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Abstract 

This paper extends our earlier work on reverse Bayesianism by relaxing the assump-
tion that decision makers abide by expected utility theory, assuming instead weaker 
axioms that merely imply that they are probabilistically sophisticated. We show that 
our main results, namely, (modified) representation theorems and corresponding rules 
for updating beliefs over expanding state spaces and null events that constitute “reverse 
Bayesianism,” remain valid. 
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1 Introduction 

Probabilistically sophisticated choice is characterized by a unique subjective probability 

measure on a state space by which acts (that is, mappings from the set of states to the set 

of consequences) are transformed to lotteries on the set of consequences, a utility function 

on the set of these lotteries, and choice behavior that maximizes the utility over the lotteries 

corresponding to the feasible set of acts. In two seminal papers, Machina and Schmeidler 

(1992, 1995) axiomatized probabilistically sophisticated choice in the analytical frameworks 

of Savage (1954) and Anscombe and Aumann (1963). The upshot of these contributions is 

that a choice-based subjective Bayesian prior exists even if decision makers do not abide 

by the stricture of the subjective expected utility model. 

In Karni and Vierø (2012) we introduced a model describing the evolution of the be-

liefs of subjective expected utility maximizing decision makers’ as they discover new acts, 

consequences and information pertaining to links between acts and consequences. In this 

paper we extend our earlier work and show that our results are not predicated on subjective 

expected utility maximizing behavior. To do so we depart from the expected utility model, 

assuming instead that decision makers are merely probabilistically sophisticated. Invok-

ing the analytical framework of Anscombe and Aumann (1963), we demonstrate that our 

main results, namely, (modified) representations of preferences and corresponding rules for 

updating beliefs over expanding state spaces that constitute “reverse Bayesianism,” hold 

when preferences are probabilistically sophisticated. Since the analytical framework and 

the related literature were discussed in Karni and Vierø (2012), in what follows, we re-

view briefly those aspects of the model necessary to make the exposition self-contained, 

underscoring instead the adjustment necessary for the transition from expected utility to 

probabilistically sophisticated choice. 

In the next section we revisit our analytical framework and the axiomatic structure 

characterizing probabilistic sophistication. In section 3 we expose the representation the-

orems and analyze the evolution of beliefs in the wake of discovery of new consequences, 

acts and links between them. Concluding remarks appear in section 4. The proofs are 

collected in section 5. 
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2 The Analytical Framework 

Building upon Schmeidler and Wakker (1987) and Karni and Schmeidler (1991), Karni 

and Vierø (2012) introduced a unifying framework within which growing awareness due 

to the discovery of new acts and consequences as well as revising beliefs in light of new 

information regarding their links may be described and analyzed. We recall this framework 

below. 

2.1 Conceivable states and acts 

Let F be a finite, nonempty set of feasible acts, and let C be a finite, nonempty set of 

feasible consequences. Together these sets determine a conceivable state space, CF , whose 

elements depict the resolutions of uncertainty. In other words, a state is a function from 

the set of feasible acts to the set of feasible consequences which, once known, resolves 

all uncertainty. As an illustration, let there be two feasible acts, F = {f1, f2}, and two 

consequences, C = {c1, c2}. The resulting conceivable state space is CF , consisting of four 

states as depicted in the following matrix: 

F \CF s1 s2 s3 s4 

f1 c1 c2 c1 c2 (1) 

f2 c1 c1 c2 c2 

As this example makes clears, states are defined by the consequences associated with the 

feasible acts. In this sense states and events (that is, subsets of the set of conceivable states) 

are, respectively, complete and partial resolutions of uncertainty that are, in principle 

observable. 

Once the set of conceivable states is fixed, the set of acts can be expanded to include all 

conceivable acts. As in Anscombe and Aumann (1963) the set of conceivable acts consists 

of all the mappings from the conceivable state space to lotteries on the set of consequences. 

Formally, the set of conceivable acts is given by: 

F̂ := {f : CF → Δ(C)}, (2) 

where Δ (C) is the set of all lotteries with consequences in C as prizes.1 Conceivable acts 

are imaginable given the decision maker’s awareness of feasible acts and consequences and 

1Formally, p ∈ Δ(C) is a function p : C → [0, 1] satisfying Σc∈C p (c) = 1. Notice that with this definition 
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the corresponding conceivable state space. In other words, it is possible to envisage placing 

bets on the outcomes of the feasible acts, whose payoffs are lotteries on the set of feasible 

consequences. 

A decision maker’s conceivable state space expands due to discovery of new feasible acts 

and/or consequences. Consider the two-act two-consequences example depicted above and 

imagine that a third feasible consequence was discovered, so that the new set of feasible 

consequences is C 0 = (c1, c2, c3}. The feasible acts need to be redefined, since choosing the 

act fi, i = 1, 2 conceivably may result in any of the three consequences. We denote the 

redefined set of feasible acts by F ∗ and the corresponding conceivable state space is given 

by: 

F ∗\ (C 0)F ∗ 
s1 s2 s3 s4 s5 s6 s7 s8 s9 

f1 c1 c2 c1 c2 c3 c3 c1 c2 c3 

f2 c1 c1 c2 c2 c1 c2 c3 c3 c3 

The event (C 0)F ∗ 
− CF = {s5, . . . , s9} represents the expansion of the decision maker’s 

conceivable state space due to the discovery of the consequence c3. 

Discovery of new feasible acts also alters the conceivable state space, albeit in a different 

way. Consider again the two-act two-consequences example above and suppose that a new 

feasible act, f3, is discovered. The new set of feasible acts is F 0 = {f1, f2, f3} and the 

corresponding conceivable state space, CF 0 , consists of eight states as follows: 

F 0\CF 0 s1 s2 s3 s4 s5 s6 s7 s8 

f1 c1 c2 c1 c2 c1 c2 c1 c2 

f2 c1 c1 c2 c2 c1 c1 c2 c2 

f3 c1 c1 c1 c1 c2 c2 c2 c2 

The expanded state space CF 0 is a finer partition of the original state space CF . Specif-

ically, each element of CF is a non-degenerate event in the expanded state space CF 0 . For 

example, the state s1 := (c1, c1) ∈ CF is the event E = {s1, s5} in the state space CF 0 . 

As the decision maker’s conceivable state space expands, so does the set of conceivable 

acts. In the wake of the discovery of a new consequence, the new set of conceivable acts is 

of Δ(C) we have that, for any C ⊂ C0 , any p ∈ Δ(C) is also an element of Δ(C0) with p(c) = 0 for all 

c ∈ C0 − C. Likewise, q ∈ Δ(C0) is an element of Δ(C) if q(c) = 0 for all c ∈ C0 − C. 
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F̂ ∗ := {f : (C 0)F ∗ 
→ Δ(C 0)}, and in the aftermath of the discovery of a new feasible act, 

the new set of conceivable acts is F̂ 0 := {f : CF 0 → Δ(C)}. 
At this point the reader may find it disturbing that we expand the conceivable state 

space in the wake of discovery of new feasible acts but we do not expand the state space 

when we introduce new conceivable acts. The reason is that conceivable acts are bets on 

the conceivable states (or events). As we have seen, the discovery of new feasible acts 

expands the conceivable state space by assigning to every existing state the set of all the 

consequences, thereby “splitting” it to generate a refined state space. By contrast a new 

conceivable act assigns to every existing state a unique outcome. Hence, for conceivable 

acts the subjective uncertainty regarding the payoffs of all acts, feasible or otherwise, is 

completely resolved once the original state is known. Consequently, the introduction of 

conceivable acts do not change the conceivable state space. 

Decision makers are supposed to be able to express preferences among conceivable acts. 

Because the set of conceivable acts is a variable in our model, we denote the preference 

relation on F̂  by <F̂  , and denote by � ̂  and ∼ ̂  the asymmetric and symmetric parts F F 

of <F̂ , respectively. These derived relations are given the usual interpretation of strict 

preference and indifference, respectively. With the usual abuse of notation, we denote by 

p the constant act that assigns p to each s ∈ CF and by c the degenerate lottery δc that 

assigns the unit probability mass to the consequence c. 

2.2 Feasible states 

Decision makers entertain beliefs about the possible links between feasible acts and their 

potential consequences. These beliefs manifest themselves in, and may be inferred from, 

the decision makers’ choice behavior. 

Consider a decision maker whose choices are characterized by a preference relation < ̂F 

on F̂ . For any f ∈ F ,ˆ p ∈ Δ(C) , and s ∈ CF , let p{s}f be the act in F̂  obtained from f by 

replacing its s − th coordinate with p. Following Savage (1954), a state s ∈ CF is said to 

be null if p{s}f ∼ ̂  q{s}f, for all p, q ∈ Δ(C) . A state is said to be nonnull if it is not null. F 

Denote by EN the set of null states and let S (F, C) = CF − EN be the set of all nonnull 

states. Henceforth, we refer to S (F, C) as the feasible state space. Note that a conceivable 

state is null if it includes an assignment of a feasible consequence to a feasible act that the 

decision maker believes to be impossible. 
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New information may change the decision maker’s beliefs concerning the links between 

feasible acts and consequences and, consequently, his perception of the feasible state space. 

Unlike the discovery of new feasible consequences and/or new feasible acts, which expands 

both the set of conceivable and the set of feasible states, changes of the decision maker’s 

beliefs concerning the links between them will expand or contract the set of feasible states 

without affecting the conceivable state space. 

Expansion of the feasible state space entails updating zero probability events, while 

contraction of it entails nullifying positive probability events that are no longer considered 

possible. When new links become possible, the decision maker includes the consequences 

f (s) , for all f ∈ F and some s ∈ CF − S (F, C), in the ranges he considers possible of the 

feasible acts. Vice versa when old links are eliminated. We denote the newly defined feasible 

state space by S0 (F, C) and, to underscore the changing nature of the set of conceivable 

acts when the feasible set of states changes, we denote the corresponding set of conceivable 

acts by F̂S0 , and the decision maker’s posterior preference relation by <F̂  
S0 

. 

2.3 Basic preference structure 

Let F and C be finite sets of feasible acts and consequences, respectively. The set of 

conceivable states is given by CF and the corresponding set of conceivable acts by F̂  := 

{f : CF → Δ(C)} as described above. We assume throughout that each set of consequences 

has a most preferred and a least preferred element. Formally, there exist c ∗ (C) , c∗ (C) ∈ C 

such that the constant act that assigns c ∗ (C) to every state is strictly preferred over any 

other constant act in F̂  and the constant act that assigns c∗ (C) to every state is strictly 

less preferred than any other constant act in F̂ . 

As described above, when the state space expands in the wake of discoveries of new 

feasible consequences, the set of conceivable acts must be expanded and the preference 

relations must be redefined on the extended domain. For instance, if F̂ ∗ is the expanded 

set of conceivable acts, then the corresponding preference relation is denoted by <F̂ ∗ . If 

the state space expands as a result of the discovery of new feasible acts, then the new set 

of conceivable acts is denoted by F̂ 0 and the extended preference relation by < ̂ 0 .F 
ˆFor each set, F , of conceivable acts and α ∈ [0, 1] define the convex combination 

αf + (1 − α) g ∈ F̂  by: (αf + (1 − α) g) (s) = αf (s) + (1 − α) g (s) , for all s ∈ CF . Then, 

F̂ is a convex subset in a linear space. 
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In what follows we will use the following notations: for any E ⊂ CF , pEh ∈ H is 

defined by: pEh (s) = p if s ∈ E and pE h (s) = h (s) , otherwise. For all p, q ∈ Δ(C), p 

dominates q according to first-order stochastic dominance if Σ{i|ci4c}p (ci) ≤ Σ{i|ci4c}q (ci) 

for all c ∈ C, and p strictly dominates q according to first-order stochastic dominance if p 

dominates q according to first-order stochastic dominance and, in addition, Σ{i|ci4c}p (ci) < 

Σ{i|ci4c}q (ci) for some c ∈ C. We denote these domination relations by p ≥1 q and p >1 q, 

respectively. 

Following Machina and Schmeidler (1995), we assume that, for each F̂ , < ̂  adheres toF 

the following axioms, which ensure probabilistic sophistication. 

(A.1) (Weak order) For every F̂ , the preference relation < ̂  is transitive and complete. F 

(A.2) (Mixture continuity) For each F̂  and all f, g, h ∈ F ,ˆ if f � ̂  g and g � ̂  h thenF F 

there exist α ∈ (0, 1) such that αf + (1 − α) h ∼ ̂  g.F 

(A.3) (Monotonicity) For every F̂  and p, q ∈ Δ(C) , if p ≥1 q then pEi h < ̂  qEi h, forF 

all partitions {E1, ..., En} of CF and all h ∈ F̂ , with pEi h � ̂  qEi h if p >1 q and EiF 

is nonnull. 

(A.4) (Replacement) For every F̂  and any partition {E1, ..., En} of CF , if � � � � 
∗(C) δc∗(C)δc

Ei δc∗(C) 
Ej ∼ αδc ∗(C) + (1 − α) δc∗(C) δc∗(C) 

Ei∪Ej 

for some α ∈ [0, 1] and pair of events Ei, Ej , then � � 
pEi qEj h ∼ (αp + (1 − α) q) h 

Ei∪Ej 

for all p, q ∈ Δ(C) and h ∈ F̂ . 

(A.5) (Nontriviality) For every F̂ , � ̂  =6 ∅.F 

To link the preference relations across expanding sets of conceivable acts, we invoke 

the invariant risk preferences axiom introduced in Karni and Vierø (2012), asserting the 

commonality of risk attitudes across levels of awareness. 

(A.6) (Invariant risk preferences) For every given F ,ˆ F̂ 0 , if C and C 0 are the sets of 
ˆ F̂ 0consequences associated with F and , respectively, then p < ̂  q if and only ifF 

p <F̂ 0 q for all p, q ∈ Δ(C ∩ C 0) . 
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When new consequences are discovered, C ⊂ C 0 , then C ∩ C 0 = C. When new feasible 

acts are discovered, the invariant risk preferences axiom may be stated as follows: For all 

F, F 0 and p, q ∈ Δ(C), p < ̂  q if and only if p <F̂ 0 q. When new links are discovered (or old F 

links eliminated) between the original sets of acts, F, and consequences, C, the invariant 

risk preferences axiom asserts that, for all p, q ∈ Δ(C), p < ̂  q if and only if p < ̂  q.F FS0 

3 The Main Results 

As in Karni and Vierø (2012), we divide the analysis of the effects of growing awareness 

on choice behavior and the evolution of decision makers’ beliefs into three parts. First, 

we explore the implications of the discovery of new consequences. Second, we explore the 

implications of the discovery of new feasible acts. Third, we explore the implications of new 

information regarding acts-consequences links. The discovery of new acts or consequences 

increases the number of conceivable and, in general, also that of feasible states. However, 

unlike the discovery of new consequences, the discovery of new feasible acts increases the 

number of conceivable states by refining the original state space. By contrast, the discovery 

of new acts-consequences links changes the set of feasible states without affecting the 

conceivable state space. 

To explore the implications of these sources of growing awareness, we introduce addi-

tional axioms, each of which modifies a corresponding axiom in Karni and Vierø (2012). 

These modifications are needed in order to accommodate the possibility that preference 

relations do not satisfy the independence axiom and, consequently, are not necessarily 

separable. 

3.1 Discovery of new consequences and its representation 

The following axiom requires that, when a decision maker discovers new consequences 

his ranking of subjective versus objective uncertainty, conditional on the original set of 

feasible states, remains intact. To formalize this idea, let C 0 ⊃ C, F ∗ , and S(F ∗, C 0) 

denote, respectively, the new set of consequences, the new set of feasible acts redefined to 

accommodate the new consequences, and the resulting new feasible state space.2 

2Below, f 0 = f on an event E means that f 0(s) = f(s) for all s ∈ E (i.e. it is defined pointwise for the 

states in E). 
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(A.7) (Replacement consistency I) For every given F , for all C, C 0 with C ⊂ C 0 and 
ˆ 0 F̂ ∗S(F, C) ⊆ S(F ∗, C 0), for all s ∈ S(F, C), η ∈ [0, 1], f, g ∈ F , and f 0, g ∈ , if 

∗(C) 0f = δc 
{s}δ

c∗(C), g = ηδc ∗(C) + (1 − η) δc∗(C) on CF , g = ηδc ∗(C) + (1 − η) δc∗(C) 

on (C 0)F ∗ 
, f 0 = f on S (F, C) and f 0 = g0 on S (F ∗, C 0) − S(F, C), then it holds that 

0f <F̂  g if and only if f 0 <F̂ ∗ g . 

Axiom (A.7) concerns bets that involve only the best and worst consequences in C. It 

ensures consistency between the ranking of subjective versus objective uncertainty given 

awareness of conceivable acts that correspond to nested sets of feasible consequences. The 

axiom asserts that, conditional on the prior subjective state space, the decision maker’s 

ranking of the subjective bet that pays off in state s and the objective bet that pays off 

with probability η, is preserved when he discovers new feasible consequences which expand 

the conceivable state space. 

Our first result describes the evolution of a decision maker’s beliefs in the wake of 

discoveries of new consequences. Like Theorem 1 in Karni and Vierø (2012) this theorem 

asserts that, as he becomes aware of new consequences, the decision maker updates his 

beliefs in a way that preserves the likelihood ratios of events in the original state space. 

Unlike in Karni and Vierø (2012) the decision maker is not necessarily an expected utility 

maximizer, he is merely probabilistically sophisticated. Hence, reverse Bayesianism is 

independent of the expected utility hypothesis. 

Theorem 1 For each set, F ,ˆ of conceivable acts let < ̂  be a binary relation on F̂  then,F 

for all F ,ˆ F̂ ∗ , the following two conditions are equivalent: 

(i) < ̂  and < ̂  each satisfy (A.1) - (A.5) and jointly, < ̂  and < ̂  satisfy (A.6) and F F ∗ F F ∗ 

(A.7). 

(ii) There exist real-valued, mixture continuous, strictly monotonic functions, V on 

Δ(C) and V ∗ on Δ(C 0), and probability measures, π ̂  on CF and πF̂ ∗ on (C 0)F ∗ 
, such that F 

for all f, g ∈ F ,ˆ � � � � 
f <F̂  g ⇔ V Σs∈S(F,C)πF̂  (s) f (s) ≥ V Σs∈S(F,C)πF̂  (s) g (s) . (3) 

and, for all f 0, g0 ∈ F̂ ∗ , � � � � 
f 0 <F̂ ∗ g 0 ⇔ V ∗ Σs∈S(F ∗,C0)πF̂ ∗ (s) f 0 (s) ≥ V ∗ Σs∈S(F ∗,C0)πF̂ ∗ (s) g 0 (s) . (4) 
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Moreover, the functions V and V ∗ are unique up to positive transformations and V (p) = 

V ∗ (p) for all p ∈ Δ(C) , the probability measures π ̂  and π ̂  are unique, π ̂  (S (F, C)) = F F ∗ F 

πF̂ ∗ (S (F ∗, C 0)) = 1, and, for all s ∈ S (F, C) . 

πF̂ ∗ (s)
πF̂  (s) = . (5)

πF̂ ∗ (S (F, C)) 

3.2 Discovery of new feasible acts and its representation 

The discovery of new feasible acts expands the conceivable state space and increases the 

number of coordinates defining a state. To state the next axiom, which is analogous to 

Axiom (A.7), we introduce the following additional notations: If F ⊂ F 0 then for each s ∈ 

CF there corresponds an event E (s) ⊂ CF 0 defined by E (s) = {s0 ∈ CF 0 | P CF (s0) = s}, 
3where P CF (·) is the projection of CF 0 on CF . For s ∈ CF , we refer to the set E (s) as 

the inverse image under P CF of s on CF 0 . 

(A.8) (Replacement consistency II) For every given C, all pairs of feasible acts F 
ˆ 0 ˆand F 0 such that F ⊂ F 0 , all s ∈ S(F, C), η ∈ [0, 1], f, g ∈ F , and f 0, g ∈ F 0 , if 

∗(C) 0 ∗(C)f = δc 
{s}δ

c∗(C), g = g = ηδc ∗(C) + (1 − η) δc∗(C), and f 0 = δc
E(s)δ

c∗(C), then 
0it holds that f < ̂  g if and only if f 0 <F̂ 0 g .F 

Like Axiom (A.7), Axiom (A.8) concerns bets that involve only the best and worst 

consequences in C. It asserts that the ranking of subjective bets that pay off in state s and 

the objective bets that pay off with probability η, conditional on a given set of conceivable 

acts, is the same as the ranking of subjective bets that pay off in the event E (s) and the 

objective bets that pay off with probability η conditional on the set of conceivable acts 

spanned by the discovery of new feasible acts. In other words, the axiom asserts that the 

decision maker’s ranking of subjective versus objective uncertainty is independent of the 

detail with which the subjective uncertainty is described. 

The representation theorem below describes how a decision maker’s beliefs evolve as he 

becomes aware of new feasible acts. Specifically, the decision maker updates his beliefs so 

that the probability of each state in the original state space is equal to that of its inverse 

image under P CF on CF 0 . In other words, since the event E (s) in CF 0 is a refinement of 

the probability of s in CF its probability is equal to that of s. 
0 

) ∈ CF3Suppose that | F |= r and | F |= k > r. Let s = (c1, ..., ck) ∈ CF 0 
, then P CF (s) = (c1, ..., cr . 
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Theorem 2 For each set F̂  of conceivable acts let < ̂  be a binary relation on F̂ , then,F 

for all F ,ˆ F̂ 0 , the following two conditions are equivalent: 

(i) < ̂  and <F̂ 0 each satisfy (A.1) - (A.5) and jointly, < ̂  and <F̂ 0 satisfy (A.6) andF F 

(A.8). 

(ii) There exist a real-valued, mixture continuous, strictly monotonic function V on 

Δ(C) and probability measures, π ̂  on CF and π ̂  on CF 0 , such that for all f, g ∈ F ,ˆ F F 0 � � � � 
f < ̂  g ⇔ V Σs∈S(F,C)π ̂  (s) f (s) ≥ V Σs∈S(F,C)π ̂  (s) g (s) . (6)F F F 

and, for all f 0, g0 ∈ F̂ 0 , � � � � 
f 0 <F̂ 0 g 0 ⇔ V Σs∈S(F 0,C)πF̂ 0 (s) f

0 (s) ≥ V Σs∈S(F 0,C)πF̂ 0 (s) g 0 (s) . (7) 

Moreover, the function V is unique up to positive transformations, the probability 

measures π ̂  and π ̂  are unique, π ̂  (S (F, C)) = π ̂  (S (F 0, C)) = 1, and, for all s ∈F F 0 F F 0 

S (F, C) . 

π ̂  (s) = πF̂ 0 (E (s)) (8)F 

where E (s) is the inverse image under P CF of s on S (F 0, C) . 

3.3 Discovery of new feasible states and the nullification of existing fea-

sible states and their representations 

When links between feasible acts and consequences that were believed to exist are discov-

ered to be non-existent, the feasible state space contracts. Similarly, when such links that 

were believed not to exist are discovered to exist, the feasible state space expands. In the 

first instance, an event that was believed to be nonnull and was assigned positive proba-

bility becomes a null event and must be assigned zero probability. In the second instance, 

an event that was believed to be null and was assigned zero probability becomes a nonnull 

event and must be assigned positive probability. 

The next axiom depicts the evolution of the preference relation in these circumstances. 

Clearly, the first instance described above corresponds to the usual Bayesian updating. 

The second instance, in which the posterior of a zero-probability event is positive, does not 

admit Bayesian updating. It is, however, consistent with our model of reverse Bayesianism. 

In fact, in our model the two instances are treated symmetrically, which is reassuring given 

that they depict symmetrically opposing discoveries. 
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(A.9) (Replacement consistency III) For all pairs of conceivable acts F̂  and F̂  
S0 , all 

0 0f, g ∈ F̂  and f 0, g , ∈ F̂  
S0 , if g = g = ηδc ∗(C) + (1 − η) δc∗(C) for some η ∈ [0, 1] and � �∗(C) δc∗(C)f = f 0 = δc 

{s} S(F,C)∩S0(F,C)g , for some s ∈ S(F, C) ∩ S0(F, C), then it 
0holds that f < ̂  g if and only if f 0 < ̂  g .F FS0 

The next representation theorem describes how a decision maker’s beliefs are updated as 

he discovers that links between feasible acts and consequences that he believed impossible 

are in fact possible and when he discovers that links that he believed possible are in fact 

impossible. 

Theorem 3 For each set of conceivable acts F ,ˆ let < ̂  be a binary relation on F̂  then,F 

for all F̂  and F̂S0 , the following two conditions are equivalent: 

(i) Each < ̂  and < ̂  satisfy (A.1) - (A.5) and jointly < ̂  and < ̂  satisfy (A.6) and F FS0 F FS0 

(A.9). 

(ii) There exist a real-valued, mixture continuous, strictly monotonic function V on 

Δ(C) and, for all F̂  and F̂  
S0 , there are probability measures π ̂  and π ̂  on CF such that, F FS0 

for all f, g ∈ F ,ˆ � � � � 
f < ̂  g ⇔ V Σs∈S(F,C)π ̂  (s) f (s) ≥ V Σs∈S(F,C)π ̂  (s) g (s) . (9)F F F 

and, for all f 0, g0 ∈ F̂  
S0 , � � � � 

f 0 < ̂  g 0 ⇔ V Σs∈S0(F,C)π ̂  (s) f 0 (s) ≥ V Σs∈S0(F,C)π ̂  (s) g 0 (s) . (10)FS0 FS0 FS0 

Moreover, the function V is unique up to positive transformations, the probability measures 

and π ̂  are unique, π ̂  (S (F, C)) = π ̂  (S0 (F, C)) = 1, andπF̂  FS0 F FS0 

π ̂  (s) π ̂  (s)
F FS0 = (11)

π ̂  (s0) π ̂  (s0)F FS0 

for all s, s0 ∈ S (F, C) ∩ S0 (F, C) . 

If S0 (F, C) ⊂ S (F, C) then Theorem 3 describes the Bayesian updating (that is, (11) 

may be written as π ̂  (s) = π ̂  (s) /π ̂  (S0 (F, C)) , for all s ∈ S0 (F, C)). If S0 (F, C) ⊃FS0 F F 

S (F, C) then π ̂  (s) = π ̂  (s) /π ̂  (S (F, C)) for all s ∈ S (F, C) .F FS0 FS0 
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4 Concluding Remarks 

Grant and Polak (2006) propose an alternative axiomatization of probabilistically sophisti-

cated choice behavior. Departing from the model of Machina and Schmeidler (1995), they 

replace the axioms of monotonicity, (A.3), and replacement, (A.4). This work is insightful 

in that it “decomposes” the independence assumptions that are built into the replacement 

axiom of Machina and Schmeidler. However, since the representations in the two models 

are the same, and the of axioms of both Machina and Schmeidler and Grant and Polak 

are necessary and sufficient, they are equivalent. Hence, if we were to replace axioms (A.3) 

and (A.4) with the axioms of Grant and Polak, and add our axioms (A.6) through (A.9) to 

characterize the evolution of beliefs in the wake of discovery of new feasible consequences, 

new feasible acts and new facts about the links between them, we would obtain, as corol-

laries, the analogues of Theorems 1, 2, and 3 in the axiomatic framework of Grant and 

Polak (2006). 

5 Proofs 

5.1 Proof of Theorem 1 

(i) ⇒ (ii) . Since < ̂  and <F̂ ∗ satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler F 

(1995) implies (3) and (4) as well as the uniqueness of V and V ∗ and of π ̂  and πF̂ ∗ . By F 

(3) and (4), the restriction of < ̂  and < ̂  to the constant acts p ∈ Δ(C) imply thatF F ∗ 

V (p) ≥ V (q) if and only if p < ̂  q and p < ̂  q if and only if V ∗ (p) ≥ V ∗ (q) . By (A.6), F F ∗ 

p < ̂  q if and only if p < ̂  q. Thus, by the uniqueness of the representations, V and V ∗ 
F F ∗ 

can be chosen so that V = V ∗ on Δ(C) . 

To prove (5) suppose that, for some s ∈ S (F, C) , 

πF̂ ∗ (s)
πF̂  (s) 6= . 

πF̂ ∗ (S (F, C)) 

Without loss of generality, let 

πF̂ ∗ (s)
π ̂  (s) > := πF̂ ∗ (s | S (F, C)) .F πF̂ ∗ (S (F, C)) � � ∗(C)Then there is η ∈ πF̂ ∗ (s | S (F, C)) , πF̂  (s) . By the representation in (3), f = δc 

{s}δ
c∗(C) ∼F̂� �∗(C) +(s) δc 1 − π ̂  (s) δc∗(C)πF̂  F . 
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Since π ̂  (s) > η > π ̂  (s | S (F, C)), by Axiom (A.3), we have the following ranking F F ∗ 

of lotteries: 

πF̂  (s) δc ∗(C) + 
� 
1 − πF̂  (s) 

� 
δc∗(C) �F̂  ηδc ∗(C) + (1 − η) δc∗(C) (12) 

and � � 
ηδc ∗(C) + (1 − η) δc∗(C) � ̂  π ̂  (s | S (F, C)) δc ∗(C) + 1 − π ̂  (s | S (F, C)) δc∗(C) (13)F ∗ F ∗ F ∗ � � 
for all η ∈ π ̂  (s | S (F, C)) , π ̂  (s) .F ∗ F 

Now, by (13) and Axiom (A.3), � � � � 
ηδc ∗(C) + (1 − η) δc∗(C) ηδc ∗(C) + (1 − η) δc∗(C) 

S(F,C)� � � �� � 
δc∗(C)� F̂ ∗ πF̂ ∗ (s | S (F, C)) δc ∗(C) + 1 − πF̂ ∗ (s | S (F, C)) ηδc ∗(C) + (1 − η) δc∗(C) , 

S(F,C) 

which is equivalent to 

ηδc ∗(C) + (1 − η) δc∗(C) � � � �� � 
�F̂ ∗ F ∗ (s | S (F, C)) δc ∗(C) + 1 − π ̂  (s | S (F, C)) δc∗(C) ηδc ∗(C) + (1 − η) δc∗(C) ,π ̂  F ∗ 

S(F,C) 

which, by (4), is equivalent to � � 
V ∗ ηδc ∗(C) + (1 − η) δc∗(C) 

� �� � 
> V ∗ πF̂ ∗ (S(F, C)) πF̂ ∗ (s | S(F, C))δc ∗(C) + 1 − πF̂ ∗ (s | S(F, C)) δc∗(C) 

!�� �� 
+ 1 − πF̂ ∗ (S(F, C)) ηδc ∗(C) + (1 − η) δc∗(C) (14) !�� � � �� ∗(C) += V ∗ πF̂ ∗ (s)δc πF̂ ∗ (S(F, C)) − πF̂ ∗ (s) δc∗(C) + 1 − πF̂ ∗ (S(F, C)) ηδc ∗(C) + (1 − η) δc∗(C) . 

By (4), inequality (14) is equivalent to � � �� 
∗(C) δc∗(C)ηδc ∗(C) + (1 − η) δc∗(C) �F̂ ∗ δ

c 
{s} S(F,C) ηδc ∗(C) + (1 − η) δc∗(C) . (15) 

Now, by (12) and (3), � � � � 
∗(C) + δc∗(C)V π ̂  (s) δc � 

1 − πF̂  (s) 
� 

> V ηδc ∗(C) + (1 − η) δc∗(C) ,F 
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which is equivalent to 

∗(C)δc 
{s}δ

c∗(C) � ̂  ηδc ∗(C) + (1 − η) δc∗(C). (16)F 

But the act on the left hand side of (15) is the act g0 in Axiom (A.7), while the act on 

the right hand side of (15) is the act f 0 . Also, the act on the left hand side of (16) is the 

act f in Axiom (A.7), while the act on the right hand side of (16) is the act g. Expressions 

(15) and (16) thus imply that f � ̂  g and g0 � ̂  f 0 , a contradiction of Axiom (A.7). F F ∗ 

(ii) → (i) . That < ̂  and < ̂  satisfy (A.1) - (A.5) is an implication of the Theorem of F F ∗ 

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the equality 

of V and V ∗ on Δ(C) . 

To show that (A.7) holds, let f, g ∈ F̂  and f 0, g0 ∈ F̂ ∗ be as in (A.7). By (3), � � � � 
∗(C) + δc∗(C)f < ̂  g ⇔ V π ̂  (s) δc � 

1 − π ̂  (s) 
� 

≥ V ηδc ∗(C) + (1 − η) δc∗(C) .F F F 

By the equality of V and V ∗ on Δ(C) and (5), the last inequality holds if and only if � � � � � �πF̂ ∗ (s) π ̂  (s)F ∗ 
V ∗ δc ∗(C) + 1 − δc∗(C) ≥ V ∗ ηδc ∗(C) + (1 − η) δc∗(C) . 

πF̂ ∗ (S (F, C)) πF̂ ∗ (S (F, C)) 
(17) 

which, by (4), is equivalent to � � 
πF̂ ∗ (s) π ̂  (s)F ∗ 

δc ∗(C) + 1 − δc∗(C) <F̂ ∗ ηδc ∗(C) + (1 − η) δc∗(C). (18)
πF̂ ∗ (S (F, C)) π ̂  (S (F, C))F ∗ 

Now, since the left-hand-side lottery in (18) first-order stochastically dominates the 

right-hand side lottery, by Axiom (A.3) � � � �� � 
πF̂ ∗ (s | S (F, C)) δc ∗(C) + 1 − π ̂  (s | S (F, C)) δc∗(C) ηδc ∗(C) + (1 − η) δc∗(C) 

F ∗ 
S(F,C)� � � � 

< ˆ ηδc ∗(C) + (1 − η) δc∗(C) ηδc ∗(C) + (1 − η) δc∗(C) ,F ∗ 
S(F,C) � � � � 

Hence, (17) holds if and only if V ∗ ξδc ∗(C) + (1 − ξ) δc∗(C) ≥ V ∗ ηδc ∗(C) + (1 − η) δc∗(C) , 

where � 
πF̂ ∗ (s) � � � � � 

ξ := πF̂ ∗ (S (F, C)) + 1 − πF̂ ∗ (S (F, C)) η = πF̂ ∗ (s)+ 1 − πF̂ ∗ (S(F, C)) η. 
πF̂ ∗ (S (F, C)) 

Since ξδc ∗(C)+(1 − ξ) δc∗(C) ∈ Δ(C) is the constant act whose payoff is Σs∈S(F ∗,C0)π ̂  (s) f 0 (s) ,F ∗ 

0the representation result in (4) implies that (17) holds if and only if f 0 <F̂ ∗ g .♠ 
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5.2 Proof of Theorem 2 

(i) ⇒ (ii) . Since < ̂  and < ̂  satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler F F 0 

(1995) implies a representation as in (6) as well as the uniqueness of V and of πF̂  for each 

level of awareness. By (A.6), p < ̂  q if and only if p <F̂ 0 q. Thus, by the uniqueness of the F 

representations, V can be chosen to be invariant to the level of awareness. 

To prove (8), suppose that, for some s ∈ S (F, C) , π ̂  (s) 6= πF̂ 0 (E(s)). Without lossF � � 
of generality, let π ̂  (s) > π ̂  (E(s)). Then there exists η ∈ π ̂  (E(s)), π ̂  (s) , and by F F 0 F 0 F 

Axiom (A.3), we have the following ranking of lotteries: 

π ̂  (s) δc ∗(C) + 
� 
1 − π ̂  (s) 

� 
δc∗(C) � ̂  ηδc ∗(C) + (1 − η) δc∗(C) (19)F F F 

and 
∗(C) + δc∗(C)ηδc ∗(C) + (1 − η) δc∗(C) �F̂ 0 πF̂ 0 (E(s))δ

c � 
1 − πF̂ 0 (E(s)) 

� 
(20) � � 

for all η ∈ π ̂  (E(s)), π ̂  (s) .F 0 F 

However, by (6), � �∗(C)f = δc 
{s}δ

c∗(C) ∼ ̂  π ̂  (s) δc ∗(C) + 1 − π ̂  (s) δc∗(C).F F F 

Also, by (7), 

f 0 = δc ∗(C) 
E(s)δ

c∗(C) ∼ ̂  π ̂  (E(s)) δc ∗(C) + 
� 
1 − π ̂  (E(s)) 

� 
δc∗(C).F 0 F 0 F 0 

Thus, the preference in (19) is equivalent to f � ̂  g, while the preference (20) is equivalent F 

to g0 �F̂ 0 f
0 . This contradicts Axiom (A.8). 

(ii) → (i) That < ̂  and <F̂ 0 satisfy (A.1) - (A.5) is an implication of the Theorem of F 

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the function 

V being independent of F̂ . 

To show that (A.8) holds, let f, g ∈ F̂  and f 0, g0 ∈ F̂ 0 be as in (A.8). By (6), � � � � 
∗(C) + δc∗(C)f < ̂  g ⇔ V π ̂  (s) δc � 

1 − π ̂  (s) 
� 

≥ V ηδc ∗(C) + (1 − η) δc∗(C) .F F F 

By (8), the last inequality holds if and only if � � � � 
∗(C) + δc∗(C)V π ̂  (E(s)) δc � 

1 − π ̂  (E(s)) 
� 

≥ V ηδc ∗(C) + (1 − η) δc∗(C) . (21)F 0 F 0 

0By (7), the expression in (21) is equivalent to f 0 �F̂ 0 g . Thus, Axiom (A.8) must hold.♠ 
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5.3 Proof of Theorem 3 

(i) ⇒ (ii) . Since < ̂  and < ̂  satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler F FS0 

(1995) implies a representation as in (9) as well as the uniqueness of V and of π ̂  for each F 

level of awareness. By (A.6), p < ̂  q if and only if p < ̂  q. Thus, by the uniqueness ofF FS0 

the representations, V can be chosen to be invariant to the level of awareness. 
0For some s ∈ S(F, C) ∩ S0(F, C), let g = g = ηδc ∗(C) + (1 − η) δc∗(C), and f, f 0 be as in 

Axiom (A.9). Suppose that f ∼ ̂  g. But f ∼ ̂  g if and only if F F � � �� 
∗(C)δc δc∗(C) 

{s} S(F,C)∩S0(F,C) ηδc ∗(C) + (1 − η) δc∗(C) ∼ ̂  ηδc ∗(C) + (1 − η) δc∗(C). (22)F 

By the representation in (9) the last indifference holds if and only if � � �∗(C) + δc∗(C) +V (s)δc (S(F, C) ∩ S0(F, C)) − π ̂  (s) (23)πF̂  πF̂  F � �� 
(1 − π ̂  (S(F, C) ∩ S0(F, C))) ηδc ∗(C) + (1 − η) δc∗(C) 

F � � 
= V ηδc ∗(C) + (1 − η) δc∗(C) 

But (23) holds if and only if π ̂  (s) + (1 − π ̂  (S(F, C) ∩ S0(F, C)))η = η. Hence,F F 

π ̂  (s)Fη = . (24)
π ̂  (S(F, C) ∩ S0(F, C))F 

0By Axiom (A.9), f ∼ ̂  g if and only if f 0 ∼ ̂  g , which is equivalent toF FS0 � � �� 
∗(C)δc δc∗(C) 

{s} S(F,C)∩S0(F,C) ηδc ∗(C) + (1 − η) δc∗(C) ∼ ̂  ηδc ∗(C) + (1 − η) δc∗(C).FS0 

(25) 

By the representation in (10), (25) holds if and only if � � � 
∗(C) + δc∗(C)V π ̂  (s)δc π ̂  (S(F, C) ∩ S0(F, C)) − π ̂  (s) (26)FS0 FS0 FS0 � �� 

+(1 − πF̂  
S0 
(S(F, C) ∩ S0(F, C))) ηδc ∗(C) + (1 − η) δc∗(C) 

� � 
= V ηδc ∗(C) + (1 − η) δc∗(C) 

But (26) holds if and only if π ̂  (s)+ (1 − π ̂  (S(F, C) ∩ S0(F, C)))η = η. Thus, f 0 ∼ ̂  g 

FS0 

FS0 FS0 FS0 

if and only if 

η = 
π ̂  

πF̂  
S0 
(s) 

.
(S(F, C) ∩ S0(F, C)) 

(27) 
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By (24) and (27 we have that 

π ̂  (s) π ̂  (s)
F FS0 = . (28)

π ̂  (S(F, C) ∩ S0(F, C)) π ̂  (S(F, C) ∩ S0(F, C))F FS0 

An analogous argument applies for any s0 ∈ S(F, C) ∩ S0(F, C). We therefore also have 

that, for any s0 ∈ S(F, C) ∩ S0(F, C), 

π ̂  (s0) π ̂  (s0)
F FS0 = . (29)

π ̂  (S(F, C) ∩ S0(F, C)) π ̂  (S(F, C) ∩ S0(F, C))F FS0 

Together (28) and (29) imply that 

π ̂  (s) (s)FS0 πF̂  = . (30)
π ̂  (s0) π ̂  (s0)FS0 F 

(ii) → (i) . That < ̂  and < ̂  satisfy (A.1) - (A.5) is an implication of the Theorem of F FS0 

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the function 

V being independent of F̂ . 

To show that (A.9) holds, let f, g ∈ F̂  and f 0, g0 ∈ F̂  
S0 be as in (A.9). By (9), f < ̂  gF 

if and only if � � �∗(C) + δc∗(C)V π ̂  (s)δc π ̂  (S(F, C) ∩ S0(F, C)) − π ̂  (s)F F F 

� �� 
+(1 − π ̂  (S(F, C) ∩ S0(F, C))) ηδc ∗(C) + (1 − η) δc∗(C) 

F � � 
≥ V ηδc ∗(C) + (1 − η) δc∗(C) . 

By first order stochastic dominance, the last inequality holds if and only if 

π ̂  (s)F ≥ η. (31)
π ̂  (S(F, C) ∩ S0(F, C))F 

Suppose that g0 � ̂  f 0 . By (10), g0 � ̂  f 0 if and only if FS0 FS0 � � � 
∗(C) + δc∗(C)V π ̂  (s)δc π ̂  (S(F, C) ∩ S0(F, C)) − π ̂  (s)FS0 FS0 FS0 
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� �� 
+(1 − πF̂  

S0 
(S(F, C) ∩ S0(F, C))) ηδc ∗(C) + (1 − η) δc∗(C) 

� � 
< V ηδc ∗(C) + (1 − η) δc∗(C) . 

By first order stochastic dominance, this holds if and only if π ̂  (s) + (1 − π ̂  (S(F, C) ∩FS0 FS0 

S0(F, C)))η < η. Hence, 
π ̂  (s) 

η > 
FS0 . (32)

πF̂  
S0 
(S(F, C) ∩ S0(F, C)) 

Now, expressions (31) and (32) imply that 

π ̂  (s) π ̂  (s)
F FS0 > . (33)

π ̂  (S(F, C) ∩ S0(F, C)) π ̂  (S(F, C) ∩ S0(F, C))F FS0 

However, by (11), 
π ̂  (s0) πF̂  

S0 
(s0)

F = (34)
π ̂  (s) πF̂  

S0 
(s)F 

for all s, s0 ∈ S(F, C) ∩ S0(F, C). Summing over s0 ∈ S(F, C) ∩ S0(F, C) and rearranging, 

(34) implies that 

π ̂  (s) πF̂  
S0 
(s)

F = 
π ̂  (S(F, C) ∩ S0(F, C)) π ̂  (S(F, C) ∩ S0(F, C))F FS0 

which contradicts (33).♠ 

19 



References 

[1] Anscombe, Francis J. and Robert J. Aumann (1963) “A Definition of Subjective Prob-

ability,” Annals of Mathematical Statistics 43, 199–205. 

[2] Grant, Simon and Ben Polak (2006) “Bayesian Beliefs with Stochastic Monotonicity: 

An Extension of Machina and Schmeidler,” Journal of Economic Theory 130, 264 -

282. 

[3] Karni, Edi and David Schmeidler (1991) “Utility Theory with Uncertainty,” in Werner 

Hildenbrand and Hugo Sonnenschein, eds., Handbook of Mathematical Economics vol. 

IV. Elsevier Science Publishers B.V. 

[4] Karni, Edi and Marie-Louise Vierø (2012) ““Reverse Bayesianism”: A Choice-Based 

Theory of Growing Awareness,” American Economic Review forthcoming 

[5] Machina, Mark and David Schmeidler (1992) “A More Robust Definition of Subjective 

Probability,” Econometrica 60, 745 - 780. 

[6] Machina, Mark and David Schmeidler (1995) “Bayes without Bernoulli: Simple Condi-

tions for Probabilistically Sophisticated Choice,” Journal of Economic Theory 67, 106 

- 128. 

[7] Savage, Leonard J. (1954) The Foundations of Statistics. John Wiley & Sons. 

[8] Schmeidler, David and Peter Wakker (1987) “Expected Utility and Mathematical Ex-

pectation,” in John Eatwell, Murray Milgate, and Peter Newman, eds., The New Pal-

grave: A Dictionary of Economics. Macmillan Press. 

20 


