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Equiprobable Approximation to Bivariate Lognormal Returns
This handout starts by defining a convenient notation to represent two rate-of-return

shocks that are distributed according to a multivariate lognormal that allows for nonzero
covariances. It next presents a computationally simple method for constructing a numer-
ical approximation to that joint distribution. The final section uses both the numerical
approximation, and more accurate (but enormously slower) standard numerical integra-
tion tools to assess the accuracy of the Campbell-Vicera analytical approximation to the
solution to the optimal portfolio choice problem described in Portfolio-Multi-CRRA.

1 Statistical Theory
Consider a set of two normally distributed risks

θ2,t+1 ∼ N (−0.5Σ2,Σ2)

θ1,t+1 ∼ N (−0.5(xΣ)2, (xΣ)2)

which are statistically independent (θ1,t+1 ⊥ θ2,t+1) even though the scale of shock 1’s
standard deviation is determined by the proportionality factor x multiplied by the value
of shock 2’s standard deviation, Σ. (This permits us to increase or decrease the size of
both risks by changing Σ and to adjust the relative size of risk 1 vs risk 2 by adjusting
x.)
The θ are interpreted as the logarithms of level variables Θ, and the means of the log

variables have been chosen such that the expectations of the levels are independent of
the size of the risk (cf. MathFacts). That is, defining Θi = Et[eθi,t+1 ] for i ∈ {1, 2}:

Θi ≡ Et[Θi,t+1] = 1 ∀ i
logEt[Θi,t+1] = 0 ∀ i.

(1)

From the first shock we can construct a log rate-of-return variable that can be repre-
sented equivalently in either of two ways:

r1,t+1 =

≡rrr1︷ ︸︸ ︷
r1 + 0.5(xΣ)2 +θ1,t+1

= rrr1 − 0.5(xΣ)2︸ ︷︷ ︸
=r1

+ 0.5(xΣ)2 + θ1,t+1︸ ︷︷ ︸
≡�θ1,t+1

(2)

where ��θ1,t+1 ∼ N (0., (xΣ)2); the notation for ��θ is motivated by the fact that the
addition of the extra term cancels the nonzero mean of the original θ. Then

R1,t+1 ≡ er1,t+1

R1 ≡ Et[R1,t+1] = er1+(xΣ)2/2

logEt[R1,t+1] = r1 + (xΣ)2/2 = rrr1

(3)

where note to avoid confusion that rrr1 6= Et[r1,t+1] while logEt[R1,t+1] 6= r1 = Et[r1,t+1].
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Using Et[θ2,t+1] = −0.5Σ2 and Et[(ω/x)θ1,t+1] = −0.5((ω/x)Σ)2, we can by analogy
define a second return

r2,t+1 ≡ rrr2 + ζ + (ω/x)θ1,t+1 + θ2,t+1

= rrr2 + ζ + (ω/x)(��θ1,t+1 − 0.5(xΣ)2) + (��θ2,t+1 − 0.5Σ2)

= rrr2 + ζ − 0.5(ω/x)(xΣ)2 − 0.5Σ2︸ ︷︷ ︸
r2

+(ω/x)��θt+1,1 + ��θ2,t+1

(4)

for some constants ω and ζ.
Since (ω/x)θ1,t+1 is the only component of r2,t+1 that is correlated with r1,t+1,

cov(r1,t+1, r2,t+1) = cov(r1,t+1, (ω/x)r1,t+1)

= (ω/x) cov(r1,t+1, r1,t+1)︸ ︷︷ ︸
=x2Σ2

= ωxΣ2.

Thus, the parameter ω controls the covariance between the risky returns. If we set
ω = 0 then r1,t+1 ⊥ r2,t+1 (the returns are independent).

Next we want to find the value of ζ such that the expected level of the return is
unaffected by Σ (so that we will be able to explore independently the distinct effects of
the components of each shock and their covariance):

R2 ≡ Et[R2,t+1] = errr2 (5)

regardless of the values of x and Σ. Using (4), we therefore need:

Et[eζ+(ω/x)θ1,t+1+θ2,t+1 ] = 1

logEt[eζ+(ω/x)θ1,t+1+θ2,t+1 ] = 0.
(6)

Using standard facts about lognormals (cf. MathFacts), and for convenience defining
ω̂ = (Σ/x)ω, we have

0. = ζ − 0.5ω̂x2 − 0.5Σ2 + 0.5ω̂2x2 + 0.5Σ2

= ζ − 0.5x2ω̂(1− ω̂)

ζ = 0.5(ω̂ − ω̂2)x2 = 0.5(ωx− ω2)Σ2

(7)

which means that we can rewrite (4) directly as

r2,t+1 = rrr2 + 0.5(ωx− ω2)Σ2 + (ω/x)θ1,t+1 + θ2,t+1

= rrr2 + 0.5(ωx− ω2)Σ2 − 0.5(ω/x)(xΣ)2 − 0.5Σ2 + (ω/x)��θt+1,1 + ��θ2,t+1

= rrr2 + 0.5ωxΣ2 − 0.5ωxΣ2 − 0.5ω2Σ2 − 0.5Σ2 + (ω/x)��θt+1,1 + ��θ2,t+1

= rrr2 − (1 + ω2)0.5Σ2︸ ︷︷ ︸
r2

+(ω/x)��θt+1,1 + ��θ2,t+1.

Hence, from the independent mean-one lognormally distributed shocks Θ1 and Θ2,
we have constructed a pair of jointly lognormally distributed shocks whose covariance is
controlled by the parameter ω, whose relative and absolute variances are controlled by
the parameters x and Σ, and whose means are r1 and r2.
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To sum up, the process can be described in either of two ways:(
r1,t+1

r2,t+1

)
∼
(
N (r1, x

2Σ2)
N (r2, Σ2)

)
=

(
N (rrr1 − 0.5(xΣ)2, x2Σ2)
N (rrr2 − (1 + ω2)0.5Σ2,Σ2)

)
with covariance matrix (

σ2
1 σ12

σ12 σ2
2

)
≡
(

(xΣ)2 xωΣ2

xωΣ2 (ω2 + 1)Σ2

)
(8)

where a final useful result that follows from (8) and (1) is

corr(r1,t+1, r2,t+1) ≡ cov(r1,t+1, r2,t+1)/σ1σ2

= ω/(1 + ω2)0.5.
(9)

2 Computational Theory
To reduce clutter, define R̃i = Ri,t+1 and interpret E as Et[], so that we can write the
expectation of some function h that depends on the realization of the return shocks as:

E[h(R̃1, R̃2)] =

∫ R̄1

R1

∫ R̄2

R2

h(R̃1, R̃2)dF(R̃1, R̃2) (10)

where F(R̃1, R̃2) is the cumulative distribution function for a multivariate lognormal
with the covariance matrix defined by (8).1 Standard numerical computation software
can compute this double integral, but at such a slow speed as to be unusable for many
purposes. Computation of the expectation can be massively speeded up by advance
construction of a numerical approximation to F(R̃1, R̃2).

Such approximations often take the approach of replacing the distribution function
with a discretized approximation to it; appropriate weights w[i, j] are attached to each
of a finite set of points indexed by i and j, and the approximation to the integral is
given by:

E[h(R̃1, R̃2)] ≈
n∑
i=1

m∑
j=1

h(R̂1[i, j], R̂2[i, j])w[i, j] (11)

where various methods are used for constructing the weights w[i, j] and the nodes
(corresponding to the {i, j} pairs). The matrices R̂1 and R̂2 contain the conditional
mean values of R̃1 and R̃2 associated with each of the regions.
Perhaps the most popular such method is Gauss-Hermite interpolation (see Judd

(1998) for an exposition, or Kopecky and Suen (2010) for a recent candidate for a
better choice). Here, we will pursue a particularly simple and intuitive alternative:
Equiprobable discretization. In this method, m = n and boundaries on the joint CDF
are determined in such a way as to divide up the total probability mass into submasses
of equal size (each of which therefore has a mass of n−2). This is conceptually easier
if we represent the underlying shocks as statistically independent, as with Θ1 and Θ2

above; in that case, each submass is a square region in the Θ1 and Θ2 grid. We then
1Under the lognormal assumption, R̃i = 0 and R̄i =∞ for both shocks i ∈ {1, 2}.
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Figure 1 Portfolio Share By Method as a Function of ω

compute the average value of Θ1 and Θ2 conditional on their being located in each of
the subdivisions of the range of the CDF. Since Θ1 and Θ2 are IID, the representation
of the approximating summation is even simpler than (11):

E
[
h
(
R̃1, R̃2)

)]
≈ n−2

n∑
i=1

n∑
j=1

h
(
R1(Θ̂1[i], Θ̂2[j]),R2(Θ̂1[i], Θ̂2[j]))

)
where Ri(Θ1,Θ2) are the (linear) functions relating the return shocks to the IID shocks.

3 Computational Results
Figure 1 compares the computed optimal portfolio share for a numerical solution using
the built-in numerical optimizer and maximization functions (the lowest, black, locus),
the Campbell-Viceira solution (the highest, red locus) and an equiprobable approxima-
tion using 20 approximation points (green, middle) as well as the solution using the
equiprobable approximation at an evenly-spaced grid of points (blue dots).

Careful examination indicates that the numerical approximation is quite close to the
full numerical solution, while the CV approximation diverges substantially from the
numerical answer. The tradeoff is that the equiprobable solution is about 2000 times
slower than the CV approximation, while the direct solution is more than 100 times
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slower than the equiprobable solution. Depending on the requirements of the problem
being examined, these differences in efficiency can make a tremendous difference in the
feasibility of a research project.2
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2Details can be found in the Mathematica notebook associated withthis handout.
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