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Subjective Probabilities on a State Space† 

By Edi Karni* 

This paper extends the analytical framework of Karni (2011) to 
include a state space and advances a choice-based defnition of 
subjective probabilities on this space. These probabilities represent 
the beliefs of Bayesian decision makers regarding the likelihoods of 
events, thus resolving a long-standing, fundamental diffculty with 
the defnition of subjective probabilities. (JEL D81, D83) 

Beginning with Frank P. Ramsey (1931) and Bruno de Finetti (1937) and culmi-
nating with Leonard J. Savage (1954), the concept of choice-based subjective 

probabilities has been a subject of much interest and some controversy. With rare 
exceptions, subjective probabilities are treated as an aspect of the representation of 
a decision maker’s preference relation, which defnes his degree of belief regarding 
the likelihood of events. According to this approach, whether, in his mind, the deci-
sion maker entertains beliefs that can be quantifed by probabilities, is immaterial as 
long as his preferences may be represented using such probabilities.1 

A radically different approach considers the decision maker’s beliefs to be a 
cognitive phenomenon that feeds into the decision-making process. According to 
this approach the subjective probabilities measure, rather than defne, the decision 
maker’s beliefs. 

To grasp the difference between the two notions of subjective probability, it is 
convenient to think of the decision maker as a black box capable, when presented 
with pairs of alternatives, to select the preferred alternative, or express indifference 
between the two. Invoking this metaphor, consider the following thought experi-
ment. Let us “construct” a black box into which we upload probabilities of events, 
utilities of consequences, and a set of instructions to calculate for each alternative its 
expected utility, and to select the alternative that yields the highest expected utility. 
Next we present the box with pairs of alternatives and record its choices. Is it pos-
sible to recover the probabilities and utilities that were uploaded into the black box 
by observing its choice pattern? 

To answer this question, suppose that a black box is instructed to choose among 
bets on the outcome of the fnal game of the world cup, mimicking the betting 
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behavior of a soccer enthusiast whose country made it to the fnal. Suppose that 
our soccer fan believes that his country has equal chance of winning or losing 
the fnal match. Accordingly, let the black box assign equal probabilities to vic-
tory and defeat. The consequences of the bets are their state-contingent monetary 
payoffs. Assume that the soccer fan’s utility of money depends on the whether his 
country wins (victory state) or loses (defeat state). To keep things simple, sup-
pose that, for the same payoff, his utility in the victory state is twice that of the 
defeat state. Consequently, instructed to calculate expected utility, the black box 
assigns the bet that pays xv and xd in the victory and defeat states, respectively, 
the expected utility 0.5 × 2u(W + xv) + 0.5 × u(W + xd), where u is the utility 
function uploaded into the black box and W denotes the soccer fan’s initial wealth. 
Clearly, the “true beliefs” of the black box are represented by the uniform prob-
ability distribution. 

To infer the probabilities from the black box’s choices, apply any of the standard 
elicitation methods. For instance, applying the quadratic scoring rule method, we 
ask the black box to select the value of α, thereby choose a bet whose payoff is 
xv(α) = −rα2 and xd(α) = −r (1 − α)2, where r > 0, in the win and loss state, 
respectively. It is well known that, as r tends to zero, the optimal value of α is an 
estimate of the probability of the loss state. In this example, as r tends to zero, the 
optimal α tends to 1/3. Clearly, this probability is not what was uploaded into the 
black box, and consequently, does not represent its true beliefs. In fact, the applica-
tion of the quadratic scoring rule identifed the value of the normalized coeffcient 
of u(W + xd). In other words, using the output of the scoring rule method, we attri-
bute to the black box the calculation of the expected utility of the bets according to 
formula 2/3 × u(W + xv) + 1/3 × u(W + xd). Selection of the bets according to 
this formula is exactly the same as the choice behavior governed by the original set 
of instructions. The probabilities 2/3 and 1/3 defne, rather than measure, the black 
box’s beliefs. 

This discussion points to a fundamental diffculty with the defnitional approach. 
According to this approach, the uniqueness of the subjective probabilities is based on 
a normalization which is not implied by the structure of the preference relation and, 
consequently, is devoid of choice-theoretic meaning. For example, the defnitions 
of subjective probabilities in the works of Savage (1954), F. J. Anscombe and R. 
J. Aumann (1963), Mark Machina and David Schmeidler (1992, 1995), and Itzhak 
Gilboa and Schmeidler (1989), are based on the convention that constant acts (that 
is, alternatives that assign the same consequence to every state) yield the same util-
ity in every state. This convention is not testable within the analytical framework of 
these models.2 Nevertheless, insofar as the characterization of the decision maker’s 
choice behavior is concerned, the choice of normalization is immaterial. Why, then, 
is it important to obtain a “correct” representation of the decision maker’s beliefs? 

The answer to this question depends on the applications of the theory one has in 
mind. If one’s sole concern is modeling choice behavior in the face of uncertainty, 

2 In the same vein, Karni’s (1993) defnition of subjective probability with state-dependent preferences uses the 
boundedness of the utility function to obtain the required normalization. Karni and Schmeidler (1993) and Robert F. 
Nau (1995) use the marginal rates of substitution among payoffs in different states to normalize the utility functions. 
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then the issue of whether the probabilities represent the decision maker’s beliefs is 
irrelevant. In this case, the only signifcance of the subjective expected utility repre-
sentation is its additively separable functional form. However, additive separability 
can be obtained with fewer restrictions on the structure of the underlying prefer-
ences. For instance, in the Anscombe and Aumann (1963) framework, additively 
separable representation characterizes Archimedean weak orders that satisfy the 
independence axiom of expected utility theory. In particular, state-independence, 
the axiom requiring that risk attitudes be independent of the state, is unnecessary for 
the representation. Imposing state-independence renders the model inapplicable for 
the analysis of important decision problems, such as the demand for health and life 
insurance, in which the state affects the decision maker’s risk attitudes. 

Readiness to restrict the theory so as to separate utilities from probabilities stems 
from the original motivation for developing choice-based subjective probabili-
ties, namely, to furnish choice-based foundations of the Bayesian prior. From this 
viewpoint, if the probabilities defned by the model are devoid of choice-theoretic 
meaning, then we are back to square one. Put differently, additively separable repre-
sentation of the preference relation can be interpreted as expected utility represen-
tation with respect to a uniform prior and state-dependent utility functions. Unless 
the prior probabilities measure the decision maker’s beliefs, using the uniform prior 
seems at least as compelling and, in practice, simpler than using subjective prob-
abilities obtained by an arbitrary normalization of the utility function. 

In this paper, I pursue the development of an alternative model based on the mea-
surement approach to the defnition of subjective probabilities explored in Karni 
(2011). In that work, I dispense with Savage’s notion of a state space, proposing 
instead a new analytical framework that consists of a set, Θ, of effects (physical 
phenomena on which the decision maker may place bets and which may, or may 
not, impact his well-being); a set, A, of actions (initiatives by which the decision 
maker believes he can affect the likelihoods of ensuing effects); a set, B, of bets _ 
on the effects; and a set of informative and not informative signals, X, received 
before taking actions and choosing bets. The choice set, , consists of information-
contingent plans (strategies) for choosing actions and bets (that is, a strategy is a _ 
function i : X → A × B). In this framework, Karni (2011) develops a choice-based, 
Bayesian, decision theory in which decision makers’ preferences are represented by 

(1) i ↦ ∑ [∑ π(θ, x |ai(x)) [u (bi(x) (θ), θ) + v (ai(x))]] , 
_ 

x∈X θ∈Θ 

where ai(x) and bi(x) are the action and bet assigned to the observation x by the strat-
egy i; {u( ⋅ , θ)}θ∈Θ are effect-dependent utility functions on the monetary payoffs 
of the bets; v is the (dis)utility of actions; and {π( ⋅ , ⋅ |a)}a∈A is a unique family of _ 
action-dependent, joint, subjective probabilities distributions on Θ × X such that 
the prior distributions {π( ⋅ |o, a)}a∈A and the posterior distributions {π( ⋅ |x, a)}a∈A 

on Θ are linked by Bayes rule and represent the decision maker’s prior and pos-
terior beliefs. It is worth underscoring the fact that the family, {π( ⋅ , ⋅ |a)}a∈A, of 
action-dependent, joint subjective probability distributions is the only family of 
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such distributions that incorporates new information solely through its effect on the 
decision-maker’s beliefs rather than his tastes. 

This paper builds upon and extends the work of Karni (2011). The following 
example lends concrete meaning to the abstract terms mentioned above and serves 
to motivate the extensions of this work. Consider a decision maker faced with the 
prospect of an approaching hurricane. The decision maker must make a plan that, 
contingent on the weather reports, may include boarding up his house, moving his 
family to a shelter, and betting on the storm’s damage (that is, taking out insurance). 
The uncertainty is resolved once the weather forecast is obtained, the plan is put into 
effect, the storm passes, and its path and force have been determined. 

In this example, effects correspond to the potential material and bodily damage 
and actions are the initiatives (e.g., boarding up the house, moving to a shelter) 
the decision maker can take to mitigate the damage. Bets are alternative insurance 
policies and observations are weather forecasts. The uncertainty in this example is 
resolved in two stages. In the frst stage a weather forecast obtains, upon the receipt 
of which, an action and a bet, prescribed by the strategy, are put into effect. In the 
second stage, the path and force of the hurricane are determined, the associated 
damage is realized and insurance indemnity is paid. 

Consider the issue of subjective probabilities. At the point at which he contem-
plates his strategies, there are two aspects of uncertainty about which, presumably, 
the decision maker entertains beliefs. The frst concerns the likelihoods of alterna-
tive weather reports and, conditional on these reports, the likelihoods of subsequent 
path-force combinations of the approaching hurricane. The second is the likelihoods 
of the ensuing levels of damage (the effects). Clearly, the likelihoods of the latter are 
determined by those of the former coupled with the actions that were taken, in the 
interim, by the decision maker. 

Karni (2011) deals solely with the second aspect of uncertainty and beliefs. The 
main objective of this paper is to extend the analytical framework to include a state 
space and defne a unique, choice-based, subjective probability measure on the state 
space generating the family of joint probability distributions {π( ⋅ , ⋅ |a)}a∈A that fg-
ure in the representation. In terms of the hurricane example, my objective is to infer 
unique subjective probabilities on the path-force combinations of the approaching 
hurricane that are consistent with {π( ⋅ , ⋅ |a)}a∈A, thus resolving the fundamental dif-
fculty with the defnition of subjective probabilities mentioned above. 

As in Karni (2011), the approach is anchored in the revealed-preference meth-
odology and is Bayesian. The revealed-preference aspect maintains that a deci-
sion-maker’s choice among alternative courses of action refects his tastes for the 
ultimate outcomes and his beliefs regarding the likelihoods of the events in which 
these payoffs materialize. Consequently, the utility representing the decision mak-
er’s tastes and the probabilities representing his beliefs may be inferred from his 
choice behavior. The Bayesian aspect of the model takes as premises that: (i) new 
information affects the decision maker’s preferences, or choice behavior, through 
its effect on his beliefs rather than his tastes, and (ii) the posterior probabilities, 
representing the decision maker’s posterior beliefs, are obtained by the updating of 
the prior probabilities, representing his prior beliefs, using Bayes’ rule. It is worth 
underscoring that the presumption that the decision-maker’s posterior preference 
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relations are obtained from the prior preference relation by the updating of the sub-
jective probabilities leaving the utility functions intact, is critical for the uniqueness 
of the probabilities. 

Section I describes the analytical framework, including the defnition of a state-
space. It provides a brief summary of the preference structure and representation 
of Karni (2011). Section II defnes the measure space implied by the model and 
characterizes the unique probability measure on this space that generates the family 
of action-dependent subjective probability distributions on the effects introduced in 
Section I. Section III includes concluding remarks. The proofs are collected in the 
Appendix. 

I. The Model 

A. The Analytical Framework 

Following Karni (2011), let Θ be a fnite set of effects; let A be a connected sepa-
rable topological space, whose elements are referred to as actions; let X be a fnite 
set of observations or signals; denote by o the event that no observation materializes _ 
and defne X = X ∪ {o}3. A bet is a real-valued mapping on Θ, interpreted as mon-
etary payoffs contingent on the realized effect. Let B denote the set of all bets and 
assume that it is endowed with the ℝ|Θ| topology. Denote by b−θr the bet obtained 
from b ∈ B by replacing the θ-coordinate of b, b(θ), with r. 

Informative and noninformative signals may be received by the decision maker 
before he chooses a bet and an action, and affect his choice. The decision maker is 
supposed to formulate a strategy specifying the action-bet pairs to be implemented _ 
contingent on the observations. Formally, a strategy is a function i : X → A × B 
whose interpretation is a set of instructions specifying, for each observation, x, an 
action-bet pair, i(x) = (ai(x) bi(x)), to be implemented if the observation x obtains. 
The set of all strategies,  := (A × B)X 

_ 
, is endowed with the product topology. 

A decision maker is characterized by a preference relation ≽ on . The strict 
preference relation, ≻, and the indifference relation, ∼, are the asymmetric and 
symmetric parts of ≽, respectively. 

As usual, a consequence depicts those aspects of the decision problem that 
affect the decision maker’s ex-post well-being. In this model, a consequence is a 
triplet, (a, r, θ), representing, respectively, the action, the monetary payoff of the 
bet, and the effect. The set of all consequences is given by the Cartesian product 
c = A × ℝ × Θ. 

A state of nature, or a state, is a complete resolution of uncertainty, “a description 
of the world so complete that, if true and known, the consequences of every action 
would be known” (Kenneth J. Arrow 1971, 45). In this context, a state, s, is a func-
tion from  to c. The set s := {s :  → c } is the state space. Subsets of s are events. 
One of the elements of s is the true state. An event is said to obtain if the true state 
is an element of it. 

3 The interpretation of these terms is as in the introduction. 
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Uncertainty in this model is resolved in two stages. In the interim stage, an obser-_ 
vation, x ∈ X, obtains and the action and bet prescribed by each strategy for that 
observation are determined. In the second stage, the effect is realized and the payoff 
of the bet is determined. Let Ω be the set of all functions from the set of actions to 
the set of effects (that is, Ω := {ω : A → Θ}). Elements of Ω depict the resolution _ 
of uncertainty surrounding the effects. Thus, s = X × Ω and each state s = (x, ω) is _ 
an intersection of an informational event {x} × Ω and a material event X × {ω}. In 
other words, a state has two distinct dimensions corresponding to the two stages of 
the resolution of uncertainty, the purely informational dimension, x, and the sub-
stantive dimension, ω. Informational events do not affect the decision maker’s well-
being directly whereas material events might. 

In general, states are abstract resolutions of uncertainty. In some situations, how-
ever, it is natural to attribute to the states concrete interpretations. In the example 
of the hurricane in the introduction, the informational events are weather forecasts, 
and the material events correspond to the path and force of the hurricane. Another 
example, given by R. Duncan Luce and David H. Krantz (1971), envisions a passen-
ger who, to get from here to there, must choose among driving, taking a bus, or fy-
ing. Whether and when he arrives at his destination depends on conditions beyond 
his control, such as the weather, the mechanical functioning of the alternative means 
of transportation, roads congestion, and so forth. Conceivably, before choosing the 
mean of transportation and placing a bet on the outcome (e.g., by taking out insur-
ance) the passenger may get some relevant information (e.g., weather forecast, FAA 
report on near misses at the destination airport, road construction along his route, 
etc.) that may affect his decision. The uncertainty regarding the outcome of the trip 
is resolved once the weather forecast is obtained and the mechanical functioning of 
the alternative means of transportation, roads congestion, whether there has been a 
plane crash, and so forth become known. 

A main concern of this paper is to defne a σ-algebra, , on s and a unique prob-
ability measure, p, on the measurable space (s, ) such that (i) the conditioning of p 
on the noninformative signal o represents the decision maker’s prior beliefs and (ii) 
the conditioning of p on informative signals x ∈ X represent the decision maker’s 
posterior beliefs. 

Denote by i−x(a, b) the strategy in which the x-coordinate of i, i(x), is replaced 
by (a, b). The truncated strategy i−x is referred to as substrategy. For every given _ 
x ∈ X, denote by ≽x the induced preference relation on A × B defned by (a, b) ≽x 

(a′, b′) if and only if i−x(a, b) ≽ i−x(a′, b′). The induced strict preference relation, 
denoted by ≻x, and the induced indifference relation, denoted by ∼x, are the asym-
metric and symmetric parts of ≽x, respectively.4 The induced preference relation ≽o 

is referred to as the prior preference relation; the preference relations ≽x , x ∈ X are 
the posterior preference relations. An observation, x, is essential if (a, b) ≻x (a′, b′ ), _ 
for some (a, b), (a′, b′ ) ∈ A × B. I assume throughout that all elements of X are 
essential. 

4For preference relations satisfying the axioms in Karni (2011), described below, these relations are well-
defned. In particular, they are independent of i. 
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_ 
For every a ∈ A and x ∈ X, defne a binary relation ≽x

a on B by: for all b, b′ ∈ B, 
b ≽a

x b′ if and only if (a, b) ≽x (a, b′ ). The asymmetric and symmetric parts of ≽x
a 

are denoted by ≻a
x and ∼a

x, respectively. 
An effect, θ, is said to be nonnull given the observation-action pair (x, a) if 

(b−θr) ≻a
x (b−θr′ ), for some b ∈ B and r, r′ ∈ ℝ; it is null given the observation-

action pair (x, a) otherwise. Given a preference relation, ≽, denote by Θ(a,x) the 
subset of effects that are nonnull given the observation-action pair (x, a). Assume that 
Θ(a, o) = Θ, for all a ∈ A. Note that if ω(a) ∉ Θ(a, x), then the state (x, ω) is null. 

B. preferences on strategies and Their representation 

The structure of the preference relations is that of Karni (2011). For the sake of 
completeness it is described here briefy and informally. Let ≽ on  be a continu-
ous weak order satisfying coordinate independence (CI), (that is, the requirement 
that preferences between strategies be independent of the coordinates on which they 
agree5). In addition, let ≽ exhibit independent betting preferences (IBP), requiring 
that the “intensity of preferences” for monetary payoffs contingent on any given 
effect be independent of the action, and belief consistency (BC), asserting that, 
given any action, the preference relation on bets conditional on no new information 
is the same as that when new information may not be used to select the bet (that is, 
in and of itself, information is worthless). 

Bets whose payoffs offset the direct impact of the effects are dubbed constant 
utility bets. The analytical framework of this paper renders this notion a choice-base 
phenomenon. To grasp this claim, recall that actions affect decision makers in two 
ways: directly through their utility cost and indirectly by altering the probabilities of 
the effects. Moreover, only the indirect impact depends on the observations. In the 
case of constant utility bets, and only in this case, the intensity of the preferences 
over the actions is observation-independent. This means that the indirect infuence 
of the actions is neutralized, which can happen only if the utility associated constant 
utility bets is invariable across the effects. Let Bcu(≽) be a subset of all constant 
utility bets according to ≽. For suffciently rich set of actions and observations, 
Bcu(≽) is well-defned. The set of constant utility bets is said to be inclusive if for 
every (x, a) ∈ X × A and b ∈ B there is b ∈ Bcu(≽) such that b ∼a

xb. 
Invoking the notion of constant utility bets, the fnal two axioms require that 

the trade-offs between the actions and substrategies be independent of the constant 
utility bets, and that the direct effect of actions, measured by the preferential differ-
ence between constant utility bets, be independent of the observation. These require-
ments are referred to, respectively, as trade-off independence (TI), and conditional 
monotonicity (CM). 

The main theorem in Karni (2011) asserts that if Bcu(≽) is inclusive, then ≽ on  
is a continuous weak order satisfying the aforementioned axioms if and only if there 
exist continuous, real-valued functions {u( ⋅ , θ) | θ ∈ Θ} on ℝ, v ∈ ℝA, and a unique 

5 It is analogous to but weaker than Savage’s (1954) sure-thing principle. See Peter P. Wakker (1989) for details. 
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_ 
family, {π( ⋅ , ⋅ |a) |a ∈ A} of joint probability measures on X × Θ such that ≽ on i 
is represented by 

(2) i ↦ ∑
_ 

μ(x) ∑ π(θ |x, ai(x))u (bi(x) (θ), θ) + v (ai(x)) ,[ ]
x∈X θ∈Θ 

_ 
where π(x, θ |a) for all x ∈ X  is independent of a, π(θ |x, a)μ(x) = ∑θ∈ϴ _ 
= π(x,θ|a)/μ(x) for all (x,a) ∈ X × A, π(θ|o,a) = (1/(1 − μ(o)))∑ x∈X π(x,θ|a) 
for all a ∈ A. Moreover, the family of utility functions is unique in the sense 
that if {u( ⋅ , θ) | θ ∈ Θ}, and v ∈ ℝA is another set of utilities that, together with 
{π( ⋅ , ⋅ |a) |a ∈ A}, represent ≽, then u( ⋅ , θ) = mu( ⋅ , θ) + k, m > 0 and v = mv + k′. _ 

Note that, for every constant utility bet, b, u(
_ 
b(θ), θ) = u(

_ 
b), for all θ ∈ Θ. 

II. Subjective Probabilities on the State Space 

A. Action-Dependent subjective probabilities on s 

The family of joint probability distributions on observations and effects that 
fgure in the representation (2) of the preference relation, can be projected on the 
underlying state space to obtain a corresponding family of action-dependent, sub-
jective, probability measures. Moreover, this family of measures is the only such 
family that is consistent with the (unique) joint probability distributions on observa-
tions and effects. 

To construct the aforementioned family of probability measures, I invoke the 
fact that the state space can be partitioned to informational events, corresponding 
to the observations, and, for each action, it can be partitioned into material events _ 
corresponding to the effects. Formally, let  = {{x} × Ω|x ∈ X } then  constitutes 
an informational partition of s. To construct the material partitions, fx a ∈ A and, _ 
for every θ ∈ Θ, let a(θ) := {ω ∈ Ω|ω(a) = θ}. Then a = {X × a(θ) | θ ∈ Θ} is 
a (fnite) material partition of s. 

Corresponding to each action, we defne next a σ-algebra of events. Formally, let 
a be σ-algebra on s generated by  ∧ a, the join of  and a.

6 Elements of a are 
events. Hence, events are unions of elements of  ∧ a. 

Consider the measurable spaces (s, a), a ∈ A. Defne a probability measure on _
a, ηa, by ηa(E) = ∑ π(x,θ|a) for every E = Z × a(ϒ), where Z ⊆ X, and x∈Z ∑ θ∈ϒ 
a(ϒ) = ∪θ∈ϒa(θ), ϒ ⊆ Θ. Then, by representation (2), ηa is unique and the sub-_ 
jective probabilities, ηa(Ei), of the informational events Ei := {Z × Ω|Z ⊆ X} are 
independent of a. We denote these probabilities by η(Ei). 

For every given a, consider the collection of material events 
a := {a(ϒ) |ϒ ⊆ Θ}. By representation (2) the prior probability measure on a 

is given by 

ηa({o} × a(ϒ)) ∑ π(x, θ |a) __ __ x∈X ∑ θ∈ϒηa(a (ϒ) |o) = = = ∑ π(θ |o, a).
η({o} × Ω) π(o, θ |a) θ∈ϒ1 − ∑ θ∈Θ 

6 The join of two partitions is the coarsest common refnement of these partitions. 
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Similarly, for every x ∈ X, the posterior probability measure on a is given by 

(ϒ)) π(x, θ |a)ηa ({x} × a ∑ θ∈ϒηa(a (ϒ) |x) = = = ∑ π(θ |x, a).
η({x} × Ω) π(x, θ |a) θ∈ϒ∑ θ∈Θ 

Then the main representation theorem in Karni (2011) may be restated in terms of 
these probability measures as follows:7 

THEOREM 1: Let ≽ be a preference relation on i and suppose that Bcu(≽) is inclusive. 
Then ≽ is a continuous weak order satisfying ci, iBp, Bc, Ti and cM if and only if there 
exist continuous, real-valued functions u on ℝ × Θ and v on A, and for each a ∈ A, a 
unique probability measure ηa on the measurable space (s,a) such that ηa({x} × Ω)_ 
= ηa ({x} × Ω) = η(x), for all a, a′ ∈ A and x ∈ X, and ≽ on  is represented by ′ 

(3) i ↦ ∑ η(x) [∑ u (bi(x) (θ), θ)ηai(x) (ai(x) (θ) |x) + v (ai(x))]. _ 
x∈X θ∈Θ 

Moreover, if u on ℝ × Θ and v on A, is another pair of real-valued functions that, 
together with ηa, represent ≽, then u( ⋅ , θ) = mu( ⋅ , θ) + k, m > 0 and v = mv + k′. 
u is unique up to positive affne transformation. 

Theorem 1 asserts the existence of a unique collection of measure spaces 
{(s, a, ηa) |a ∈ A}. This collection is suffciently rich to allow action-dependent 
probability to be defned for every event that matters to the decision maker, for all 
the conceivable choices among strategies that he might be called upon to make. 
Hence, from the viewpoint of Bayesian decision theory, the family of action-depen-
dent subjective probability measures defned here is complete in the sense of being 
well defned for every conceivable decision problem that can be formulated in this 
framework. However, there is no guarantee that these subjective probability mea-
sures are mutually consistent. Hence, it is interesting to inquire about the necessary 
and suffcient conditions for the existence of a unique probability space that sup-
ports all these action-dependent measures in the sense that ηa(E) coincides with this 
measure for every a ∈ A and E ∈ a. This issue is taken up next. 

B. subjective probabilities on s 

To begin with, it is necessary to defne a σ-algebra that includes the class of 
events ∪a∈A a. Let ∧k

i=1 ai
 be the join of a1

,…, ak
, and denote by  the σ-algebra 

generated by {∧ i
k 
=1 ai 

|k < ∞} ∧ . The issue posed at the end of the last subsec-
tion may be restated formally as follows: What are the necessary and suffcient 
conditions for the existence of a unique probability measure p on the measurable _ 
space (s, ), such that for all a ∈ A, if E ∈ a, then ηa(E) = p(E) and, for all x ∈ X, 
p({x} × Ω) = η(x)? 

7The proof follows from Theorem 3 in Karni (2011b) by simple substitutions and is omitted. 
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This question raises two issues. The frst, mentioned above, concerns the consis-
tency of beliefs across actions. To illustrate this issue and motivate the ensuing inquiry, 
I consider the example of the approaching hurricane described in the introduction. 
In this example the states are concrete, namely, the weather forecast coupled with 
the force and path of the approaching hurricane. The effects of the storm are deter-
mined by the action taken, a, and the force and path of the hurricane, ω. In this case, 
for each (θ, x, a) ∈ Θ × X ×A, the probability π(θ |x, a), corresponds to probability 
ηa(a(θ) |x). Moreover, because the force and trajectory of the hurricane are 
independent of the action, and since the probabilities of the effects are induced 
by the probabilities of the underlying state, consistency requires that if a(θ) 
= a (θ′ ) = T ∈ a ∩ a ′ then π(θ |x, a) = ηa(T |x) = ηa (T |x) = π(θ′ |x, a′ ).′ ′ 

The second issue arises because a probability measure on the measurable space 
(s, ) requires that the probabilities of events such as a(θ) ∩ a ′ (θ′) ≠ ∅, for dis-
tinct actions, a, a′ ∈ A, be well-defned. However, the actions a and a′ are mutu-
ally exclusive. Therefore, to assign unique probability to material events that are in 
the intersection of the σ-algebras corresponding to distinct actions, it must be the 
case that the collection ∪a∈Aa is rich in the sense the same material event, namely, 
a(θ) ∩ a (θ′), is an element of the σ-algebra, say a″, corresponding to some action′ 
a″ in A. 

Action-independent Beliefs.—To formalize the notion of belief consistency I con-
sider the situation in which, upon receiving a signal, x, a decision maker takes the 
action a and places a bet on the material event T ∈ a. Formally, given b, b′ ∈ 
Bcu(≽) and T ∈ a, defne bT b′ ∈ B as follows: 

_ 
b (θ) if a (θ) ⊆ T 

(bT b′) (θ) = . _{ }
b′ (θ) if a (θ) ⊂ Ω − T 

Thus, conditional on x and a, bT b′ is the bet whose utility payoffs is a double-
ton, paying u(b(θ)) for all θ such that a(θ) ⊂ T and u(b′(θ)), for all θ such that 
a (θ) ⊂ Ω − T. If i−x(a, b) ≻ i−x(a, b′) then bT b′ is a bet on the material event T. _ 
For all x ∈ X and T ∈ a ∩ a  let E(x, T) := {x} × T.′ 

DEFINITION 2: The event E(x, T) ∈ a ∩ a ′ is believed equally likely to obtain 
under a and under a′ if i −x(a, bT b′) ∼ i−′ x(a′, bT b′), where i−x(a, b) ∼ i−′ x(a′, b), 
i−x(a, b′) ∼ i−′ x(a′, b′) and i −x(a, b) ≻ i−x(a, b′). 

Let the (partial) binary relation on ∪a∈A a given by Defnition 2 be denoted by 
(a, E(x, T)) ∼L (a′, E(x, T)). Then ∼L is an equivalence relation. The next axiom 
requires that if the same event may obtain under two distinct actions, then the beliefs 
about its likelihood be action-independent. Formally, 

Action-independent Beliefs.—For all a, a′ ∈ A and E(x, T) ∈ a ∩ a ,′ 
(a, E(x, T)) ∼L(a′, E(x, T)). 
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The following theorem asserts that, under action-independent beliefs, the action-
dependent subjective probability measures, {ηa}a∈A, agree on events in the intersec-
tions of the σ-algebras {a}a∈A. 

THEOREM 3: Let ≽ be a continuous weak order on  satisfying ci, iBp, Bc, Ti, 
and cM and suppose that Bcu(≽) is inclusive. Then ≽ satisfes action-independent 
beliefs if and only if ηa(E(x, T)) = ηa (E(x, T)), for all a, a′ ∈ A and E(x, T) ∈ a ∩′ 
a .′ 

richness.—Consider next the problem posed by events in  that are in the inter-
section of elements of the partitions of the state space under distinct actions. In gen-
eral, the probabilities of such events cannot be inferred from the action-dependent 
joint probabilities of observations and effects that fgure in the representation (2). _ 
This problem can be surmounted if the decision model, (s, A,Θ, X), consisting of a _ 
state space, s, action set, A, a fnite set of effect, Θ, and a fnite set of observations, X, 
is rich in the sense that, for every fnite collection of actions and corresponding sub-
sets of effects, the event that yields these effects under these actions coincides with 
an event in a for some a ∈ A. Formally, 

_ 
DEFINITION 4: The model (s, A, Θ, X) is rich if, for all (ai, ϒi) ∈ A × 2Θ , _ 
i = 1, …, k, k < ∞, and x ∈ X, {x} × ∩ i

k 
=1 ai

(ϒi) = E for some E ∈ ∪a∈A a. 

The next theorem establishes the existence and uniqueness of a probability space 
supporting the action-dependent distributions. 

THEOREM 5: Let ≽ be a preference relation on  and suppose that Bcu(≽) is inclu-_ 
sive and that the model (s, A, Θ, X ) is rich. Then ≽ is a continuous weak order 
satisfying ci, iBp, Bc, Ti, and cM and action-independent beliefs if and only if 
there exist continuous, real-valued functions u on ℝ × Θ and v on A, and a unique 
probability measure p on (s, ) such that ≽ on  is represented by 

(4) i ↦ ∑ p (x) ∑ [∑ u (bi(x) (θ), θ)p (ai(x) (θ) |x) + v (ai(x))], _ 
x∈X θ∈Θ θ∈Θ 

where p(x) := p({x} × Ω). Moreover, if u on ℝ × Θ and v on A, is another 
pair of real-valued functions that, together with ηa, represent ≽, then u( ⋅ , θ) 
= mu( ⋅ , θ) + k, m > 0 and v = mv + k′. 

The proof invokes the probability distributions the fgure in the representation (2) 
and the richness of the model to defne a probability measure on the algebra gener-
ated by {∧ i

k 
=1ai 

|k < ∞} ∧ . This probability measure has a unique extension to 
(s, ). 

III. Concluding Remarks 

Extending the analysis in Karni (2011), this paper presents a model of Bayesian 
decision making and choice-based foundations of prior and posterior subjective 
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probabilities on a state-space. The model admits effect-dependent utility functions 
of wealth, making it applicable for the analysis of life and health insurance prob-
lems, medical decision making, and other decisions in which the effect interacts 
with the decision maker’s risk attitudes. 

The theory of contracts in the presence of moral hazard admits three distinct 
formulations.8 According to the state-space formulation of the principal-agent prob-
lem, the outcome, θ ∈ Θ, of a contractual agreement is determined by the action 
of the agent, a ∈ A, and by the state of nature, ω ∈ Ω, according to a technology, 
t(a, ω) = ω(a) = θ. The principal’s problem is to design a contract that awards the 
agent according to the observed outcome, so as to induce the agent to implement 
the (unobserved) action desired by the principal. Actions are costly in terms of the 
agent’s well-being. The model of this paper furnishes axiomatic foundations of the 
agent’s behavior in the state-space formulation of the principal-agent problem. 

The defnition of unique, choice-based, subjective probabilities on a state-space 
settles a long standing issue in Bayesian theory. 

Appendix 

PROOF OF THEOREM 3: 
Suppose that ≽ is a continuous weak order on  satisfying CI, IBP, BC, TI, 

and CM, Bcu(≽) is inclusive and E(x, T ) ∈ a ∩ a . Let b, b′, b″ ∈ Bcu(≽) and i, i′ ∈  _ ′ _ _ _ 
satisfy the following conditions: (a) i−x(a, b) ∼ i ′−x(a′, b), (b) i−x(a, b″) ∼ i−′ x(a′, b″), 
and (c) i−x(a, b″) ≻ i−x(a, b) ≻ i−x(a, b′). Then, by the representation (2), 

(5) u (
_ 
b″) − u (

_ 
b) > 0. 

By Defnition 2, (a, E(x, T)) ∼L (a′, E(x, T)) if and only if i−x(a, b T 
* b′ ) ∼ 

i−′ x(a′, b * 
T b′ ), where i−x(a, b*) ∼ i ′−x(a′, b*), i−x(a, b′ ) ∼ i−′ x(a′, b′ ) and i−x(a, b*) ≻ 

i−′ x(a, b′ ), for b* ∈ { b, b″ }. For every strategy i and observation x, let 

k (i−x) = ∑ η(x′ ) [∑ u (bi(x ′ ) (θ), θ)ηai
(x ′ ) (ai(x ′ ) (θ) |x) + v (ai(x ′ ))]_ 

x ′∈X−{x ′ } θ∈Θ 

By Theorem 1, and conditions (a) and (b), 

(6)  i−x(a, bT b′) ∼ i−′ x (a′, bT b′ ) 

if and only if 

(7) k (i−x) + ηa (E (x, T))u (
_ 
b) + (1 − ηa (E (x, T)))u (

_ 
b′ ) + v (a) 

= k (i−′ x) + ηa ′ (E (x, T))u (
_ 
b) + (1 − ηa ′ (E (x, T)))u (

_ 
b′ ) + v (a′ ) 

8 See Oliver Hart and Bengt Holmström (1987) for details and references. 
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and 

(8)  i−x(a, b″ T b′ ) ∼ i ′−x (a′, b T″ b′ ) 

if and only if 

(9) k (i−x) + ηa (E (x, T))u (
_ 
b″) + (1 − ηa (E (x, T)))u (

_ 
b′ ) + v (a) 

= k (i−′ x) + ηa (E (x, T)) ũ (
_ 
b″) + (1 − ηa (E (x, T)))u (

_ 
b′ ) + v (a′ ).′ ′ 

Hence, 

(10) ηa (E (x, T)) [u (
_ 
b) − u (

_ 
b″)] = ηa ′ (E (x, T)) [u (

_ 
b) − u (

_ 
b″)]. 

Equation (5) implies that equation (10) holds if and only if ηa (E(x, T)) 
= ηa ′ (E(x, T)). Thus (a, E(x, T)) ∼L (a′, E(x, T)), for all a, a′ ∈ A and E(x, T) 
∈ a ∩ a ′, if and only if ηa(E(x, T)) = ηa (E(x, T)). Hence ≽ on  satisfes action-′ 
independent beliefs if and only if ηa(E(x, T)) = ηa (E(x, T)).′ 

PROOF OF THEOREM 5: 
Let  denote the algebra generated by (∧ i

k 
=1 ai

) ∧ , the join of the partitions 
a1

,…, ak
, where k is an integer, and . Elements of  include all the intersections _ 

of sets belonging to partitions a1
, …, ak

. Because (s, A, Θ, X) is rich, each event 
involving such interactions is equal to a “simple” event, E ∈ a, for some a ∈ A. By 
Theorem 1, the probability of E is unique and is given by ηa(E). 

Defne the probability measure p0 on  as follows: for all E ∈ , 

(11)  p0 (E) = ηa(E). 

Since  is the σ-algebra generated by , Theorem 3.1 in Partick Billingsley 
(1986) implies that p0 has a unique extension, p, to . Then p is a probability mea-
sure on (s, ). In particular, let p(a(θ) |x) = p({x} × a(θ))/p({x} × Ω), then 

(12) p (a (θ) |x) = ηa (a (θ) |x) = π(x, θ |a) 

and 

(13) p (x) : = p ({x} × Ω) = η(x) = ∑ π(x, θ |a) = μ(x). 
θ∈Θ 

Substitute p(a(θ) |x) for ηai(x) (ai(x)(θ) |x) and p(x) for η(x) in Theorem 1, to 
obtain the representation (4). 
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