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The Fisher Two-Period Optimal Consumption Problem
Irving Fisher (1930) first analyzed the optimization problem of a consumer who faces

no uncertainty and lives for two periods.

1 Mathematical Analysis
In its most general form, the household’s lifetime value function can be written

V(c1, c2)

where the first argument reflects consumption in ‘youth’ while the second argument
represents consumption in ‘old age’ and we assume that the derivatives with respect to
the first and second arguments are positive,

V1,V2 > 0, (1)

while the second derivatives are negative,

V11,V22 < 0. (2)

The consumer begins the first period with resources of b1 (think ‘bank balances’) and
income of y1. Total resources are divided between consumption and end-of-period assets
a1 (‘assets after all actions’ in period 1):

b1 + y1 = c1 + a1,

a1 = b1 + y1 − c1.
(3)

Balances at the beginning of period 2 are equal to end-of-first-period accumulated
assets a1, rewarded by a gross interest factor R = (1 + r):

b2 = a1R. (4)

This is the dynamic budget constraint or DBC for this problem. A DBC links two
adjacent periods of time. A more comprehensive kind of constraint is the intertemporal
budget constraint (IBC):

c1 + c2/R ≤ y1 + y2/R + b1, (5)

which must be satisfied over an extended (multiperiod) span of time like a lifetime.
For various purposes, it is useful to keep track of human wealth ht, defined as the

present discounted value of future labor income (the operator Pt(•) denotes the present
discounted value of the variable • from the perspective of the beginning of period t
through the end of the horizon),

ht = Pt(y)

h1 = y1 + y2/R
(6)

https://www.econ2.jhu.edu/people/ccarroll/
https://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes


Because we have assumed (in (1)) that an additional unit of consumption always yields
extra utility, we can reach our first conclusion (as opposed to assumption) in the model:
Once the consumer has reached the last period of life, he will consume all available
resources:

c2 = b2 + y2. (7)

This means that the IBC will hold with equality (if it did not, utility could be increased
by consuming more in one or both periods). Thus, the IBC can be rewritten as

c1 + c2/R = h1 + b1. (8)

The general form that the IBC will take is that the present discounted value of lifetime
spending must equal the present discounted value of lifetime resources:

Pt(c) = Pt(y) + bt. (9)

Substituting in the definition of b2 means that our problem can now be stated as:

max
{c1,c2}

V(c1, c2)

s.t.
c2 = (b1 + y1 − c1)R + y2.

Now we can write the problem as a Lagrange multilier problem, where the maximand
is:

V(c1, c2) + (c2 − (b1 + y1 − c1)R− y2)λ. (10)

The first order conditions are:
V1 + Rλ = 0

V2 = −λ
(11)

and substituting the second of these into the first we get

V1 = RV2. (12)

This is the same condition you get when deciding between two commodities at a
point in time, where we can now think of R as the intertemporal price: How much of
good 2 (consumption in period 2) do I get in exchange for giving up a unit of good 1
(consumption in period 1).
Now suppose that the consumer’s utility is time-separable, and the felicity function

(felicity is the utility obtained in a single period of a multi-period problem) is the same
in both periods of life, so that

V(c1, c2) = u(c1) + βu(c2) (13)

where β is a time preference factor that specifies how the consumer trades off utility in
period 1 against utility in period 2.1

1Paul Samuelson (1937, 1958) introduced the discounting of future utility into the problem.
See Frederick, Loewenstein, and O’Donogue (2002) for a comprehensive review of the still-controversial
topic of time discounting.
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From our assumptions (1) and (2) we know that the felicity function must satisfy

u′(•) > 0

u′′(•)) < 0,
(14)

and since the felicity functions are the same in both periods we have that

V1(c1, c2) = u′(c1)

V2(c1, c2) = βu′(c2).
(15)

Substituting these equations into (12) yields the Euler equation for consumption:

u′(c1) = Rβu′(c2). (16)

The Euler equation is a central result in intertemporal optimization theory, and will
be used again and again as the course progresses. It is therefore worth studying carefully
to be sure you understand it thoroughly.

To help obtain the intuition for why the Euler equation is necessary for optimality,
consider the following thought experiment. Designate c∗1 and c∗2 as the optimal levels
of consumption in this problem, the levels that solve the maximization problem under
some set of circumstances. Thus, the highest attainable utility is

u(c∗1) + βu(c∗2). (17)

Now consider reducing consumption by some small amount ε in period 1, investing
that ε so that it grows to Rε in period 2, and then consuming it in period 2. What
happens to utility?

Taking first-order Taylor expansions, the levels of first-period and second-period utility
are now

u(c∗1 − ε) ≈ u(c∗1)− u′(c∗1)ε

u(c∗2 + Rε) ≈ u(c∗2) + u′(c∗2)Rε.
(18)

Now the difference between the maximum possible utility and the new situation is
given by

u(c∗1) + βu(c∗2)− [u(c∗1)− u′(c∗1)ε+ β (u(c∗2) + u′(c∗2)Rε)] = u′(c∗1)ε− βu′(c∗2)Rε. (19)

But it must be the case that (19) is approximately equal to zero. To see why, suppose
it were a negative number. That would mean that moving from the original situation
with {c1, c2} = {c∗1, c∗2} to the new situation with {c1, c2} = {c∗1 − ε, c∗2 + Rε} resulted in
an increase in utility. But we assumed that c∗1, c∗2 were already the utility-maximizing
choices, which clearly could not be true if adjusting c∗1 downward by ε and c∗2 upward
by Rε increased utility. Similarly, if the expression were positive, then utility could
be increased by doing the opposite (i.e. increasing consumption in period 1 by ε and
reducing it in period 2 by Rε). Thus, in either case if the expression is not zero, we have
a contradiction to the assumption that c∗1 and c∗2 are the utility-maximizing choices.
To make further progress, it is necessary to make more specific assumptions about the

structure of the utility function. The most common assumption is that utility takes the
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Constant Relative Risk Aversion form,

u(c) =

(
c1−ρ

1− ρ

)
, (20)

with marginal utility

u′(c) = c−ρ. (21)

Consider equation (16) with CRRA utility,

c−ρ1 = Rβc−ρ2

c2/c1 = (Rβ)1/ρ

c2 = (Rβ)1/ρc1.

(22)

Now note that this equation allows us to calculate the intertemporal elasticity of
substitution as the change in the ratio of the log of c2/c1 to the log change in the
intertemporal price R:(

d

d logR

)
log

(
c2
c1

)
=

(
d

d logR

)
log(Rβ)1/ρ

= ρ−1.

(23)

Next note that from (22) we can calculate the PDV of lifetime consumption from the
perspective of the first period of life as

P1(c) = c1 + R−1c2

=
(
1 + R−1(Rβ)1/ρ

)
c1.

(24)

Now we can use the intertemporal budget constraint:

Pt(c) = bt + Pt(y)

c1
(
1 + R−1(Rβ)1/ρ

)
= b1 + y1 + R−1y2

c1 =

(
b1 + h1

1 + R−1(Rβ)1/ρ

)
.

(25)

Thus, we have solved the two-period life cycle saving problem for the consumption
function c1 relating the level of consumption to all of the parameters of the problem.

One of the surprising features of the solution goes by the name of “Fisherian Sep-
aration”: Notice that the profile of consumption growth over the lifetime is given by
(22) regardless of the shape of the income profile. For two consumers with the same
total amount of lifetime wealth (combined b1 and h1, the level and growth rates of
consumption over the lifetime will be identical whether the consumer’s lifetime wealth is
entirely concentrated in the first period (that is, h1 = 0), entirely concentrated in the last
period (b1 = 0), split half-and-half, or organized any other way. Fisherian Separation
is a pervasive feature of models that combine perfect foresight and a lack of liquidity
constraints.
A common assumption (for simplicity, not realism) is that ρ = 1, which is equivalent
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to assuming that the utility function is logarithmic:2

lim
ρ→1

(
c1−ρ

1− ρ

)
= log c. (26)

In this case it turns out that we can simply substitute ρ = 1 into the solution for
consumption, obtaining

c1 =

(
b1 + h1
1 + β

)
. (27)

2 Graphical Analysis
The classic graphical analysis of this problem is shown in figure 1.

The top figure depicts a situation in which all of the consumer’s lifetime income
is earned in the first period of life. The budget constraint in the initial situation,
associated with a “Low R”, yields an optimal consumption choice labeled as point A
where the budget constraint is tangent to the indifference curve. When the interest
factor is increased to the “High R” situation, the optimal consumption choice moves to
point C.
Note first that if all income is earned in the first period of life, an increase in the interest

factor is unambiguously good for the consumer - the set of consumption possibilities is
strictly larger.
Second, the movement from point A to point C can be decomposed into two parts:

an income effect AB and a substitution effect BC.
Call the low and the high interest factors respectively R and R̄.
The income effect is the answer to the question “Suppose we wanted to change lifetime

value by the same amount as it is changed by going from R to R̄, but we wanted to
achieve this change in value at the initial interest factor R. Supposing we gave the
consumer enough extra initial resources to achieve the change in value, how would their
consumption allocation change?”

In order to relate this back to the algebraic analysis above, it will be useful to rewrite
lifetime value as a function simply of initial resources and the interest factor (taking
y1, y2 and other parts of the problem as given):

V∗(b1,R) = u(c∗1(b1,R)) + βu(c∗2(b1,R)) (28)

Using this function, the income effect is obtained as the value of ∆b1 in the equation
V∗(b1 + ∆b1,R) = V∗(b1, R̄).

The substitution effect is the answer to the question, “Staying on the new indifference
curve, how much does the allocation of consumption change as a consequence of the
difference in interest factors between R and R̄?” This is captured in the movement from
B to C.

Note that the income and the substitution effects on c1 are opposite in sign. A higher
interest factor gives consumers the incentive to substitute future for current consumption

2See math fact [CRRALim]in MathFacts.

5

https://www.econ2.jhu.edu/people/ccarroll/public/LectureNotes/MathFacts/MathFactsList#CRRALim
https://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/MathFacts/MathFactsList/


(c1 is lower at point C than at B). But a higher interest factor also gives consumers
the ability to consume more in both periods. Whether c1 rises or falls in response to
the increase in interest factors will depend on the relative magnitudes of the income and
substitution effects.

The lower figure shows a similar experiment, with the sole difference that the con-
sumer’s lifetime resources are exclusively concentrated in period 2.

In this case, the period 1 consumer must borrow against future income in order to
consume anything. An increase in interest factors is therefore unambiguously bad (the
available set of consumption choices is strictly smaller).

The optimal choice again moves from point A to point C. However, we now decompose
the movement into three parts. The first part is called the human wealth effect. It
captures the fact that the present discounted value of lifetime resources P1(y) is smaller
when interest rates are higher; the magnitude of the change in human wealth is depicted
on the horizontal axis of the figure. The human wealth effect is the consequence that
an equivalent change in lifetime resources would have in the absence of any change in
interest factors. So the human wealth effect takes the consumer from point A to point
D.
Notice that once we have computed the human wealth effect, if we treat point D as the

starting point of our analysis, the remaining analysis is identical to that for the upper
figure: We can increase the interest factor from R to R̄, which causes the equilibrium
point to change from point D to point C, a movement that can be decomposed into an
income effect DB (analogous to the income effect AB in the original analysis) and a
substitution effect BC.
The terminology here is a modification (refinement) of the terminology often employed

in micro textbooks, where the “income effect” is defined in a way that would incorporate
both what I am calling the income effect and what I am calling the human wealth effect.

The reason to make this distinction is that it is important to distinguish between
effects on behavior caused by the fact that the discounted value of future income is
changed, and effects caused by the fact that the income that will be earned on savings is
different. Summers (1981) vigorously made the point that in standard life cycle models,
the quantitative magnitude of the human wealth effect dwarfs the size of either the
income or the substitution effects, because for most people most of their lifetime income
is in the future.
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Figure 1 Fisher Figure Analysis
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