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SUBJECTIVE EXPECTED UTILITY WITH 
INCOMPLETE PREFERENCES 

BY TSOGBADRAL GALAABAATAR AND EDI KARNI 1 

This paper extends the subjective expected utility model of decision making under 
uncertainty to include incomplete beliefs and tastes. The main results are two axioma-
tizations of the multiprior expected multiutility representations of preference relations 
under uncertainty. The paper also introduces new axiomatizations of Knightian uncer-
tainty and the expected multiutility model with complete beliefs. 

KEYWORDS: Incomplete preferences, Knightian uncertainty, multiprior expected 
multiutility representations, incomplete beliefs, incomplete tastes. 

1. INTRODUCTION 

FACING A CHOICE BETWEEN ALTERNATIVES that are not fully understood or 
not readily comparable, decision makers may find themselves unable to ex-
press preferences for one alternative over another or to choose between alter-
natives in a coherent manner. This problem was recognized by von Neumann 
and Morgenstern, who stated that “[i]t is conceivable—and may even in a way 
be more realistic—to allow for cases where the individual is neither able to 
state which of two alternatives he prefers nor that they are equally desirable” 
(von Neumann and Morgenstern (1947, p. 19)).2 Aumann (1962, p. 446) went 
further when he said “[o]f all the axioms of utility theory, the completeness 
axiom is perhaps the most questionable. Like others of the axioms, it is inac-
curate as a description of real life; but unlike them, we find it hard to accept 
even from a normative viewpoint.” In the same vein, when discussing the ax-
iomatic structure of what became known as the Choquet expected utility the-
ory, Schmeidler (1989, p. 576)3 said “[o]ut of the seven axioms listed here, the 
completeness of the preferences seems to me the most restrictive and most 
imposing assumption of the theory.” A natural way to accommodate such situ-
ations while maintaining the other aspects of the theory of rational choice is to 
relax the assumption that the preference relations are complete. 

1We are grateful to Juan Dubra, Robert Nau, Teddy Seidenfeld, Wolfgang Pesendorfer, and 
three anonymous referees for their useful comments. 

2Later von Neumann and Morgenstern (1947, pp. 28–29) added “[w]e have to concede that 
one  may  doubt  whether  a  person  can  always  decide  which  of  two  alternatives  . . . he  prefers.”  In  a  
letter to Wold dated October 28, 1946, von Neumann discussed the issue of complete preferences, 
noting that “[t]he general comparability of utilities, i.e., the completeness of their ordering by 
(one person’s) subjective preferences, is, of course, highly dubious in many important situations” 
(Redei (2005)). 

3Schmeidler (1989) went as far as to suggest that the main contributions of all other axioms 
is to allow the weakening of the completeness assumption. Yet he maintained this assumption in 
his theory. 
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Presumably, preferences among uncertain prospects, or acts, reflect the de-
cision maker’s beliefs regarding the likelihoods of alternative events and his 
tastes for their consequences contingent on these events. In this context, the 
incompleteness of the preference relation may be due to the incompleteness 
of the decision maker’s beliefs, the incompleteness of his tastes, or both. 

Our objective of studying the representations of incomplete preferences un-
der uncertainty is to identify preference structures on the set of acts that admit 
multiprior expected multiutility representation. In such a representation, the 
set of priors represents the decision maker’s incomplete beliefs, and the set 
of utility functions represents her incomplete tastes. More formally, according 
to the multiprior expected multiutility representation, an act f is strictly pre-
ferred over another act g if and only if there is a nonempty set Φ of pairs (πU) 
consisting of a probability measure π on the set of states S and an affine, real-
valued function U on the set Δ(X) of probability measures on the set X of 
outcomes such that  

s∈S 

π(s)U 
 
f (s)  

 
> 

 

s∈S 

π(s)U 
 
g(s) 

 
for all (πU) ∈ Φ 4(1) 

Incomplete beliefs and their representation by a set of probabilities were first 
explored in the context of statistical decision theory. Koopman (1940) showed  
that, without completeness, the set of axioms for comparative probabilities en-
tails a representation of beliefs in terms of upper and lower probabilities. Up-
per and lower probabilities were also studied by Smith (1961), Williams (1976), 
and Walley (1981, 1982, 1991).5 These studies are concerned with the structure 
of binary relations on events, or propositions, interpreted as the intuitive (or 
subjective) beliefs about likelihoods that these events, or propositions, are true. 

A different approach to the definition of subjective probabilities, properly 
described as choice-based or behavioral, was pioneered by Ramsey (1931) and  
de Finetti (1937), and culminated in the seminal theories of Savage (1954) and  
Anscombe and Aumann (1963). According to this approach, beliefs and tastes 
govern choice behavior and may be inferred from the structure of preferences. 
Bewley (1986) was the first to study the implications of incomplete beliefs in 
the context of choice theory. Invoking the Anscombe–Aumann (1963) model  
and departing from the assumption that the preference relation is complete, 
Bewley axiomatized the multiprior expected utility representation, which he 

4This representation may be interpreted as if the decision maker embodies multiple subjective 
expected-utility-maximizing agents, each of which is characterized by a unique subjective proba-
bility and a unique von Neumann–Morgenstern utility function, and one alternative is preferred 
over another if and only if they all agree. 

5Bewley (1986) and  Nau (2006) discussed these contributions and their relations to the mul-
tiprior expected utility representation. The study of multiprior expected utility representations 
is motivated, in part, by the interest in robust Bayesian statistics (see Seidenfeld, Schervish, and 
Kadane (1995)). 
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dubbed Knightian uncertainty. Bewley’s model attributes the incompleteness 
of the preference relations solely to the incompleteness of beliefs. This in-
completeness is represented by a closed convex set of probability measures on 
the set of states. Accordingly, one act is preferred over another (or the status 
quo) if its associated subjective expected utility exceeds that of the alterna-
tive (or the status quo) according to every probability measure in the set. In 
terms of representation (1), Bewley’s work corresponds to the case in which 
Φ = Π × {U}, where  Π is a closed convex set of probability measures on the 
set of states and U is a von Neumann–Morgenstern utility function.6 Ok, Ortol-
eva, and Riella (2012) axiomatized a preference structure in which the source 
of incompleteness is either beliefs or tastes, but not both. In terms of repre-
sentation (1), Ok, Ortoleva, and Riella (2012) axiomatized the cases in which 
Φ =Π × {U} or Φ = {π} × U . 

Seidenfeld, Schervish, and Kadane (1995) and  Nau (2006) studied the repre-
sentation of incomplete preferences that reflects indeterminacy of both proba-
bilities and utilities (that is, beliefs and tastes). We defer the discussion of their 
works to Section 4. 

This paper provides new axiomatizations of preference relations that exhibit 
incompleteness in both beliefs and tastes. Invoking the analytical framework 
of Anscombe and Aumann (1963), we analyze the structure of partial strict 
preferences on a set of acts whose consequences are lotteries on a finite set 
X of outcomes. Our main result provides necessary and sufficient conditions 
characterizing the preference structures that admit multiprior expected mul-
tiutility representations (1).7 The first set of conditions includes the familiar 
von Neumann–Morgenstern axioms without completeness. To these we add a 
dominance axiom à la Savage’s postulate P7. Specifically, let g and f be any 
two acts, and denote by f s the constant act whose payoff is f (s)  in every state. 
The axiom requires that if g is strictly preferred over f s for every s, then g is 
strictly preferred over f . These axioms together with the existence of the best 
and the worst acts yields the representation in (1). Since the sets of probability 
measures that figure in the representation are “utility dependent,” the beliefs 
and tastes are not entirely separated. 

Building upon this result, we axiomatize three special cases. The first case 
entails a complete separation of beliefs and tastes (that is, Φ is the Cartesian 

6Aumann (1962) was the first to address this issue in the context of expected utility theory 
under risk. Baucells and Shapley (2008) proved that a preference relation on a mixture space 
satisfies the von Neumann–Morgenstern axioms without completeness if and only if it has affine 
multiutility representation. Dubra, Maccheroni, and Ok (2004) studied the existence and unique-
ness properties of the representations of preference relations over lotteries whose domain is a 
compact metric space. 

7The set Φ is depicted as {(π U) | U ∈ Uπ  ∈ΠU } (i.e., each utility in U is paired with its own 
set of probability measures). Invoking the metaphor of a decision maker that embodies multiple 
subjective expected-utility-maximizing agents, this case corresponds to the case in which each 
agent is characterized by Knightian uncertainty preferences. 
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product of a set of probability measures M and a set of utility functions U ).8 

This case requires a definition of a set of distributions on S consistent with the 
preferences and an additional axiom, dubbed belief consistency. Belief con-
sistency asserts that if an act g is strictly preferred over another act f , then 
every constant act obtained by reduction of g under every compound lottery 
involving a distribution on S that is consistent with the preference relation is 
preferred over the corresponding reduction of f . The representation in this 
case is as in (1), where the set Φ is a product set M × U , where  M is a set of 
probability measures on S and U is as above. 

The second case is Knightian uncertainty. This case requires that the basic 
model be amended by an axiom requiring that the restriction of the prefer-
ence relation to constant acts be negatively transitive. The third case is that of 
expected multiutility representation with complete beliefs. This case requires 
the formulation of a new behavioral postulate depicting the completeness of 
beliefs. 

The remainder of the paper is organized as follows: In the next section we 
present our main result. In Section 3 we present the three special cases: the 
multiprior expected multiutility product representation, a Knightian uncer-
tainty model, and its dual, the subjective expected multiutility model with com-
plete beliefs. Further discussion and concluding remarks appear in Section 4. 
The proofs appear in Section 5. 

2. THE MAIN RESULT 

Our results extend the model of Anscombe–Aumann (1963) to include in-
complete preferences. As mentioned earlier, the incompleteness in this model 
may stem from two distinct sources, namely, beliefs and tastes. The main result, 
Theorem 1 below, is a general model in which these sources of incompleteness 
are represented by sets of priors and utilities. In this model, beliefs and tastes 
are not entirely separated, and the representation involves sets of priors that 
are utility dependent. 

2.1. The Analytical Framework and the Preference Structure 

Let S be a finite set of states. Subsets of S are events. Let  X be a finite set 
of outcomes, or prizes, and denote by Δ(X) the set of all probability measures 
on X . For each Φ Φ ∈ Δ(X) and α ∈ [0 1], define  αΦ + (1 − α)Φ ∈ Δ(X) by 
(αΦ + (1 − α)Φ)(x) = αΦ(x) + (1 − α)Φ(x) for all x ∈X . 

8Invoking the metaphor of the preceding footnote, in this case, there are two sets of agents. 
One set of agents is responsible for assessing beliefs in terms of probability measures and the 
second set is responsible for assessing tastes in terms of utility functions. The decision maker’s 
preferences require agreement among all possible pairings of agents from the two sets. 
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Let H := {h | h : S → Δ(X)} be the set of all functions from S to Δ(X). El-
ements of H are referred to as acts. For  all  h h ∈ H and α ∈ [0 1], define  
αh + (1 − α)h ∈ H by (αh + (1 − α)h)(s) = αh(s) + (1 − α)h(s) for all s ∈ S, 
where the convex mixture αh(s) + (1 − α)h(s) is defined as above. Under this 
definition, H is a convex subset of the linear space R|X|·|S|. 

Let  be a binary relation on H . The set H is said to be -bounded if there 
exist hM and hm in H such that hM  h  hm for all h ∈ H − {hM hm}. 

The following axioms depict the structure of the preference relation . The  
first three axioms are well known and require no elaboration. 

A.1—Strict Partial Order: The preference relation  is transitive and irreflex-
ive. 

A.2—Archimedean: For all f g h ∈ H , if f  g and g  h, then βf + (1 − 
β)h  g and g  αf + (1 − α)h for some α β ∈ (0 1). 

A.3—Independence: For all f g h ∈ H and α ∈ (0 1], f  g if and only if 
αf + (1 − α)h  αg + (1 − α)h. 

The difference between the preference structure above and that of expected 
utility theory is that the induced relation ¬(f  g) is reflexive but not neces-
sarily transitive (hence, it is not necessarily a preorder). 

For every h ∈ H, denote by  B(h) := {f ∈ H | f  h} and W (h)  := {f ∈ H |
h  f } the (strict) upper and lower contour sets of h, respectively. The relation 
 is said to be convex if the upper contour set is convex. Note that the -
boundedness of H implies that for h = hM hm , B(h) and W (h)  have nonempty 
algebraic interior in the linear space generated by H. It can  be  shown that if  
 satisfies A.1–A.3, then it is convex and, in addition, the lower contour set is 
also convex.9 

LEMMA 1: Let  be a binary relation on H . Then the following conditions are 
equivalent: 

(i) H is -bounded and  satisfies A.1–A.3. 
(ii) There exists a nonempty closed set W of real-valued functions w on X × S, 

such that 
s∈S 

 

x∈X 

hM (x s)w(x s) > 

s∈S 

 

x∈X 

h(x s)w(x s) 

> 

s∈S 

 

x∈X 

hm(x s)w(x s) 

9The proof is by two applications of A.3. 
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for all h ∈ H − {hM hm} and w ∈ W , and for all h h ∈ H 

h  h ⇔ 

s∈S 

 

x∈X 

h(x s)w(x s) (2) 

> 

s∈S 

 

x∈X 

h (x s)w(x s) ∀w ∈ W  

UNIQUENESS: To describe the uniqueness properties of the representation 
in Lemma 1, we introduce the following notation: Let δs be the vector in R|X|·|S| 

such that δs(t x) = 0 for  all  x ∈ X if t = s and δs(t x) = 1 for  all  x ∈ X if t = s. 
Let D = {θδs | s ∈ S θ ∈ R}. Let  U be a set of real-valued functions on R|X|·|S|. 
Fix x0 ∈ X and for each u ∈ U , define a real-valued function û on R|X|·|S| by 
û(x s) = u(x s) − u(x0 s)  for all x ∈ X and s ∈ S. Let  U be the normalized 
set of functions corresponding to U (that is, U = {  ̂u | u ∈ U }). We denote by  U the closure of the convex cone in R|X|·|S| generated by all the functions in U
and D. 

LEMMA 2: If W  is another set of real-valued functions on X × S, representing 
 in the sense of (2), then W  =  W . 

REMARK 1: Seidenfeld, Schervish, and Kadane (1995) showed that a strict 
partial order, defined by strict first-order stochastic dominance, has an ex-
pected multi-utility representation, satisfies the independence axiom, and vio-
lates the Archimedean axiom.10 To bypass this problem, Seidenfeld, Schervish, 
and Kadane (1995) and  Nau (2006) invoked alternative continuity axioms that, 
unlike the Archimedean axiom, require the imposition of a topological struc-
ture. We maintain the Archimedean axiom as our continuity postulate at the 
cost of restricting the upper contour sets associated with the strict preference 
relation B(p) := {q ∈ C | q  p} to be algebraically open. (In the example of 
Seidenfeld, Schervish, and Kadane (1995), these sets are closed.) 

Like Nau (2006), we assume that the choice set has best and worst ele-
ments.11 Doing so buys us two important properties. First, it implies that the 
upper (and lower) contour sets have full dimensionality. Second, the intersec-
tion of the upper (and lower) contour sets corresponding to the different acts is 
nonempty. Both properties are used in the proofs of our results. We recognize 
that this assumption restricts the degree of incompleteness of the preference 
relations under consideration. 

10See Example 2.1 in their paper. 
11Seidenfeld, Schervish, and Kadane (1995) proved the existence of such elements in their 

model. For more details, see Section 4. 
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2.2. Dominance and the Main Representation Theorem 

For each f ∈ H and every s ∈ S, let  f s denote the constant act whose pay-
off is f (s)  in every state. Formally, f s(s) = f (s)  for all s ∈ S. The next axiom 
is a weak version of Savage’s (1954) postulate P7. It asserts that if an act g is 
strictly preferred over every constant act f s associated with the consequences 
of another act f , then g is strictly preferred over f . To grasp the intuition un-
derlying this assertion, note that any possible consequence of f , taken as an act, 
is an element of the lower contour set of g. Convexity of the lower contour sets 
implies that any convex combination of the consequences of f is dominated 
by g. Think of f as representing a set of such combinations whose elements 
correspond to the implicit set of subjective probabilities of the states that the 
decision maker may entertain. Since any such combination is dominated by g, 
so is f .12 This concept is formally stated as follows. 

A.4—Dominance: For all f g ∈ H , if g  f s for every s ∈ S, then g  f . 

The dominance axiom (sometimes referred to as the sure thing principle) is 
usually described as “technical,” to be applied when the set of states is infinite. 
In our model, the state space is finite, but the dominance axiom has important 
substantive implications. We show in Section 2.3 that, in conjunction with the 
other axioms, dominance implies that the preference relation must satisfy state 
independence and monotonicity. We also show, as part of the proof of Theo-
rem 1 below, that in conjunction with the other axioms, dominance implies 
that if a decision maker prefers one act over another under all conceivable be-
liefs about the likelihoods of the states, then he prefers the former act over the 
latter. 

Theorem 1 shows that a preference relation satisfies the axioms A.1–A.4 if 
and only if there is a nonempty set of utility functions on X and, corresponding 
to each utility function, a set of probability measures on S such that, when 
presented with a choice between two acts, the decision maker prefers the act 
that yields higher expected utility according to every utility function and every 
probability measure in the corresponding set. Let the set of probability–utility 
pairs that figure in the representation be Φ := {(π U ) | U ∈ U , π ∈ ΠU }. Each  
(π U ) ∈ Φ defines a hyperplane w := π · U . We denote by  W the set of all 
these hyperplanes and define  Φ =  W . 

12A slight variation of this axiom, in which the implied preference is g  f rather than 
g  f , appears in Fishburn’s (1970) axiomatization of the infinite-state version of the model of 
Anscombe and Aumann (1963) (see  Fishburn (1970, Theorem 13.3)). Fishburn’s formulation of 
Savage’s expected utility theorem (Fishburn (1970, Theorem 14.1)), includes axiom P7, which ex-
pressed in our notation says g  (≺) f s given A ⊂ S, for every s ∈ A, implies  g  () f given A. 
Our version of dominance is weaker in the sense that it is required to hold only for A = S. It is  
stronger in the sense that the implication holds with the strict rather than the weak preference. 
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THEOREM 1: Let  be a binary relation on H. Then the following conditions 
are equivalent: 

(i) H is -bounded and  satisfies A.1–A.4. 
(ii) There exists a nonempty closed set U of real-valued functions on X and 

nonempty closed sets ΠU , U ∈ U , of probability measures on S such that,  

s∈S 

π(s) 
 

x∈X 

hM (x s)U (x) > 
 

s∈S 

π(s) 
 

x∈X 

h(x s)U (x) 

> 
 

s∈S 

π(s) 
 

x∈X 

hm(x s)U (x) 

for all h ∈ H and (π U ) ∈Φ, and for all h h ∈H , h  h if and only if  

s∈S 

π(s) 
 

x∈X 

h(x s)U (x) > 
 

s∈S 

π(s) 
 

x∈X 

h (x s)U (x) ∀(π U ) ∈ Φ(3) 

where Φ = {(π U ) |U ∈ U , π ∈ ΠU }. 
Moreover, if Φ = {(π   V  )  | V ∈ V , π  ∈ ΠV } represents  in the sense of (3), 

then Φ =  Φ , and for all U ∈ U and π ∈ΠU , π(s) > 0 for all s. 

2.3. State Independence and Monotonicity 

Consider the following additional notation and definitions. For each h ∈ H 
and s ∈ S, denote by  h−sp the act obtained by replacing the sth coordinate of h, 
h(s), with  p. Define the conditional preference relation s on Δ(X) by p s q 
if there exists h−s such that h−sp  h−sq for all p q ∈ Δ(X). A state s is said to 
be nonnull if p s q for some p q ∈ Δ(X), and it is null otherwise. 

A preference relation  on H is said to display state independence if for any 
h hpq  and for all nonnull s s ∈ S, h−sp  h−sq if and only if h 

−sp  h 
−sq. 

It is said to display monotonicity if for all f g ∈ H , f s  gs for all s ∈ S implies 
f  g. 

If a preference relation is an Archimedean weak order satisfying indepen-
dence, then state independence and monotonicity are equivalent axioms. How-
ever, Ok, Ortoleva, and Riella (2012) demonstrated that if the preference re-
lation is incomplete, they are not. We show below that the dominance axiom 
A.4 implies both state independence and monotonicity. 

LEMMA 3: Let  be a nonempty binary relation on H and suppose that H is 
-bounded. If  satisfies A.1–A.4, then it displays state-independent preferences. 
Moreover, all states are nonnull, and hM = (δx1       δx1 ) and hm = (δx2      δx2 ) 
for some x1x2 ∈X . 

The proof is an immediate implication of Theorem 1 and is omitted. 
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LEMMA 4: If  is a strict partial order on H satisfying independence A.3 and 
dominance A.4, then it satisfies monotonicity.13 

The proof  is  given in Section  5. 

3. SPECIAL CASES 

In this section, we examine three special cases, each of which involves tight-
ening the axiomatic structure by adding a different axiom to the basic pref-
erence structure depicted by A.1–A.4. The first is an axiomatic structure that 
entails a complete separation of beliefs from tastes. The second, Knightian un-
certainty, is the case in which tastes are complete but beliefs are incomplete. 
The third is the case of complete beliefs and incomplete tastes. 

3.1. Belief Consistency and Multiprior Expected Multiutility 
Product Representation 

One of the features of the Anscombe and Aumann (1963) model is the pos-
sibility it affords for transforming uncertain prospects (subjective uncertainty) 
into risky prospects (objective uncertainty) by comparing acts to their reduc-
tion under alternative measures on Δ(S). In particular, there is a measure 
α∗ ∈ Δ(S) such that every act f is indifferent to the constant act f α

∗ obtained 
by the reduction of the compound lottery represented by (f α∗). 14 In fact, the 
measure α∗ is the subjective probability measure on S that governs the decision 
maker’s choice. It is, therefore, natural to think of an act as a tacit compound 
lottery in which the probabilities that figure in the first stage are, implicitly, the 
subjective probabilities that govern choice behavior. When, as in this paper, the 
set of subjective probabilities that govern choice behavior is not a singleton, an 
act f corresponds to a set of implicit compound lotteries, each of which is in-
duced by a (subjective) probability measure. The set of measures represents 
the decision maker’s indeterminate beliefs. Add to this interpretation the re-
duction of compound lotteries assumption—that is, the assumption maintain-
ing that (f α) is equivalent to its reduction f a—to conclude that g  f is suffi-
cient for the reduction of (g α) to be preferred over the reduction of (f α) for 
all α in the aforementioned set of measures. This assertion is formalized by the 
belief consistency axiom. To state the axiom, we use the following notation and 
definition: Let hp denote the constant act whose payoff is hp(s) = p for every 
s ∈ S, and  let  A := {α ∈ Δ(S) | ∀f ∈ H , ∀p ∈ Δ(X), f  hp ⇒ ¬(hp  f α)}. 
The set A has the interpretation of “distributions consistent with the prefer-
ences.” 

13We thank a referee for calling our attention to this lemma and providing its proof. 
14For each act–probability pair (f α) ∈H ×Δ(S), we denote by f α the constant act defined by 

f α(s) = 
 

s∈S αsf (s
) for all s ∈ S. 
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A.5—Belief Consistency: For all f g ∈ H, g  f implies g α  f α for all α ∈ A. 

The necessity of this condition is implied by Theorem 1. Hence, taken to-
gether, axioms A.1–A.5 amount to the condition that to assess the merits of 
the alternative acts, each of the measures in 

 
U∈U Π

U combines with each of 
the utility functions in U . 

The next result is a representation theorem that totally separates beliefs 
from tastes. Specifically, it shows that a preference relation satisfies A.1–A.5 if 
and only if there is a nonempty set U of utility functions on X and a nonempty 
set M of probability measures on S such that, when presented with a choice 
between two acts, the decision maker prefers one act over another if and only 
if the former act yields higher expected utility according to every combination 
of a utility function and a probability measure in these sets. 

For a set of functions U on X , we denote by  U the closure of the convex 
cone in R|X| generated by all the functions in U and all the constant functions 
on X . 

THEOREM 2: Let  be a binary relation on H. Then the following conditions 
are equivalent: 

(i) H is -bounded and  satisfies A.1–A.5. 
(ii) There exist nonempty closed sets U and M of real-valued functions on X 

and probability measures on S respectively, such that,  

s∈S 

π(s) 
 

x∈X 

hM (x s)U (x) > 
 

s∈S 

π(s) 
 

x∈X 

h(x s)U (x) 

> 
 

s∈S 

π(s) 
 

x∈X 

hm(x s)U (x) 

for all h ∈ H and (π U ) ∈ M × U , and for all h h ∈ H , h  h if and only if  

s∈S 

π(s) 
 

x∈X 

h(x s)U (x)(4) 

> 
 

s∈S 

π(s) 
 

x∈X 

h (x s)U (x) ∀(π U ) ∈ M × U  

Moreover, if V and M is another pair of sets of real-valued functions on X and 
probability measures on S that represent  in the sense of (4), then U = V and 
cl(conv(M)) = cl(conv(M)), where cl(conv(M)) is the closure of the convex 
hull of M. Also, π(s) > 0 for all s ∈ S and π ∈ M. 

3.2. Knightian Uncertainty 

Consider the extension of the Anscombe–Aumann (1963) model to include 
incomplete preferences, and suppose that the incompleteness is entirely due 
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to incomplete beliefs. Bewley (1986) dealt with this case, which is referred to 
as Knightian uncertainty. 

The model of Knightian uncertainty requires a formal definition of complete 
tastes. To provide such a definition, we invoke the property of negative transi-
tivity.15 The next axiom requires that the restriction of the preference relation 
to constant acts exhibits negative transitivity, thereby implying complete tastes. 

A.6 —Negative Transitivity on Constant Acts: The restriction of  to the set 
of constant acts Hc is negatively transitive. 

Let c denote the restriction of  to the set of all constant acts Hc and 
define c on Hc as follows: for all hphq ∈ Hc , hp c hq if ¬(hq  hp). Then  
A.6 implies that the weak preference relation c on Hc is complete, which is 
the assumption of Bewley (1986). 

The next theorem is our version of Knightian uncertainty. 

THEOREM 3: Let  be a binary relation on H. Then the following conditions 
are equivalent: 

(i) H is -bounded, and  satisfies A.1–A.4 and A.6. 
(ii) There exists a nonempty closed set M of probability measures on S and a 

real-valued, affine function U on Δ(X) such that  

s∈S 

U 
 
hM (s) 

 
π(s) > 

 

s∈S 

U 
 
h(s) 

 
π(s) > 

 

s∈S 

U 
 
hm(s) 

 
π(s) 

for all h ∈ H and π ∈ M, and for all h h ∈ H 

h  h ⇔ 
 

s∈S 

U 
 
h(s) 

 
π(s)  

 

s∈S 

U 
 
h (s) 

 
π(s) ∀π ∈ M (5) 

Moreover, U is unique up to positive linear transformation, the closed convex hull 
of M is unique, and for all π ∈ M, π(s) > 0 for any s. 

3.3. Complete Beliefs and Subjective Expected Multiutility Representation 

Consider next the dual case in which incompleteness of the decision maker’s 
preferences is due solely to the incompleteness of his tastes. This situation 
was modeled in Ok, Ortoleva, and Riella (2012) using an axiom they called 
reduction.16 We propose here an alternative formulation based on the idea of 
completeness of beliefs. First, we give a definition of coherent beliefs. 

15A strict partial order  on a set D is said to exhibit negative transitivity if for all x y z ∈ D, 
¬(x  y) and ¬(y  z) imply ¬(x  z). 

16The reduction axiom of Ok, Ortoleva, and Riella (2012) requires that for every h ∈ H there 
exists a probability measure μ on S such that hμ ∼ h. 
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To define the notion of coherent beliefs, we use the following notation: For 
each event E, denote by  pEq the act whose payoff is p for all s ∈ E and q 
for all s ∈ S − E. Denote by  pαq the constant act whose payoff in every state 
is αp + (1 − α)q. A  bet on an event E is the act pEq, whose payoffs satisfy 
hp  hq . 

Suppose that the decision maker considers the constant act pαq preferable 
to the bet pEq. This preference is taken to mean that he believes α exceeds 
the likelihood of E. This belief is coherent if it holds for any other bet on E 
and the corresponding constant acts (that is, if hp  hq , then the constant act 
pαq is preferable to the bet pEq). The same logic applies when the bet pEq 
is preferable to the constant act pαq.17 The formal definition follows. 

DEFINITION 1: A preference relation  on H exhibits coherent beliefs if for 
all events E and p q p q ∈ Δ(X) such that hp  hq and hp  hq , pαq  
pEq if and only if pαq  pEq, and  pEq  pαq if and only if pEq  pαq . 

It is noteworthy that the axiomatic structure of the preference relation de-
picted by A.1–A.4 implies that the decision maker’s beliefs are coherent. 

LEMMA 5: Let  be a nonempty binary relation on H satisfying A.1–A.4. If H 
is -bounded, then  exhibits coherent beliefs. 

The proof is an immediate implication of Theorem 1 and is omitted. 
The idea of complete beliefs is captured by the following axiom.18 

A.7—Complete Beliefs: For all events E and α ∈ [0 1], and constant acts hp 

and hq such that hp  hq , either hpαhq  hpEhq or hpEhq  hpαhq for every 
α> α. 

A preference relation  displays complete beliefs if it satisfies A.7. If the 
beliefs are complete, then the incompleteness of the preference relation on H 
is due entirely to the incompleteness of tastes. 

The next theorem is the subjective expected multiutility version of the 
Anscombe–Aumann (1963) model corresponding to the situation in which the 
decision maker’s beliefs are complete.19 

17This idea, which we refer to as coherent beliefs, is a variation on an axiom, dubbed betting 
neutrality, of Grant and Polak (2006). 

18Unlike the weak reduction of Ok, Ortoleva, and Riella (2012), neither complete beliefs nor 
complete tastes involve an existential clause. 

19See Ok, Ortoleva, and Riella (2012, Theorem 4) for their version of this result. 
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THEOREM 4: Let  be a binary relation on H. Then the following conditions 
are equivalent: 

(i) H is -bounded, and  satisfies A.1–A.4 and A.7. 
(ii) There exists a nonempty closed set U of real-valued functions on X and a 

probability measure π on S such that  

s∈S 

π(s) 
 

x∈X 

hM (x s)U (x) > 
 

s∈S 

π(s) 
 

x∈X 

h(x s)U (x) 

> 
 

s∈S 

π(s) 
 

x∈X 

hm(x s)U (x) 

for all h ∈H and U ∈ U , and for all h h ∈H 

h h  ⇔ 
 

s∈S 

π(s) 
 

x∈X 

h(x s)U (x)(6) 

> 
 

s∈S 

π(s) 
 

x∈X 

h (x s)U (x) ∀U ∈ U  

The probability measure π is unique and π(s) > 0 for all s ∈ S. Moreover, if V 
is another set of real-valued functions on X that represent  in the sense of (6), 
then V = U . 

REMARK 2: For every event E, the upper probability of E is πu(E) = inf{α ∈ 
[0 1] | pM αpm  pM Epm} and the lower probability of E is πl(E) = sup{α ∈ 
[0 1] | pM Epm  pM αpm}. Lemma 5 asserts that the upper and lower probabil-
ities are well defined. Theorem 4 implies that a preference relation  satisfying 
A.1–A.4 displays complete beliefs if and only if πu(E) = πl(E) for every E. 

4. CONCLUDING REMARKS 

4.1. Weak Preferences: Definition and Representation 

Taking the strict preference relation  as a primitive, it is customary to de-
fine weak preference relations as the negation of . Formally, given  a binary  
relation  on H, define a binary relation  on H by f  g if ¬(g  f ).20 If 
the strict preference relation  is negatively transitive and irreflexive, then the 
weak preference relation is complete. According to this approach, it is impos-
sible to distinguish noncomparability from indifference. We propose below a 
new concept of induced weak preferences, denoted GK, that makes it possible 
to make such a distinction. 

20See, for example, Chateauneuf (1987) and  Kreps (1988). 
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DEFINITION 2: For all f g ∈H, f GK g if h  f implies h  g for all h ∈H. 

Note that  is not the asymmetric part of GK. Moreover, if   satisfies A.1– 
A.3, then the derived binary relation GK on H is a weak order (that is, transi-
tive and reflexive) satisfying the Archimedean and independence axioms but is 
not necessarily complete. The indifference relation ∼GK (that is, the symmetric 
part of GK) is an equivalence relation.21 Karni (2011) showed that the weak 
preference relation in Definition 2 agrees with the customary definition if and 
only if  is negatively transitive and GK is complete.22 

It can be shown that the representations in Theorems 1, 2, 3, and  4 extend 
to the weak preference relation in Definition 2. Consider, for instance, the 
representation in Theorem 1. It can  be shown that  H is -bounded and  is 
nonempty satisfying A.1–A.4 if and only if for all h h ∈ H 

h GK h
 ⇔ 

 

s∈S 

U 
 
h(s) 

 
π(s) 

≥ 
 

s∈S 

U 
 
h  (s) 

 
π(s) for all (π U ) ∈Φ 

where Φ is the set of probability–utility pairs that figure in Theorem 1. Similar 
extensions apply to Theorems 2, 3, and  4. 

Ok, Ortoleva, and Riella (2012), introduced an axiom, dubbed weak reduc-
tion, asserting that for any act f , there exists α ∈ Δ(S) such that f α  f , where  
f α = 

 
s∈S αsf s. For  GK, weak reduction and independence imply dominance. 

Suppose g  f s for every s ∈ S. By weak reduction there exists ¯ α ∈ Δ(S) such 
that f ¯ α GK f . Since  g  f s for every s ∈ S, by the independence axiom, g  f ¯ α. 
Thus, g  f ¯ α GK f . Hence, by definition of GK, g  f . 

4.2. Related Literature 

Seidenfeld, Schervish, and Kadane (1995), Nau (2006), and Ok, Ortoleva, 
and Riella (2012) studied axiomatic theories of incomplete preferences involv-
ing the indeterminacy of both beliefs and tastes. All of these papers invoke 

21Derived weak orders, close in spirit to Definition 2, based on a pseudo-transitive weak order 
appear in Chateauneuf (1987). 

22The standard practice in decision theory is to take the weak preference relation as primitive 
and define the strict preference relation as its asymmetric part. Invoking the standard practice, 
Dubra (2011) showed that if the weak preference relation on Δ(X) is nontrivial (that is,  =  ∅) 
and satisfies the independence axiom, then any two of the following three axioms, completeness, 
Archimedean, and mixture continuity, imply the third. Thus, a nontrivial, partial preorder satis-
fying independence must fail to satisfy one of the continuity axioms. Karni (2011) showed that a 
nontrivial preference relation GK may satisfy independence, Archimedean, and mixture conti-
nuity, and yet be incomplete. 
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the analytical framework of Anscombe and Aumann (1963). As in this pa-
per, Nau (2006) assumed that the set of outcomes (that is, the union of the 
supports of the roulette lotteries) is finite and there are best and worst acts. 
Seidenfeld, Schervish, and Kadane (1995) considered a more general setting in 
which the consequences are (roulette) lotteries with finite or countably infinite 
supports, and rather than assuming the existence of best and worse elements 
in the choice set, they proved that the set of acts and the preference relation 
may be extended to include such elements. Ok, Ortoleva, and Riella (2012) 
assumed that the support of the roulette lotteries is compact (metric) space. 
They neither assumed nor proved the existence of best and worst acts. 

With regard to the preference relation, as in this paper, Seidenfeld et al. 
invoked the strict preference relation as primitive. However, they defined an 
indifference relation and weak preference relation differently from the ap-
proach described in the preceding subsection. Nau (2006) and  Ok, Ortoleva, 
and Riella (2012) took the weak preference relation as a primitive. 

Seidenfeld et al. and Nau assumed that the preference relation exhibits state 
independence to obtain multiprior expected multiutility representations with 
state-dependent utility functions.23 Since these studies sought a representation 
that entails a set of probability–utility pairs, in which the utility functions are 
state independent, they amended their models with additional conditions that 
strengthen the state-independence axiom. With their additional conditions, 
Seidenfeld, Schervish, and Kadane (1995) obtained a representation involving 
almost state-independent utilities; Nau (2006) obtained a representation by a 
set of probabilities and state-dependent utility function pairs that is the con-
vex hull of a set of probabilities and state-independent utility pairs. Like the 
model in this paper, Nau’s (2006) model entails a finite set of consequences, 
and a best and a worst act.24 The main difference is the underlying axiomatic 
structure. 

Neither Seidenfeld, Schervish, and Kadane (1995) nor  Nau (2006) studied  
any of the special cases considered in Section 3. Ok, Ortoleva, and Riella 
(2012) introduced a new axiom, dubbed the “weak reduction axiom,” and 
showed that a preference relation is continuous and satisfies independence 
and weak reduction if and only if it admits either a multiprior expected util-
ity representation or a single prior expected multiutility representation. The 
model of Ok, Ortoleva, and Riella (2012) does not allow for incompleteness of 
both beliefs and tastes. Their result corresponds to the last two cases analyzed 
in Section 3. However, unlike in our model in which these cases correspond to 

23In the absence of completeness, state independence is not enough to ensure that the rep-
resentation involves only sets of probabilities and state-independent utilities. Indeed, Lemma 3 
asserts that state independence is implied in our model by the presence of the dominance axiom. 

24Nau (2006) provided an excellent discussion of Seidenfeld, Schervish, and Kadane (1995) and  
an explanation of why their extended preference relation is representable by sets of probabilities 
and almost state-independent utilities but not state-independent utilities. 
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specific axioms depicting the completeness of either beliefs or tastes, in Ok, Or-
toleva, and Riella (2012) both cases are possible, as the weak reduction axiom 
does not specify which aspect of the preferences—tastes or beliefs—is com-
plete and which is incomplete. 

Replacing weak reduction with the dominance axiom in the setting of Ok, 
Ortoleva, and Riella (2012) does not lead to a state-independent represen-
tation. In other words, the dominance axiom applied to the weak preference 
relation  in the framework of Ok, Ortoleva, and Riella (2012), where  is 
assumed to satisfy independence and (strong) continuity, does not necessar-
ily imply state independence. To see this, let S = {s t}, and fix a constant act 
hp = (p p) and a nonconstant act f = (p q). Let  f  hp and suppose that 
 is determined by the direction f − hp . Observe that  satisfies indepen-
dence, continuity, and dominance, but not state independence (by definition, 
q 

t p, but  
s is empty). Hence, this relation does not satisfy state indepen-

dence. Notice that in this example, the interior of dominance cone is empty, 
and there are no best and worst elements in H. It is worth emphasizing that 
all existing axiomatizations of multiprior expected multiutility representations 
rely on the existence of best and worst acts. Whether axioms A.1–A.4 and the 
assumption that the dominance cone has a nonempty interior, without assum-
ing the existence of best and worst elements, imply state independence is an 
open question. 

5. PROOFS 

Whenever suitable, we use the following convention. Although, in most of 
our results, a function U (in representing set U ) is defined on  X , we refer to 
its natural extension to Δ(X) by U . 

5.1. Proof of Lemma 1 

(i) ⇒ (ii). Let B() := {λ(f − h) | f  h and f h ∈ H and λ >  0}. Here,  f − 
h ∈ R|X|·|S| is defined by (f − h)(s) = f (s)  − h(s) ∈ R|X| for all s ∈ S. 

Each f ∈ H is a point in R|X|·|S|. Since for each state, the weights on conse-
quences add up to 1, f can also be seen as a point in R(|X|−1)·|S|. (For example,  
if X = {x1x2x3} and S = {s1 s2}, then f = ( 1 

2  
1
3  

1
6 ; 1 

4  0 
3 
4) ∈ R6 corresponds 

to ( 1 
2  

1
3 ; 1 

4  0) in R4.) For any act f ∈ H , the corresponding act in R(|X|−1)·|S| is 
denoted by φ(f ). Thus,  φ : R|X|·|S| → R(|X|−1)·|S| is a one-to-one linear mapping. 
Define φ(B()) := {λφ(f − h) | f  h and f h ∈ H and λ >  0}. 

CLAIM 1: The set φ(B()) is a convex and open cone in R(|X|−1)·|S|. 

PROOF: By the independence axiom, φ(B()) is a convex cone. To see this, 
pick any h1h2 ∈ φ(B()) and α1α2 > 0. We need to show that α1h1 + α2h2 

belongs to φ(B()). 
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By definition, h1h2 ∈ φ(B()) implies that h1 = λ1φ(f1 − g1) and h2 = 
λ2φ(f2 − g2) for λ1λ2 > 0 and  f1 g1 f2 g2 ∈ H such that f1  g1 and f2  g2: 

α1h1 + α2h2 = α1λ1φ(f1 − g1) + α2λ2φ(f2 − g2) (7) 

= (α1λ1 + α2λ2) 

× 
α1λ1 

α1λ1 + α2λ2 
φ(f1) + 

α2λ2 

α1λ1 + α2λ2 
φ(f2) 

− 
α1λ1 

α1λ1 + α2λ2 
φ(g1) + 

α2λ2 

α1λ1 + α2λ2 
φ(g2)  

Define f := α1λ1
α1λ1+α2λ2 

f1 + α2λ2
α1λ1+α2λ2 

f2 and g := α1λ1
α1λ1+α2λ2 

g1 + α2λ2
α1λ1+α2λ2 

g2. Then  
the independence axiom implies that f  g. Also,  (7) implies α1h1 + α2h2 = 
(α1λ1 + α2λ2)φ(f − g). Therefore, α1h1 + α2h2 ∈ φ(B()). 

To show that φ(B()) is open in R(|X|−1)·|S|, let  p̄ := ( 1 
|X|  

1 
|X|       1 

|X|) ∈ Δ(X)

and h̄ := ( p̄ p̄        p̄) ∈ H . Note that φ(B()) is open in R(|X|−1)·|S| if and only 
if φ(  ̄h + B()) is open in R(|X|−1)·|S|. We know that φ(  ̄h + B()) = {φ(  ̄h) + 
λφ(h − h̄) | λ >  0h  ∈ H and h  h̄}. 25 Thus, to show φ(B()) is open, it is 
enough to show that set {φ(h̄) +λφ(h − h̄) | λ >  0h  ∈ H and h  h̄} is open in 
R(|X|−1)·|S|. Since, the set {φ(h̄) +λφ(h − h̄) | λ >  0h  ∈ H and h  h̄} is convex, 
to show that this set is open, it is enough to show that each point of this set is an 
algebraic interior point. Now pick any φ(g) ∈ {φ(h̄) + λφ(h − h̄) | λ >  0h  ∈ 
H and h  h̄} and any d ∈ R(|X|−1)·|S|. Then  g = h̄ + λ(h − h̄) for some λ >  0 
and h ∈ H such that h  h̄. Pick small  μ >  0 so that h1 := (1 − μ) ̄h + μg ∈ H 
and φ(f1) := (1 − μ)φ( ̄h) + μ(φ(g) + d) ∈ φ(H). 

Since h1  h̄, by the Archimedean axiom, there exists β > 0 such that (1 − 
β)h1 + βhm  h̄. Specifically, (1 − β)h1 + βf1  ¯ h for all β such that β ∈ 
(0β). This implies that for all β ∈ (0β), φ(g) + βd ∈ {φ(  ̄h) + λφ(h − h̄) |
λ >  0h  ∈ H and h  h̄}. Thus,  φ(g) is an algebraic interior point of {φ(h̄) + 
λφ(h − h̄) | λ >  0h  ∈ H and h  h̄}. Q.E.D. 

It is easy to check that for any f g ∈ H , 

f − g ∈ B() if and only if φ(f ) − φ(g) ∈ φ 
 
B() 

 
(8) 

25It is easy to show that {φ( ¯ h) + λφ(h − ¯ h) | λ >  0h  ∈ H and h  h̄} ⊂  φ( ¯ h + B()). To  
show the opposite direction, suppose φ(g) ∈ φ( ¯ h + B()). Then  g = ¯ h + λ(f1 − f2) for λ >  0 
and f1 f2 ∈ H such that f1  f2. For small enough  μ >  0, ¯ h + μ(f1 − f2) ∈ H holds. Denote 
this act by h. Then, by the independence axiom, h  ¯ h and g = h̄ + λ 

μ (h − ¯ h). Hence  φ(g) ∈ 

{φ( ¯ h)+ λφ(h − ¯ h) | λ >  0h  ∈ H and h  h̄}. 
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Since φ(B()) is an open and convex cone in R(|X|−1)·|S| we can find a sup-
porting hyperplane at each boundary point of φ(B()). Each such hyper-
plane has its normal vector, u ∈ R(|X|−1)·|S|. Define  wu : H → R by wu(h) = 
u(φ(h)) for all h ∈ H (that is, wu(h) = 

 
s∈S wu(h(s) s), where for each s ∈ S, 

wu(h(s) s) = 
 

x∈X−{x} u(x s)h(x s), and  x ∈ X is not used in the domain of 
φ). The collection of the functions wu that correspond to all these hyperplanes 
is denoted by W . Then each element of W is affine in its first argument. Using 
(8), it is easy to verify that W represents . If  B() is smooth, then each of the 
supporting hyperplanes is unique, and the closedness of W is easy to verify. 
If B() is not smooth, then there may be boundary points that have multiple 
supporting hyperplanes. In this case, include all the functions that correspond 
to the vectors defining these hyperplanes in W to show that it is closed. 

(ii) ⇒ (i). Axioms A.1 and A.3 are easy to show. We show that representation 
(2) implies the Archimedean axiom A.2. For  all  f ∈ H and w ∈ W , denote  
f · w := 

 
s∈S 

 
x∈X f (x s)w(x s). 

Let f  g  h, then, by the representation f · w >  g  · w >  h  · w for all 
w ∈ W . For each w, define  αw := inf{α ∈ (0 1) | αf · w + (1 − α)h · w >  
g · w}. To show that the Archimedean axiom holds, it is enough to show that 
sup{αw |w ∈ W } < 1. Suppose not. Then there is a sequence {wn} ⊂  W such 
that αwn → 1. But W ⊂ R|X|×|S| is closed and can be normalized to be bounded. 
Hence, without loss of generality, W is a compact set. Therefore, there is a 
convergent subsequence of {wn}. Suppose that wn → w ∗ , w ∗ ∈ W . Since,  αw is 
a continuous function of w, we have  αw∗ = 1. This contradicts αw∗ < 1. Q.E.D. 

5.2. Proof of Lemma 2 

Suppose W and W  are two sets of real-valued functions that represent  in 
the sense of (2). Note that D ⊂ W  ∩  W . 

Suppose that W   =    W . Without loss of generality, assume that there ex-
ists w ∈  W − W  . Since  W  is a closed and convex cone, there exists a 
hyperplane that strictly separates {w} from W  . Let  ̄  h ∈ R|X|·|S| be the normal 
of the hyperplane. Then ¯ h · w >  ̄  h · w for all w ∈ W  . But  W  is a cone, 
hence h̄ · w>  0. If h̄ · w > 0 for  some  w ∈ W  , then λw ∈ W  for all λ ∈ R+ 

and λ ¯ h · w > ¯ h · w for some λ ∈ R+, a contradiction. Hence, 

h̄ ·w> 0 ≥ h̄ ·w  for all w  ∈  W  (9) 

CLAIM 2: For all s ∈ S, 
 

x∈X 
¯ h(x s) = 0. 

PROOF: Suppose not. Then θ ¯ h · δs > 0 for  some  θ ∈ R and s ∈ S. But  θδs ∈ W  , which contradicts (9). Q.E.D. 
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Let ¯ h(· s)  = ¯ h+(· s)  − ¯ h−(· s), where  ̄  h+ (x s) = ¯ h(x s) if ¯ h(x s) > 0 and
¯ h+(x s) = 0 otherwise, and ¯ h−(x s) = −  ̄ h(x s) if ¯ h(x s) < 0 and  ̄  h− (x s) = 0 
otherwise. Then 

 
x∈X 

¯ h+(x s) = 


x∈X 
¯ h−(x s) = cs ≥ 0. 

CLAIM 3: For some s ∈ S, cs > 0. 

PROOF: Suppose that cs = 0 for  all  s ∈ S. Then  ̄h(· s)  = 0 for  all  s ∈ S, hence 
h̄ · w = 0. This contradicts (9). Q.E.D. 

Let ct = max{cs | s ∈ S}. Define  pt (x) = h̄+(x t)/ct and qt (x) = h̄−(x t)/ct 
for all x ∈ X . For  all  s ∈ S − {t} such that cs > 0, let ps(x) = h̄+(x s)/cs and 
qs(x) = h̄−(x s)/cs for all x ∈ X − {x 0}, and  let  ps(x

0) = 1 − 
 

x∈X−{x0} ps(x) 
and qs(x

0) = 1 − 


x∈X−{x0} qs(x). For  s such that cs = 0 let ps(x
0) = qs(x

0) = 1 
and ps(x) = qs(x) = 0 for  all  x ∈ X − {x0}. 

Define hphq ∈ H by hp(x s) = ps(x) and hq(x s) = qs(x) for all (x s) ∈ 
X × S. 

CLAIM 4: There exists w ∈ W that satisfies equation (9). 

PROOF: Since  w ∈ W , there is sequence {αnwn + (1 − αn)dn} such that 
limn→∞(αnwn + (1 − αn)dn) = w, where  wn is in the cone spanned by W and dn 

is in the cone spanned by D. Since  ̄h · (αnwn + (1 − αn)dn) = αn h̄ · wn, by the 
left inequality of (9), for large enough n, we have  ̄h · wn > 0. We regard this wn 

as w. Q.E.D. 

For the hpand hq above, we have hp · w >  hq · w and hp · w ≤ hq · w for all 
w ∈ W  . The second inequality implies that for any f ∈ H , 

f  h q implies f  h p;(10) 

hp ·w> hq · w implies that there exists β ∈ (0 1) such that hp · w>  ((1 − β)hq + 
βhM ) ·w> hq · w. This yields a contradiction to (10) since  (1 − β)hq + βhM  
hq. Q.E.D. 

5.3. Proof of Theorem 1 

(i) ⇒ (ii). Define an auxiliary binary relation  on H as follows: For all 
f g ∈ H , f  g if h  f implies h  g for all h ∈ H . Let  B := {λ(h − h) |
h  h hh  ∈ H λ ≥ 0}. Then  φ(B) is a closed convex cone with nonempty 
interior in R(|X|−1)·|S|. By Theorem  V.9.8 in  Dunford and Schwartz (1957), there 
is a dense set T in its boundary such that each point of T has a unique tangent. 
Let W o be the set of linear functions on R(|X|−1)·|S| defined by the collection 
of all the supporting hyperplanes corresponding to dense set T . Without loss 
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of generality, we assume that each function in W o has unit normal vector. It is 
easy to see that W o represents . For the rest of the proof, we use the notation 
w(f ) to express w(φ(f )) for functions w ∈ W o . With this convention, for all 
h f ∈ H , 

h f if and only if(11)  

s∈S 

w 
 
h(s) s 

 ≥ 
 

s∈S 

w 
 
f (s) s  

 
for all w ∈ W o 

For every f ∈ H , let  Hc(f ) be the convex hull of {f s | s ∈ S}. For  all  α ∈ Δ(S), 
let f α ∈ Hc(f ) be the constant act defined by f α = 


s∈S αsf s . Now  A.3 implies 

that g  f s for every s ∈ S if and only if g  f α for every α ∈ Δ(S). Hence, an 
equivalent statement of A.4 is as follows: 

A.4—Reduction Consistency: For all f g ∈ H, g  f α for every α ∈ Δ(S) 
implies g  f . 

Before presenting the main argument of the proof, we provide some useful 
facts. 

CLAIM 5: For all f g ∈ H, if g  f α for all α ∈ Δ(S), then g  f . 

The proof is immediate application of A.4, the preceding argument, and the 
definition of . Henceforth, when we invoke axiom A.4, we use it in either the 
equivalent strict preference form A.4 or the weak form given in Claim 5, as  
the need arises. 

To state the next result, we invoke the following notation. For each h ∈ H 
and s ∈ S, let  h−sp be the act that is obtained by replacing the sth coordinate 
of h, h(s), with  p. Let  hp denote the constant act whose payoff is hp(s) = p 
for every s ∈ S. 

CLAIM 6: If hp  hq , then hp  hp 
−sq for all s ∈ S. 

PROOF: For  any  α ∈ Δ(S), (hp 
−sq)

α is a convex combination of hp and hq . 
To be exact, (hp 

−sq)
α = (1 − αs)h

p + αs h
q. By  A.3 applied to  we have hp  

αsh
p + (1 − αs)h

q  hq (that is, hp  (hp 
−sq)

α for all α ∈ Δ(S)).26 Hence, by 
Claim 5, hp  hp 

−sq. Q.E.D. 

We now turn to the main argument. In particular, we show that the compo-
nent functions {w(· s)}s∈S of each function w ∈ W o are positive linear trans-
formations of one another. 

26For a proof that  satisfies independence, see Galaabaatar and Karni (2011). 



SUBJECTIVE EXPECTED UTILITY 275 

LEMMA 6: If ˆ w ∈ W o , then for all nonnull s t ∈ S, ˆ w(· s)  and ˆ w(· t)  are 
positive linear transformations of one another. 

PROOF: By way of negation, suppose that there exist s t such that ˆ w(· s)  
and ˆ w(· t)  are not positive linear transformations of one another. Then 
there are p q ∈ Δ(X) such that ˆ w(p s) > ˆ w(q s) and ˆ w(q t) > ˆ w(p t). 
Without loss of generality, let p be a lottery such that ˆ w(hp) >  ŵ(hq) and 
p(x) > 0 for  all  x ∈ X . Define  q(λ) = λp + (1 − λ)q for λ ∈ (0 1). Then  
ˆ w(p s) > ˆ w(q(λ) s) and ˆ w(q(λ) t) > ˆ w(p t). Following Ok, Ortoleva, and
Riella (2012), we use the following construction. Let fλ ∈ H be defined as fol-
lows: fλ(s) = p if s = s, fλ(s) = q(λ) if s = t, and, for  s = s t, fλ(s) = p if 
ˆ w(p s ) ≥ ˆ w(q(λ) s) and fλ(s) = q(λ) otherwise. 

Clearly, 
 

s∈S ŵ(fλ(s) s) > 


s∈S ŵ((fλ)
α(s) s) for all α ∈ Δ(S). Since  fλ in-

volves only p and q(λ), {(fλ)α | α ∈ Δ(S)} = {αhp + (1 − α)hq(λ) | α ∈ [0 1]}. 
Since ˆ w ∈ W o , there exists g ∈ H such that g  hp ˆ w(g) = ˆ w(hp), and  ˆ w is

the unique supporting hyperplane at g. 
The cone B = {α(f − g) | f g ∈ H f  g, α ≥ 0} defines an extension of the 

auxiliary relation  to the linear space generated by H. With slight abuse of 
notation we denote the extended relation by . The extended relation satisfies 
all the properties of the original auxiliary relation. 

CLAIM 7: There exists β ∗ (λ) > 0 such that hp +β ∗ (λ)(g − hp)  hq(λ) . 

PROOF: Suppose not. Then, for any n ∈ {1 2   }, there exists wn ∈ W o such 
that wn(h

p + n(g − hp)) < wn(h
q(λ)). Since  wn is linear, we can regard wn as a 

vector and wn(f ) as the inner product wn ·φ(f ). Hence, we have 

nwn ·φ 
 
(g) − hp 

 
<wn ·φ 

 
hq(λ) − hp 

 
for all n(12) 

Since wn = 1, we can find convergent subsequence {wnk 
}. Without loss of 

generality we assume that {wn} itself is convergent and wn → w ∗ ∈ cl(W o). 
The right-hand side of inequality (12) converges to w ∗ · φ(hq(λ) − hp). If  
w ∗ · φ(g − hp) >  0, then the left-hand side of inequality (12) tends  to  
+∞ as n → ∞—a contradiction. Hence, w ∗(g) = w ∗(hp) since g  hp . 
Also, wn(h

p) ≤ wn(h
p + n(g − hp)) < wn(h

q(λ)) implies w ∗(hp) ≤ w ∗(hq(λ)). 
Since ˆ w(hp) >  ˆ w(hq(λ)), ˆ w = w ∗ . This contradicts the uniqueness of the 
supporting hyperplane at φ(g) ∈ φ(H). This completes the proof of the 
claim. Q.E.D. 

Let gλ = hp + β∗(λ)(g − hp). Then  gλ  hp and gλ  hq(λ) . By choos-
ing λ close to 1 and applying the independence axiom to the extended re-
lation, we can find β(λ) ∈ (0 1) so that for such λ, gλ is feasible (i.e., 
gλ(s) ∈ Δ(X) for all s ∈ S). By virtue of being on the hyperplane defined 
by ŵ, 

 
s∈S ŵ(gλ(s) s) = ŵ(hp). Since  gλ  hphq(λ), we have  gλ  (fλ)α for 

all α ∈ Δ(S). Hence, by Claim 5, gλ  fλ. But  
 

s∈S ŵ(fλ(s) s) > ŵ(hp) = 
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FIGURE 1.—The separating hyperplane. 

 
s∈S ˆ w(gλ(s) s), which is a contradiction (see Figure 1). This completes the 

proof of Lemma 6. Q.E.D. 

The representation (3) is implied by the following arguments. First, by the 
standard argument: For each w ∈ W o, define  U w(·) = w(· 1) and for all s ∈ S, 
let w(· s)  = bw 

s U
w(·) + aw

s , b
w 
s > 0. Define πw(s) = bw

s / 


s∈S b
w
s for all s ∈ S. 

Let U be the collection of distinct U w and for each U ∈ U , let  ΠU = {πw | ∀w 
such that Uw = U}. Second, if there are kinks in B so that there is more than 
one supporting hyperplanes, then there is at least one w that can be expressed 
as a limit point of sequence {wn} from W o. Since any  wn has the property that 
each of its components is a positive linear transformation of the others, w has 
the same property. If we add all those w’s to W o , then the new set of functions 
will represent . 

(ii) ⇒ (i). Axioms A.1–A.3 are implied by Lemma 1. The  -boundedness of 
H and A.4 are immediate implications of the representation. The uniqueness 
result is implied by Lemma 1. Q.E.D. 

5.4. Proof of Lemma 4 

Suppose that f g ∈ H are such that f (s)   g(s) for all s ∈ S. Define  h ∈ H by 
h(s) = 1 

|S|−1

 
s =s f (s

) for all s ∈ S. Observe that 1 
|S| f + (1 − 1 

|S| )h is a constant 
act. By A.3, for each s 

1 
| S | f + 1 − 

1 
| S | h = 

1 
| S | f (s)  + 1 − 

1 
| S | h(s) 

 
1 

| S | g(s) + 1 − 
1 

| S | h(s) 
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By A.4, 

1 
| S | f + 1 − 

1 
| S | h 

1 
| S | g + 1 − 

1 
| S | h 

Hence, by A.3, f  g. Q.E.D. 

5.5. Proof of Theorem 2 

(i) ⇒ (ii). Suppose that  on H satisfies A.1–A.5. Let  M := {α ∈ Δ(S) | f  
hp implies ¬(hp  f α) for any p ∈ Δ(X) f ∈ H}. 

By A.5, g  f implies that gα  f α for all α ∈ M. By Theorem  1, gα  f α 

for all α ∈ M if and only if U(gα) > U  (f  α) for all U ∈ U and α ∈ M. By  
the affinity of U ∈ U , U(gα) > U  (f  α) for all U ∈ U and α ∈ M if and only 
if 


s∈S U(g(s))α(s) > 


s∈S U(f (s))α(s) for all (α U ) ∈ M × U . Hence, g  f 

implies 
 

s∈S U (g(s))α(s) > 


s∈S U (f (s))α(s) for all (α U) ∈ M × U . 
To prove the inverse implication, suppose  

s∈S 

U 
 
g(s) 

 
α(s) > 

 

s∈S 

U 
 
f (s)  

 
α(s) 

for all (α U) ∈ M × U . Theorem  1 implies that g  f if and only if 
s∈S U(g(s))α(s) > 

 
s∈S U(f (s))α(s) for all (α U ) ∈ {(α U) | U ∈ Uα  ∈ 

ΠU }. Since  A.5 implies 
 

U∈U Π
U ⊂ M, we have  g  f . 

(ii) ⇒ (i). This part is easy to check. To prove the uniqueness of the set of 
utility functions, we restrict attention to constant acts. Then we have U(hp) >  
U(hq) for all U ∈ U if and only if V (hp) > V  (hq) for all V ∈ V . By the proof of 
uniqueness result of Dubra, Maccheroni, and Ok (2004), we obtain U = V . 

To prove the uniqueness of beliefs, suppose that each one of the pairs (U 
M) and (V M) represents . Assume cl(conv(M)) = cl(conv(M)). Then, 
without loss of generality, there exists π ∈ M such that π /∈ cl(conv(M)). 
But π /∈ cl(conv(M)) implies π /∈ cl(cone(M)), where  cl(cone(M)) is the 
closure of the convex cone generated by M . 

Thus, there exists a hyperplane that strictly separates π and cl(cone(M)). 
In other words, there is a nonzero vector a ∈ R|S| such that 

π · a > π  · a for all π  ∈ cl 
 
cone 

 
M  

(13) 

Invoking the fact that cl(cone(M)) is a cone, 

π · a > 0 ≥ π  · a for all π  ∈ cl 
 
cone 

 
M  

(14) 

By equation (14), we have π · a >  0 ≥ π  · a for all π  ∈ M. Normalize  U and 
V so that for any U ∈ U ∪ V , U(pM ) − U(pm) = max{ai | i = 1 2       |S|}. Then  
for any i = 1      |S|, there exists p̂i q̂i ∈ Δ(X) such that ai = U(p̂i) − U(q̂i). 
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Define acts f := (p̂1 p̂2       p̂|S|) and g := (q̂1 q̂2      ̂q|S|). Then  0  ≥ π  · a for 
all π  ∈ M implies 


s∈S π

(s)V (g(s)) ≥ 


s∈S π (s)V (f (s)) for all V ∈ V and 
π  ∈ M . Therefore, for any h ∈ H , 

h g then h  f(15) 

But π · a >  0 implies 
 

s∈S π(s)U (f (s)) > 
 

s∈S π(s)U(g(s)) for all U ∈ U . Pick  
any U ∗ ∈ U . Then there exists λ ∈ (0 1) such that 


s∈S π(s)U ∗(f (s)) > (1 − 

λ) 


s∈S π(s)U ∗(g(s)) + λ 
 

s∈S π(s)U ∗(pM ) >  
 

s∈S π(s)U ∗(g(s)). Since  (1 − 
λ)g + λhM  g, the last inequality is a contradiction to (15). Q.E.D. 

5.6. Proof of Theorem 3 

(i) ⇒ (ii). Recall that c is the restriction of  to the set of all constant acts 
Hc and that c on H c is defined as follows: for all hphq ∈ Hc , hp c hq if 
¬(hq  hp). By  A.6, c is complete. 

By Theorem 1, for  all  hphq ∈ H c , hp c hq if and only if 
 

s∈X p(x)U (x) > 
s∈X q(x)U (x) for all (π U ) ∈ Φ. By  Kreps (1988, Theorem (5.4)), all U 

in the above representation are positive affine transformations of one an-
other. Pick one of them and denote it by ¯ U . Define  M := {π | (π U ) ∈ 
Φ for some U }. Then, for all h g ∈ H , h  g if and only if 


s∈S π(s)( 


x∈X h(x 

s) ¯ U(x))  >  
 

s∈S π(s)( 
 

x∈X g(x s) ¯ U(x))  for all π ∈ M. 
The proof that (ii) ⇒ (i) is straightforward. The uniqueness result is implied 

by the uniqueness of Theorem 2. Q.E.D. 

5.7. Proof of Theorem 4 

(i) ⇒ (ii). First, we show that A.1–A.3 and A.7 assure a unique probability 
measure over S. Let  πu(E) = inf{α ∈ [0 1] |  pM αpm  pM Epm} and πl(E) = 
sup{α ∈ [0 1] |  pM Epm  pM αpm}. 

CLAIM 8: For any E ⊂ S, πu(E) = πl(E). 

PROOF: Axiom A.3 implies that πu(E) ≥ πl(E). Suppose that πu(E) > 
πl(E).27 Then there exist α1α2 such that πu(E) > α1 > α2 > πl(E). Since  
πu(E) > α1 implies pM α1p

m  pM Epm does not hold, A.7 implies pM Epm  
pM α2p

m , which is a contradiction to α2 > π  l (E). Therefore, πu(E) = πl (E). 
Q.E.D. 

Define π(E) := πu(E) = πl(E). Next, we show that π is a probability mea-
sure. 

27To be exact, A.3 implies mixture monotonicity – that is, for all f g ∈ H and 0 ≤ α < β ≤ 
1, f  g implies that βf + (1 − β)g  αf + (1 − α)g (see Kreps (1988, Lemma 5.6)). Mixture 
monotonicity implies that πu(E) ≥ πl (E). 
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CLAIM 9: The set function π : 2S → [0 1] is a probability measure. 

PROOF: By definition, π(S) = 1. Since S is a finite set, it is enough to show 
that π(E ∪ {s}) = π(E) +π(s) for all E ⊆ S and for all s /∈ E. 

First, we show that π(E ∪ {s}) ≤ π(E) + π(s). Without loss of generality, 
assume that π(E) + π(s) < 1. Pick any ε >  0 such that π(E) + π(s) + 2ε <  1. 
Then there exist α1α2β1β2 ∈ [0 1] such that π(E) < β1 < α1 < π(E) + ε 
and π(s) < β2 <α2 < π(s) + ε. 

If we can show that pM (α1 + α2)p
m  pM (E ∪ {s})pm , then we have π(E ∪ 

{s}) < α1 + α2 < π(E) +π(s) + 2ε, which implies π(E ∪ {s}) ≤ π(E) +π(s).28 

Suppose that pM (α1 + α2)p
m  pM (E ∪ {s})pm does not hold. Then, by A.7, 

p M(β1 +β2)p
m ≺ pM (E ∪ {s})pm . 

We know that p Mβ1p m  pMEpm and p M β2p m  p M {s}p m imply that for all 
w ∈ W , 

β1 

 

s∈S 

w
 
p M s  

 + (1 −β1) 
 

s∈S 

w 
 
p m s  

 

> 
 

t∈E 

w
 
p M t  

 + 
 

t /∈E 

w 
 
p m t  

 

and 

β2 

 

s∈S 

w
 
p M s  

 + (1 −β2) 
 

s∈S 

w 
 
p m s  

 
>w  

 
p M s  

 + 
 

t =s 

w 
 
p m t  

 
 

Adding these two inequalities, we obtain that for all w ∈ W , 

(β1 +β2) 
 

s∈S 

w
 
p M s  

 + (1 −β1 −β2) 
 

s∈S 

w 
 
p m s  

 + 
 

s∈S 

w 
 
p m s  

 

>w  
 
p M 

 
E ∪ {s}  

p m 
 + 

 

s∈S 

w 
 
p m s  

 
 

Hence, for all w ∈ W , 

(β1 +β2) 
 

s∈S 

w
 
p M s  

 + (1 −β1 −β2) 
 

s∈S 

w 
 
p m s  

 

> 
 

s∈S 

w
 
p M 

 
E ∪ {s}  

p m s  
 
 

But this is obviously a contradiction of pM (β1 +β2)p
m ≺ pM (E ∪{s})pm. Thus,  

π(E ∪ {s}) ≤ π(E) +π(s). 

28Recall that, by Lemma 3, hM = (pM     pM) and hm = (pm    pm). 
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Suppose π(E ∪ {s}) < π(E)  + π(s). Then there exists α such that π(E ∪ 
{s}) < α < π(E)  + π(s). Since  0  ≤ α − π(E) < π(s), we can find α1 < α  such 
that α − π(E) < α1 < π(s). Thus, we have α − α1 ∈ (0 π(E)) and α1 < π(s). 
Therefore, by using the same argument above, we can have 

p M {s}p m  p M α1p m and p M Epm  p M (α − α1)p
m 

⇒ p M 
 
E ∪ {s}  

p m  p M αpm 

This is a contradiction to π(E ∪ {s}) < α. Q.E.D. 

Now we enter the proof of Theorem 4. Suppose α > π(E). Then, by 
Lemma 1, 

p M αpm  p M Epm if and only if(16)  

s∈S 

w
 
p M αpm s  

 
> 

 

s∈S 

w 
 
p M Epm s  

 ∀w ∈ W  

Equation (16) implies that for all w ∈ W , 

α 
 

s∈S 

w
 
p M s  

 + (1 − α) 
 

s∈S 

w 
 
p m s  

 

> 
 

s∈E 

w
 
p M s  

 + 
 

s /∈E 

w 
 
p m s  

 
 

which, in turn, implies that for all w ∈ W , 

α 
 

s /∈E 

w
 
p M s  

 + (1 − α) 
 

s∈E 

w 
 
p m s  

 
(17) 

> (1 − α) 
 

s∈E 

w
 
p M s  

 + α 
 

s /∈E 

w 
 
p m s  

 
 

Equation (17) implies that for all w ∈ W , 

α 

1 − α 
>

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
∀α> π(E)  

Hence, 

π(E) 

1 −π(E) 
≥ 

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
∀w ∈ W  
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For all α < π(E), we can repeat the same argument. Therefore, we get for all 
w ∈ W , 

α 

1 − α 
<

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
∀α< π(E)  

Hence, 

π(E) 

1 − π(E) 
≤

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
∀w ∈ W  

Thus, we conclude that 

π(E) 

1 − π(E) 
=

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
∀w ∈ W  

Lemma 5 implies that whenever hx  hm , pM αpm  pM Epm if and only if 
δxαp

m  δxEp
m. Thus, for all  w ∈ W , 

π(E) 

1 − π(E) 
=

 

s∈E 

w(pM  s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(pM  s)  − 
 

s /∈E 

w(pm s)  
(18) 

=

 

s∈E 

w(δx s)  − 
 

s∈E 

w(pm s)  

 

s /∈E 

w(δx s)  − 
 

s /∈E 

w(pm s)  
 

Let S = {s1 s2     sn} and E = {si}. By equation (18), we have for all w ∈ W , 

1 − π(si) 

π(si) 
= 

 

s∈S−{si} 
w(δx s)  − 

 

s∈S−{si} 
w(pm s)  

w(δx si) − w(pm si) 
 (19) 

Hence, 

1 
π(si) 

= 

 

s∈S 

w(δx s)  − 
 

s∈S 

w(pm s)  

w(δx  si) − w(pm si) 
 (20) 
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Thus, 

π(si) 

π(sj) 
= 

w(δx si) −w(pm si) 

w(δx sj ) −w(pm sj ) 
∀i j ∈ {1      n} (21) 

By taking j = 1, we get 

w(δx  si) = 
π(si) 

π(s1) 

 
w(δx  s1) −w 

 
p m s1 

 +w 
 
p m si 

 
(22) 

which implies 

w(p si) = 
π(si) 

π(s1) 
w(p s1) − 

π(si) 

π(s1) 
w 

 
p m s1 

 +w 
 
p m si 

 
 (23) 

Suppose that h g ∈H . Then  

h g if and only if  

s 

w 
 
h(s) s 

 
> 

 

s 

w 
 
g(s) s 

 
for all w ∈ W  

By using equations (19)–(23), we can easily show that  

s 

w 
 
h(s) s 

 
> 

 

s 

w 
 
g(s) s 

 
for all w ∈ W if and only if 

 

i 

π(si)w 
 
h(si) s1 

 
> 

 

i 

π(si)w 
 
g(si) s1 

 
for all w ∈ W  

Define U = {w(· s1) |w ∈ W }. Then the last two equations imply 

h g if and only if  

s∈S 

π(s)U 
 
h(s) 

 
> 

 

s∈S 

π(s)U 
 
g(s) 

 
for all U ∈ U  

The proof of (ii) ⇒ (i) is straightforward. The uniqueness follows from the 
uniqueness result in Dubra, Maccheroni, and Ok (2004) (by restricting  to 
constant acts). 
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