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Ramsey Growth in Discrete and Continuous Time
This handout solves a continuous-time version of the Ramsey/Cass-Koopmans (RCK)

model using the Hamiltonian method, and shows the relationship between that method
and the discrete-time approach.

The problem is to choose a path of consumption per capita c from the present moment
(arbitrarily called time 0) into the infinite future, {c}∞0 , that solves the problem

max
{c}∞0

∫ ∞
0

u(c)e−ϑt (1)

subject to

k̇ = f(k)− c− (ξ + δ)k

k > 0 ∀ t
(2)

where ϑ is the time preference rate, ξ is the population growth rate, and δ is the
depreciation rate. (In continuous time, we think of all variables as implicitly being
a function of time, but it is cumbersome to write, e.g., c(t) everywhere, so the time
argument is omitted; we are also thinking of the initial value of capital at date 0 as
being a ‘given’ in the problem, so that k(0) = • for some specific value of •).

To emphasize the similarity between the continuous-time and the discrete-time solu-
tions where we have typically used the roman V to denote value, for the continuous-time
problem we define ‘curly’ value as a function of the initial level of capital as V(k).
The current-value (discounted) Hamiltonian is

H(k, c, λ) = u(c) + (f(k)− c− (ξ + δ)k)λ (3)

where k is the state variable, c is the control variable, and λ is the costate variable.
λ is the continuous-time equivalent of a Lagrange multiplier, so its value should be

equivalent to the value of relaxing the corresponding constraint by an infinitesimal
amount. But the constraint in question is the capital-accumulation constraint. Thus λ
should be equal to the value of having a tiny bit more capital, V(k+∆k)−V(k)

∆k
. In other

words, you can think of λ = V ′(k).
The first necessary Hamiltonian condition for optimality is

∂H
∂c

= 0

u′(c) = λ

u′(c) = V ′(k).

(4)

Note the similarity between (4) and the result we usually obtain by using the Envelope
theorem in the discrete-time problem,

u′(ct) = V′(kt). (5)
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Thus, you can use the intuition you (should have) developed by now about why the
marginal utility of consumption should be equal to the marginal value of extra resources
to understand this Hamiltonian optimality condition.

The second necessary condition is

λ̇ = ϑλ− λ(f ′(k)− (ξ + δ))(
λ̇

λ

)
= ϑ− (f ′(k)− (ξ + δ))

(6)

which expresses the growth rate of λ at an annual rate (because the interest rate r and
time preference rate ϑ are measured at an annual rate).
To interpret this in terms of our discrete-time model, begin with the condition

V′(kt) = RβV′(kt+1). (7)

The final necessary condition is just that the accumulation equation for capital is
satisfied,

k̇ = f(k)− c− (ξ + δ)k. (8)

This is the continuous-time equivalent of what we have previously called the Dynamic
Budget Constraint.

Up to now in this course we haven’t thought very much about what the time period
is. Generally, we have expressed things in terms of yearly rates, so that for example we
might choose R = 1.04 and β = 1/(1 + ϑ) = 1/(1.04) to represent an interest rate of 4
percent and a discount rate of 4 percent.

One of the attractive features of the time-consistent model we have been using is that
it generates self-similar behavior as the time interval is changed. Thus if we wanted to
solve a quarterly version of the model we would choose R = 1.01 and β = 1/1.01 and
it would imply consumption of almost exactly 1/4 of the amount implied by the annual
model, so that four quarters of such behavior would aggregate to the prediction of the
annual model.

To put this in the most general form, suppose R and β correspond to ‘annual rate’
values and we want to divide the year into m periods. Then the appropriate interest rate
and discount factor on a per-period basis would be R1/m and β1/m. Thus the discrete-
time equation could be rewritten

V′(kt) = R1/mβ1/mV′(kt+1) (9)

where the time interval is now 1/mth of a year (e.g. if m=52, we’re talking weekly, so
that period t + 1 is one week after period t). Now we can use our old friend, the fact
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that ez ≈ 1 + z, to note that this is approximately

V′(kt) ≈ [er]1/m[e−ϑ]1/mV′(kt+1)

= e(1/m)re−(1/m)ϑV′(kt+1)

= e(1/m)(r−ϑ)V′(kt+1)

= e(1/m)(r−ϑ)(V′(kt) + ∆V′(kt+1))

1 = e(1/m)(r−ϑ)

(
V′(kt) + ∆V′(kt+1)

V′(kt)

)
e(1/m)(ϑ−r) =

(
V′(kt) + ∆V′(kt+1)

V′(kt)

)
V′(kt)(e

(1/m)(ϑ−r) − 1︸ ︷︷ ︸
≈1+(1/m)(ϑ−r)−1

) = ∆V′(kt+1)

∆V′(kt+1)

V′(kt)
≈ (1/m)(ϑ− r)

m∆V′(kt+1)

V′(kt)
≈ (ϑ− r).

(10)

We defined the interest rate and time preference rate on an annual basis, but the time
interval between t and t + 1 is only (1/m)th of a year. Thus m∆V′(kt+1) expresses the
speed of change in V′(kt) at an annual rate.
Now, note that since the effective interest rate in this model is f ′(k)− (ξ+δ), equation

(10) is basically the same as (6) since λ = V ′(k) and m∆V′(kt+1) = (d/dt)V ′(k) =
λ̇. Hence, the second optimality condition in the Hamiltonian optimization method
is basically equivalent to the condition V′(kt) = RβV′(kt+1) from the discrete-time
optimization method!

The final required condition (the transversality constraint) is

lim
t→∞

λke−ϑt = 0 (11)

The translation of this into the discrete-time model is

lim
t→∞

βtu′(ct)kt = 0. (12)

Consider the simple model with a constant gross interest rate R and CRRA utility. In
that model, recall that ct+1 = (Rβ)1/ρct. Thus considered from time zero (12) becomes

lim
t→∞

βt(c0((Rβ)1/ρ)t)−ρkt = 0

= c−ρ0 βt[(Rβ)t/ρ]−ρkt

= c−ρ0 βtβ−tR−tkt

= c−ρ0 R−tkt

→ lim
t→∞

R−tkt = 0.

(13)

What this says is that you cannot behave in such a way that you expect kt to
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grow faster than the interest rate forever.1 This is the infinite-horizon version of the
intertemporal budget constraint. Among the infinite number of time paths of c and k
that will satisfy the first order conditions above, only one will also satisfy this transver-
sality constraint - because all the others imply a violation of the intertemporal budget
constraint.

Now differentiate (??) with respect to time

ċu′′(c) = λ̇ (14)

and substitute this into equation (6) to get

ċu′′(c)

u′(c)
= (ϑ− (f ′(k)− (ξ + δ)))

ċ = − u′(c)

u′′(c)
(f ′(k)− (ξ + δ)− ϑ)

(15)

using the fact derived earlier that for a CRRA utility function u(c) = c1−ρ/(1−ρ),−u′′(c)c/u′(c) =
ρ„ this becomes

= (c/ρ)(f ′(k)− (ξ + δ)− ϑ)

ċ/c = ρ−1(f ′(k)− (ξ + δ)− ϑ)
(16)

1Note that this also rules out negative kt values that grow faster than the interest rate.
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