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under uncertainty. The von Neumann–Morgenstern expected utility model with incomplete preferences
is revisited using a ‘‘constructive’’ approach, as opposed to earlier treatments that use convex analysis.
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‘‘Of all the axioms of utility theory, the completeness axiom is
perhaps the most questionable. Like others of the axioms, it is
inaccurate as a description of real life; but unlike them, we find
it hard to accept even from the normative viewpoint.’’

(Aumann [1962], p. 446)

1. Introduction

The presumption that a decisionmaker is always able to express
clear preference among alternatives has long been recognized
as highly unrealistic, especially in situations requiring choice
among alternatives involving distinct attributes that are not readily
comparable.1 Consequently, the use of the completeness axiom to
model rational decision making is problematic, to say the least.

Aumann (1962) was the first to broach this issue in the context
of expected utility theory under risk. Taking, as primitive, an
incomplete transitive and reflexive binary relation on the set of
risky prospects that satisfies the independence axiom and a weak
form of continuity, Aumann showed that one risky prospect is
(weakly) preferred over another only if its expected utility is
greater for a set of von Neumann–Morgenstern utility functions.

Baucells and Shapley (1998) provided an axiomatic characteri-
zation of expectedmulti-utility representation of incomplete, tran-
sitive, and reflexive preference relation on a convex subset of fi-
nite dimensional linear space satisfying independence andmixture
continuity.2

✩ We are grateful to Juan Dubra, Robert Nau and Teddy Seidenfeld for their useful
comments. Part of this work was done when Edi Karni was visiting the ENS de
Cachan.
∗ Corresponding author.

E-mail addresses: tgalaab1@arts.ryerson.ca (T. Galaabaatar), karni@jhu.edu
(E. Karni).
1 See von Neumann and Morgenstern (1947).
2 See Shapley and Baucells (2008) for a brief summary of their 1998 result.

Dubra et al. (2004) axiomatized the expected multi-utility rep-
resentation of incomplete preference relations over probability
distributions, whose support is a compact metric space. They also
showed that the utility functions that figure in the representation
are unique in the sense that any other expectedmulti-utility repre-
sentation of the same preference relationmust span a convex cone
whose closure is the same as that of the original representation
with possible shifts resulting from adding constant functions.

In this note, we revisit the von Neumann–Morgenstern model
to study necessary and sufficient conditions for the existence of
expected multi-utility representation and to study its uniqueness
properties.3 Like Baucells and Shapley (1998), we assume that the
choice set is a convex subset of finite dimensional linear space.
In addition, we assume that the choice set has a greatest element
(that is, an element that is strictly preferred to every other element
of the set) and a smallest element (that is, an element that every
other element of the set is strictly preferred to it). Unlike Aumann
(1962) and Baucells and Shapley (1998), our primitive preference
relation is a strict partial order (that is, a transitive and irreflexive
binary relation). To model the weak preference relation we invoke
the definition of the closure of the strict preference relation
introduced by Galaabaatar and Karni (in press). The difference
between the definitions of the weak preferences, to be discussed
in greater details below, highlights the distinction between the
continuity assumption invoked by Baucells and Shapley (1998)
and in our model. In particular, Shapley and Baucells assume
mixture continuity. Consequently, incompleteness in their model
imply that the Archimedean axiom cannot hold.4 By contrast,
the two notions of continuity, namely, mixture and Archimedean
continuity, are consistent with incomplete preferences in our
model.5 Finally, Baucells and Shapley (1998) did not address the

3 Expected multi-utility representations of incomplete preferences under risk
and additively separable multi-utility representation of incomplete preferences
under uncertainty are obtained as corollaries of our main result.
4 See Dubra (2011).
5 See Karni (2011).

0165-4896/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.mathsocsci.2012.04.002



Author's personal copy

T. Galaabaatar, E. Karni / Mathematical Social Sciences 64 (2012) 242–246 243

issue of uniqueness of the representation. In this paper, we include
a uniqueness result.

Unlike previous studies that use convex analysis as the main
analytical tool, we take a ‘‘constructive’’ approach, which makes
the representationmore transparent and easier to understand.We
also show that the expected multi-utility representation of the
strict partial order extends to the weak partial order.

2. The von Neumann–Morgenstern theory without the com-
pleteness axiom

2.1. The analytical framework and the preference structure

Let C be a convex subset of a suitably finite dimensional linear
space,L.Without loss of generality letL be chosen so that C andL
have the same cardinal dimension.6 A preference relation is a binary
relation on C denoted by ≻. The set C is said to be ≻-bounded if
there exist pM and pm in C such that pM ≻ p ≻ pm, for all p ∈ C
− {pM , pm}.

Consider the following axioms depicting the structure of ≻.

(A.1) (Strict partial order) The preference relation ≻ is
transitive and irreflexive.

(A.2) (Archimedean) For all p, q, r ∈ C , if p ≻ q and q ≻ r
then βp+ (1− β)r ≻ q and q ≻ αp+ (1− α)r for some
α, β ∈ (0, 1).

(A.3) (Independence) For all p, q, r ∈ C and α ∈ (0, 1], p ≻ q
if and only if αp + (1 − α)r ≻ αq + (1 − α)r .

The difference between the preference structure above and that
of expected utility theory is that the induced relation ¬(p ≻ q) is
reflexive but not necessarily transitive (hence it is not necessarily
a preorder). Moreover, it is not necessarily complete. Thus, ¬(p ≻

q) and ¬(q ≻ p) does not imply that p and q are indifferent
(i.e., equivalent), rather they may be noncomparable. If p and q are
noncomparable we write p ◃▹ q.

Definitions 1. For all p, q ∈ C , (a) p<GK q if r ≻ p implies r ≻ q,
for all r ∈ C , (b) p∼GK q if p<GK q and q<GK p; and (c) p D q if
p<GK q and ¬(p ≻ q).

If ≻ satisfies (A.1)–(A.3) then the derived binary relation <GK
on C is a weak order (that is, transitive and reflexive) satisfying
the Archimedean and independence axioms that is not necessarily
complete.7 The indifference relation, ∼GK , that is, the symmetric
part of <GK , is an equivalence relation.

Taking the strict preference relation, ≻, as primitive, it is
customary to define a weak preference relations as the negation of
≻. Formally, given a binary relation≻ on C , define a binary relation
< on C by: p < q if ¬(q ≻ p).8 If the strict preference relation,
≻, is transitive and irreflexive, then the weak preference relation,
<, is complete. Karni (2011) shows that weak preference relations
<GK and < agree if and only if ≻ is negatively transitive and <GK is
complete.

The standard practice in decision theory is to take the
weak preference relation as primitive and define the strict
preference relation as it asymmetric part. Invoking the standard
practice, Dubra (2011), showed that if C is the set of lotteries
on a finite set of prizes and the weak preference relation is
nontrivial (that is, ≻≠ ∅) and satisfies (A.3), then any two of

6 This procedure which Baucells and Shapley (1998) refer to as efficient
embedding, entails no essential loss of generality.
7 The proof of the claim about the independence is part of the proof of

Theorem 1, below. Note that ≻ is not the asymmetric part of <GK .
8 For example, and Kreps (1988).

the following axioms imply the third, completeness, Archimedean,
and mixture continuity.9 Thus, a nontrivial, partial, preorder
satisfying independence must fail to satisfy one of the continuity
axioms. Karni (2011) showed that, if the weak preference relation
is as in Definition 1, then a nontrivial preference relation may
satisfy independence, Archimedean, mixture continuity and yet be
incomplete. Hence, the approach taken here seems more natural
for modeling incomplete preferences as an extension of choice
theory with complete preferences.

For every p ∈ C , let B(p) := {q ∈ C | q ≻ p} and W (p) :=

{q ∈ C | p ≻ q} denote the upper and lower contour sets of p,
respectively. The relation ≻ is convex if the upper contour set is
convex.

Lemma 1. Let ≻ be a binary relation on C. If ≻ satisfies (A.1)–(A.3)
then it is convex. Moreover, the lower contour set is also convex.

The proof is by two applications of (A.3).10

2.2. The fundamental representation theorem

Wepresent a general result giving rise to the finite-dimensional
expected multi-utility representations under risk, and additively
separablemulti-utility representationunder uncertainty, as imme-
diate implications. To state this result, we use the following nota-
tions: Let B be a set of sets of real-valued, affine, functions on L
such that U ∈ B implies that B(U) := {p ∈ L | u(p) > u(0) for
all u ∈ U} is algebraically open in L.

Theorem 1. Let C be a nonempty, convex, subset of a finite
dimensional linear space, L. Let ≻ be a binary relation on C, then the
following conditions are equivalent:
(i) C is ≻-bounded and ≻ satisfies (A.1)–(A.3)
(ii) There exists nonempty closed convex set, U ∈ B , such that

U(pM) > U(p) > U(pm), for all p ∈ C − {pM , pm} and U ∈ U,
and, for all p, q ∈ C,

q<GK p ⇔ U(q) ≥ U(p) for all U ∈ U (1)

and

q ≻ p ⇔ U(q) > U(p) for all U ∈ U. (2)

Remark 1. It is shown in the proof and q D p if and only if U(q) ≥

U(p) for all U ∈ U and U(q) = U(p) for some U ∈ U.

Remark 2. Seidenfeld et al. (1995) show that a strict partial or-
der, defined by strict first-order stochastic dominance, has ex-
pectedmulti-utility representation, satisfies the independence ax-
iom and violates the Archimedean axiom.11 To bypass this prob-
lem, Seidenfeld et al. (1995) and subsequent writers invoked al-
ternative continuity axioms that, unlike the Archimedean axiom,
require the imposition of a topological structure.12 Wemaintained
the Archimedean axiom as our continuity postulate at the cost of
restricting the upper contour sets associated with the strict pref-
erence relation, B(p) := {q ∈ C | q ≻ p}, to be algebraically open.
(In the example of Seidenfeld et al. (1995) these sets are closed).
Given the trade-off involved, this restriction seems, to us, reason-
able. Moreover, restricting the upper contour set in this manner,
we follow a long tradition in economic theory.

9 A weak preference relation satisfies mixture continuity if, for all p, q, r ∈ ∆(X)

the sets {α ∈ [0, 1] | αp + (1 − α)q < r} and {α ∈ [0, 1] | r < αp + (1 − α)q} are
closed.
10 Let q, r ∈ B(p) and α ∈ [0, 1]. To prove the lemma we need to show that αq +

(1 − α)r ≻ p. Apply (A.3) twice to obtain, αq + (1 − α)r ≻ αp + (1 − α)r and
αp + (1 − α)r ≻ αp + (1 − α)p. The same applies toW (p).
11 See example 2.1 in their paper.
12 See Dubra et al. (2004) and Nau (2006).
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The next theorem specifies the uniqueness of the representa-
tion. To state the uniqueness result, following Dubra et al. (2004)
we denote by ⟨U⟩ the closure of the convex cone generated by all
the functions in U and all the constant function on L.
Uniqueness theorem. If V is another set in B that represents <GK
and ≻ in the sense of (1) and (2), respectively, then ⟨V⟩ = ⟨U⟩.

2.3. Expected multi-utility representation for simple probability
measures

Let X = {x1, . . . , xn} be a finite set of prizes and denote by∆(X)
the set of all probability measures on X . For each ℓ, ℓ′

∈ ∆(X) and
α ∈ [0, 1] define αℓ+ (1−α)ℓ′

∈ ∆(X) by (αℓ+ (1−α)ℓ′)(x) =

αℓ(x) + (1 − α)ℓ′(x), for all x ∈ X . Then ∆(X) is a convex subset
of the linear space Rn. Let ℓM ,ℓm

∈ ∆(X) satisfy ℓM
≻ ℓ ≻ ℓm, for

all ℓ ∈ ∆(X) − {ℓM , ℓm
}. Application of Theorem 1 to C = ∆(X)

yields an expected multi-utility representation.

Corollary 1 (Expected Multi-Utility Representation). Let ≻ be a
binary relation on∆(X), then the following conditions are equivalent:
(i) ∆(X) is ≻-bounded and ≻ satisfies (A.1)–(A.3).
(ii) There exists nonempty, closed and convex set, U ∈ B , of real-

valued functions on X such that
x∈Supp(ℓM )

u(x)ℓM(x) >


x∈Supp(ℓ)

u(x)ℓ(x)

>


x∈Supp(ℓm)

u(x)ℓm(x),

for all ℓ ∈ ∆(X) − {ℓM , ℓm
}, and u ∈ U and, for all p, q ∈ ∆(X),

p<GK q ⇔


x∈Supp(p)

u(x)p(x)

≥


x∈Supp(q)

u(x)q(x), for all u ∈ U, (3)

and

p ≻ q ⇔


x∈Supp(p)

u(x)p(x)

>


x∈Supp(q)

u(x)q(x), for all u ∈ U. (4)

Moreover, if V is another set of real-valued, affine, functions
on ∆(X) that represent <GK and ≻ in the sense of (3) and (4),
respectively, then ⟨V⟩ = ⟨U⟩.

Proof. Let C = ∆(X) and U = {u ∈ RX
| u · p = U(p), U ∈ U},

then the conclusions of the corollary are implied by Theorem1. �

2.4. Additively separable multi-utility representation

Consider the Anscombe and Aumann (1963) model. Let S be a
finite set of states. Subsets of S are events. LetH := {h : S → ∆(X)}
be the set whose elements are acts. For all h, h′

∈ H and α ∈ [0, 1],
αh + (1 − α)h′

∈ H is defined by (αh + (1 − α)h′)(s) = αh(s) +

(1 − α)h′(s), for all s ∈ S.13 Under this definition H = ∆(X)S is
a convex subset of the linear space RX×S . Let hM ,hm

∈ H satisfy
hM

≻ h ≻ hm, for all h ∈ H − {hM , hm
}.

Applying Theorem 1 to H , we obtain the following.14

13 For every s ∈ S, the convex mixture αh(s) + (1 − α)h′(s) is defined as in the
preceding subsection.
14 A similar result appears in Nau (2006) for finite X . Ok et al. (2008) show that
the same holds when X is a compact metric space. As mentioned, these authors use
a continuity assumption stronger than (A.2).

Corollary 2 (Additive Multi-Utility Representation). Let ≻ be a
binary relation on H, then the following conditions are equivalent:
(i) H is ≻-bounded and ≻ satisfies (A.1)–(A.3).
(ii) There exists nonempty, convex and closed, set W ∈ B of real-

valued functions,w, on∆(X)× S, affine in its first argument such
that

s∈S

w(hM(s), s) >

s∈S

w(h(s), s) >

s∈S

w(hm(s), s),

for all h ∈ H − {hM , hm
}, and w ∈ W and, for all h, h′

∈ H,

h<GK h′
⇔


s∈S

w(h(s), s)

≥


s∈S

w(h′(s), s), for all w ∈ W, (5)

and

h ≻ h′
⇔


s∈S

w(h(s), s) >

s∈S

w(h′(s), s), for all w ∈ W . (6)

Moreover, if W ′ is another set of real-valued, affine, functions on
H that represent <GK and ≻ in the sense of (5) and (6), respectively,
then ⟨W ′

⟩ = ⟨W⟩.
The proof is by the application of a standard argument

(see Kreps (1988)) to U in the proof of Theorem 1, where W was
normalized as in Galaabaatar and Karni (in press).

Remark 3. Let Ws := {w(·, s) | w ∈ W}. By Corollary 1, w(h(s), s)
=


x∈Supp(h(s)) u(x; s)h(x; s), where u(·, s) is a real-valued function

on X , for all s ∈ S.
The representations in Corollary 2 are not the most parsimo-

nious as the set W includes functions that are redundant (that is,
their removal does not affect the representation).

3. Proofs of the main theorem

3.1. Proof of Theorem 1

(i) ⇒ (ii). If ≻ is empty then, by definition, p<GK q and q<GK p, for
all p, q ∈ C . Let U be the set of all constant real-valued functions
on C .

Henceforth, assume that ≻ is not empty.
A preference relation ≻ is said to satisfymixture monotonicity if

p ≻ q and0 ≤ α < β ≤ 1 imply thatβp+(1−β)q ≻ αp+(1−α)q.

Claim 1. ≻ satisfies mixture monotonicity.
The proof, by standard argument, is an implication of (A.3).15

Claim 2. <GK satisfies independence (that is, for all p, q, r ∈ C and
α ∈ (0, 1), p<GK q implies αp + (1 − α)r <GK αq + (1 − α)r).
Proof of Claim 2. Suppose that p<GK q. Let s ≻ αp+ (1−α)r . We
need to show that s ≻ αq + (1 − α)r . Without loss of generality,
we assume p ≠ pM .

First, we show that there exists t ∈ C such that t ≻ p and
s ≻ αt + (1 − α)r . Since s ≻ αp + (1 − α)r , (A.3) implies the
existence ofβ ∈ (0, 1) such that s ≻ (1−β)pM +β(αp+(1−α)r).
By mixture monotonicity and (A.3),

s ≻ (1 − β)pM + β(αp + (1 − α)r)

≻ α(1 − β)pM + αβp + (1 − α)r. (7)

Define t := (1−β)pM+βp. Then t ≻ p. Also, by the above equation,
s ≻ αt + (1 − α)r .

p<GK q and t ≻ p together implies t ≻ q. Then independence
axiom, (A.3), implies s ≻ αt+(1−α)r ≻ αq+(1−α)r . Therefore,
s ≻ αq + (1 − α)r . �

15 See Kreps (1988).
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Claim 3. Let pM and pm be the greatest and smallest elements of C,
respectively. Then, for each q ∈ C, there exist α(q), α(q) ∈ (0, 1)
such that αpM + (1 − α)pm ≻ q for all α > α(q) and q ≻

αpM + (1 − α)pm for all α < α(q).

Proof of Claim 3. Let S+
q = {α ∈ [0, 1] | αpM + (1 − α)pm ≻ q}.

Since S+
q is not empty (e.g., 1 ∈ S+

q ) and bounded, the infimum of
S+
q exists. Let α(q) = inf S+

q . By mixture monotonicity, α > α(q)
implies α ∈ S+

q .
Nextwe show thatα(q) ∉ S+

q . Suppose, byway of negation, that
α(q) ∈ S+

q then, by (A.2), there is β ∈ (0, 1) such that β(α(q)pM +

(1− α(q))pm) + (1− β)pm ≻ q. Hence βα(q)pM + (1− βα(q))pm
≻ q. By mixture monotonicity, αpM + (1 − α)pm ≻ q for all
α > βᾱ(q). But ᾱ(q) > βᾱ(q), thus ᾱ(q) is not a lower bound
of S+

p . A contradiction.
Let α(q) be the supremum of S−

q := {α ∈ [0, 1] | q ≻ αpM +

(1−α)pm}. By similar argument, α ∈ Sq for all α(q) > α, and α(q)
∉ S−

q . �

Claim 4. For all q ∈ C, α(q)pM + (1 − ᾱ(q))pm D q and q D
α(q)pM + (1 − α(q))pm.

Proof of Claim 4. Let r ≻ α(q)pM + (1 − ᾱ(q))pm then, by (A.2),
there is β ∈ (0, 1) such that r ≻ [β(1 − α(q)) + α(q)]pM + (1 −

β(1 − ᾱ(q)) + ᾱ(q))pm. But α(q) < α(q) + β(1 − α(q)), hence

[β(1 − α(q)) + α(q)]pM + (1 − β(1 − α(q)) + α(q))pm ∈ S+

q .

Thus, by transitivity, r ≻ q. Hence, by Definition 1, α(q)pM + (1 −

α(q))pm <GK q.
Moreover,α(q) ∉ S+

q implies that¬(q ≻ α(q))s+(1−α(q))pm.
Hence, by Definition 1, α(q)pM + (1 − α(q))pm D q.

The proof that q D α(q)pM + (1 − α(q))pm is by the same
argument. �

For every p ∈ C , let L(p) be the linear subspace spanned by the
vectors (α(p) − p) and (pM − pm).16

Claim 5. The functions α(·) and α(·) are affine on L(p) ∩ C.

Proof of Claim 5. Let p, q ∈ L(p) and suppose that p<GK q. Define
ϕ(p) = α(p)pM+(1−α(p))pm. Thenϕ(p)−p is parallel toϕ(q)−q.
To see this, suppose, byway of negation thatϕ(p)−p is not parallel
to ϕ(q) − q, then

{q + λ(ϕ(p) − p) | λ ≥ 0} ∩ ⟨pm, pM⟩

= ϕ(q) + µ(pM − pm), (8)

where ⟨pm, pM⟩ := {λpM + (1−λ)pm | λ ∈ R} is the line that goes
through pM and pm.

Two vectors being nonparallel implies thatµ ≠ 0.Without loss
of generality, assume that µ > 0. By Claim 1 and (A.3), βp + (1 −

β)q<GK q. For sufficiently small β , ϕ(q) + µ(pM − pm) ≻ ϕ(βp +

(1−β)q) <GK ϕ(q). Then there exists r ∈ (ϕ(βp+(1−β)q), ϕ(q)).
This means r ≻ βp + (1 − β)q and ¬(r ≻ q). This contradicts
βp + (1 − β)q<GK q.

The affinity of α(·) is proved similarly. �

Claim 6. The function α(·) is convex on C.

Proof of Claim 6. Let p and q be such that L(p) ≠ L(q) and
α(p) = α(q) = α̂. Thus, α̂pM + (1 − α̂)pm <GK p, q. By Claim 1,
βp+(1−β)(α̂pM +(1−α̂)pm) <GK βp+(1−β)q, for allβ ∈ [0, 1].
Moreover, since α̂pM + (1 − α̂)pm ∈ L(p), by Claim 5

α(βp + (1 − β)(α̂pM + (1 − α̂)pm))

= βα(p) + (1 − β)α(α̂pM + (1 − α̂)pm) = α̂.

16 That is, L(p) = {q ∈ C | q = ξ(ᾱ(p) − p) + λ(pM − pm), ξ , λ ∈ R}.

Hence, by Definition 1, α̂ ≥ α(βp + (1 − β)q). Thus, α(βp + (1 −

β)q) ≤ α̂ = βα(p) + (1 − β)α(q). �

Without loss of generality choose a basis {e1, . . . , en} of L in C
such that pM = en and pm = e1. For every i ∈ {1, . . . , n − 2} and
λ ∈ [0, 1], define q(i, λ) = λei + (1 − λ)ei+1, and q(n − 1, λ) =

λen−1
+ (1 − λ)e1. For every p ∈ C , let L(p, q(i, λ)) be the linear

subspace spanned by pM , p and q(i, λ).
Let J = {p ∈ C | eM ≻ p ≻ ei, i = 1, . . . , n − 1}. For every

λ ∈ [0, 1], define

αiλ(p) = inf{α ∈ [0, 1] | αeM + (1 − α)q(i, λ) ≻ p}.

By the same argument as above, αiλ(·) is a convex function on J
whose restriction to L(p, q(i, λ)) is affine.

Fix p ∈ J and let Q = {q ∈ J | αiλ(q) = αiλ(p)}. The every p ∈ C
may be expressed as p = ςpM + (1 − ς)q for some q ∈ Q and
1 ≥ ς . Extend αiλ(·) to C by defining αiλ(p) = 1 − (1 − ς)αiλ(p).

By convexity, αiλ(·) is differentiable almost everywhere. For
every p ∈ C at which αiλ(·) is differentiable, denote by∇αiλ(p) the
gradient vector ofαiλ(·) at p.17 The affinity ofαiλ(·) onL(p, q(i, λ))
implies that ∇αiλ(p) = ∇αiλ(r) for all r ∈ L(p, q(i, λ)).

Define G = {∇αiλ
p ∈ Rn

| i = 1, . . . , n − 1, λ ∈ [0, 1], p ∈ Q }.
For each u ∈ Rn define a function U : C → R by U(q) = u · q. Let
U := {U | u ∈ G}, then, by definition, U ∈ U implies that U is
affine.

By definition of αiλ(·), q ≻ p implies αiλ(q) > αiλ(p), for
all αiλ(·), and q<GK p implies αiλ(q) ≥ αiλ(p), for all αiλ(·). But
αiλ(q) > αiλ(p) if and only if αiλ

r (q) > αiλ
r (p) for all i = 1, . . . , n−

1, λ ∈ [0, 1] and r ∈ Q . Thus, by definition q ≻ p implies
U(p) > U(q) for all U ∈ U and q<GK p implies U(p) ≥ U(q).

To show the converse, let U(q) ≥ U(p) for all U ∈ U, and
suppose, by way of negation, that not q<GK p. If p ≻ q then, by
necessity, U(p) > U(q), for all U ∈ U, which is a contradiction.
Suppose that q ◃▹ p and let ∂B(r) denote the boundary of the upper
contour set, B(r), of r .

Claim 7. For all q, p ∈ C, q ◃▹ p implies that ∂B(q) ∩ ∂B(p) ≠ ∅.

Proof of Claim 7. Since B(p) and B(q) are full dimensional cones,
q ◃▹ p implies that there exist d ∈ ∂B(q) such that the ray
⟨d, q⟩ := {ξ(d − q) | ξ > 0}, intersects B(p). Let r = ⟨d, q⟩ ∩ B(p).
Thus, r ∈ ∂B(q) ∩ ∂B(p). �

Choose r ∈ ∂B(q) ∩ ∂B(p), then r <GK p and r <GK q. Let t =

⟨p, r⟩ ∩ ∂C then, by definition, U(t) = U(p) = U(r) for some
U ∈ U. Moreover,U(t) > U(q) implying thatU(r) > U(q). Hence,
U(p) > U(q). A contradiction.

Hence, q<GK p if and only if U(q) ≥ U(p), for all U ∈ U. By the
same argument, q ≻ p if and only if U(q) > U(p) for all U ∈ U.
This complete the proof that (i) implies (ii).

The proof the (ii) implies (i) is straightforward.

3.2. Proof of the uniqueness theorem

Following Baucells and Shapley (1998), without loss of general-
ity, let C be efficiently embedded in L and suppose that the origin
of L is in C . Fix an interior point ξ of C , and let B(ξ) := {ζ ∈ C |

ζ ≻ ξ}. Let B̄(ξ) := {ϑ ∈ L | ϑ − ξ = λ(ζ − ξ), ζ ∈ B(ξ)

17 Denote by Gαiλ the epigraph of αiλ(·), then Gαiλ and C are convex sets, hence,
so is Gα ∩ C . For every p ∈ C such that en ≻ p ≻ ei , for all fi = 1, . . . , n − 1, and
let H(uαiλ,p, α

iλ(p)) be a supporting hyperplane of Gαiλ at p. That such a hyperplane
exists follows from the fact that the algebraic interior, Go

αiλ , of Gαiλ is nonempty
(e.g., ( 1

2α(p) +
1
2 1, p) ∈ Go

α).
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and λ > 0}. Then, B̄(ξ) is a convex conewith vertex ξ (see Baucells
and Shapley (1998) Lemma 1.4). Next, translate the extended cone,
B̄(ξ), to the origin by subtracting ξ . Denote the translated cone B.
Note that B is a convex cone in L with vertex 0, and it does not
depend on which interior point of C we started from (see Baucells
and Shapley (1998) Lemma 1.3). For all ζ ∈ C , B(ζ ) = (ζ + B) ∩ C .
Moreover, for all ζ , ξ ∈ C , ζ ≻ ξ if and only if ζ − ξ ∈ B. Thus,
by Baucells and Shapley (1998) Theorem1.6, the cone B completely
characterizes the preference relation ≻.

Note that every vector in η ∈ B has the form λ(ϑ − ζ ), for some
ϑ, ζ ∈ C such that ϑ ≻ ξ . Suppose that the exist V ∈ ⟨V⟩ \ ⟨U⟩.
Since ⟨U⟩ is a convex cone, by the separating hyperplane theorem,
there exists ξ inL, ξ ≠ 0, such thatU ·ξ > 0 ≥ V ·ξ for allU ∈ ⟨U⟩.
But the constant vectors θ are in ⟨U⟩. Hence, 0 ≥ θ · ξ = θ

n
i=1 ξi

for all θ ∈ R. Thus,
n

i=1 ξi = 0. But, by Theorem 1, U · ξ > 0 for
all U ∈ ⟨U⟩ implies that ξ ∈ B, hence ξ = λ(ϑ − ζ ), for some
ϑ, ζ ∈ C such that ϑ ≠ 0 ≠ ζ . Substituting for ξ in the above
inequalities we get: U · ϑ > U · ζ , for all U ∈ U and V · ζ ≥ V · ϑ .
A contradiction.

The case U ∈ ⟨U⟩ \ ⟨V⟩ is ruled out by the same argument.
Hence, ⟨V⟩ = ⟨U⟩. �
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