
Portfolio Choice with CRRA Utility (Merton-Samuelson)
Merton (1969) and Samuelson (1969) study the optimal portfolio choice of a consumer

with constant relative risk aversion ρ.1 At the end of period t this consumer has
assets at, and is deciding how much to invest in a risky asset2 with a lognormally
distributed return factor Rt+1 (its log return rt+1 = logRt+1 is distributed normally),
rt+1 = r + εt+1 ∼ N (r, σ2

ε) for εt+1 ∼ N (0, σ2
ε). [ELogNorm] reviews the well-known

fact that in such a case the expectation of the return in levels (the ‘arithmetic’ mean;
see [ArithmeticVSGeometric]) is Et[Rt+1] = er+(1/2)σ2

ε so that for small r and σ2
ε we

will have an excellent approximation: defining r = r + (1/2)σ2
ε , it will be true that

Et[Rt+1] ≈ 1 + r (again see [ArithmeticVSGeometric]). For the rest of this handout,
we will usually treat this approximation as an exact relationship.3

logEt[Rt+1] =

≡r︷ ︸︸ ︷
r + 0.5σ2

r

= r − 0.5σ2
r︸ ︷︷ ︸

=r

(1)

Any at NOT invested in the risky asset is assumed to be invested in a riskfree asset
that earns return factor R = er. Importantly, the consumer is assumed to have no
labor income and to face no risk aside from that caused by their investment in the risky
asset.4,5
Both papers consider a multiperiod optimization problem, but here we examine a

consumer for whom period t is the second-to-last period of life (the insights, and even
the formulas, carry over to the multiperiod case).6
If the period-t consumer invests proportion ς in the risky asset, spending all available

1u(c) = (1− ρ)−1c1−ρ.
2Both papers present the solution in the case with multiple risky assets; for the two-asset case, see

Portfolio-Multi-CRRA.
3The reason we construct things this way is that we want to be able to consider the consequences

of a pure increase in σ2
ε that leaves the return the consumer cares about – the arithmetic return –

unchanged. That is accomplished by defining the problem’s ‘primitives’ as being the arithmetic return
and σ2

ε , so that when we increase σ2
ε and solve the problem with r = r− σ2

ε/2 we will achieve the same
expected arithmetic return as before the increase in σ2

ε .
4A common interpretation is that this is the problem of a retired investor who expects to receive no

further labor income. Note however that all risks other than the returns from financial investments have
been ruled out; for example, health expense risk is not possible in this model, though recent research
has argued such risk is important (maybe even dominant) later in life (cf. Ameriks, Caplin, Laufer, and
Van Nieuwerburgh (2011)).

5Riskless labor income can trivially be added to the problem, because its risklessness means that
(in the absence of liquidity constraints) it is indistinguishable from a lump sum of extra current wealth
with a value equal to the present discounted value (using the riskless rate) of the (riskless) future labor
income. Of course, in practice, labor income is not riskless, but when labor income is risky the problem
no longer has the tidy analytical solution described here and must be solved numerically. See Carroll
(2023) for an introduction to numerical solution methods.

6Samuelson (1979).
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resources in the last period of life t+ 1 will yield:

ct+1 = (R(1− ς) +Rt+1ς) at

= (R+ (Rt+1 − R)ς)︸ ︷︷ ︸
≡Rt+1

at

where Rt+1 is the realized arithmetic return factor for the portfolio.
The optimal portfolio share will be the one that maximizes expected utility:

ς = argmax
ς

Et[u(ct+1)] (2)

and can be calculated numerically for any arbitrary distribution of rates of return.
Campbell and Viceira (2002) show that if we define the ‘equity premium’ as

ϕt+1 = rt+1 − r + (1/2)σ2
r (3)

then for many distributions a good approximation to the portfolio rate of return (the
log of the portfolio return factor) is obtained by7

rt+1 = r + ςϕt+1 + ςσ2
r/2− ς2σ2

r/2. (4)

Using this approximation, the expectation as of date t of utility at date t+ 1 is:8

Et[u(ct+1)] ≈ (1− ρ)−1(atR)
1−ρ︸ ︷︷ ︸

constant < 0

e(1−ρ)ς(1−ς)σ
2
r/2 Et

[
eςϕt+1(1−ρ)

]︸ ︷︷ ︸
excess return utility factor

(5)

where the first term is a negative constant under the usual assumption that relative risk
aversion ρ > 1.
For the special (but reasonable) case of a lognormally distributed return, we can make

substantial further progress, by obtaining an analytical approximation to the numerical
optimum. In this case ς(1− ρ)ϕt+1 ∼ N (ς(1− ρ)(ϕ− σ2

r/2), (ς(1− ρ))2σ2
r) (again using

[LogELogNormTimes]). With a few extra lines of derivation we can show that the log of

7See the appendix for further details.
8The tedious full derivation is:

Et[u(ct+1)] ≈ (1− ρ)−1 Et
[(
ate

reςϕt+1+ς(1−ς)σ2
r/2
)1−ρ]

≈ (1− ρ)−1 Et
[
(atR)

1−ρ
(
eςϕt+1+ς(1−ς)σ2

r/2
)1−ρ]

≈ (1− ρ)−1(atR)
1−ρ Et

[
e(ςϕt+1+ς(1−ς)σ2

r/2)(1−ρ)
]

≈ (1− ρ)−1(atR)
1−ρ︸ ︷︷ ︸

constant < 0

e(1−ρ)ς(1−ς)σ
2
r/2 Et

[
eςϕt+1(1−ρ)

]
︸ ︷︷ ︸

excess return utility factor
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the expectation in (5) is9

logEt
[
eςϕt+1(1−ρ)

]
= (1− ρ)ςϕ− (1− ρ)ς(1− ς)σ2

r/2− ρ(1− ρ)ς2σ2
r/2. (6)

Substitute from (6) for the log of the expectation in (5) and note that the resulting
expression simplifies because it contains (1− ρ)ςσ2

r/2− (1− ρ)ςσ2
r/2 = 0; thus the log

of the ‘excess return utility factor’ in (5) is

− (ρ− 1)ςϕ− (ρ− 1)(−ρς2σ2
r/2) (7)

and the ς that minimizes the log will also minimize the level; minimizing this when ρ > 1
is equivalent to maximizing the terms multiplied by −(ρ− 1), so our problem reduces to

max
ς

ςϕ− ρς2σ2
r/2

with FOC
ϕ− ςρσ2

r = 0

ς =

(
ϕ

ρσ2
r

)
.

(8)

Equation (8)10 says that the consumer allocates a higher proportion of net worth to
the high-risk, high-return asset when

1. the equity premium ϕ is greater

2. the consumer is less risk averse (ρ is lower)

3. riskiness σ2
r is less

If there is no excess return (ϕ = 0), nothing will be put in the risky asset. Similarly, if
risk aversion or the variance of the risk is infinity, again nothing will be put in the risky
asset.11
This formula hints at the existence of an ‘equity premium puzzle’ (Mehra and Prescott

(1985)). Interpreting the risky asset as the aggregate stock market, the annual standard
deviation of the log of U.S. stock returns has historically been about σr = 0.2 yielding
σ2
r = 0.04. Mehra and Prescott claim that the equity premium has been something like
ϕ = 0.08 (eight percent). With risk aversion of ρ = 2 this formula implies that the share
of risky assets in your portfolio should be 0.08/0.08 or 100 percent! The fact that most

9Full derivation:

logEt
[
eςϕt+1(1−ρ)

]
= (1− ρ)ςϕ− (1− ρ)ςσ2

r/2 + ((1− ρ)ς)2σ2
r/2

= (1− ρ)ςϕ− (1− ρ)ς(1− ς(1− ρ))σ2
r/2

= (1− ρ)ςϕ− (1− ρ)ς(1− ς)σ2
r/2− ρ(1− ρ)ς2σ2

r/2.

10This expression differs slightly from that derived by Campbell and Viceira (2002), because we adjust
the mean logarithmic return of the risky investment for its variance in order to keep the mean return
factor constant for different values of the variance (cf. (3)), which makes comparisons of alternative
levels of risk more transparent.

11See the appendix for a figure showing the quality of the approximation.
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people have less than 100 percent of their wealth invested in stocks is the ‘stockholding
puzzle,’ the microeconomic manifestation of the equity premium puzzle (Haliassos and
Bertaut (1995)).

To avoid the problems caused by a prediction of a risky portfolio share greater than
one, we can calibrate the model with more modest expectations for the equity premium.
Some researchers have argued that when evidence for other countries and longer time
periods is taken into account, a plausible average value of the premium might be as
low as three percent. The figures show the relationship between the portfolio share and
relative risk aversion for a calibration that assumes a modest premium of 3 percent and
a large standard deviation of σ = 0.2. Even when risks are this high and the premium is
this low, if relative risk aversion is close to logarithmic (ρ = 1) the investor wants to put
well over half of the portfolio in the risky asset. Only for values of risk aversion greater
than 2 does the predicted portfolio share reach plausible small values.

But remember that these calculations are all assuming that the consumer’s entire
consumption spending is financed by asset income. If the consumer has other income
(for example, labor or pension income) which is not perfectly correlated with returns
on the risky asset, they should be willing to take more risk. Since, for most consumers,
most of their future consumption will be financed from labor or transfer income, it is
not surprising to learn that models calibrated to actual data on capital and noncapital
income dynamics imply that people should be investing most of their non-human wealth
in the risky asset (with reasonable values of ρ).
A final interesting question is what the expected rate of return on the consumer’s

portfolio will be once the portfolio share in risky assets has been chosen optimally. Note
first that (14) implies that

logEt[ert+1−r] = ςϕ (9)

while the variance of the log of the excess return factor for the portfolio is σ2
r = ς2σ2

r .
Substituting the solution (8) for ς into (9), we have

ςϕ =

(
ϕ2

ρσ2
r

)
= (ϕ/σr)

2/ρ

(10)

which is an interesting formula for the excess return of the optimally chosen portfolio
because the object ϕ/σr (the excess return divided by the standard deviation) is a well-
known tool in finance for evaluating the tradeoff between risk and return (the ‘Sharpe
ratio’). Equation (10) says that the consumer will choose a portfolio that earns an excess
return that is directly related to the (square of the) Sharpe ratio and inversely related to
the risk aversion coefficient. Higher reward (per unit of risk) convinces the consumer to
take the risk necessary to earn higher returns; but higher risk aversion convinces them
to sacrifice (risky) return for safety.

Finally, we can ask what effect an exogenous increase in the risk of the risky asset has
on the endogenous riskiness of the portfolio once the consumer has chosen optimally.
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The answer is surprising: The variance of the optimally-chosen portfolio is

ς2σ2
r =

(
ϕ

ρσ2
r

)2

σ2
r

=

(
(ϕ/ρ)2

σ2
r

) (11)

which is actually smaller when σ2
r is larger. Upon reflection, maybe this makes sense.

Imagine that the consumer had adjusted his portfolio share in the risky asset downward
just enough to restore the portfolio’s riskiness to its original level before the increase
in risk. The consumer would now be bearing the same degree of risk but for a lower
(mean) rate of return (because of his reduction in exposure to the risky asset). It makes
intuitive sense that the consumer will not be satisfied with this “same riskiness, lower
return” outcome and therefore that the undesirableness of the risky asset must have
increased enough to make him want to hold even less than the amount that would
return his portfolio’s riskiness to its original value.
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Figure 1 Approximate Risky Share ς Declines as Relative Risk Aversion ρ Increases
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Figure 2 The Approximation Error for the Portfolio Share in Risky Assets ς Is Small
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Note: The approximation error is computed by solving for the exactly optimal portfolio share
numerically. See the Portfolio-CRRA-Derivations.nb Mathematica notebook for details.
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A The Campbell and Viceira (2002) Approximation

For mathematical analysis (especially under the assumption of CRRA utility) it would be
convenient if we could approximate the realized arithmetic portfolio return factor by the
log of the realized geometric return factor Rt+1 = R1−ςRς

t+1, because then the logarithm
of the return factor would be rt+1 = r(1− ς)+ rt+1ς = r+(rt+1− r)ς = r+ϕt+1ς and the
realized ‘portfolio excess return’ would be simply rt+1 − r = ςϕt+1. Unfortunately, for ς
values well away from 0 and 1 (that is, for any interesting values of portfolio shares), the
log of the geometric mean is a badly biased approximation to the log of the arithmetic
mean when the variance of the risky asset is substantial.
Campbell and Viceira (2002)’s propose instead

rt+1 ≈ r + ςϕt+1 + ςσ2
r/2− ς2σ2

r/2. (12)

To see one virtue of this approximation,12 note (using [NormTimes] and [SumNormsIsNorm])
that since the mean and variance of ϕt+1ς are respectively ς(r − σ2

r/2 − r) and ς2σ2
r ,

[LogELogNormTimes] implies that

logEt[eϕt+1ς ] = ς(r− r − σ2
r/2) + ς2σ2

r/2 (13)

which means that exponentiating then taking the expectation then taking the logarithm
of (4) gives

logEt[ert+1 ] = log er + logEt[eςϕt+1 ] + log eςσ
2
r/2−ς2σ2

r/2

= r + ς(r− r − σ2
r/2) + ς2σ2

r/2 + ςσ2
r/2− ς2σ2

r/2

logEt[ert+1 ]− r = ς(r− r)

(14)

or, in words: The expected excess portfolio return is equal to the proportion invested in
the risky asset times the expected return of the risky asset.13

12The approximation is motivated by the continuous-time solution, which is obtained using Itø’s
lemma.

13We use the word ‘return’ always to mean the logarithm of the corresponding ‘factor’; and when
not explicitly specified, we always take the expectation before taking the log; if we wanted to refer
to Et[rt+1] we would call it the expected log portfolio return rate (to distinguish it from the expected
portfolio return factor, logEt[ert+1 ]).

8

https://www.econ2.jhu.edu/people/ccarroll/public/LectureNotes/MathFacts/MathFactsList#NormTimes
https://www.econ2.jhu.edu/people/ccarroll/public/LectureNotes/MathFacts/MathFactsList#SumNormsIsNorm
https://www.econ2.jhu.edu/people/ccarroll/public/LectureNotes/MathFacts/MathFactsList#LogELogNormTimes


References

Ameriks, John, Andrew Caplin, Steven Laufer, and Stijn Van Nieuwer-
burgh (2011): “The Joy Of Giving Or Assisted Living? Using Strategic Surveys
To Separate Public Care Aversion From Bequest Motives,” The Journal of Finance,
66(2), 519–561.

Campbell, John Y., and Luis M. Viceira (2002): Appendix to ‘Strategic Asset
Allocation: Portfolio Choice for Long-Term Investors’. Oxford University Press, USA,
https://scholar.harvard.edu/files/campbell/files/bookapp.pdf.

Carroll, Christopher D. (2023): “Solving Microeconomic Dynamic Stochastic
Optimization Problems,” Econ-ARK REMARK.

Haliassos, Michael, and Carol Bertaut (1995): “Why Do So Few Hold Stocks?,”
The Economic Journal, 105, 1110–1129.

Mehra, Rajnish, and Edward C. Prescott (1985): “The Equity Premium:
A Puzzle,” Journal of Monetary Economics, 15, 145–61, Available at http:
//ideas.repec.org/a/eee/moneco/v15y1985i2p145-161.html.

Merton, Robert C. (1969): “Lifetime Portfolio Selection under Uncertainty: The
Continuous Time Case,” Review of Economics and Statistics, 51, 247–257.

Samuelson, Paul A. (1969): “Lifetime Portfolio Selection by Dynamic Stochastic
Programming,” Review of Economics and Statistics, 51, 239–46.

Samuelson, Paul A (1979): “Why we should not make mean log of wealth big though
years to act are long,” Journal of Banking and Finance, 3(4), 305–307.

https://scholar.harvard.edu/files/campbell/files/bookapp.pdf
http://ideas.repec.org/a/eee/moneco/v15y1985i2p145-161.html
http://ideas.repec.org/a/eee/moneco/v15y1985i2p145-161.html

	The cvAppendix Approximation

