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Abstract
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gested, the marginal propensity to consume out of wealth or transitory income declines
with the level of wealth.
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1 Introduction

One of the more surprising discoveries in macroeconomic theory over the past ten years

has been how much the solution to the optimal intertemporal consumption problem can

change when income uncertainty is introduced into the problem. In an important early

paper, Zeldes (1989), using numerical methods, found that introducing labor income

uncertainty made the consumption function concave, with the marginal propensity to

consume everywhere higher than in the certainty case. Kimball (1990a, 1990b) gives

the analytical explanation for the increase in the slope of the consumption function, but

until now there has been no analytical explanation for the concavity of the consumption

function that income uncertainty seemed to induce.

The idea that the consumption function is concave is an old one, dating at least

to the origin of Keynesian macroeconomics: The General Theory of Employment, In-

terest, and Money emphasized the central importance of the consumption function, and

explicitly argued that the consumption function is concave.1 Nonetheless, standard (and

widely used) perfect-certainty and certainty-equivalent versions of intertemporal opti-

mizing models imply a marginal propensity to consume that is unrelated to the level of

household wealth. We show that, except under very special conditions, adding income

uncertainty to the standard optimization problem induces a concave consumption func-

tion in which, as Keynes suggested, the marginal propensity to consume out of wealth

or transitory income declines with the level of wealth.

There appears to be little recent direct empirical evidence on whether the con-

sumption function is concave. We are aware of only two papers, one by Lusardi (1992)

and one by Souleles (1995). Both of these papers find that the marginal propensity to

consume is substantially higher for consumers with low wealth or low income than for

consumers with high wealth or income.2 There is a substantial older literature, dat-

1Keynes (1935) (p. 31) writes: “... the marginal propensity to consume [is] weaker in a wealthy
community ...”; and, later (p. 349), “... with the growth in wealth [comes] the diminishing marginal
propensity to consume ...” See also the discussion of a diminishing marginal propensity to consume out
of current income on page 120.

2Specifically, Souleles (1995) finds, for the low-wealth and low-income households, a higher marginal
propensity to consume nondurables out of income tax refunds, and Lusardi (1992) finds similar results

1



ing to early tests of the Permanent Income Hypothesis, which found some evidence of

concavity.3

Concavity of the consumption function is interesting for several reasons. The most

important is probably that strict concavity implies that consumption growth depends

on the level of wealth, which is serially correlated, so the implication of Hall (1978)

that consumption should follow a random walk at the household level no longer holds.

In practice, most Euler equation tests have implicitly assumed that the consumption

function is linear, or approximately linear. 4 At the aggregate level, concavity means

that the entire wealth distribution is an omitted variable when estimating aggregate

consumption Euler equations, and so the random walk implication again fails.5

At a more conceptual level, Carroll (1995a, 1995b) shows that the concavity of

the consumption function induced by uncertainty is a key element in understanding how

“buffer-stock” (target saving) behavior can emerge from the standard unconstrained Life

Cycle/Permanent Income Hypothesis consumption model when labor income uncertainty

is introduced.

Another result that follows from the concavity of the consumption function is a

strengthening of Kimball’s (1990a, 1990b) proof that uncertainty increases the marginal

propensity to consume. Kimball (1990a, 1990b) shows that uncertainty increases the

marginal propensity to consume at a given level of consumption, but not necessarily at

a given level of wealth. Concavity of the consumption function implies that uncertainty

increases the marginal propensity to consume at a given level of wealth even more than

when she estimates the MPC out of predictable changes in income.
3Bodkin (1959) found a high MPC for recipients of an unexpected windfall that the U.S. government

conferred on certain World War II veterans. Kreinin (1961), by contrast, found that Israeli recpients
of restitution payments from Germany in the late 1950s had much lower MPCs. The discrepancy in
these two results was attributed by some observers to the fact that the Israeli windfalls were much
larger, relative to recipient income, than the WWII windfalls, an explanation which implies a concave
consumption function. Landsberger (1966) sorted the data by the ratio of the windfall to income, and
found that the MPC fell as the size of the payment increased, implying a concave consumption function.

4Of the 25 household-level studies summarized in the recent survey by Browning and Lusardi (1995),
only two allow for a nonlinear consumption function by allowing the variance term in the log-linearized
Euler equation to vary across households.

5For more discussion of this point, see Carroll (1992, 1995a).
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at a given level of consumption.6

One final implication of concavity of the consumption function is a corollary of the

link Kimball (1990a) shows between the marginal propensity to consume and the effective

risk aversion of the value function. A higher marginal propensity to consume raises

the effective risk aversion of the value function by raising the consumption covariance

resulting from a given financial risk. A concave consumption function implies that the

effective level of risk aversion will fall more quickly with wealth than it would if the

marginal propensity to consume were constant. As a consequence, labor income risk will

make financial risk-taking more strongly related to wealth than it otherwise would be,

even when the financial risks are statistically independent of the labor income risk.7

These implications of the concavity result illustrate why it is important for us to

have a rigorous analytical understanding of why the consumption rule is concave. This

paper provides an analytical demonstration of the concavity of the consumption function

under uncertainty for a key class of utility functions. We show that the consumption rule

is concave whenever the intertemporally separable period utility function is drawn from

the class of functions which exhibit Hyperbolic Absolute Risk Aversion (HARA) and have

a positive precautionary saving motive, i.e. those functions which satisfy the condition

u′′′u′/u′′2 = k > 0.8 Most commonly used utility functions are of the HARA class:

Quadratic utility is the borderline case, corresponding to k = 0, Constant Absolute Risk

Aversion (CARA) corresponds to k = 1, and Constant Relative Risk Aversion (CRRA)

utility functions satisfy k > 1.9

We further show that if k > 0 the consumption function will be strictly concave

6This follows because positive precautionary saving implies that the same level of consumption is
at a higher level of wealth for the uncertain consumption function. The same level of wealth is lower
on the uncertain consumption function and therefore must have an even higher marginal propensity to
consume.

7This implication of a greater dependence of financial risk-taking on wealth goes beyond the results
of Kimball (1993) which show only that the labor income risk will reduce the level of financial risk
taking.

8This yields −u′′(x)/u′(x) = 1
A+(k−1)x whence the name HARA. See the appendix for further analysis

of this class.
9This class can also accomodate CRRA utility functions with a shifted origin, which are sometimes

used to model a necessity level of consumption.
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except under very special circumstances. The exceptions to strict concavity include two

well-known cases: CARA utility if all of the risk is to labor income (no rate of return

risk), and CRRA utility if all of the risk is rate-of-return risk (no labor income risk).

These special cases have been widely used because of their analytical convenience (they

yield a linear consumption function), but the analytical results in this paper bolster the

argument (made forcefully by Kimball (1990a), Carroll (1995a), Deaton (1992) and oth-

ers) that it is in most cases unwise to rely on these analytically convenient formulations

because the behavior they imply is qualitatively quite different from behavior in the

general case.

In the course of the proof, we also generalize the result of Neave (1971) that

decreasing absolute risk aversion is inherited by the value function and of Sibley (1975)

that a positive third derivative is inherited by the value function.

To understand our proof, it is helpful to see the value function as produced from the

underlying utility function by two operations: first, addition of utility or value functions

across states of nature at a given point in time; and, second, intertemporal aggrega-

tion, by maximizing the sum of utility in one period and the value from all subsequent

periods. Since maximization of this sum requires equating (some ratio of) marginal

utilities between present and future, and this marginal utility gives the marginal utility

of the intertemporal aggregate, intertemporal aggregation involves a kind of horizontal

addition of marginal utility, to match the vertical addition of marginal utility when an

expectation is taken across states of nature at one point in time. It is easy to see that

convexity of marginal utility (u′′′ > 0) is preserved under both vertical and horizontal

addition of marginal utility. We show that the property u′′′u′

u′′

2 ≥ k, or, equivalently,

−u′′′/u′′ ≥ k(−u′′/u′) –that is, prudence (as defined by Kimball (1990b)) is greater than

k times risk aversion (as defined by Pratt, (1964))10–is preserved under both vertical

(Lemma 1) and horizontal (Lemma 2) addition of marginal utility. Neither of these

Lemmas depends on the assumption of HARA utility, and so both are quite general.

The HARA assumption is used only in Lemma 3, where we show that if a period’s

utility function is HARA with prudence equal to k times risk aversion and prudence is

10This is equivalent to convexity of u
′1−k

1−k
(or convexity of log u′ when k = 1).
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greater than or equal to k times risk aversion for the future value function, then the

current-period consumption rule is concave.

2 Proofs

We assume that the consumer is maximizing the time-additive present discounted value

of utility from consumption u(c). Denoting the (possibly stochastic) gross interest rate

and time preference factors as R̃t ∈ (0,∞) and β̃t ∈ (0,∞), respectively, and labelling

consumption ct, stochastic labor income ỹt, and gross wealth (inclusive of labor income)

wt, the consumer’s problem can be written as:11

Vt(wt) = max
ct

u(ct) + Et

T∑

s=t+1





s∏

j=t+1

β̃j



u(cs) (1)

s.t. wt+1 = R̃t+1(wt − ct) + ỹt+1 (2)

cT ≤ wT . (3)

As usual, the recursive nature of the problem allows us to rewrite this equation as:

Vt(wt) = max
ct

u(ct) + Etβ̃t+1Vt+1(R̃t+1(wt − ct) + ỹt+1), (4)

or, for convenience defining φt(st) = Etβ̃t+1Vt+1(R̃t+1st + ỹt+1), where st = wt − ct is the

portion of period t resources saved, we have:

Vt(wt) = max
ct

u(ct) + φt(wt − ct). (5)

For notational simplicity we express the value function Vt(wt) and the expected

discounted value function φt(st) as functions simply of wealth and savings, but implic-

itly these functions reflect the entire information set as of time t; if, for example, the

11We allow for a stochastic discount factor because some problems which contain a stochastic scale
variable (such as permanent income) can be analyzed more easily by dividing the problem through by
the scale variable; this division induces a term that effectively plays the role of a stochastic discount
factor.
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income process is not i.i.d., then information on lagged income or income shocks could be

important in determining current optimal consumption. In the remainder of the paper

the dependence of functions on the entire information set as of time t will be unobtru-

sively indicated, as here, by the presence of the t subscript. For example, we will call

the policy rule in period t which indicates the optimal value of consumption c∗t (wt). In

contrast, because we assume that the utility function is the same from period to period,

the utility function has no t subscript.

We are now in a position to state the main theorem of this paper. Defining a

“permissible income process” as any income process which permits the agent to ensure

that consumption remains within the domain over which u(c) is defined, the theorem is:

Theorem 1 For utility functions in the HARA class, for any permissible income process,

the optimal consumption rule is concave, i.e. c∗
′′

t (wt) ≤ 0.

In order to prove this theorem we will first prove three lemmas.

The first Lemma establishes that the property that prudence is greater than k

times risk aversion is preserved when aggregating across states of nature (i.e. when

taking an expectation). We called this “vertical aggregation” in the introduction.

Lemma 1 If
V

′′′

t+1
V

′

t+1

[V ′′

t+1]
2 ≥ k then

φ
′′′

t
φ
′

t

[φ′′

t ]
2 ≥ k.

The expression
φ
′′′

t
φ
′

t

[φ′′

t ]
2 will be ≥ k if and only if the expression φ

′′′

t φ
′

t − k
[

φ
′′

t

]2
is

nonnegative. This expression is merely the determinant of the following matrix:

Φt =




φ

′

t

√
k
[

φ
′′

t

]

√
k
[

φ
′′

t

]

φ
′′′

t



 . (6)

Therefore
φ
′′′

t
φ
′

t

[φ′′

t ]
2 ≥ k if and only if the matrix Φt is positive semidefinite. But we can

rewrite Φt as:

Φt = Et β̃t+1




R̃t+1 V

′

t+1

√
k R̃2

t+1

[

V
′′

t+1

]

√
k R̃2

t+1

[

V
′′

t+1

]

R̃3
t+1 V

′′′

t+1



 . (7)
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Notice that, for all possible realizations of R̃, β̃, and ỹ, the matrix whose expecta-

tion we are taking is positive semidefinite because R̃4
t+1V

′

t+1V
′′′

t+1 − kR̃4
t+1

[

V
′′

t+1

]2
∈ [0,∞)

from our initial assumptions that V
′

t+1V
′′′

t+1/
[

V
′′

t+1

]2
≥ k, that R̃t+1 > 0, and that the pe-

riod utility function is increasing and concave. (The value function inherits monotonicity

and concavity from the utility function).12 The expectation operator acts as a weighted

sum across possible states, and because the sum of positive semidefinite matrices is

positive semidefinite, Φt must be positive semidefinite, and the Lemma is proven.

The second Lemma establishes that the property of prudence exceeding k times

risk aversion is preserved by intertemporal aggregation (what we dubbed “horizontal

addition” in the introduction). This generalizes Neave’s (1971) proof that the value

function inherits decreasing absolute risk aversion from the utility function.

Lemma 2 If
φ
′′′

t
φ
′

t

[φ′′

t ]
2 ≥ k and u′′′u′

u′′2 ≥ k then
V

′′′

t
V

′

t

[V ′′

t ]
2 ≥ k.13

Denoting the marginal utility of consumption at the optimal consumption level as

zt = u′(c∗t (wt)), we define the functions ft(zt), gt(zt), and ht(zt) as the inverses of u′, φ′,

and V ′:

ft(zt) = u′−1(zt) = ct,

gt(zt) = φ
′−1
t (zt) = st,

ht(zt) = V
′−1
t (zt) = wt.

The proof of the lemma proceeds as follows. Dropping the time subscripts from f,

g, and h for convenience, we have:

f ′ =
1

u′′
, (8)

f ′′ = − u′′′

u′′2
f ′ = − u′′′

u′′3
, (9)

and so

−zf ′′

f ′
=

u′′′ u′

u′′2
≥ k. (10)

12See Fama (1970).
13We prove the Lemma for u

′′′
u
′

u′′2 ≥ k for generality; the main result uses the Lemma only for HARA

utility functions for which u
′′′

u
′

u′′2 = k.
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Similarly,

−zg′′

g′
=

φ
′′′

t φ
′

t
[

φ
′′

t

]2 ≥ k (11)

and

−zh′′

h′
=

V
′′′

t V
′

t
[

V
′′

t

]2 , (12)

but because h = f + g, h′ = f ′ + g′ and h′′ = f ′′ + g′′, so

−zh′′

h′
= −z

f ′′ + g′′

f ′ + g′
(13)

=
f ′

f ′ + g′

︸ ︷︷ ︸

>0

(

−zf ′′

f ′

)

︸ ︷︷ ︸

≥k

+
g′

f ′ + g′

︸ ︷︷ ︸

>0

(

−zg′′

g′

)

︸ ︷︷ ︸

≥k

. (14)

Thus, V
′′′

t V
′

t /
[

V
′′

t

]2
is a weighted average of two quantities both of which are greater

than or equal to k, and therefore

V
′′′

t V
′

t
[

V
′′

t

]2 ≥ k, (15)

and the Lemma is proven.

The third Lemma picks up where Lemma 2 leaves off. It states that if the value

function has prudence ≥ k times risk aversion and the utility function is HARA with

parameter k (as we assume), then the consumption function is concave.

Lemma 3 If
V

′′′

t
V

′

t

[V ′′

t ]
2 ≥ k and u′′′u′

u′′2 = k, then the optimal consumption policy rule is

concave, c∗
′′

t (wt) ≤ 0.

We begin by defining a function which yields the amount of saving corresponding

to any optimally chosen level of consumption: θ∗t (ct) = w∗
t (ct) − ct where w∗

t (ct) is the

inverse of the optimal consumption rule c∗t (wt). Note that an alternative definition of

θ∗t (ct) is θ∗t (ct) = g(f−1(ct)). Because w∗
t (ct) = ct + θ∗t (ct) it is clear that if θ∗t (ct) is

convex, w∗
t (ct) is convex. But if w∗

t (ct) is convex, its inverse, c∗t (wt), must be concave,
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because both are increasing functions. Thus, if we can prove that θ∗t (ct) is convex we

will have proven that the consumption rule must be concave.

The proof that θ∗t (ct) is convex closely follows proofs in Pratt (1964) and Kim-

ball (1990b). It proceeds by directly calculating the derivatives of θ∗t (ct) = g(f−1(ct)).

Taking the derivative of both sides with respect to ct (and dropping the ct argument on

f−1(ct) for clarity), we have:

θ∗t (ct) = g(f−1), (16)

θ∗
′

t (ct) =
g′(f−1)

f ′(f−1)
, (17)

θ∗
′′

t (ct) =
[g′′(f−1)f ′(f−1) − g′(f−1)f ′′(f−1)] /f ′(f−1)

[f ′(f−1)]2
(18)

=
g′(f−1)

[f ′(f−1)]2

[

g′′(f−1)

g′(f−1)
− f ′′(f−1)

f ′(f−1)

]

(19)

which, from Lemma 2,

=
g′(zt)

[f ′(zt)]
2

(
1

zt

)

︸ ︷︷ ︸

>0









−ztf
′′(zt)

f ′(zt)
︸ ︷︷ ︸

=k

− −ztg
′′(zt)

g′(zt)
︸ ︷︷ ︸

≥k









.

︸ ︷︷ ︸

≤0

(20)

So sign
(

θ∗
′′

t (ct)
)

= −sign (g′(zt))). But

g′(zt) =
1

φ
′′

t (st)
(21)

and

φ
′′

t (st) = Etβ̃t+1

(

R̃2
t+1

)

V
′′

t+1(wt+1) ≤ 0. (22)

Therefore sign(g′(zt)) ≤ 0, and sign
(

θ∗
′′

t (ct)
)

≥ 0. Thus θ∗t (ct) is convex, implying that

c∗t (wt) is concave, and the Lemma is proven.

We are now in a position to prove the main theorem of the paper.
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Proof of Theorem 1. First, note that in the last period of life, VT (wt) = u(wt), so

V
′′′

T V
′

T/
[

V
′′

T

]2
= u′′′u′/u′′2 = k. Therefore, by Lemma 1 φ

′′′

T−1φ
′

T−1/
[

φ
′′

T−1

]2
≥ k, and by

Lemma 2 we know that V
′′′

T−1V
′

T−1/
[

V
′′

T−1

]2
≥ k. Continued iteration using Lemma 1 and

Lemma 2 demonstrates that for any t < T , V
′′′

t V
′

t /
[

V
′′

t

]2
≥ k. Then Lemma 3 shows

that the consumption rule is concave in all time periods t, and the theorem is proven.

The final question we address is under what conditions the consumption rule is

strictly concave. We will consider separately the cases where k is a positive number

other than 1, and where k = 1.

Corollary 1 For utility functions in the HARA class, for any permissible income pro-

cess, the optimal consumption rule is strictly concave, i.e. c∗
′′

t (wt) < 0, whenever k > 0

and k 6= 1 and future labor income is to any degree uncertain, and is not perfectly corre-

lated with the future interest rate.

Proving this corollary requires us to revisit Lemma 1. We will call the new version

Lemma 4.

Lemma 4 If
V

′′′

t+1
V

′

t+1

[V ′′

t+1]
2 = k 6= 1 and labor income in period t+1, ỹt+1, is uncertain and

imperfectly correlated with R̃t+1, then
φ
′′′

t
φ
′

t

[φ′′

t ]
2 > k.

Recall our matrix Φ

Φt = Et β̃t+1




R̃t+1 V

′

t+1

√
k R̃2

t+1

[

V
′′

t+1

]

√
k R̃2

t+1

[

V
′′

t+1

]

R̃3
t+1 V

′′′

t+1



 . (23)

In proving Lemma 1 we showed that for any possible realizations of R̃, β̃, and ỹ, the Φ

matrix is positive semidefinite. In order for the expectation (the weighted sum across

states) to be positive definite, we need only that the matrices being added not be scalar

multiples of each other. The conditions under which the matrices are scalar multiples

are quite restrictive. In the appendix, we derive explicit expressions for V (x), V ′(x), and

V ′′(x) when V ′′′V ′/[V ′′]2 = k. Taking one more derivative gives:
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V
′′′

t+1(xt+1) =
[

A

1 − k

]2

k[Axt+1 + B]k/(1−k)−1. (24)

In order for the matrices to be scalar multiples whatever the realizations of R̃ and

ỹ, we need to have, for example, R̃t+1V
′

t+1/R̃
3
t+1V

′′′

t+1 be constant. But

[

V
′

t+1

R̃2
t+1V

′′′

t+1

]

=

[(
A

1 − k

)−2 (Axt+1 + B)2

kR̃2
t+1

]

. (25)

Substituting for xt+1 = R̃t+1st + ỹt+1,

[

V
′

t+1

R̃2
t+1V

′′′

t+1

]

=

[(
A

1 − k

)−2 (Ast + (Aỹt+1 + B)/R̃t+1)
2

k

]

. (26)

For this expression to be constant it is necessary to have (Aỹ + B)/R̃ = γ where

γ is a constant. This can be achieved in only a few ways. First, if there is no labor

income uncertainty then y could be constant at −B/A, making the numerator of (Aỹ +

B)/R̃ zero. This reflects the well-known result that, under HARA utility, if there is

no labor income uncertainty it is possible to solve for a linear analytical consumption

function (Merton (1969)). If there is both labor income uncertainty and rate of return

uncertainty this expression will be constant only if the two forms of uncertainty are

perfectly correlated and are related by ỹ = (γR̃ − B)/A.14

The next lemma is used to establish that
V

′′′

t
V

′

t

[V ′′

t ]
2 > k whenever there is any income

uncertainty in any future period, even if the uncertainty is not in the successive period

(as in Lemma 4).

Lemma 5 If
V

′′′

t+1
V

′

t+1

[V ′′

t+1]
2 ≥ k and > k with positive probability, and u′′′u′

u′′2 ≥ k, then
V

′′′

t
V

′

t

[V ′′

t ]
2 >

k.

Consider again the definition of the matrix Φt in equation (23). For each possible

realization of R̃, β̃, and ỹ, the matrix whose expectation we are taking is positive definite

14This equation also handles the case of a stochastic necessity level of consumption B.
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when
V

′′′

t+1
V

′

t+1

[V ′′

t+1]
2 > k with V

′

t+1 and V
′′′

t+1 both positive. As the sum of these positive definite

matrices (and perhaps some positive semi-definite matrices), Φt itself must be positive

definite, implying that φ
′′′

t φ
′

t−k
[

φ
′′

t

]2
is positive from the definition of Φt in equation (6).

Of course, if φ
′′′

t φ
′

t − k
[

φ
′′

t

]2
> 0 then we have

φ
′′′

t
φ
′

t

[φ′′

t ]
2 > k. Substituting

φ
′′′

t
φ
′

t

[φ′′

t ]
2 > k for

φ
′′′

t
φ
′

t

[φ′′

t ]
2 ≥ k in the appropriate places in Lemma 2 yields

V
′′′

t
V

′

t

[V ′′
t]

2 > k and the Lemma is

proven.

The final lemma is the strict-concavity analogue to Lemma 3.

Lemma 6 If
V

′′′

t
V

′

t

[V ′′

t ]
2 > k and u′′′u′

u′′2 = k, then the optimal consumption policy rule is

strictly concave, c∗
′′

t (wt) < 0.

The proof is identical to the proof for Lemma 3, except for the substitution of

strict for loose inequality in equations (20) and (22).

With Lemmas 4 through 6 in hand, the proof of Corollary 1 is trivial.

Proof of Corollary 1. Imagine there is some labor income uncertainty that is

imperfectly corellated with interest rate uncertainty in period t+1 in some states. Then

recursion using Lemmas 4 and 5 establishes that V
′′′

s V
′

s

[V ′′

s ]
2 > k for all s ≤ t, and, given this,

Lemma 6 establishes the strict concavity of the consumption rule for all s ≤ t.

The second corollary addresses the case where utility is of the Constant Absolute

Risk Aversion form.

Corollary 2 For utility functions in the HARA class with k = 1 (i.e. the CARA utility

function), for any permissible income process, the optimal consumption rule is strictly

concave, i.e. c∗
′′

t (wt) < 0, whenever the future interest rate is to any degree uncertain.

In this case, V (wt) = exp(−awt)/(−a) to within a linear transformation. The de-

terminant of the Φ matrix is now Et[R̃t+1V
′

t+1]Et[R̃
3
t+1V

′′′

t+1]−Et

[

R̃2
t+1V

′′

t+1

]

Et

[

R̃2
t+1V

′′

t+1

]

.

But with CARA utility V
′

t+1V
′′′

t+1 = V
′′

t+1V
′′

t+1 so the expression will be zero only if

Et[R̃t+1]Et[R̃
3
t+1] = Et[R̃

2
t+1]Et[R̃

2
t+1]. This will of course hold only if R is nonstochastic.

The remainder of the proof is identical to that for Corollary 1.
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Thus, if utility is of the CARA form, the consumption function will be strictly

concave if there is any rate of return uncertainty, but, as is widely known, will be linear

if the only form of uncertainty is in labor income.

The final Corollary just combines Corollaries 1 and 2.

Corollary 3 For utility functions in the HARA class with k > 0, for any permissible

income process, the optimal consumption rule is strictly concave, i.e. c∗
′′

t (wt) < 0, when-

ever future labor income and the future interest rate are both uncertain, and are not

perfectly correlated with each other.

The proof is obvious.15

3 Conclusion

Many economists from at least Keynes (1935) on have had the intuition that the con-

sumption function is concave, with a marginal propensity to consume lower for rich

consumers than for poor consumers. Nevertheless, much empirical and theoretical work

has assumed, explicitly or implicitly, that the consumption function is linear. One of

the most striking features of Zeldes’s (1989) numerical solutions for the consumption

rule under uncertainty is the introduction of concavity to consumption rules that were

linear in the absence of uncertainty. Carroll (1992, 1995a) shows how important the

curvature of the consumption function can be for reasoning about the behavior of con-

sumption under uncertainty. This paper provides a solid analytical basis for concavity

of the consumption rule under uncertainty.

Johns Hopkins University

and

University of Michigan

15It is also worth noting in this context that the reason consumption is unaffected by uncertainty when
utility is quadratic is because

√
k = 0, making the off-diagonal terms of Φ zero, while the southeast

diagonal element is zero because V
′′′

t+1 = 0, so all of the matrices added to get Φ are scalar multiples of
each other.
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Appendix

In the introduction, we asserted that HARA utility functions or value functions

could be described as the class of functions that satisfy the condition u′′′u′/u′′2 = k. An

equivalent form is u′′′u′/[u′′]2 = k (or V ′′′/V ′′2 = k). The first integral gives

log[u′′] = k log u′ + A. (27)

The second integral is

[u′]1−k = Ax + B, (28)

u′ = [Ax + B]1/(1−k). (29)

The third integral is

u =
1 − k

(2 − k)A
[Ax + B]

2−k

1−k + C. (30)

Differentiation gives:

u′′(x) =
A

1 − k
[Ax + B]k/(1−k). (31)

We need to require Ax + B ≥ 0 in order to be able to raise this expression to a

fractional power. Also, because we require a concave utility function for which u′′ < 0

we must have [A/(1 − k)] < 0 which implies that k > 1 if A > 0 and k < 1 if A < 0.

Noting that linear transformations do not change the preferences represented by the

utility function, the following are representatives of the HARA utility function for various

values of k < 1.

If k = -1 then u(x) = −(B − x)1.5

If k = 0 then u(x) = −(B − x)2 (quadratic utility)
If k = 1/3 then u(x) = −(B − x)2.5

and so on.

The functions for which k > 1 are the Decreasing Absolute Risk Aversion subset

of the HARA functions. It is clear from (30) that the DARA HARA functions are just

the CRRA functions and their counterparts with shifted origins.
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