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Abstract 
This paper describes a direct revelation mechanism for eliciting (a) decision mak-
ers’ range of subjective priors under Knightian uncertainty and their second-order 
introspective belief and (b) Bayesian decision makers’ range of posteriors and their 
subjective information structure. 
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1 Introduction 

An expert’s assessment of the likelihood of an event in which he has no stake may be 
of interest to others. For example, a patient may want to obtain a second opinion about 
the likelihood of success of a treatment recommended by his physician. A venture 
capitalist may be interested in an engineer’s assessment of the chance of success of 
a new technology for generating electricity from sea waves. In some instances the 
expert’s beliefs may be represented by a set of priors, which makes it impossible for 
him to deliver a precise assessment of the probability of the event of interest. Such an 
expert may be able to provide a range of the probabilities instead.1 In other instances, 

1 In robust Bayesian statistics, the elicitation of the set of priors is analogous to the elicitation of a single 
prior in Bayesian statistics (see Seidenfeld et al. 1995). Multi-prior models are part of the more general 
theory of imprecise probability, which allows for partial probability specifications. It is applicable when 
information is insufficient to identify a unique (prior) probability distribution (“it is useful for dealing 
with expert elicitation, because decision makers have a limited ability to determine their own subjective 
probabilities and might find that they can only provide an interval.” [Wikipedia, Imprecise probability]). 
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218 E. Karni 

a Bayesian expert (that is, a subjective expected utility maximizer whose beliefs are 
represented by a unique prior) may anticipate receiving new, private, information that 
would affect his assessment. Such an expert could deliver a precise assessment of his 
prior of the event of interest. However, he entertains a set of posteriors corresponding 
potential information signals he anticipates receiving. In this case, the expert’s assess-
ment takes the form of a range of posterior probabilities. Whether priors or posteriors, 
I refer to the expert’s set of subjective probabilities of the event of interest as first-order 
beliefs. 

In both instances, the expert may also entertain beliefs about the likelihoods of the 
probabilities in the corresponding sets. In the case in which the first-order beliefs is 
represented by a set of priors, I refer to these likelihoods as second-order belief, and 
in the case in which the first-order beliefs is represented by a set of posteriors I refer to 
them as the subjective information structure.2 In either case, the second-order belief 
or information structure are represented by a unique probability measure. 

The situation in which an expert or a decision maker entertains a set of priors arises 
when the expert’s preference relation over the set of non-constant, state-contingent 
consequences (or acts), is incomplete. Bewley’s (2002) Knightian uncertainty model 
characterizes this situation.3 A decision maker’s second-order belief in the context 
of incomplete preferences is modeled in Karni and Safra (2016), according to whom, 
decision makers display random choice among acts which is governed by their moods, 
beliefs, or states of mind. In the present context, states of mind correspond to the 
decision maker’s beliefs and are represented by belief-contingent preference relations 
on acts. The fact that a decision maker may entertain distinct beliefs à la Bewley 
reflects the underlying incompleteness of her preference reaction on the set of acts. 
According to Karni and Safra, decision makers entertain introspective belief about 
their likely beliefs. 

The situation in which a Bayesian expert entertains a set of posterior beliefs cor-
responding to his subjective information structure was studied in Dillenberger et al. 
(2014) and Lu (2016). Both models describe Bayesian decision makers who anticipate 
receiving private signals before choosing an act from a set of acts. 

Dillenberger et al. characterize what they refer to as subjective learning representa-
tions of preference relations on menus. A subjective learning representation involves a 
unique information structure which takes the form of a probability measure on canon-
ical signal space (that is, the set of distributions on the state space) representing the 
decision maker’s subjective beliefs on the set of posteriors. 

Using similar framework, Lu (2016) models an analyst who observes the deci-
sion maker’s random choice but is not privy to the signal he receives and acts upon. 
Lu shows that, if the distribution on the canonical signal space corresponds to the 
observed random choice rule (that is, the empirical distribution of choices of elements 
from menus of acts), the analyst can identify the decision maker’s private information 
structure by observing binary choices. 

2 The term “second-order belief ” is defined in the literature dealing with interactive decision making to 
describe one player’s belief of another player belief. It is also employed in the theory of decision making 
under uncertainty in the sense of its use here, namely to describe a decision maker’s belief over a set of 
priors (e.g., Seo 2009; Nascimento and Riella 2013; Giraud 2014). 
3 See also Galaabaatar and Karni (2013). 
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219 A mechanism for the elicitation of second-order belief… 

Despite the differences in their analytical frameworks, their axiomatic foundations, 
and their implied choice behavior, the works of Karni and Safra (2016), Dillenberger 
et al. (2014) and Lu (2016), share in common representations of the decision maker’s 
second-order belief or private information structure. Moreover, in all of these mod-
els, decision makers exhibit random choice behavior. According to Karni and Safra, 
when facing a choice between two alternatives that are non-comparable (that is one 
alternative is preferred over another according to some priors while it is less preferred 
according to other priors in the set of priors), choice behavior is random. More specif-
ically, some impulse triggers a choice of a prior from the set of priors according to the 
second-order belief, and this prior determines the alternative to be chosen according 
to the subjective expected utility criterion. According to Dillenberger et al. and Lu a 
decision maker receives, at an interim stage, a private signal on the basis of which he 
updates his beliefs. The posterior belief governs his eventual choice. 

Suppose that an uniformed party (henceforth, the elicitor) would like to elicit the 
expert’s assessment of range of the prior or posterior probabilities of the event of 
interest as well as his subjective belief regarding the likelihoods of the different priors 
or the posteriors in the corresponding sets. In this paper I propose a direct revela-
tion mechanism requiring the expert to submit a report that allows the simultaneous 
elicitation of the range of priors (or posteriors) and his subjective assessment of the 
probabilities that the priors (or posteriors) in the corresponding sets are true. The 
mechanism is a modified quadratic scoring rule. If the expert displays incomplete 
beliefs the mechanisms elicit the range of the expert’s priors of an event of interest, 
as well as his introspective second-order belief (à la Karni and Safra [2016]). If the 
expert is Bayesian, the mechanism can be used to elicits the range of the expert’s 
posterior probabilities of the event of interest and his subjective information structure 
(à la Dillenberger et al. 2014; Lu  2016). 

With two notable exceptions, Chambers and Lambert (2014, 2015, 2017), and 
Prelec (2004), themechanismsdescribed in the literature on the elicitation of subjective 
probabilities require the conditioning of the expert’s payoff on the event of interest.4 

This paper deals with the elicitation of the probabilities of events in a subjective state 
space (that is, probabilities on subjective beliefs). Consequently, the true state (or 
event) is never observed and hence cannot be used to condition the payoff of the 
expert. 

The question of eliciting high-order beliefs, or information structures, has already 
been asked in Chambers and Lambert (2014, 2017). In particular, Sect. 2 of Chambers 
and Lambert provides a mechanism that elicits second-order beliefs. Their mechanism 
continues to apply here. However, the mechanism proposed in this paper is different. 
It belongs to a class which they term “stage-separated” mechanisms. While Chambers 
and Lambert show that no “stage-separated” mechanism can elicit second-order beliefs 
exactly, which motivates their alternative approach, the mechanism of this paper shows 
that elicitation is possible in a limiting sense, and thus complements their result. One 
benefit of such a mechanism is that it requires less commitment from the elicitor. A 
more detailed discussion of the relation of this work to that of Chambers and Lambert 

4 Unlike the mechanism in this paper and the protocol of Chambers and Lambert, Prelec’s (2004) elicitation 
scheme is not designed for the elicitation of second-order beliefs and is, therefore, less pertinent for the 
problem under study. 
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is put off until after the reader review the proposed elicitation mechanisms of this 
paper (see Sect. 4.3). 

2 The elicitation mechanism 

2.1 The analytical framework 

I adopt the analytical framework of Anscombe and Aumann (1963). Let S be a set 
of states, one of which is the true state. Subsets of S are events. An event is said 
to obtain if the true state belongs to it. Let �(X) be the set of simple probability 
distributions (that is, distributions with finite supports) on an interval X in R, and 
denote by H := {h : S → �(X)} the set of Anscombe–Auamnn acts. I identify the 
set of constant acts with �(X) . 

A bet on an event E , denoted xE y, is a mapping from S to X that pays x dol-
lars if E obtains and y dollars otherwise, where x > y. Denote by � (p; x, y) = 
[x, p; y, (1 − p)] , p ∈ [0, 1] , the act that pays off x dollars with probability p and 
y dollars with probability (1 − p) in every state. Henceforth, I refer to such constant 
act as lottery. Let  B := {xE y | E ⊂ S, x, y ∈ R, x > y} be the set of bets and 
L := {� (p; x, y) | p ∈ [0, 1] , x, y ∈ R, x > y} be the set of lotteries. Clearly, 
B ⊂ H and L ⊂ �(X). 

2.2 The subject 

Consider a subject whose assessment of the probability of the event E is of interest. The 
subject’s assessment may not be unique for two reasons. First, his belief might not be 
complete inwhich case the assessment involves a non-singleton set of subjective priors. 
Second, even if his prior assessment is represented by a unique subjective probability, 
the subject might anticipate receiving a private signal that would make him revise 
his initial assessment. In this case the subject’s posterior beliefs are represented by 
a signal-contingent assessments of the posterior probability of the event of interest. 
These are distinct possible situations depicted by different models of the subject’s 
beliefs. 

The notion of incomplete prior beliefs was first axiomatized by Bewley (2002). 
According to Bewley, the subject’s prior beliefs are represented by a subset, �0 ⊆ 
�(S), where �(S) the set of probability distributions on S, and he strictly prefers 
and act f over another act g if and only if Eu f > Eπ 

u g, for all π ∈ �0, whereπ 
E
u f = �s∈S[�x∈Xu (x) f (s) (x)]π (s) and u : X → R is a strictly monotonicπ 

increasing function. I assume throughout that u is twice continuously differentiable. 
In the model of Karni and Safra (2016) Knightian uncertainty corresponds to the 

special case in which possible states of mind are represented by first-order beliefs 
(that is, elements of �0).5 Let M ⊆ H be a menu of acts and suppose that given 
a menu to start with, there is an interim period in which the decision maker acquire 

5 This is the case of a subjective expected utility maximizing decision maker whose preference relation on 
the set of acts is incomplete, but restricted to the subset of constant acts the preference relation is complete. 
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221 A mechanism for the elicitation of second-order belief… 

knowledge of his first-order beliefs and chooses an act from the menu based on these 
beliefs. According to Karni and Safra (2016), for any pair of menus in H , M � M   

� � �
if and only if μ (π) E

u fM − E
u fM   > 0, where fM : �0 → H is defined π∈�0 π π 

as follows: For each π ∈ �0, fM (π) is a selection of a unique element from the set 
{ f ∈ M | E

u f ≥ E
u ,∀ f  ∈ M} of undominated acts in M, and μ is a second-f   π π 

order belief on �0 (E). In other words, given a menu M, fM assigns to each first-order 
belief, π ∈ �0, an act in M such that, give this belief, the assigned act, fM (π) , is at 
least as preferred as any other act in the menu. Consequently, Eu fM is the value of the π 
menu M . Thus, given x, y ∈ X , x > y, and M = {xE y, � (p; x, y)}, fM (π) = xE y 
if π (E) ≥ p and fM (π) = � (p; x, y) otherwise. 

The notion of multi-posterior beliefs figures in the representations of Dillenberger 
et al. (2014) or Lu (2016). Let � be the subject’s preference relation on the set of 
compact subsets of H (called menus ). Suppose that the subject is a Bayesian decision 
maker whose preference relation satisfies the axioms of Dillenberger et al. (2014). In 
this case, �1 ⊆ �(S) can be interpreted as the set of posterior beliefs.6 

For each event E, the subject’s prior beliefs under Knightian uncertainty are rep-
resented by the probabilities �0 (E) = {π (E) | π ∈ �0}, and if the subject is 
Bayesian then posterior beliefs are represented by �1 (E) = {π (E) | π ∈ �1}. In 
the former case, the subject believes that the prior probability of an event E is a random 
variable, �π0, taking values in the interval �0 (E) = 

�
π0 (E) , π̄0 (E)

� 
and that the 

likelihood that the true prior probability is π is described by a cumulative distribution � �
function μ0 on π0 (E) , π̄0 (E) , interpreted as the subject’s second-order belief.7 

In the latter case, the subject believes that the posterior probability of an event E is 
a random variable, �π1, taking values in the interval �1 (E) =

�
π1 (E) , π̄1 (E)

� 
and 

that the likelihood that the true posterior probability is π is described by a cumulative � �
distribution function, μ1 on π1 (E) , π̄1 (E) , interpreted as the subject’s subjective 
information structure.8 

2.3 The elicitation mechanism 

The mechanism described below is designed to elicit the range of subjective prior or 
posterior probabilities of an event E as well as the subject’s corresponding second-
order belief or the subjective information structure. The proposed elicitation scheme 
requires the subject to report, at time t = 0, a function   : [0, 1] → [0, 1]. Following 
the report  , a random number, r , is drawn from a uniform distribution on [0, 1]. The  

�

� 
E 

� 2 subject is awarded the choice between the bet y + θ − θ2 (r))2
  

y − θ2 (r) 
and the lottery � r; y + θ − θ2(1 −  (r))2 , y − θ2(1 −  (r))2

  
, where θ >  0. In 

6 Karni and Safra (2016) provide a detailed discussion of connection between their work and those of 
Dillenberger et al. (2014) and  Lu  (2016). They argue that, despite sharing some features, their work is 
different conceptually, methodologically, and structurally. 
7 The existence of μ0, representing the decision maker’s second-order belief on the set of priors, is implied 
by the model of Karni and Safra (2016). 
8 The existence of μ1, representing the subject’s subjective information structure, is implied by the models 
of Dillenberger et al. (2014) and  Lu  (2016). 
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the last period, t = 2, after it becomes clear whether or not the event E obtained and 
the outcome of the lottery are revealed, all payments are made. 

A crucial aspect of the mechanism is the flexibility it affords in delaying the choice. 
If the subject’s preferences display Knightian uncertainty, the value of this delay is in 
allowing the subject more time to consider his beliefs in the hope that in the interim 
some, possibly subconscious, stimuli would “trigger” a selection of an element from 
the set of priors and that the selected prior is used to determine the choice.9 

If the subject is Bayesian, the delayed choice allows him to receive new information, 
or a signal, before making up his mind. In either case, the subject reports  (r) = 1 
if he is confident that, for that r , the lottery dominates the bet and intends to choose 
the lottery. The subject reports  (r) = 0 if he is confident that the bet dominated 
the lottery and intends to choose the bet. The subject reports  (r) ∈ (0, 1) if he is 
unsure about his preference between the bet and the lottery and prefers postponing her 
choice to the interim period. Put differently, the subject’s preference for flexibility is 
manifested in his willingness to pay a price θ2 (r)2 in case he decides to chose the 
bet or θ2(1 −  (r))2 in case he decides to choose the lottery, in order to preserve his 
right to choose from the menu 

�	 
2 2 2 2y + θ − θ  (r) y − θ  (r) , 

E 

2 2 2 2� r; y + θ − θ (1 −  (r)) , y − θ (1 −  (r)) 

in the interim period, t = 1.10 

2.4 The elicitation mechanism analyzed 

To fix the ideas, suppose that the subject’s preference relation on H displays incomplete 
beliefs.11 Also, to simplify the notations, without loss of generality, I assume that 
y = 0, and, fixing the event of interest, E, I denote the corresponding set of priors � � � �
by � = π, π̄ instead of �0 (E) = π0 (E) , π̄0 (E) and the subject’s second-order 
belief by μ instead of μ0. 

Under the mechanism, the subject’s optimal choice of  (r), permits the recovery 
of his second-order belief, μ. Moreover, it is in the subjects’ best interest to truthfully 
reveal the range of his beliefs by announcing  (r) = 1 of all  r ∈ [π,¯ 1]and  (r) = 0 

9 Kreps (1979) articulates this presumption as follows: “In many problems of individual choice, the choice 
is made in more than one stage. At early stages, the individual makes decisions which will constrain the 
choices that are feasible later. In effect, these early choices amount to choice of a subset of items from 
which subsequent choice will be made. This paper concerns choice among such opportunity sets, where the 
individual has a “desire for flexibility” which is “irrational” if the individual knows what his subsequent 
preferences will be” (Kreps 1979, p. 565). The focus of the discussion here is the subject’s subsequent 
beliefs rather than subsequent tastes. 
10 In Dillenberger et al. (2014) and  Lu  (2016) the delay is built in as the interim period in which the 
decision maker receives the information signal. The willingness to delay the choice is a manifestation of 
the value of the anticipated information. 
11 The same analysis pertains to Bayesian subjects with private information structures. 
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223 A mechanism for the elicitation of second-order belief… 

for all r ∈ 
�
0, π

�
. Formally, given θ denote by   ∗ (r; θ) the optimal choice under the 

mechanism, then the next theorem asserts that limθ→0   ∗ (·; θ) = μ (·) . 
Theorem 1 In elicitation scheme the optimal report of   ∗ (r; θ) satisfies 
limθ→0   ∗ (r; θ) = μ (r), for all r ∈ � [0, 1] � . Moreover,   ∗ (r; θ) = 1, for all 
r ∈ [π,¯ 1] , and   ∗ (r; θ) = 0, for all r ∈ 0, π . 

Proof In the interim period t = 1, the subject learns his first-order belief, π. Given 
his announcement  (r), the subject chooses the bet if 

2 2 2 2ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) 

2 2 2 2≤ πu θ − θ  (r) + (1 − π) u −θ  (r) ; 

otherwise he chooses the lottery. Thus, the subject will choose the bet if 

π ≥ r A  (θ,   (r)) + B (θ,   (r)) 

where 

u θ − θ2(1 −  (r))2
  − u −θ2(1 −  (r))2

 

A (θ,   (r)) = 

�

� �

� 

u θ − θ2 (r)2
  − u −θ2 (r)2  

and 

u −θ2(1 −  (r))2
  − u −θ2 (r)2 

B (θ,   (r)) = 

�

� 2  �

� 

2  . 
u θ − θ2 (r) − u −θ2 (r) 

The subject is a subjective expected utility maximizer. Hence, anticipating his 
choice in the interim period, he reports a function   : [0, 1] → [0, 1] so as tomaximize 

⎧
1 ⎪⎨ �

μ (r A  (θ,   (r)) + B (θ,   (r))) ru  θ − θ2(1 −  (r))2 
⎪

0 
⎩ 

�
+ (1 − r) u −θ2 (1 −  (r))2 

π̄ ⎪
⎫ 

� � ⎬
2 2 2 2+ πu θ − θ  (r) + (1 − π) u −θ  (r) dμ (π) dr . 

⎪⎭
r A(θ, (r))+B(θ, (r)) 

(1) 
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224 E. Karni 

The maximal value is attained by maximizing the integrand pointwise. For every 
r ∈ [0, 1] , the first-order condition is12 

�
μ (r A (θ,   (r)) + B (θ,   (r))) (1 −  (r)) ru  θ − θ2(1 −  (r))2 

� − 2 2+ (1 − r) u θ (1 −  (r)) 

+μ (r A (θ,   (r)) + B (θ,   (r))) (r A  (θ,  (r)) + B  (θ,  (r))) � 
�
2 2 2 2× ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) 

= (1 − μ (r A (θ,   (r)) + B (θ,   (r))))   (r)) 
� � �  2 2   2 2× ˆ u  (r) (−θπ (r A (θ,   (r)) + B (θ,   (r))) (θ − θ ) − u  (r) ) 

�
+ u (−θ2 (r)2) 
+μ (r A (θ,   (r)) + B (θ,   (r))) (r A  (θ,  (r)) + B  (θ,  (r))) � � �
× π (r A (θ,   (r)) + B (θ,   (r))) u(θ − θ2 (r)2) − u(−θ2 (r)2) 

�
+ u(−θ2 (r)2) 

where 

π̂ (r A (θ,   (r)) + B (θ,   (r))) 
π̄ 

π = dμ (π) , 
(1 − μ (r A (θ,   (r)) + B (θ,   (r)))) 

r A(θ, (r))+B(θ, (r)) 

A  (θ,   (r)) = ∂ A (θ,   (r)) /∂  and B  (θ,  (r)) = ∂ B (θ,   (r)) /∂ . 

Since u  and u are continuous, for all  (r) , limθ→0 A (θ,   (r)) = 1, 
limθ→0 B (θ,   (r)) = 0, limθ→0 A  (θ,   (r)) = limθ→0 B  (θ,   (r)) = 0. More-
over, 

� 
�  2 2 2 2  lim ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) = u (0) 
θ→0 

� ��    2 2   2 2= lim ˆ θ − θ (1 −  (r)) + π (r) u (−θπ (r) u 1 − ˆ   (r) ) 
θ→0 

and 

� 
�
2 2 2 2lim ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) = u (0) 

θ→0 
� ��  2 2 2 2= lim π̂ (r) u θ − θ (1 −  (r)) + 1 − π̂ (r) u(−θ  (r) ) . 

θ→0 

12 It is easy to verify that the second-order condition is satisfied, so the first-order condition is necessary 
and sufficient for a maximum. 
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Let   ∗ (r; θ) denote the optimal choice of the subject; then these conditions imply 
that, 

� �
∗ ∗ μ (r) 1 − lim  (r; θ) = lim  (r; θ) (1 − μ (r)) , (2) 

θ→0 θ→0 

for all r ∈ [0, 1]. Thus, limθ→0   ∗ (r; θ) = μ (r), for all r ∈ [0, 1] . 
Suppose that r ∈ [π,¯ 1], then, for   sufficiently close to 1 

2 2 2 2ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) 

2 2 2 2≥ πu θ − θ  (r) + (1 − π) u −θ  (r) (3) 

� �
for all π ∈ � = π, π̄ . By first-order stochastic dominance, 

2 2 2 2ru (θ) + (1 − r) u (0)>ru  θ − θ (1 −  (r)) + (1 − r) u −θ (1 −  (r)) , 

(4) 

for all  (r) < 1. Hence,   ∗ (r; θ) = 1 for all r ∈ [π,¯ 1] . By a similar argument 
  ∗ (r; θ) = 0 for all r ∈ 

�
0, π

� 
. 

Let limθ→0   ∗ (r; θ) :=   ∗ (r) , then   ∗ (r) = μ (r) , for all r ∈ 
�
π, π̄ 

  
implies 

that  (π) = μ (π) , for all π ∈ �(E) . Moreover, as θ tends to zero, the subject 
chooses the lottery if π <  r and the bet if r ≤ π. Thus, the subject chooses the lottery 
with probability μ (r), and with probability 1 − μ(r) she chooses the bet. Hence, the 
subject exhibits random choice behavior. 

Remark Consider a more general mechanism that allows the subject a choice, in the 
interim period, between the bet (x − θ (r)2)E (y − θ (r)2) and the lottery �(r; x − 

2θ(1 −  (r))2, (y − θ(1 −  (r)) ), where θ >  0 and x > y. If the expert is risk 
neutral, then the marginal utilities are constant, and consequently, Theorem 1 holds 
in the limit as θ tends to zero, for all values of x and y. By the argument in the 
proof of Theorem 1, the necessary and sufficient condition for optimality of the report 
  ∗ (r; θ) = limθ→0   ∗ (r; θ) is μ (r) (1 −   ∗ (r)) =   ∗ (r) (1 − μ (r))). Hence, for 
every given x > y, μ (r) =   ∗ (r) , for all r ∈ [0, 1] . If the expert is risk averse, then 
the taking the limit as θ tends to zero would induce a biased report that depends on 
x and y. To avoid this bias, it is necessary to take the limit letting the x − y → 0. 
Alternatively, it is possible to use the lottery payoff scheme described in Roth and 
Malouf (1979) to obtain an assessment of μ, for all values of x > y. 

Because the mechanism requires the specification of a function,  (·) , it is difficult, 
if not impossible, to implement in practice. However, the analysis of the mechanism-
induced choice behavior suggests a practical method of approximating the solution to 
any desired degree. 
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3 Implementation 

3.1 The discrete elicitation schemes described 

Consider a discrete version of the elicitation mechanism depicted in the preceding 
section. Assume that the subject is a subjective expected utility maximizer whose 
assessment of the probability of an event, E, is a random variable, �π,  taking values 
in the interval �(E) = [π, π̄ ]. Let μ denote the subject’s cumulative distribution 
function on [0, 1] representing his beliefs about the distribution of �π.  

nFix n and let ri = i/n, i = 0, 1, ..., n. At t = 0 the subject is asked to report a 
nnumber  (z) ∈ [0, 1] for each z ∈ {r | i = 0, 1, ..., n}. A random number r is then i 

nselected from a uniform distribution on {r0 , ..., rn}. In the interim period t = 1, the n 
subject is allowed to choose between the bet, 

2 2 2 2θ − θ  (r) −θ  (r)
E 

and the lottery 

2 2 2 2� r; θ − θ (1 −  (r)) , −θ (1 −  (r)) , 

θ >  0. All the payoffs are affected at t = 2. 

3.2 The discrete elicitation scheme analyzed 

n nConsider the partition Pn = {[r j , r j+1) | j = 0, ..., n−2}∪[(n − 1) /n, 1] of the unit 
n n n ninterval . Suppose that π ∈ [ri , ri+1) and π̄ ∈ [rk , rk+1), for some 0 ≤ i ≤ k ≤ n−1. 

nFor sufficiently small θ the subject’s optimal choice of  (z) , z ∈ {r | i = 0, 1, ..., n}, �   i 
n ndenoted   ∗ (z; θ) , permits the recovery of μ ri , for all ri ∈ [0, 1] . Formally, 

Theorem 2 In elicitation scheme the report of   ∗ (r; θ) satisfies limθ→0   ∗ (z; θ) = 
n nμ (z) , for all z ∈ {r | i = 0, 1, ..., n}. Moreover,   ∗ r j ; θ = 1 for all r nj ∈ [π,¯ 1] ,i 

nand   ∗ r j ; θ = 0 for all r nj ∈ �
0, π

� 
. 

Proof To simplify the notations, define Ū (τ ; θ) = τ u (θ) + (1 − τ) u (0) , and 
Ū� (τ ; θ) = τ u (θ) + (1 − τ) u (0) , τ  ∈ [0, 1] . By the argument in the proof 
of Theorem 1, in the interim period t = 1 the subject whose first-order belief is π 
chooses the bet if 

nπ ≥ rn θ,   r + B θ,   rn .j A j j 
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nThe subject chooses   r so as to maximize j 

nμ r j A θ,   nr j + B θ,   nr j 
� �

n 2× r j u θ − θ 1 −   nr j 

��
2

n+ 1 − r j 

�
2u −θ 1 −   nr j 

��
2

π̄ 

+ 

� �
2 nπu θ − θ   r j 

��
2

n nr j A θ,  r j 
n+B θ,  r j 

�
2 n+ (1 − π) u −θ   r j 

��
2

dμ (π) . (5) 

By the same argument as in the proof of Theorem 1, the first-order condition evaluated 
at the limit as θ → 0 is  

n n nμ r j 1 −  (r j ; θ)  Ū� r j ; θ 
π̄ 

n n n− (r j ; θ)  1 − μ r Ū� (π; θ) dμ π | π ≥ r = 0. (6)j j 
nr j 

� � π̄ �  
nLet Ex  Ū� (π; θ) | π ≥ r = Ū� (π; θ) dμ π | π ≥ r j . Then, the first-j nr j 

order condition implies that 

 (rnj ; θ)  μ rnj Ū� (r̄ n; θ) 
= � � . (7) 

n n n¯1 −  (r j ; θ)  1 − μ r Ex U� (π; θ) | π ≥ rj j 

¯In the limit θ → 0, U� (τ ; θ) = u (0) is independent of τ. Hence, denoting the 
n n noptimal solution by   ∗ (r j ; θ),  (7) implies limθ→0   ∗ (r j ; θ)  = μ r .j 

n nMoreover, by the sameargument as in the proof ofTheorem1, for r j ≥ π̄ ,μ  r = j 

n n n n1, hence   ∗ (r j ; θ)  = 1 and for r < π, μ  r = 0, hence,   ∗ (r j ; θ)  = 0, for all j j 

θ >  0. 

In the limit, as n tends to infinity, these estimates coincide with the true values and 
  ∗ converge to μ. 

n n nTheorem 3 Let μ̄ (πn) := limθ→0   ∗ (r j ; θ),  for all j = 0, ..., 1 and π ∈ (r 1, r j ],j− 
then limn→∞ μ̄ (πn) = μ (π) , for all π ∈ [0, 1]. 

l hProof For each π ∈ [0, 1] and n = 1, 2..., let [rn, r ) be the cell of the partitionn 
n n n l h hPn = {[r j , r 1)} 0 such that π ∈ [rn, r ). Consider the sequence {r }. Sincej+ j= n n 
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h h hπ <  rn , for all n = 1, ..., inf{r | π <  rn , n = 1, 2, ...} exists and is equal to π . But  n 
μ is right continuous, hence limn→∞ μ̄ (πn) = μ (π) . 

Under the limit processes described above, the mechanism yields the range of 
the subject’s beliefs about the likelihood of any event in the state space and of his 
introspective assessment of the likelihoods of his beliefs. In practice, an appropriate 
choice of the parameters n, θ , yields estimated values that approximate the true values 
of the subject’s beliefs to any degree desired. 

4 Extension, variation, and related literature 

4.1 Elicitation of distributions of real-valued random variables 

The procedure described above is designed to elicit a subject’s beliefs about the likely 
realization of events. By extension, this method can also be used to elicit an entire 
distribution of a random variable. Consider the case in which the variable of interest 
is a subject’s beliefs regarding the distribution of a real-valued random variable. Sup-
pose that the subject entertains multiple such beliefs. To elicit the subject beliefs, the 
procedure described below combines the elicitation mechanism described in Sect. 2 
with an elicitation procedure due to Qu (2012). 

Consider the set, H, whose elements are cumulative distribution functions (CDF) on 
R.13 Suppose that a subject’s beliefs regarding the distribution of a real-valued random 
variable of interest are represented by F ⊂ H and that his introspective beliefs about 
the likely realizations of elements of F are depicted by a probability measure, μ on 

14F . 
The subject is asked to report a function   : R × [0, 1] → [0, 1] . The mechanism 

then draws a number k from a distribution with full support on the real line and a 
random number r from a uniform distribution on the unit interval. For each k ∈ R, 
define Ek = (−∞, k]. 

For each possible realization of k, the subject is allowed to choose between the bet 

θ − θ  (k, r)2 −θ2 (k, r)2 
Ek 

and the lottery 

2 2 2� r; θ − θ(1 −  (k, r)) , −θ (1 −  (k, r)) . 

The next theorem asserts that, for every value in the support of the random variable 
whose CDF is of interest, truthful reporting of the beliefs about the range and the 
likelihoods of values of the CDF is the unique best response. 

13 Assume that H is endowed with the topology of weak convergence, and denote by � the Borel sigma 
algebra on H. 
14 I assume that F together with the trace of � on F is the relevant measurable space. 
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Theorem 4 For each (k, r) ∈ R × [0, 1], in the limit as θ tend to zero, the optimal 
report satisfies  (k, r) = μ{F ∈ F | F (k) ≤ r}. Moreover, for each k ∈ R, let  
Ḡ (k) = supF∈F {F (k)} and G (k) = infF∈F {F (k)}, then limθ→0   ∗ (k, r; θ) = 1 
for all r ∈ [Ḡ (k) , 1] and limθ→0   ∗ (k, r; θ) = 0 for all r ∈ [0,G (k)]. 
Proof Applying the proof of Theorem 1 for each k the subject’s optimal report, 
  ∗ (k, r; θ) satisfies limθ→0   ∗ (k, r; θ) = μ{F ∈ F | F (k) ≤ r}. Moreover, by the 
same argument as in the proof of Theorem 1,   ∗ (k, r; θ) = 1 for all r ∈ [Ḡ (k) , 1]
and   ∗ (k, r; θ) = 0 for all r ∈ [0,G (k)]. 

The same procedure can be employed to elicit a subject’s beliefs about the distri-
bution of a vector-valued random variable. 

4.2 Direct elicitation of the range of probabilities of an event 

A direct elicitation of the range of priors is possible using an incentive scheme that 
combines a mechanism described in Grether (1981) and Karni (2009) for the elicitation 
of unique subjective prior and a modified proper scoring rule applied over a restricted 
set of measures. � �

Fix an event E and let � = π, π̄ denote the rang of subjective probabilities 
representing the subjects beliefs about the likelihood of E . The modified scheme 
requires the subject to report, at time t = 0, two numbers, r , r̄ ∈ [0, 1] (intended 
to demarcate the range of his subjective prior or posterior probability assessments 
of the event E) and, for each r ∈ (r , r̄), to report a number  (r) ∈ (0, 1) . A 
random number, r , is drawn from a uniform distribution on [0, 1] . In the interim 
period, t = 1, the subject is awarded the bet xE y if r ≤ r and the lottery 
� (r; x, y) if r ≥ r̄ , where x > y. If r ∈ (r , r̄), then the subject is allowed � 2 � 2 to choose, at t = 1, between the bet x − θ (r) E y − θ (r) and the lottery 
�
�
r; x − θ(1 −  (r))2 , y − θ(1 −  (r))2

  
, where θ >  0. In the last period, t = 2, 

whether or not the event E obtained and the outcome of the lottery are revealed, and 
all payments are made. 

Theorem 5 In the modified scheme, in the limits as θ → 0, the subject’s unique 
dominant strategy is to report r = π and r̄ = π̄ . 

Proof Fix x > y and θ >  0. Suppose that the subject reports r̄ > π.¯ If r ≤ π̄ or r ≥ r̄ 
the subject’s payoff is the same regardless of whether he reports r̄ or π̄ . If  r ∈ (π,¯ r̄), � 2 � 2 the subject’s payoff is a choice between the bet x − θ (r) y − θ (r) and the 

� E 
lottery � r; x − θ(1 −  (r))2 , y − θ(1 −  (r))2

 
; had he reported π̄ instead of r̄ his 

payoff would have been � (r; x, y) . By first-order stochastic dominance, 

2 2� (r; x, y) � � r; x − θ(1 −  (r)) , y − θ(1 −  (r)) , 

for all  (r) ∈ [0, 1], with strict preference except when   = 1. Since r > π,¯ 
2 2� (r; x, y) � xE y � x − θ (r) y − θ (r) , 

E 
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for all  (r) ∈ (0, 1]. Thus the subject is worse off reporting r̄ instead of π.¯ 
Suppose that the subject reports r < π. If r ≤ r or r ≥ π , the sub-

ject’s payoff is the same regardless of whether he reports r or π . If  r ∈ (r , π), 

�

� 
E 

�
the subject’s payoff is a choice between x − θ (r)2

  
y − θ (r)2

  
and the lot-

tery � r; x − θ(1 −  (r))2 , y − θ(1 −  (r))2
 
; had he reported π instead of r his 

payoff would have been xE y. By stochastic dominance, 
xE y � 

�
x − θ (r)2

 �
y − θ (r)2

  
, for all  (r) ∈ [0, 1], with strict preference E 

except when   = 0. Since r < π, 

2 2xE y � � (r; x, y) � � r; x − θ(1 −  (r)) , y − θ(1 −  (r)) , 

for all  (r) ∈ [0, 1]. Thus the subject is worse off reporting r instead of π. 
Suppose that the subject reports ¯ ∈ (π, ¯ ∈ [r , ¯ , the subject’s r π).  If r ¯ π ]

payoff is � (r; x, y), whereas had he reported π̄ he would have the oppor-� 2 � 2 tunity to choose between the bet x − θ (r) y − θ (r) and the lottery 
� E 

� r; x − θ(1 −  (r))2 , y − θ(1 −  (r))2
  
. Thus, in the limit θ → 0, the subject’s 

subjective expected utility is: 

π̄ 

μ (r) [ru (x) + (1 − r) u (y)] + [πu (x) + (1 − π) u (y)] dμ (π) . 

r 

It is easy to verify that this expression exceeds the expected utility of the lottery 
� (r; x, y) , ru (x) + (1 − r) u (y) . Thus, reporting r̄ < π̄ is dominated by reporting 
π.¯ By similar argument, r ≯ π. 

4.3 Related literature 

Belief elicitation procedures have been the subject of inquiry for more than half a 
century, beginning with the work of Brier (1950) and Good (1952) followed by Savage 
(1971) Kadane and Winkler (1988) and others.15 Except for Prelec (2004), Chambers 
and Lambert (2014, 2015, 2017), and the mechanisms described in this paper, the 
elicitation schemes in the literature condition the subject’s (expert’s) reward on the 
event of interest. This requires that the event of interest be publicly observable. In this 
sense, the game mechanism of Prelec, the protocol of Chambers and Lambert, and the 
elicitation scheme described in this paper are unconventional. 

Both the CL protocol and the elicitation scheme of this paper are designed to elicit 
the expert’s subjective “belief over beliefs,” interpreted, respectively, as subjective 
information structure and second-order introspective beliefs. Both schemes presume 
that the decision maker refines his belief over beliefs over time and, in both instances, 
the event of interest is a set “first-order beliefs,” or subjective probabilities, that, by 
definition, is not observable and, consequently, cannot be used to condition the expert’s 
reward. Despite these similarities the CL protocol and the elicitation scheme of this 

15 For a recent review, see Chambers and Lambert (2017). 
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paper employ distinct procedures. According to a special CL protocol (i.e., the simple 
example) described in Chambers and Lambert (2017) the elicitor selects two numbers, 
  and β, from uniform distributions on [0, 1] and [−1, 1] , respectively. These numbers 
represent, respectively, the price of an option, dubbed  -option, to short-sell a security 
in the interim period (t = 1) at the price  , and the price of the  -option as of the  
initial period (t = 0). The mechanism requires the expert to announces a prior F̂ and, 
later, a posterior p̂.16 The elicitor, acting on the expert’s behalf, makes the optimal 
decision to buy or not to buy the option, then to exercise or not to exercise the right 
to sell the security. The elicitor must never inform the expert of which decision she 
has made until all uncertainty about the random variable is resolved. The expert is 
awarded the payoff resulting from the elicitor’s choices. 

Finally, it is noteworthy that, because the results of this work focus on approximate 
truthfulness (with strict truthfulness only in the limit) the conclusion of Chambers and 
Lambert (2017) that no protocol in the general class they define as “stage separate 
protocols” can be strategy proof does not contradicts the result of this paper. 

Acknowledgements I am grateful to Zvi Safra, Andrei Savochkin, Jay Lu, Christopher Chambers, Nicholas 
Lambert and an anonymous referee for their useful comments and suggestions. 
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