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Abstract

This paper suggests a formal framework to establish a convex pref-

erence relation for information. We introduce a new commodity–price

duality, when information is the commodity. The fineness and precision

of payoff–relevant signals quantifies information. All candidate prior be-

liefs that become inconsistent with additional consumption of information

can be excluded and lead to an increase of utility. A heterogeneous agent

economy is introduced, in which information can be traded, based on indi-

vidual demand for information. In this context, once information is sold,

it remains the property of the seller. In a final step, we show that this

information–trade equilibria exist.
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mation, concavity of utility from information, equilibrium
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1 Introduction

“The most valuable commodity I know of is information.”

Gordan Gekko in the movie Wallstreet (1987)

Rather than a movie quotation, we might instead consider Arrow (1996):

“Information is an economic good, in the sense that it is considered as valuable

and costly.” In other words, scarcity and the heterogeneous distribution of

information can result in the willingness to pay for it. The present paper aims
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to present a formal model of an economy where information, as a tradable

commodity, receives its value from an equilibrium price.

Following Radner (1968) and Aumann (1974), we define information as

a special system of events, a σ-algebra. A larger or finer σ-algebra gives

the decision maker a more precise conditional expectation of any evaluated

signal or payoff. For instance, the coarsest σ-algebra reveals only the expected

value of the signal. Given this uncommon type of commodity, the traditional

microeconomic–modeling principle suggests beginning with the introduction of

an appropriate commodity space for information. The usual consumption set,

a set of σ-algebras, consists of a set of sets of sets. We term this a 3-stage

commodity space. A standard commodity space for contingent claims would

then be of 1-stage type. This distinction becomes immediately relevant in

light of the basic task of finding a meaningful notion of closeness between two

information commodities.

The standard approach to modeling information as a commodity considers

a 3-stage consumption set. Similar attempts can be found in Allen (1986),

Cotter (1986), Stinchcombe (1990), Van Zandt (1993) and Khan, Sun, Tourky,

and Zhang (2008). We have nothing to contribute concerning such a modeling

approach given that each notion of closeness possesses several advantages.1 In

the same vein, Allen (1990) presents a detailed account of information as a

commodity. In contrast, our analysis relies on the following assumption: Every

σ–algebra is generated by a set of random variables.

This assumption is rather weak but has several advantages. First, from a

technical stance, we reduce our analysis of commodity spaces from stage 3 –type

to stage 2 –type, since only the index set of generating random variables matters.

Second, each random variable can now be interpreted as knowledge about the

distribution of a signal. The resulting information is then the awareness about

all events that stands in relation to these signals. A natural example of a stage

2–type commodity is land (see Berliant (1986)). It turns out that in many cases

the above stage 2 assumption for information holds automatically. For instance,

as explained in Example 2, if uncertainty is based on a Brownian motion, this

assumption is already satisfied.

In the model presented in this paper, additional (and payoff relevant)

information is used entirely to exclude possible priors about the uncertain

future. To establish a utility functional on the consumption set of information,

1Alternative approaches are Gilboa and Lehrer (1991); Grant, Kajii, and Polak (1998).
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we must impose an ambiguity attitude for the agent. We focus here on a

worst–case expected utility as axiomatized by Gilboa and Schmeidler (1989).

The new twist lies in modeling information as a device to discipline ambiguity.

Formally, this is quantified by the information–ambiguity (IA) correspondence.

The way imprecise information generates a set of possible beliefs is to some

extent related to work by Chateauneuf and Vergnaud (2000), Gajdos, Hayashi,

Tallon, and Vergnaud (2008) and Gul and Pesendorfer (2015).

In contrast to Radner and Stiglitz (1984) and Chade and Schlee (2002) we

model the quantification of utility from information differently. Consequently,

utility from additional information is indeed concave. Moreover, an increase

in available information results in a decrease in the degree of ambiguity about

the true probability law that describes the possible distributions of signals.

The updated set is the value of the IA-correspondence. Under the assumption

of ambiguity aversion, we thus obtain a utility improvement. This remains

in line with Blackwell (1953), where under standard assumptions, a more

precise information system is always preferred to one that is less so (see also

Hervés-Beloso and Monteiro (2013)).

Based on such a well-behaved commodity space and utility for information,

we follow some classical steps from demand theory. Budget and demand cor-

respondences for information have similar analytic properties to their classical

counterparts. We take into account that doubling the same information yields

no improvement. This fact also changes the nature of information allocations

when compared with the usual concept of feasibility.

In a final step, we establish a general equilibrium existence result, where

information is traded the same as contingent claims, i.e. contracts are closed

today and delivery takes place at a later point in time. However, the nature

of information allows selling them to more than one agent. The value of

information is usually defined as the increase of utility with respect to the

best action.2 Here, we again follow the tradition of general equilibrium

theory, so that the value of information receives its foundation through the

endogenous equilibrium price system. Apart from existence, we show that equi-

librium prices allow for a representation in terms of an information–price density.

The paper is organized as follows. In Section 2 we present a leading and re-

2 In the present model, such an approach is odd as additional information comes at a mon-

etary cost from buying and selling information in the market for information. Consequently,

this affects the best action, due to wealth changes.
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peatedly emerging example. Section 3 begins with the formal description of the

model and introduces the basic consumption set. Section 4 formulates the rela-

tion between information and falsifiability of priors via the IA–correspondence.

Then the resulting utility from information is specified. Before we come to the

notion and existence of an information–trade equilibrium in Section 6, we dis-

cuss standard concepts of price systems, budget and demand correspondences

for information. Section 7 concludes, and the appendices presents the proofs.

2 Unveil the Ellsberg Urn

This section presents a thought experiment based on an Ellsberg urn. It serves

as the leading example and helps to clarify the meaning of (i.) information as

a commodity, (ii.) the information–ambiguity correspondence and (iii.) utility

from information. The sequence of examples 3, 4, 5, 7 and 8 are built on each

other, and continue the discussion of the present section.

Suppose an agent is confronted with a gamble based on a two–color urn of 12

balls with an equal number of red and green balls. The distribution is perfectly

known to the agent and she is free to choose and accept one or none of the

following gambles: If green is drawn, the agent receives $10 and $0 otherwise, or

the same payoffs with changed colors.3 Suppose the risk averse agent agrees to

play the gamble for not more than $4.

Figure 1: The content behind the veil of ignorance describes a specified gamble.

How much would you pay for a partial revelation?

Now assume the agent is in a different situation. She knows the precise color

of every second ball and that only red or green balls are in the urn. Moreover,

she is aware of the fact that information about one half of the urn yields no

3At the present state of the thought experiment, the payoff on the respective color seems

and is obsolete. In the second part, this issue is of some importance.
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advantage to estimating the distribution of colors in the unknown part of the

urn. In this new situation, the agent owns obviously less information about the

gamble than before. Consequently, she agrees to play the gamble for not more

than $3, because of (moderate) ambiguity aversion or pessimism, and selects

the color on which she can win 10$ through a random device, i.e. a fair coin.

Ambiguity aversion is a behavioral attitude related to the presence of multiple

priors describing the gamble.

Based on this new situation and as illustrated in Figure 1, suppose there is an

opportunity to reveal additional components of the hidden urn. The agent would

pay to receive additional information about the distribution of balls. From this

thought experiment we see that information about the unknown components of

the urn has a positive value. The certainty equivalent for the gamble, when the

contents of the urn is perfectly known, delivers an upper bound for the reservation

price of full information. For the given gamble, $4–$3 is then the indifference

price for knowledge about the contents behind the veil.

The formal consideration for the following section relies on the idea of infor-

mation, where the belief of the agent is contingent on what she knows. Several

possible distributions of the 12 balls can only be excluded if additional informa-

tion about the urn is accessible.

Remark 1 Information about a priori observed balls is regarded as a collection

of random variables and not as the realization of signals. For simplicity it is

assumed that the probability of each observed ball color is zero or one. The balls

behind the veil could be non–trivial random variables. The additional information

about these balls is then the exact probability of their color.

3 Information as a Commodity

This section introduces the basic framework. For the rest of the paper we make

the following

Standing Assumptions:

1. Information is modeled in terms of σ-algebras.

2. Every σ-algebra is generated by a set of random variables.4

4Recall, a random variable X : Ω → R generates a σ-algebra, denoted by σ(X), through

the collection of inverse images: σ(X) = {X−1(A) ⊂ Ω : A ∈ B(R)}. Equivalently, σ(X) is the

smallest σ-algebra where X is measurable.
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Any agent in the model can only consider those information structures which are

generated by an (arbitrary) collection of observable distributions of signals. On

the modeling side, this simplifies many technical difficulties, since the magnitude

of complexity is reduced by moving from systems of set-systems to systems of

sets (as mentioned in the Introduction from stage 3 to stage 2 ). As indicated in

Remark 1, information about the realization of a signal is not part of the model.

3.1 Information and Uncertainty

Fix a probability space (Ω,H,P). P : H → [0, 1] denotes the objective probability

measure about an uncertain future. Let ∆(Ω;H) be the set of all probability

measures on the measurable space (Ω,H). We assume that the finest σ-algebra

H is generated by a set of real–valued random variables Xh : Ω → R, indexed

by a metric space H. The Borel σ-algebra of H is denoted B(H). We then have

H = σ(Xh : h ∈ H).

Nevertheless, we may also take a discrete space H = {0, . . . , N} ⊂ Ω = RN ,

with N ∈ N, as discussed in the following example.

Example 1 Let P be the model of n uncorrelated real–valued random variables.

Suppose a normal distribution with zero mean that is P = N(0,Σ), where the

n × n covariance matrix Σ is the identity matrix. For instance X1 ∼ N(0, 1)

refers to a one–dimensional random variable with a standard normal distribution.

F1 = σ(X1) is then the knowledge about the distribution of the first component.

The finest information structure is H = σ(Xh : h ∈ H). Analogously, every

subset {Xh}h∈F of random variables, with F ⊂ H, describes a partial knowledge

F = σ(F ) of H.

A further example is based on a Brownian motion and the strong connection

between closed subspaces, sub σ-algebras and conditional expectations.

Example 2 Let (C0[0, 1],H,P0) be the Wiener space so that the canonical pro-

cess is the Brownian Motion (Wt). H denotes the Borel σ-algebra that is induced

by the usual sup-norm of C0[0, 1] – the space of continuous paths on [0, 1] starting

in zero. In this case, we have H = σ(Wh : h ∈ H), where Wh =
∫ 1

0
hsdWs is the

stochastic Itô integral with deterministic integrand h ∈ H and is normally dis-

tributed, i.e. Wh ∼ N(0, ‖h‖H). Here, H denotes the space of square integrable

functions on [0, 1], that is ‖h‖H =
( ∫ 1

0
h2
sds
) 1

2 <∞.

Any subset F ∈ B(H) generates a coarser σ–field than H. For instance,

choosing for every s ∈ (0, 1), the closed sub vector–space Fs = L2([0, s]) results
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in Fs = σ(Wr : r ∈ [0, s]) the information filtration generated by observing the

Brownian motion itself up to time s, where Wr = Wh with h = 1[0,r].

From Example 2 we see that the present approach to model information is con-

sistent with continuous-time modeling.

Given (Ω,H,P), we turn to the formal description of some agent being

equipped with some initial information endowment F = σ(Xh : h ∈ F ), or

in abuse of notation F = σ(F ), such that F ∈ B(H). As illustrated especially in

Example 2, the index set of random variables allows us to identify every relevant

sub-information structure F ′ ⊂ H, by a Borel-subset F ′ ∈ B(H).

3.2 Commodity Space of Information

A pure information commodity is an element F ∈ B(H), that is the perfect

knowledge σ(Xh : h ∈ F ) about the distributions of all random variables indexed

by F . Clearly, we can write this set in terms of an indicator function 1F : H →
{0, 1}. The boundedness of such functions delivers an adequate commodity space

L∞H := L∞(H,B(H), µ) of bounded measurable elements, where µ is a given

positive measure on (H,B(H)). Whenever H ⊂ RM , for some M ∈ N, we

consider the Lebesgue measure µ = λ on H. In abuse of notation, we have5

2H ⊂ [0, 1H ] ⊂ L∞H .

As we motivate and explain in Section 4, the closed, bounded and convex set

[0, 1H ] = [0, 1]L∞H = {f ∈ L∞H : 0 ≤ f(h) ≤ 1 µ–a.e.} defines the consumption set.

A ∈ B(H) holds µ− a.e. if µ(Ac) = 0, where Ac = H \ A.

A function f ∈ [0, 1H ] allows for several representations as limits of simple

functions, that is f(h) = limN

∑
0≤k≤N ak1Ak(h). We focus here on the unique

representation of pairwise disjoint collections {Ak}k≤N ⊂ B(H) and correspond-

ing factors ak ∈ [0, 1].

As a primitive of the economy the given information F of some agent is

coarser than H, where F = σ(Xh : h ∈ F ) and F ∈ B(H). The set of pure and

desirable information commodities is B(F c). Given the agent’s information F ,

she considers the commodity F ′ ∈ B(H) only as relevant if F ′ * F . In this case

the set F ′ can be purified (relatively to F ) by considering only nontrivial sets

F ′ \ F in B(F c). The next section discusses other (non pure) functions in the

consumption set [0, 1H ] that model a notion of non–perfect information.

5The first inclusion stems from F ⊂ H and the assumption to consider only sub σ-algebras

of the form F = σ(F ). The defining index set F of generating random variables is identified

by the associated function 1F ∈ [0, 1H ].
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4 Utility from Information

Before utility from information can be quantified, we need to clarify how

additional information reduces the degree of ambiguity about the true prior

P : H → [0, 1]. The agents’ belief PF : σ(F ) → [0, 1] depends on her initial

information σ-algebra F = σ(F ).6 Those events E /∈ σ(F ) = σ(Xh : h ∈ F ),

which she is not aware of, are not assigned with a probability. F is the index

set of random variables, whose probability laws is known to the agent. Hence,

her belief PF : F → [0, 1] is contingent on her σ-algebra, and can only capture

probabilities about events that are in her information set. We assume that the

restriction of P to F coincides with PF . In view of Section 2, this corresponds

to the knowledge of the colors of visible balls.

4.1 Information–Ambiguity Correspondence

Information is a device to exclude alternative priors. These alternatives are,

without additional information, reasonable probability measures on H. Such a

perspective parallels the thought experiment of Section 2: additional information

about the color of the balls allows the agent to exclude prior that were plausible

without some additional information commodity.

Suppose an agent starts her consideration with an a priori given information

F ∈ B(H) (the index set of observable random variables). Given the information

endowment F = σ(F ), this results in the set of possible priors7 on H

PF ≡ {P ∈ ∆(Ω;H) : P = PF on σ(F )} . (1)

We have P∅ = ∆(Ω;H). The set PF contains all priors on the finest σ-algebra

H that are consistent with the given coarser information F = σ(F ) and the given

belief PF on F .

The following definition clarifies how additional information updates the set

of possible priors. Apart from the intuitive appeal to use information as a device

to exclude alternatives, the advantage of the approach relies on the quantification

of consequences from receiving information.

6Here, we deviate from Aumann (1974) and assume that the subjective belief of the agent

is only defined on her private σ-algebra.
7“P = P on F” means P (E) = P(E) for all events E ∈ F . For technical reasons, we also

assume P � P and dP
dP ∈ L

2. P � P means that P is absolutely continuous with respect to

P, i.e. if P(A) = 0 then P (A) = 0. Note that, A ∈ H \ F = σ(F c) implies PF (A) = 0. The

square integrability of the Radon Nykodym derivative dP
dP is a simplifying technical condition.
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Definition 1 The Information–Ambiguity (IA) correspondence PF : [0, 1H ] ⇒
PF is defined by two updating rules:

1. Reduction of consistent extensions: for every A ∈ B(H) we have

PF (1A) ≡
{
P ∈PF : P = P on σ(F ∪ A)}.

2. Precision of information for A: For every a ∈ [0, 1] we have8

PF (a1A) ≡ aPF (1A) + (1− a)PF .

The factor a in the second part denotes the precision of information (PI) for A.

A small PI yields a large value of the IA–correspondence. From Definition 1 it

directly follows that full information means knowledge about the true prior:

P = PF (1H\F ). (2)

With notation PF (a1A) = PFaA, the two rules of Definition 1 suffice to deduce

any evaluation of the IA–correspondence. Let us begin with a result for the

reduction of extensions for (imprecise) information bundles A,B with A∩B = ∅.
Set a− = 1− a.

Lemma 1 For all f = a1A + b1B ∈ [0, 1H ], the IA–correspondence is given by

PF (f) = ba−PFB + b−aPFA + baPFBA + b−a−PF . (3)

Note that (ba−, b−a, ba, b−a−) is a probability weight on the power set of {A,B}.
If A∩B 6= ∅, then (3) incorporates a weighting on the power set of {A,A∩B,B}.

Definition 1 and Lemma 1 focus on rather simple information structures. A

straightforward extension considers the case where f =
∑

k∈N ak1Ak is defined

by a finite sum of indicator functions.9 In this case, (3) results in a sum over

the power set of the mutually disjoint collection {A1, . . . , AN}. As presented in

Appendix A, every f ∈ [0, 1H ] yields a well–defined set PF (f) ⊂ ∆(Ω;H).

Several remarks on the meaning of the IA–correspondence are worth making.

Some simple cases clarify the idea and intuition behind the required algebraic

manipulations in Definition 1.

1. Simple reduction: In the case of f = 1A, the IA–correspondence means full

information about the set of random variables indexed by A. The representation

8Minkowski sums of sets are defined by C +D = {c+ d : c ∈ C, d ∈ D}.
9 Note that the collection of such simple functions is a dense subset of [0, 1H ] with respect

to the norm ‖f‖∞ = inf{M : |f | ≤ 0 µ− a.e} on L∞H .
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of the IA-correspondence is consistent with the extension that is considered in

De Castro and Yannelis (2010).

2. Precision for information: The IA–correspondence incorporates all values

between the extreme case a = 0 –no precision PF (0 · 1A) = PF and a = 1 –full

precision PF (1 · 1A) = PF∪A. In view of Section 2, the meaning of the PI refers

to the additional possibility of increasing the transparency of certain parts of the

veil that hides the urn. Knowledge about the color of a ball is then revealed with

precision a. Specifically, the agent may receive information about a so-far veiled

ball K. But she only infers that K is red with probability P(K = “red”) ≥ a.10

3. Reduction for information bundles: In the case of full precision, we get

PF (1A + 1B) = PF (1A∪B). In view of the bundle a1A + b1B, we see in (3) that

a high PI for both sets results in a high weight ba of the smallest set of priors

PFAB = PF (1A∪B).

4. Unique representation by pairwise disjoint sets: If A ∩ B 6= ∅ and a =

b = 1
2
, then the extension of Lemma 1 applies only to the unique representation

f = 1
2
(1A\B + 1B\A) + 1A∩B. Every f ∈ [0, 1H ] allows for a µ–a.e. unique

representation in terms of pairwise disjoint sets. The informational content of f

is then exclusively displayed by this decomposition.

We continue with an example that applies the IA–correspondence PF to the

setting of Section 2.

Example 3 Coming back to the Ellsberg urn thought experiment in Section 2,

we see that every probability pR of the event to draw a red ball lies between

[ 3
12
, 12−3

12
] = [1

4
, 3

4
]. This set of probabilities corresponds to

PF =
∏

1≤k≤6

{δck} × [0, 1]6 ⊂ ∆
(
{R,G}12

)
,

where δck denotes the Dirac measure for the k-th ball to have the color ck ∈
{R,G}. If a 7th and 8th ball is revealed, say one is red and the other green,

then pR can only lie in the strictly smaller range [ 4
12
, 8

12
] ⊂ [1

4
, 3

4
], which now

corresponds to PF (1{7,8}), see Definition 1.1.

Example 4 is continuous with Example 3 and extends it to the case of im-

precise information a. In this case, only the transparency (parametrized by a)

10However, there are two possible interpretations for a. On the one hand the source itself

announces the imprecision of the signal. An alternative viewpoint can be that the source of

information does not reveal any additional information about its precision. In that case, the

agent has a belief about the precision that is again captured by a. Remark 4 continues with

this discussion.
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of the veil is increased.

Example 4 Now suppose that the 7th and 8th balls are revealed only partially.

That is with transparency or reliability a = 0.6. Again, one ball is red and the

other is green, then P(c7 = “red”),P(c8 = “green”) ≥ 0.6. The probability

pR of drawing a red ball lies then in the range [0.3, 0.7] = [3.6
12
, 8.4

12
], which now

corresponds to PF (0.6 · 1{7,8}). The information about the 7th ball yields an

increase from 3
12

to 3,6
12

for the lower bound of the interval. In view of Definition

1.2, the heuristic about the role of the PI a ∈ (0, 1) is consistent, since [3.6
12
, 8.4

12
] =

0.6 · [ 4
12
, 8

12
] + (1− 0.6)[ 3

12
, 9

12
].

The IA–correspondence is a basic tool to define a preference relation for

information. In preparation, the following proposition lists properties that will

be essential to the resulting utility representation.

Proposition 1 The IA–correspondence PF : [0, 1H ]⇒PF is11

1. compact– and convex–valued.

2. upper hemi-continuous..

3. monotone shrinking: If f ≤ g then PF (f) ⊇ PF (g).

4. convex: For every α ∈ [0, 1] and f, g ∈ [0, 1H ] we have

PF (αf + (1− α)g) ⊆ αPF (f) + (1− α)PF (g).

From the proposition, we obtain that the true prior P is always contained in

the IA–correspondence.

Corollary 1 For all f ∈ [0, 1H ], we have P ∈ PF (f).

4.2 The Functional Form of Utility from Information

Based on the IA–correspondence, we are now in a position to define a utility

functional on [0, 1H ] = [0, 1]L∞H . The worth of additional information is quantified

by the ability to exclude priors that are ex-ante consistent but ex-post (with

additional information) inconsistent.

Utility from information relies on the idea that the reduction of ambiguity

increases expected utility, when evaluated at some random utility U. For some

11Compactness refers to the weak topology on the set of square-integrable Radon-Nykodym

densities in L2 = L2(Ω,H,P). The continuity of PF is with respect to the norm topology

‖ · ‖L∞
H

on [0, 1H ] and the weak* topology σ(L2∗, L2) on PF .
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utility index u : R→ R and a given and H-measurable12 endowment E : Ω→ R,

we may have U = u(E).

Definition 2 Fix the agent’s given information σ(F ) = σ(Xh : h ∈ F ) = F
and let U ∈ L2(Ω,H,P) be a given random utility. The utility from additional

information f ∈ [0, 1H ], f : H → [0, 1], is given by

U(f) = min
P∈PF (f)

EP [U]︸ ︷︷ ︸
with new information

− min
P∈PF

EP [U]︸ ︷︷ ︸
only old information

≥ 0. (4)

The IA–correspondence f 7→ PF (f) is that of Definition 1, for PF see (1).

The second summand of U(f) in (4) is a normalization; If some information

commodity f contains no additional information, i.e. f ≤ 1F , this implies U(f) =

0 by the definition of the IA–correspondence. In this case, we have PF (f) = PF .

The properties of the IA–correspondence, stated in Proposition 1, deliver in

turn a list of important properties for the utility from additional information.

The following result lists clear counterparts of the usual utility specifications for

standard commodities.

Theorem 1 Let f, g, fn ∈ [0, 1H ]. Utility from information U : [0, 1H ]→ R is

1. monotone: If f ≤ g then U(f) ≤ U(g).

2. continuous: If fn → f in ‖ · ‖∞ then limn U(fn) = U(f).

3. concave: For every α ∈ [0, 1] we have

α U(f) + (1− α) U(g) ≤ U
(
αf + (1− α)g

)
.

In view of the usual non–concavity for the value of information, such as con-

sidered in Radner and Stiglitz (1984), the third part of the theorem is most

remarkable. It means in particular that ambiguity aversion implies a preference

for diversification of information.

Example 5 applies Theorem 1.1 to the Ellsberg urn from Section 2.

Example 5 Let there be two gambles Xg, Xr on the urn. $16 is paid if a specified

color (r = red or g = green) is drawn and $0 else. The color is chosen after

receiving additional information. A priori the agent only knows that there are

12Note that the underlying commodity space for contingent claims X : Ω → R is L2. Since

utility is complete on this space by incorporating all possible extensions from F to H, we may

assume that endowment is measurable with respect to the finest information σ-algebra H. By

(1), dP
dP is square integrable. We have EP U <∞ for all P ∈PF by the Minkowski inequality.
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three red and green balls. According to Example 4, the probability pr to draw a red

ball lies in [1
4
, 3

4
] ' PF (0), where F = {1, . . . , 6}. Now suppose the agent receives

information that the 7th and 8th ball are red, then pr ∈ [ 5
12
, 3

4
] ' PF (1{7,8}).

The revealing of a 9th and 10th ball, when both are green, yields pr ∈ [ 5
12
, 7

12
] '

PF (1{7,...,10}). With a utility index u(x) =
√
x and Ur =

√
Xr, we derive

max
(
U g(1{7,8}), U

r(1{7,8})
)

= U r(1{7,8})

= min
P∈PF (1{7,8})

EPUr − min
P∈PF (0)

EPUr

=
5

12
u(16)− 1 =

2

3
.

The same calculation yields U g(1{7,...,10}) = U r(1{7,...,10}) = 2
3
. Full information

1F c = 1−1F let the ambiguity vanish, thus U r(1{7,...,12}) = U g(1{7,...,12}) = EPUg =

1. The indifference price CU(f) = u−1 (max (U g(f), U r(f))) of the gamble X =

U2 for the respective information commodities, reveals the reservation price for

additional information: 4
9

= CU(1{7,8}) = CU(1{7,...,10}) < CU(1F c) = 1.

In view of Theorem 1.3, we discuss situations where information yields a strict

utility improvement and situations where this is not the case.

Example 6 In view of Example 5, the utility of additional information can be

U(1{7,8}) = 0, if the gamble Xg is fixed at the beginning. In that case, the

alternative information 1{9,10} yields a strict utility improvement. However, a

priori the agent is unaware about the colors of the two additional balls and hence

indifferent between 1{7,8} and 1{9,10}. In the interim step, she can only choose to

accept the gamble or not. Before making this choice, she will hedge the ambiguity

about colors and strictly prefer f = 1
2
1{7,8}+ 1

2
1{9,10} with U(f) ≥ 1

2
(2

3
+ 0) > 0 =

min(U(1{7,8}), U(1{9,10})), as she cannot choose the color to bet on.

The illustrated effect of Example 6, can be considered as a discontinuity of pure

information commodities. We mention several alternative functional forms of

utility under ambiguity.

Remark 2 In Definition 2 and Theorem 1, we analyze the case of extreme am-

biguity aversion found in Gilboa and Schmeidler (1989). This representation

for ambiguity aversion serves as a device to receive a utility representation for

information that quantifies the reduction of consistent priors. Alternative con-

struction through other functional forms that quantify ambiguity attitudes include

smooth ambiguity of Klibanoff, Marinacci, and Mukerji (2005) and variational

preferences of Maccheroni, Marinacci, and Rustichini (2006).
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5 Prices and Demand for Information

To quantify optimal behavior under budget constraints with a given preference

relation for information in the sense of Section 4, we specify what we mean

by a (consistent) price system for information. Then we consider the resulting

budget set and the single-agent optimization problem. However, the concavity

of U provides early insights into the presence of a supporting hyperplane and of

following, in some situations, the classical approach to those notions needed to

define a meaningful equilibrium concept.

5.1 Commodity–Price Duality

We now return to the commodity space L∞H = L∞(H,B(H), µ) introduced in

Subsection 3.2. The triple (L∞H , ‖ · ‖,≤) is a classic Banach lattice, such that

(L∞H )+ has a nonempty norm interior. It is straightforward to define a linear and

positive price system pν(·) =
∫
·dν. The (topological) dual space ba(H,B(H), µ),

the space of bounded finitely additive set functions on (H,B(H)) being absolutely

continuous with respect to µ seems to be rather large. As such we restrict our

attention to price functionals within the subspace L1
H = L1(H,B(H), µ). In this

situation, a positive price system for information pν : L∞H → R can be represented

by an information–price density ψ : H → R such that ψ = dν
dµ
∈ L1

H and ψ ≥ 0

yields

pν(f) = 〈ψ, f〉 =

∫
H

ψ(h)f(h)dµ(h), (5)

where 〈·, ·〉 is the natural bilinear form of the pairing 〈L1
H , L

∞
H 〉. Let f = 1F ′

be simple. An immediate consequence of (5) is pν(1F ′) =
∫
F ′
ψdµ = ν(F ′). In

general, the price system pν : [0, 1H ]→ R satisfies three natural basic properties:

1. additivity of disjoint information: Let F,G ∈ B(H) be disjoint then

ν(F ∪ G) = ν(F ) + ν(G). This condition refers to the linearity of disjoint

fractions of information, which holds for countable disjoint sets as well.

2. homogeneity of degree one for precision: Let F ∈ B(H), a ∈ [0, 1] then

pν(a1F ) =

∫
H

a1Fdν = a

∫
F

dν = aν(F ) = apν(1F ).

For the PI a, homogeneity quantifies the reliability of information F .

3. monotonicity : Let F ⊂ G in B(H) then pν(1F ) ≤ pν(1G). This simply

means that noisier information is cheaper. The same form of monotonicity

holds for f ≤ g in [0, 1H ].
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Property 1. can be extended if g =
∑
ai1Ai ∈ [0, 1H ] and (Ai) are pairwise

disjoint then pν(g) =
∑
aiν(Ai). If the collection of sets (Ai) fails to be disjoint

then we have pν(g) ≥
∑
aiν(Ai), since Ai ∩Ak 6= ∅, for some i 6= k, implies that

some information in g appears with a higher PI. The sub-additivity then follows

from the unique representation in terms of mutually disjoint indicatior functions.

Summing up, the commodity price duality is given by 〈L∞H , L1
H〉.

Remark 3 The present notion allows us, in principle, to model a negative value

of information, as examined in Hirshleifer (1971). In that case, agent’s utility

and the price system are no longer monotone increasing. By the Yoshida–Hewitt

decomposition, the representing measure is the sum of a negative and positive

measure.

5.2 Walrasian Budget Set for Information

Motivated by the last subsection, we may consider a budget set based on a

given price system pν : L∞H → R+, amount of wealth w ≥ 0 and information

F = σ(Xh : h ∈ F ) for some F ∈ B(H). The budget set is given by

B(pν , w, F ) =
{
g ∈ [0, 1F c ] : pν(g) ≤ w

}
⊂ [0, 1H ], (6)

where the positive and σ–additive measure ν : H → R+ represents the given

linear and positive price system pν via pν(g) =
∫
gψdµ. Formally, the resulting

budget correspondence is given by B : L1
H × R+ × [0, 1H ] ⇒ [0, 1H ]. Some prop-

erties, such as convex–, compact–valuedness, follow directly from the definition

in (6).

Lemma 2 1. The budget sets B(pν , w, F ) in (6) with dν
dµ

= ψ ≥ 0 are non–

empty, convex and weakly σ(L1
H , L

∞
H )–compact.

2. For any fixed F ∈ B(H), the budget correspondence B(·, ·, F ) is homoge-

neous of degree zero in price–wealth pairs.

3. Let X be a finite dimensional subvector space of L∞H , p be the restriction

of pν to X and w > minx∈[0,1] px (cheaper point). Then BX(p, w, F ) =

B(p, w, F ) ∩X is a continuous correspondence at (p, w) in X.

The budget set in (6) allows for several modifications. As preparation for

the information–trade economy, we mention here one type of extension that also

incorporates information sells.
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We could allow the agent to sell parts of her information through the price

system pν , as long as the agent owns this information, that is f sell ∈ [0, 1F ].

The positive number pν(f sell) then denotes the realized proceeds. The resulting

budget correspondence with information sales B◦ : L1
H × [0, 1H ]×R+× [0, 1F ]⇒

[0, 1H ] is then given by

B◦(pν , F, w|f sell) =
{
g ∈ [0, 1F c ] : pν(g) ≤ w + pν

(
f sell

)}
. (7)

In (7), we only consider the case of single information sales. If there is more

than one agent demanding some information in [0, 1F ] then information can be

sold simultaneously to several agents, and extends B◦ in the appropriate way. In

Section 6, the budget set B∗ in (10) and the information–trade protocol takes

this into account.

The following remark departs from an alternative perspective and discusses

the agent’s ability to sell information that she does not possess.

Remark 4 Consider an economy with two agents, J and K. If K buys an infor-

mation commodity from J , then K may believe that J is not reporting truthfully

or he does not own the information that is reported. For the latter case, this does

not imply that the sold information is not true.13 Of course we could assume that

the agents care about their reputation or follow a gentleman’s agreement, and for

this reason such complications may not occur. However, the present setting also

allows us to incorporate dishonest sellers. We mention two ways this information

creates friction that can enter the budget set.

The first way requires collateral to sell information at a given price system

pν. If J sells to K information G ∈ B(H), then he must hold some wealth wJG.

A restriction of collateral is then pν(1G) ≤ wJG. This collateral is transferred to

agent K, if it turns out that J delivered false information. As in Geanakop-

los (2010), this reliability problem lets contracts become pairs of promises and

collateral (1G, w
J
G).

An alternative approach refers to buying with awareness of imprecision. Sup-

pose seller J offers the pure bundle 1G. In the case that J enjoys a questionable

reputation about telling the truth, then agent K may interpret the offered bundle

as aKJ 1G. Here, aKJ ∈ [0, 1] captures the precision or the likelihood of K that

J reports true information. For agent K, the personalized value of 1G, to be

delivered by J , reduces to aKJ p
ν(1G).

13However, this thought experiment also applies to Arrow-Debreu modeling where contingent

claims with future maturity are traded and promised today.
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5.3 Demand for Information

Fix a price system pν : [0, 1H ] → R in L1
H , initial wealth w ∈ R+ and initial

information F ∈ B(H). The next step points to a solvable formulation of the

agent’s optimization problem. Combining the utility specification of Section 4

and the budget set of Section 5.2, the individual utility maximization problem

reads as follows,

max
h∈B(pν ,w,F )

U(h). (8)

Proposition 2 justifies many properties from classical demand theory.

Proposition 2 Let F ∈ B(H) be the given amount of initial information. The

price system ν and wealth w are given as well. The problem in (8) has a solution

and the demand correspondence for information D : L1
H×R+× [0, 1H ]⇒ [0, 1H ]

defined by

D(pν , w, F ) = arg max
h∈B(pν ,w,F )

U(h) (9)

is nonempty–, convex– and σ(L1
H , L

∞
H )–compact–valued. Moreover, D is homo-

geneous of degree zero in (pν , w), that is D(αpν , αw, F ) = D(pν , w, F ) for all

α > 0.

So far, D is formulated only for pure information bundles of indicator type 1F .

For general f ∈ [0, 1H ] the same conclusions follow analogously.

6 The Information–Trade Economy

In this section, we consider a finite set of agents I = {1, . . . , I}. Each i is

characterized by a random utility Ui and private information Fi = σ(Fi). As in

the standing assumption, the set Fi generates the σ-algebra Fi = σ(Xh : h ∈ Fi)
on Ω. The information–trade economy is summarized by

EInfo = {[0, 1H ], Ui, Fi}i∈I,

where each Ui is induced by Ui ∈ L2(Ω,H,P) and Definition 2. Since we allow

the agents to sell their given information, we do not consider initial wealth.
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6.1 Feasible Information Allocations

Information (as a commodity) inherits the special property that its release to

some agent leaves the previous property rights unchanged. For this reason, the

concept of a feasible information allocation differs from feasibility of physical

commodities.

Let gi(k) ∈ [0, 1H ] denote the information that agent k receives from agent

i. In this notation, an individually rational bilateral trade of information, say

g1(2), g2(1), between agent 1 and 2 has to satisfy an individual rationality con-

dition (g1(2), g2(1)) ∈ [0, 1F1 ]× [0, 1F2 ] ∩ [0, 1F c2 ]× [0, 1F c1 ].

Definition 3 Fix an initial information allocation (F1, . . . , FI) ∈ HI and set

[0, 1F c
i,j

] = [0, 1Fi∩F cj ]. An (individually rational) information exchange protocol

(IEP) matrix G is given by:

G =


∅ g1(2) · · · g1(I)

g2(1) ∅ · · · g2(I)
...

...
. . .

...

gI(1) gI(2) · · · ∅

 ∈ F :=


∅ [0, 1F c

2,1
] · · · [0, 1F c

I,1
]

[0, 1F c
1,2

] ∅ · · · [0, 1F c
I,2

]
...

...
. . .

...

[0, 1F c
1,I

] [0, 1F c
2,I

] · · · ∅

 ,

where F = F(F1, . . . , FI) only depends on (F1, . . . , FI).

Here Fi,j = [0, 1F c
i,j

] contains all information commodities that agent i owns and

which j is interested in. We receive for each pair (i, j) the restriction gi(j) ∈ Fi,j
for the feasibility of the IEP-matrix. The initial information allocation can be

generalized to arbitrary allocations in [0, 1H ]I .

Information releases are collected for each agent in the respective column,
−→g (i) :=

∑
j∈I gj(i) as the information sales of agent i. Information acquisitions

are listed in the corresponding row, set ←−g i :=
∑

j∈I gi(j).

Lemma 3 The set of feasible allocations F is weakly compact and convex.

Once again, let us reconsider the Ellsberg urn from Section 2.

Example 7 Let there be three agents seeing the urn in Section 2 from three

different angles. As illustrated in Figure 2, agent 1 is only able to identify the

balls in part A = {1, 2, 3} and B = {4, 5, 6}, agent 2 (or 3) sees parts B and C

(or C and D). In the present case, the set of individually rational and feasible

information exchanges can be summarized by the following IEP matrix

F =

 ∅ [0, 1F c
2,1

] [0, 1F c
3,1

]

[0, 1F c
1,2

] ∅ [0, 1F c
3,2

]

[0, 1F c
1,3

] [0, 1F c
2,3

] ∅

 =

 ∅ [0, 1A] [0, 1A∪B]

[0, 1C ] ∅ [0, 1B]

[0, 1C∪D] [0, 1D] ∅

 .
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Figure 2: The unfolded lateral area of the Ellsberg urn from Section 2 – each agent

captures only a share of the urn. An initial allocation of information with three agents

is then given by F1 = A ∪B, F2 = B ∪ C, F3 = C ∪D.

6.2 Existence of an Information–Trade Equilibrium

Each agent can sell the same information more than once. To account for this

aspect, we modify the budget set such that the received wealth from information

sales can be incorporated. The general budget correspondence B∗ : L1
H × R+ ×

[0, 1H ]× [0, I · 1H ]⇒ [0, 1H ] with multiple information sales is given by

B∗ (pν , F |−→g (i)) =
{←−g i ∈ [0, 1F c ] : pν (←−g i) ≤

∑
k 6=i

pν (gk(i))
}
, (10)

where −→g (i) =
∑

k 6=i gk(i). Note that, (i.) the price system pν is defined on the

entire commodity space L∞H , (ii.) the sum and pν in (10) commutes, (iii.) Lemma

2 holds by the same arguments, also for the present budget set B∗ and (iv.) the

strategy/budget set depends not only on prices, but also on the behavior of the

other agents.

The notion of equilibrium, when information commodities are traded is in-

troduced in the following definition.

Definition 4 Fix an economy EInfo = {[0, 1H ], Ui, Fi}i∈I. The feasible IEP–

matrix G∗ = (g∗k(j)) ∈ F and a price system ν ∈ ba(H,B(H), µ), with ν ≥ 0,

build an Information–Trade (IT) Equilibrium, if

1. for each i ∈ I, ←−g ∗i maximizes Ui in B∗(pν , Fi|−→g ∗(i)),

2.
∑

i
←−g ∗i ≤

∑
i
−→g ∗(i) in L∞H .

In equilibrium, each agent considers the amount and multiplicity of total infor-

mation sales −→g (i) ≤ I−1 as given. However, the additional feasibility condition

in the second part of Definition 4 is needed to check if in the aggregate, the

received information is indeed delivered by anyone.

For the existence of equilibrium we need the following conditions for the

primitives of the economy.
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Assumption 1 (Adequacy condition) There is a δ > 0, arbitrarily small, such

that for each i ∈ I, the information of agent i is given by (1 − δ)1Fi + δ ∈
int
(
(L∞H )+

)
. For every i we have µ(F c

i ) > 0 (no omniscient agent). Agent’s

utility functions U i : [0, 1H ]→ R are monotone, continuous and concave.

The first part is a variation of the cheaper point assumption. In the present

setup it means that δ yields a slighter smaller set of priors. Instead of PF the

agent starts with PFδH = δP+ (1− δ)PF . By Corollary 1, we have P ∈PF and

hence PFδH ⊂PF .

Here is the main result of this section.

Theorem 2 Under Assumption 1, an IT-Equilibrium exists.

To prove the existence of equilibrium a careful look is needed when it comes

to the question which group of agents participates in delivering information to

some agent i. For instance, it must be clarified what happens when agent i

demands information that is owned by more than one agent, say J agents own

this information. In that case, we assume that the market mechanism divides

the supply in J shares of equal sizes. This is an equal–treatment property in the

trading mechanism. To accomplish this property, we use a protocol procedure

that controls the feasibility of the IEP-matrix. In step 2 of the proof for Lemma

4, the procedure is spelled out in detail.

Figure 3: Trade of information bundles. Using the typical notation, we consider the

situation for agent i. She sells a piece of information twice. One share is sold to agent

k from which she buys gi(k) = a1F ci at price pν(gi(k)) = a
∫
F ci
ψ(h)dµ(h).

Finally, we move back to the finite case from Section 2. The following ba-

sic and fundamental lemma is the starting point for the proof of Theorem 2.
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For finite H, as in Example 1, the commodity space for information is finite

dimensional and the consumption set becomes the order interval [0, 1]|H|.

Lemma 4 Under Assumption 1, IT-equilbria exist for every finite dimensional

subvector space of L∞H .

To develop an intuition about Theorem 2 and Definition 4, the following example

considers an IT–equilibrium in the economy of Example 7.

Example 8 Fix the initial information endowment in Figure 2 of Example 7

(departing from the urn in Section 2) and the common random utility Ui = ui(X)

of Example 5 with ui(·) =
√
· for i = 1, 2, 3. X is a gamble, where $16 is

paid if red is drawn and $0 if the ball is green. To simply the notation, let the

urn be divided into subgroups, such that H = {A,B,C,D}. For this economy,

an IT–equilibrium is given by the price system pν(f) =
∑

h∈H ν(h) · f(h), with

ν = (2, 1, 1, 2) and the IEP–matrix ∅ 1
4
1A 1A + 1

2
1B

1
2
1C ∅ 1

2
1B

1D + 1
2
1C

1
4
1D ∅

 ∈
 ∅ [0, 1A] [0, 1A∪B]

[0, 1C ] ∅ [0, 1B]

[0, 1C∪D] [0, 1D] ∅

 .

The optimal information allocation of the IT-equilibrium (←−g 1,
←−g 2,
←−g 3) =

(1C∪D,
1
4
1A∪D, 1A∪B) is fully revealing for agent 1 and 3, but not for agent 2,

since she does not own a sufficient amount of exclusive information. Agent 2

diversifies her information consumption (1
4
1A+ 1

4
1D), due to the concavity of her

information utility functional.

An asymmetric distribution of initial information implies no trade IT-

equilbria. To see this, assume an economy with initial wealth. Let F1 ⊂ · · · ⊂
Fi ⊂ Fi+1 · · · ⊂ FI = F and w1 ≤ . . . ≤ wi ≤ wi+1 < . . . ≤ wI . In this

situation agent i + 1 would not buy information from i. Suppose now that

w1 > . . . > wi > wi+1 > . . . > wI and utility comes from wealth and informa-

tion, via Vi(w, f) = ui(w) + Ui(f). This specification of the primitives will lead

to trade in equilibrium.

A central question points to statements of the form: Is the equilibrium allo-

cation of information fully revealing? In the framework of this paper, this is an

endogenous property (see Example 8 where the equilibrium is not fully reveal-

ing). In the following we give a condition that depends on the equilibrium price

measure.

Corollary 2 Let ν be an equilibrium price for information. If ν(Fi) < ν(F c
i ),

then agent i is unable to receive all the information in the economy.
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7 Conclusion

Information economics often models the agent’s ability to observe the realization

of some signal, such that information then relies on the observation itself. In this

paper, the notion of information relies on the accuracy of the knowledge about

the exact distribution of the signal. Minimal information refers to knowledge of

the expected value of the probability distribution and corresponds to the trivial

σ-algebra being generated by the trivial partition.

Knowledge about some payoff–relevant distribution remains in central focus

for the quantification of utility. An agent is willing to pay for the reduction of

imprecision that excludes possible priors. Without this additional consumption

of information, these priors are considered as possible candidates for the agent’s

expected utility. Under the assumption of ambiguity aversion, the reduction of

possible priors increases the utility. The possibility of excluding different priors

has different effects on the worst case expected utility.

The approach taken by this paper relies on marginal aspects. A marginal

change of utility comes from a marginal change in the size of ambiguity, which in

turn is directly induced by a change of information. This reasoning allows us to

assign a positive endogenous equilibrium price to any information commodity.

A Proofs for Section 4

Proof of Lemma 1 Starting with PF (a1A + b1B) = PFa1A(b1B), the claim di-

rectly follows by the rules of the IA–correspondence:

PF (a1A + b1B) = PFa1A(b1B)

= bPFa1A(1B) + b−PFa1A

= b(a−PFB + aPFB(1A)) + b−PF (a1A)

= b(a−PFB + aPFBA) + b−(a−PF + aPF (1A))

= ba−PFB + b−aPFA + baPFBA + b−a−PF

Note that PF (a1A + b1B) = PFb1B(a1A) delivers the same result. �

In the following, we give an extension of Lemma 1 for those information com-

modities that can be represented as finite sums. Let f =
∑

k∈N ak1Ak ≤ 1H ,

with N ∈ N and Ak ∈ B(H), pairwise disjoint, then the IA–correspondence is

given by

PF (f) =
∑
M∈2N

ρMPF ⋃
k∈M Ak (11)
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where the probability weights ({ρM}M∈2N ) ∈ ∆(2N) are given by

ρM = ρM({ak}k∈M) =
∏
k∈M

an
∏

k∈N\M

(1− an).

As the consumption set [0, 1H ] allows for more general B(H)-measurable func-

tions f : H → [0, 1] as representation of information, the next step clarifies how

Definition 1 extends to arbitrary element in [0, 1H ].

A successive repetition of the rules of Definition 1 gives us for a general

f =
∑

n∈N an1An in [0, 1H ] the following set of consistent priors

PF (f) =
∑
N∈2N

ρN({am}m∈N)PF
(
1⋃

m∈N
Am
)

=

∫
[0,1)

PF (x)dρ(x), (12)

where PF (x) = PF ⋃
k∈N Ak , with x = b(N). As in (11), ρN = ρ(x) is induced by

the inductive application of Lemma 1. We apply here the existence of a bijection

b : 2N → [0, 1) between the power set of natural number and the interval [0, 1).

ρ is a probability measure on [0, 1).

Proof of Proposition 1 In abuse of notation, set PF (1A) = P(A) = PFA. By

construction, the correspondence maps into the convex subset of PF .

1. PF (h) is a convex set, as (Minkowski) sums of convex sets are again con-

vex. Similar arguments holds true for compactness: The Minkowski sum

of compact sets is closed. Since the sum is in a compact set PF the sum

is therefore compact.

2. The correspondence PF has a compact Hausdorff range. Hence by the

Closed Graph Theorem it suffices to show that PF has a closed graph with

respect to the norm to weak topology ‖ · ‖L∞H × σ((L2)∗, L2). As mentioned

in footnote 7, we assume that priors in PF are absolutely continuous with

respect to P and have a square integrable Radon–Nykodym derivative, for

this reason, we may take the weak star topology of L2 = L2(Ω,H,P).

Fix a general information bundle f ∈ [0, 1H ] and note that PF is weakly

compact. In order to show upper hemi-continuity, it suffices to prove that

f ⇒ PF (
∑

1≤n≤∞ an1An) has a closed graph in the above mentioned topol-

ogy. For the rest of the proof we set any PI an ∈ [0, 1] to 1, since they

solely appear as factors. In general, the proof follows by the same conver-

gence argument.
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Set Ak = ∪1≤n≤kAn. Consider a sequence fk =
∑

1≤n≤k 1Ak converging in

the ‖ · ‖∞-norm to f . Let P k converge to P∞ in the weak star σ((L2)∗, L2)

topology, where P k ∈ PF (fk). We have to prove that P∞ ∈ PF (f).

Now suppose P∞ /∈ PF (f). This means there is an event E ∈ σ(A∞) =

σ(Xh : h ∈ A∞) such that
∣∣P(E) − P∞(E)

∣∣ > ε. From this we infer, that

for large m there is an event Em ∈ σ(Am) such that

|P(Em)− P∞(Em)| > ε

2
.

As P n converges to P∞ ∈PF , there is a n ≥ m such that

|P n(Em)− P∞(Em)| < ε

4
.

Note that the probability measure P n : σ(An) → [0, 1] can evaluate Em

since n ≥ m. Combining the last two inequalities via the sublinearity of | · |
gives us ∣∣P(Em)− P n(Em)

∣∣
≥

∣∣P(Em)− P∞(Em)
∣∣− ∣∣P n(Em)− P∞(Em)

∣∣ (13)

≥ ε

2
− ε

4
> 0.

But since P n ∈ PF (An) we have P n = Pσ(An), where Pσ(An) denotes

the restriction of P to σ(An). This holds by the definition of the IA–

correspondence and yields a contradiction with respect to (13).

3. This follows directly from the construction. Consider a1A and b1A with

a ≤ b. By definition, the precision a ∈ [0, 1] gives less weight to the smaller

set in the Minkowski sum. Hence PF (a1A) ⊃ PF (b1A) follows. The case

a1A and a1B, with A ⊂ B results by a similar argument. The conclusion for

arbitrary sums follows then by the stability of the inclusion under arbitrary

intersection, i.e. if An ⊂ Bn for all n then ∩nAn ⊂ ∩nBn.

4. First we consider the case f = a1A and g = b1B. By Lemma 1, we derive

PF (αaA+ (1− α)bB)

= α−b(αa)−PFB + (α−b)−αaPFA + αaα−bPFBA + (α−b)−(αa)−PF
⊆ α−b PFB + αaPFA + αa− PF + α−b− PF
= α−(bPFB + b−PF ) + α(aPFA + a−PF )

= α−PF (b1B) + αPF (a1A).
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The inclusion follows from the following list of facts: PF ⊃ PFB,PFA,

PFB,PFA ⊃ PFBA, α−b ≥ α−b(αa)− and αa ≥ (α−b)−αa.

The case of f =
∑

k∈N ak1Ak ≤ 1H , with N finite, follows by the same

argument, where we apply (11), the extension of Lemma 1 and apply the

above arguments repeatedly.

The general case follows by a similar argument. In view of (12), we utilize

the continuity of the integral: Let f =
∑

n∈N an1An, g =
∑

n∈N bn1Bn, we

get P(αf + (1 − α)g) ⊂ αPF (f) + (1 − α)PF (g). The inclusion follows

from the same argument as in the case for fN =
∑

1≤k≤N ak1Ak and g =∑
1≤k≤N bk1Bk , by applying lim fN + gN = f + g. �

Proof of Corollary 1 This follows directly from PF (1H) = {P}, as stated in

(2), and an application of Proposition 1.2. �

Proof of Theorem 1 1. Monotonicity follows directly from the monotonic-

ity of the IA–correspondence. If f ≤ g then P(f) ⊇ P(g) and U(f) ≤ U(g)

then directly by the maxmin functional form.

2. Continuity follows from the norm to weak upper hemi-continuity of the

IA–correspondence and an application of a version of Berge’s maximum

theorem of Tian and Zhou (1992). Specifically, we apply their Theorem 1.

For the sake of completeness let us check the conditions:

(a) Since the expectation EPU is linear in P , upper semi-continuity holds.

(b) The IA–correspondence has a weak (and hence Hausdorff) compact

range space and is upper hemi-continuous, by Proposition 1. By the

closed graph theorem, the correspondence is closed.

(c) “feasible path transfer lower semi-continuity” holds since the primi-

tive function P 7→ EP is linear in P and does not depend on the f

argument in the IA-correspondence.

With the additional upper hemi-continuity of PF (·) from Proposition 1, we

get the continuity of f 7→ U(f).
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3. concavity: Let λ ∈ [0, 1] and set λ− = 1− λ. We derive

λU(f) + λ−U(g) = λ min
P∈P(f)

EPU + λ− min
P∈P(g)

EPU

= min
P∈λP(f)

EPU + min
P∈λ−P(g)

EPU

= min
P∈λP(f)+λ−P(g)

EPU

≤ min
P∈P(λf+λ−g)

EPU

= U(λf + λ−g),

where the inequality follows from the convexity of the IA–correspondence,

stated in Proposition 1.4. The third equality can be achieved by a direct

computation:

λ min
P∈P(f)

EPU + λ− min
P∈P(g)

EPU = λEPfU + λEPgU

= EλPf+λ−PgU

≥ min
P∈λP(f)+λ−P(g)

EPU

= EλP ∗f +λ−P ∗g U

= λEP ∗f U + λ−EP ∗g U

≥ λ min
P∈P(f)

EPU + λ− min
P∈P(g)

EPU

The first inequality employs the fact λPf + λ−Pg ∈ λP(f) + λ−P(g). The

other derivations hold, since each P(·) is a weakly compact–valued corre-

spondence, by Proposition 1.1, and hence in each case the minimum is

attained, by the linearity of P 7→ EPU. Consequently, the inequalities of

the last derivation are indeed equalities. �

B Proofs for Section 5 and 6

Proof of Lemma 2 1. By (5), the budget set is an intersection of a closed

half spaces that contains a zero within the consumption set [0, 1H ]. Hence,

the budget set is nonempty, closed, bounded and convex. Compactness fol-

lows by Alaoglu’s theorem.

2. From (6), we directly see that a doubling of pν and w leaves the budget set

unchanged.
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3. The definition of B agrees with that of a standard truncated budget cor-

respondence. Hence, upper hemi–continuity follows immediately. Due to

the cheaper point condition, lower hemi–continuity follows by the standard

proof. �

Proof of Proposition 2 By Lemma 2, the budget set is nonempty and

σ(L1
H , L

∞
H )–compact. By Theorem 1, U : [0, 1H ] → R is continuous and con-

cave and hence σ(L1
H , L

∞
H ) upper semi–continuous. A maximizer exists.

By standard results from convex analysis, D(pν , w, F ) is convex and

σ(L1
H , L

∞
H )-compact.

Homogeneity of degree zero follows directly from the homogeneity of degree

zero of B, stated in Lemma 2.2. �

Proof of Lemma 3 Clearly, F is a subset of (L∞H )I×I and consequently the prod-

uct of σ(L1, L∞H )–compact and convex order intervals. �

Proof of Theorem 2 We follow the proof strategy of Theorem 1 in Bewley

(1972). In Lemma 4 the existence of equilibria for finite dimensional information

commodity spaces, that contain {1Fi}i∈I, is established. This serves as a base to

find a converging a (sub)–net (←−g N
1 , . . . ,

←−g N
I , p

N) of equilibra in the finite dimen-

sional economy. The application of the Krein–Rutman version of Hahn–Banach

and Alaoglu theorem are exactly the same and will not be repeated. We have a

candidate equilibrium (←−g ∗1, . . . ,←−g ∗I , p∗). Note that by Lemma 3 F is compact and

closed, hence (←−g ∗1, . . . ,←−g ∗I) is feasible.

Clearly, the price system p∗ ∈ ba(H,H, µ) is positive. From the subnet con-

vergence, we have 1 = ‖pN‖ba = pN(1H)→ p∗(1H), whence p∗ 6= 0.

To show that the candidate is indeed an IT-equilibrium in EInfo, the proof of

Bewley (1972) for the optimality condition of a quasi-equilibrium

U i(g) ≥ U i(←−g ∗I)⇒ p∗(g) ≥ p∗(←−g ∗I)

follows again exactly by the same lines.

The adequacy condition in Assumption 1 and p∗ > 0 implies p∗(←−g ∗i ) >

infg∈[0,1H ] p
∗(g) which in turn implies maximality of ←−g ∗i in the i-th agent’s budget

set.

It remains to show that p∗ ∈ L1. By the Yosida–Hewitt theorem, we decompose

p∗ = pc + pf in the countable additive part pc and finitely additive part pf . By

contradiction we show pf = 0.
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Suppose there is another agent l /∈ I. With Fl = ∅. In view of Assumption

1, she is endowed with δ1H . Clearly, as this information commodity is owned by

all other agents, no agent demands this commodity. Hence agent l, cannot affect

the equilibrium outcome. Her priors are Pδ = (1 − δ)P∅ + δP. Assume Ul is

chosen such that

{Pl} = arg max
P∈Pδ

EPUl and P 6= Pl.

We may find an (extremely desirable) information bundle 1A with A ∈ B(H)

such that Pl /∈ Pδ(1A) and moreover for every ε ∈ (0, 1) we still have Pl /∈
Pδ(ε1A) = εPδ(1A) + (1 − ε)Pδ, i.e. a small fraction of A already allows to

exclude Pl from the new set of consistent priors.

Suppose pf (1H) > 0, then pc(δ1H) < p∗(δ1H), by the positive homogeneity of

p∗. Now choose an ε sufficiently small such that pc(δ1H) + p(ε1A) < δp(1H) and

ε+ δ < 1.

On the other hand, there is a decreasing sequence of sets An ∈ B(H) such

that µ(An)→ 0 and pf (H \An) = 0 for each n. Define yn = δ1H\An ∈ [0, 1H ] and

since yn → δ1H in measure and hence also in the Mackey topology, lower semi-

continuity of U l and U l(δ1H + ε1H) > U l(δ1H) implies U l(yn + ε1H) > U l(δ1H)

for n large.

However we have pf (yn) = 0 for every n and consequently p∗(yn + ε1A) <

p∗(δ1H), a contradiction, and therefore pf = 0 and p∗ ∈ L1(H,B(Ω), µ). �

The last part of the proof follows the proof of Theorem 8.2 of Mas-Colell and

Zame (1991). The assumption that each convex consumption set coincides with

the positive cone, can be weakened as only the presence of the 0 in the consump-

tion set matters for the proof.

Proof of Lemma 4 In abuse of notation, we formulate the information com-

modities as 1F instead of δ + (1− δ)1F , as required in Assumption 1.

By Lemma 2, the budget correspondence is nonempty, convex and compact

valued. Moreover it is continuous. A truncation of the economy is not needed.

We divide the proof in several steps.

1. Individual demand: By Proposition 2, for every i ∈ I, Di(p, Fi|−→g (i)) is a

nonempty-, convex- and compact-valued correspondence. Note that in this

finite dimensional setup the weak and norm topology coincide. Lemma 2.3.

and an application of Berge’s maximum theorem yields the upper hemi-

continuity of the demand correspondence.
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2. Recovery of the IEP matrix : Let us fix some demand ←−g i ∈ Di ⊂ [0, 1F ci ]

for some agent i. We identify those agents who are part of ←−g i. The

following 2–step procedure clarifies this.

(a) Decomposition via F c
i : There is a unique partition of F c

i , indexed by

the set of coalitions,

F c
i =

⋃
J⊂2I−1

F J
i ,

where F J
i denotes the information which only the agents j ∈ J are

aware of. If J is singleton, then the agent therein has an information

monopoly. We can decompose ←−g i in the following way

←−g i =
∑

J⊂2I\{i}

1FJi ·
←−g i .

(b) Determining the protocol entries: In order to fix the protocol entries,

we have to specify what happens on F J
i if J is non singleton. In this

case, delivery of information to agent i is shared among the agents

equally. By virtue of of (a), the protocol entry on the information

that agent k 6= i sells to agent i can now be formulated as

gi(k) =
∑

J∈2I\{i}:k∈J

1

|J |
1FJi
←−g i. (14)

The procedure in (a) and (b) can be summarized as a function fi : [0, 1F ci ]→
[0, 1F ci ]I−1, given by fi(

←−g i) = {gi(k)}k∈I\{i}, that is continuous in view of

(14).14

3. Price player: Let prices be normalized. Define the price player’s corre-

spondence IP : [0, 1H ]I ⇒ ∆|H| by

IP
(
{←−g i}

)
= arg max

p∈∆|H|

∑
i

p(←−g i).

Clearly, IP is nonempty–, convex–, compact–valued and upper hemi–

continuous, by Berge maximum Theorem.

4. Fixed–point: The correspondence (Di)× IP : [0, 1H ]I ×∆|H| ⇒ [0, 1H ]I ×
∆|H| has a fixed–point (←−g ∗1, . . . ,←−g ∗I , p∗) by the usual application of the

Kakutani fixed–point theorem and step 1 and 3.

14Given the initial information allocation, the procedure allows to decompose the demand

for information of agent i into the entries of i–th row of the IEP matrix.
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5. Feasibility: Consider a fixed–point of step 4. By the budget set restriction

in (10), we have p∗ (←−g ∗i ) ≤ p∗ (−→g ∗(i)) for every agent i. This yields

0 ≥
∑
i

p∗
(←−g ∗i −−→g ∗(i))

= p∗
(∑

i

←−g ∗i −−→g ∗(i)
)

≥ p
(∑

i

←−g ∗i −−→g ∗(i)
)
,

for every p ∈ ∆|H|. We have
∑

i
←−g ∗i ≤

∑
i
−→g ∗(i), i.e. the received infor-

mation does not exceeds delivered information. Feasibility in the sense of

the IEP matrix is accomplished by step 2. �
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