (u, w)
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- f au(xs)w (x3) + (1 — a)u(x)w (xq)
B aw (x3) + (1 — a)w (x1)
N f au(xs)w (x3) + (1 — a)u(x;)w (x1)
VB aw (x3) + (1 — a)w (x1)
au(xs)w (x3) + (1 — a)u(xy)w (x1)
.[v aw (x3) + (1 — a)w (x;)
Hence, by continuity of 7 (f), there is ¢ > 0 such that, for all

6 € [0, ¢),
@) > f au(x3)w (x3) + (1 — au(x1)w (x1)
v aw (x3) + (1 — a)w (x1)
Thus, reporting @ < ua (p) is dominated by reporting truthfully,

d = a (p). By similar argument reporting a > « (p) is dominating
by reporting truthfully, a =« (p). O

du (u, w)

dpe (u, w)

dic (u, w) .

dp (u, w).
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