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Abstract

This paper suggests a formal framework to establish a convex pref-
erence relation for information. We introduce a new commodity—price
duality, when information is the commodity. The fineness and precision
of payoff-relevant signals quantifies information. All candidate prior be-
liefs that become inconsistent with additional consumption of information
can be excluded and lead to an increase of utility. A heterogeneous agent
economy is introduced, in which information can be traded, based on indi-
vidual demand for information. In this context, once information is sold,
it remains the property of the seller. In a final step, we show that this

information—trade equilibria exist.
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1 Introduction

“The most valuable commodity I know of is information.”
Gordan Gekko in the movie Wallstreet (1987)

Rather than a movie quotation, we might instead consider Arrow| (1996):
“Information is an economic good, in the sense that it is considered as valuable
and costly.” In other words, scarcity and the heterogeneous distribution of
information can result in the willingness to pay for it. The present paper aims
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to present a formal model of an economy where information, as a tradable

commodity, receives its value from an equilibrium price.

Following Radner (1968) and Aumann (1974), we define information as
a special system of events, a o-algebra. A larger or finer o-algebra gives
the decision maker a more precise conditional expectation of any evaluated
signal or payoff. For instance, the coarsest o-algebra reveals only the expected
value of the signal. Given this uncommon type of commodity, the traditional
microeconomic—modeling principle suggests beginning with the introduction of
an appropriate commodity space for information. The usual consumption set,
a set of o-algebras, consists of a set of sets of sets. We term this a 3-stage
commodity space. A standard commodity space for contingent claims would
then be of I-stage type. This distinction becomes immediately relevant in
light of the basic task of finding a meaningful notion of closeness between two

information commodities.

The standard approach to modeling information as a commodity considers
a 3-stage consumption set. Similar attempts can be found in |Allen (1986),
Cotter| (1986), Stinchcombe| (1990), Van Zandt (1993) and Khan, Sun, Tourky,
and Zhang (2008). We have nothing to contribute concerning such a modeling
approach given that each notion of closeness possesses several advantagesE] In
the same vein, |Allen (1990) presents a detailed account of information as a
commodity. In contrast, our analysis relies on the following assumption: Fvery

o—algebra is generated by a set of random variables.

This assumption is rather weak but has several advantages. First, from a
technical stance, we reduce our analysis of commodity spaces from stage 3-type
to stage 2—-type, since only the index set of generating random variables matters.
Second, each random variable can now be interpreted as knowledge about the
distribution of a signal. The resulting information is then the awareness about
all events that stands in relation to these signals. A natural example of a stage
2-type commodity is land (see Berliant (1986))). It turns out that in many cases
the above stage 2 assumption for information holds automatically. For instance,
as explained in Example [2| if uncertainty is based on a Brownian motion, this

assumption is already satisfied.

In the model presented in this paper, additional (and payoff relevant)
information is used entirely to exclude possible priors about the uncertain
future. To establish a utility functional on the consumption set of information,

! Alternative approaches are |Gilboa and Lehrer| (1991); |Grant, Kajii, and Polak (1998).



we must impose an ambiguity attitude for the agent. We focus here on a
worst—case expected utility as axiomatized by (Gilboa and Schmeidler| (1989).
The new twist lies in modeling information as a device to discipline ambiguity.
Formally, this is quantified by the information-ambiguity (IA) correspondence.
The way imprecise information generates a set of possible beliefs is to some
extent related to work by Chateauneuf and Vergnaud| (2000), Gajdos, Hayashi,
Tallon, and Vergnaud| (2008) and (Gul and Pesendorfer| (2015).

In contrast to Radner and Stiglitz| (1984) and Chade and Schlee (2002) we
model the quantification of utility from information differently. Consequently,
utility from additional information is indeed concave. Moreover, an increase
in available information results in a decrease in the degree of ambiguity about
the true probability law that describes the possible distributions of signals.
The updated set is the value of the IA-correspondence. Under the assumption
of ambiguity aversion, we thus obtain a utility improvement. This remains
in line with Blackwell (1953), where under standard assumptions, a more

precise information system is always preferred to one that is less so (see also
Hervés-Beloso and Monteiro (2013)).

Based on such a well-behaved commodity space and utility for information,
we follow some classical steps from demand theory. Budget and demand cor-
respondences for information have similar analytic properties to their classical
counterparts. We take into account that doubling the same information yields
no improvement. This fact also changes the nature of information allocations

when compared with the usual concept of feasibility.

In a final step, we establish a general equilibrium existence result, where
information is traded the same as contingent claims, i.e. contracts are closed
today and delivery takes place at a later point in time. However, the nature
of information allows selling them to more than one agent. The value of
information is usually defined as the increase of utility with respect to the
best actionf] Here, we again follow the tradition of general equilibrium
theory, so that the wvalue of information receives its foundation through the
endogenous equilibrium price system. Apart from existence, we show that equi-

librium prices allow for a representation in terms of an information—price density.

The paper is organized as follows. In Section 2 we present a leading and re-

2 In the present model, such an approach is odd as additional information comes at a mon-
etary cost from buying and selling information in the market for information. Consequently,
this affects the best action, due to wealth changes.



peatedly emerging example. Section 3 begins with the formal description of the
model and introduces the basic consumption set. Section 4 formulates the rela-
tion between information and falsifiability of priors via the IA—correspondence.
Then the resulting utility from information is specified. Before we come to the
notion and existence of an information-trade equilibrium in Section 6, we dis-
cuss standard concepts of price systems, budget and demand correspondences
for information. Section 7 concludes, and the appendices presents the proofs.

2 Unveil the Ellsberg Urn

This section presents a thought experiment based on an Ellsberg urn. It serves
as the leading example and helps to clarify the meaning of (i.) information as
a commodity, (ii.) the information-ambiguity correspondence and (74.) utility
from information. The sequence of examples [3| [4] [f] [7] and [§] are built on each
other, and continue the discussion of the present section.

Suppose an agent is confronted with a gamble based on a two—color urn of 12
balls with an equal number of red and green balls. The distribution is perfectly
known to the agent and she is free to choose and accept one or none of the
following gambles: If green is drawn, the agent receives $10 and $0 otherwise, or
the same payoffs with changed ColorS.E| Suppose the risk averse agent agrees to
play the gamble for not more than $4.

@
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Figure 1: The content behind the veil of ignorance describes a specified gamble.

How much would you pay for a partial revelation?

Now assume the agent is in a different situation. She knows the precise color
of every second ball and that only red or green balls are in the urn. Moreover,
she is aware of the fact that information about one half of the urn yields no

3At the present state of the thought experiment, the payoff on the respective color seems
and is obsolete. In the second part, this issue is of some importance.



advantage to estimating the distribution of colors in the unknown part of the
urn. In this new situation, the agent owns obviously less information about the
gamble than before. Consequently, she agrees to play the gamble for not more
than $3, because of (moderate) ambiguity aversion or pessimism, and selects
the color on which she can win 10$ through a random device, i.e. a fair coin.
Ambiguity aversion is a behavioral attitude related to the presence of multiple
priors describing the gamble.

Based on this new situation and as illustrated in Figure 1, suppose there is an
opportunity to reveal additional components of the hidden urn. The agent would
pay to receive additional information about the distribution of balls. From this
thought experiment we see that information about the unknown components of
the urn has a positive value. The certainty equivalent for the gamble, when the
contents of the urn is perfectly known, delivers an upper bound for the reservation
price of full information. For the given gamble, $4-$3 is then the indifference
price for knowledge about the contents behind the veil.

The formal consideration for the following section relies on the idea of infor-
mation, where the belief of the agent is contingent on what she knows. Several
possible distributions of the 12 balls can only be excluded if additional informa-

tion about the urn is accessible.

Remark 1 Information about a priori observed balls is regarded as a collection
of random wvariables and not as the realization of signals. For simplicity it is
assumed that the probability of each observed ball color is zero or one. The balls
behind the veil could be non—trivial random variables. The additional information
about these balls is then the exact probability of their color.

3 Information as a Commodity
This section introduces the basic framework. For the rest of the paper we make
the following
Standing Assumptions:
1. Information is modeled in terms of o-algebras.

2. Every o-algebra is generated by a set of random variables ]

4Recall, a random variable X : Q — R generates a o-algebra, denoted by o(X), through
the collection of inverse images: o(X) = {X71(A) C Q: A € B(R)}. Equivalently, o(X) is the
smallest o-algebra where X is measurable.



Any agent in the model can only consider those information structures which are
generated by an (arbitrary) collection of observable distributions of signals. On
the modeling side, this simplifies many technical difficulties, since the magnitude
of complexity is reduced by moving from systems of set-systems to systems of
sets (as mentioned in the Introduction from stage 3 to stage 2). As indicated in

Remark [1} information about the realization of a signal is not part of the model.

3.1 Information and Uncertainty

Fix a probability space (2, H,P). P : ‘H — [0, 1] denotes the objective probability
measure about an uncertain future. Let A(€;H) be the set of all probability
measures on the measurable space (2, ). We assume that the finest o-algebra
‘H is generated by a set of real-valued random variables X} : 2 — R, indexed
by a metric space H. The Borel o-algebra of H is denoted B(H). We then have
H=0(Xy:he€H).

Nevertheless, we may also take a discrete space H = {0,..., N} C Q = RY,
with N € N, as discussed in the following example.

Example 1 Let P be the model of n uncorrelated real-valued random variables.
Suppose a normal distribution with zero mean that is P = N(0,%), where the
n X n covariance matriz ¥ is the identity matriz. For instance X1 ~ N(0,1)
refers to a one—dimensional random variable with a standard normal distribution.
Fi1 = o(Xy) is then the knowledge about the distribution of the first component.
The finest information structure is H = o(Xy : b € H). Analogously, every
subset { Xy }ner of random variables, with F' C H, describes a partial knowledge
F=0(F) of H.

A further example is based on a Brownian motion and the strong connection

between closed subspaces, sub o-algebras and conditional expectations.

Example 2 Let (Cy[0, 1], H,Py) be the Wiener space so that the canonical pro-
cess is the Brownian Motion (W;). H denotes the Borel o-algebra that is induced
by the usual sup-norm of Cy[0, 1] — the space of continuous paths on [0, 1] starting
in zero. In this case, we have H = o(Wy :h € H), where Wy, = f01 h,dW, is the
stochastic Ito integral with deterministic integrand h € H and is normally dis-
tributed, i.e. Wy ~ N(0, ||b||g). Here, H denotes the space of square integrable
functions on [0, 1], that is |h||g = (fol hgds)% < 00.

Any subset F' € B(H) generates a coarser o—field than H. For instance,
choosing for every s € (0,1), the closed sub vector-space Fy = L*([0, s]) results



in Fs = o(W, 1 r € [0,s]) the information filtration generated by observing the

Brownian motion itself up to time s, where W, = Wy with h = 1.

From Example [2| we see that the present approach to model information is con-
sistent with continuous-time modeling.

Given (92,H,P), we turn to the formal description of some agent being
equipped with some initial information endowment F = o(X, : h € F), or
in abuse of notation F = o(F'), such that F' € B(H). As illustrated especially in
Example [2] the index set of random variables allows us to identify every relevant
sub-information structure ' C ‘H, by a Borel-subset I’ € B(H).

3.2 Commodity Space of Information

A pure information commodity is an element F' € B(H), that is the perfect
knowledge o (X, : h € F') about the distributions of all random variables indexed
by F'. Clearly, we can write this set in terms of an indicator function 1p : H —
{0,1}. The boundedness of such functions delivers an adequate commodity space
Ly = L>*(H,B(H),u) of bounded measurable elements, where p is a given
positive measure on (H,B(H)). Whenever H C R for some M € N, we
consider the Lebesgue measure y = A on H. In abuse of notation, we havd’|

2" C[0,1y]) C LY.

As we motivate and explain in Section 4, the closed, bounded and convex set
0,15] =[0,1]pee = {f € L3 : 0 < f(h) < 1p-a.c.} defines the consumption set.
A € B(H) holds pp — a.e. if u(A¢) =0, where A° = H \ A.

A function f € [0,1p] allows for several representations as limits of simple
functions, that is f(h) = limy > qcpon @rla, (h). We focus here on the unique
representation of pairwise disjoint collections {Ak}r<n C B(H) and correspond-
ing factors ay € [0, 1].

As a primitive of the economy the given information F of some agent is
coarser than H, where F = 0(Xy, : h € F') and F' € B(H). The set of pure and
desirable information commodities is B(F¢). Given the agent’s information F,
she considers the commodity F’ € B(H) only as relevant if F/ ¢ F. In this case
the set F’ can be purified (relatively to F') by considering only nontrivial sets
F'\ F in B(F¢). The next section discusses other (non pure) functions in the
consumption set [0, 1] that model a notion of non—perfect information.

5The first inclusion stems from F C H and the assumption to consider only sub o-algebras
of the form F = o(F). The defining index set F' of generating random variables is identified
by the associated function 1 € [0, 1x].



4 Utility from Information

Before utility from information can be quantified, we need to clarify how
additional information reduces the degree of ambiguity about the true prior
P : H — [0,1]. The agents’ belief Pr : o(F) — [0,1] depends on her initial
information o-algebra F = o(F)[f| Those events E ¢ o(F) = o(X, : h € F),
which she is not aware of, are not assigned with a probability. F'is the index
set of random variables, whose probability laws is known to the agent. Hence,
her belief Pr : F — [0, 1] is contingent on her o-algebra, and can only capture
probabilities about events that are in her information set. We assume that the
restriction of P to F coincides with Pr. In view of Section 2, this corresponds
to the knowledge of the colors of visible balls.

4.1 Information—Ambiguity Correspondence

Information is a device to exclude alternative priors. These alternatives are,
without additional information, reasonable probability measures on H. Such a
perspective parallels the thought experiment of Section 2: additional information
about the color of the balls allows the agent to exclude prior that were plausible
without some additional information commodity.

Suppose an agent starts her consideration with an a priori given information
F € B(H) (the index set of observable random variables). Given the information
endowment F = o(F’), this results in the set of possible priorsﬂ on H

Pr={PecA(k;H): P=Prono(F)}. (1)

We have &y = A(Q2;H). The set & contains all priors on the finest o-algebra
H that are consistent with the given coarser information F = o(F) and the given
belief Pr on F.

The following definition clarifies how additional information updates the set
of possible priors. Apart from the intuitive appeal to use information as a device
to exclude alternatives, the advantage of the approach relies on the quantification

of consequences from receiving information.

6Here, we deviate from Aumann| (1974) and assume that the subjective belief of the agent
is only defined on her private o-algebra.

T“P =P on F” means P(E) = P(E) for all events E € F. For technical reasons, we also
assume P < P and % € L?. P < P means that P is absolutely continuous with respect to
P, i.e. if P(A) = 0 then P(A) = 0. Note that, A € H\ F = o(F°) implies Pr(A) = 0. The
square integrability of the Radon Nykodym derivative % is a simplifying technical condition.



Definition 1 The Information-Ambiguity (IA) correspondence Pp : [0,15] =
Pr s defined by two updating rules:

1. Reduction of consistent extensions: for every A € B(H) we have

Pr(la) = {P€ Pp:P=Pono(FUA)}.

2. Precision of information for A: For every a € [0, 1] we haveﬂ

Pr(ala) = aPr(la)+ (1 —a)Pp.

The factor @ in the second part denotes the precision of information (PI) for A.
A small PI yields a large value of the IA—correspondence. From Definition [1] it

directly follows that full information means knowledge about the true prior:

P =Pr(lmnr). (2)

With notation Pr(als) = Praa, the two rules of Definition |1| suffice to deduce
any evaluation of the [A—correspondence. Let us begin with a result for the
reduction of extensions for (imprecise) information bundles A, B with AN B = ().
Set a” =1—a.

Lemma 1 For all f =aly+blg € [0,1y], the [A—correspondence is given by
Pr(f) =ba" Prg+b aPpa+baPrpa+b a Pp. (3)

Note that (ba™,b"a,ba,b”a~) is a probability weight on the power set of {A, B}.
If ANB # (), then (3]) incorporates a weighting on the power set of { A, ANB, B}.
Definition [I] and Lemma [I| focus on rather simple information structures. A
straightforward extension considers the case where f = Zke N @rla, is defined
by a finite sum of indicator functionsﬂ In this case, results in a sum over
the power set of the mutually disjoint collection {A;,..., Ay}. As presented in
Appendix A, every f € [0, 1y] yields a well-defined set Pr(f) C A(;H).
Several remarks on the meaning of the [A—correspondence are worth making.
Some simple cases clarify the idea and intuition behind the required algebraic

manipulations in Definition [I

1. Simple reduction: In the case of f = 14, the [A—correspondence means full

information about the set of random variables indexed by A. The representation

8Minkowski sums of sets are defined by C + D = {c+d:c € C,d € D}.
9 Note that the collection of such simple functions is a dense subset of [0, 1] with respect
to the norm || flcc = inf{M : |f]| <0 u — a.e} on LS.



of the IA-correspondence is consistent with the extension that is considered in
De Castro and Yannelis| (2010).

2. Precision for information: The TA—correspondence incorporates all values
between the extreme case a = 0 —no precision Pr(0-14) = P and a = 1 —full
precision Pp(l-14) = Prua. In view of Section 2, the meaning of the PI refers
to the additional possibility of increasing the transparency of certain parts of the
veil that hides the urn. Knowledge about the color of a ball is then revealed with
precision a. Specifically, the agent may receive information about a so-far veiled
ball K. But she only infers that K is red with probability P(K = “red”) > all¥|

3. Reduction for information bundles: In the case of full precision, we get
Pr(la+ 1) = Pr(laup). In view of the bundle aly + blg, we see in that
a high PI for both sets results in a high weight ba of the smallest set of priors
Pras = Pr(laup)-

4. Unique representation by pairwise disjoint sets: If AN B # () and a =
b= %, then the extension of Lemma (1| applies only to the unique representation
f = %(1A\B + 1p\a) + Lanp. Every f € [0,1p] allows for a p-a.e. unique
representation in terms of pairwise disjoint sets. The informational content of f

is then exclusively displayed by this decomposition.

We continue with an example that applies the IA—correspondence Pr to the
setting of Section 2.

Example 3 Coming back to the Ellsberg urn thought experiment in Section 2,
we see that every probability pr of the event to draw a red ball lies between

(2, 253] = [1,2]. This set of probabilities corresponds to

r-@F - H {6%} X [07 1]6 - A ({R’ G}H) ’

1<k<6

where o., denotes the Dirac measure for the k-th ball to have the color ¢ €
{R,G}. If a Tth and 8th ball is revealed, say one is red and the other green,
then pr can only lie in the strictly smaller range [%, %} C [, %], which now

corresponds to Pp(lizs;), see Definition[1] 1.

Example [4] is continuous with Example 3| and extends it to the case of im-
precise information a. In this case, only the transparency (parametrized by a)

19However, there are two possible interpretations for a. On the one hand the source itself
announces the imprecision of the signal. An alternative viewpoint can be that the source of
information does not reveal any additional information about its precision. In that case, the
agent has a belief about the precision that is again captured by a. Remark [ continues with
this discussion.

10



of the vell is increased.

Example 4 Now suppose that the 7th and 8th balls are revealed only partially.
That is with transparency or reliability a = 0.6. Again, one ball is red and the

other is green, then P(c; = “red”),P(cs = “green”) > 0.6. The probability

(3.6 84
127 12

corresponds to PF(() 6 li78y). The information about the 7th ball yields an

pr of drawing a red ball lies then in the range [0.3,0.7] = ], which now

increase fmm = to =2 for the lower bound of the interval. In view of Definition
1.2, the heumstw about the role of the PI a € (0,1) is consistent, since [32, %3] =
0.6 - [ 2712]+(1_06)[ 2712]

The TA—correspondence is a basic tool to define a preference relation for
information. In preparation, the following proposition lists properties that will

be essential to the resulting utility representation.

Proposition 1 The [A-correspondence Pr : [0, 1y] = Pr iﬂ

1. compact— and convex—valued.

2. upper hemi-continuous.
3. monotone shrinking: If f < g then Pr(f) 2 Pr(g).
4. convex: For every a € [0,1] and f,g € [0, 1g] we have

]
Pr(af + (1 —a)g) € aPp(f) + (1 — a)Pr(g)-

From the proposition, we obtain that the true prior P is always contained in

the TA—correspondence.

Corollary 1 For all f € [0,1y], we have P € Pg(f).

4.2 The Functional Form of Utility from Information

Based on the TA—correspondence, we are now in a position to define a utility
functional on [0, 1] = [0, 1]ze0. The worth of additional information is quantified
by the ability to exclude priors that are ex-ante consistent but ex-post (with
additional information) inconsistent.

Utility from information relies on the idea that the reduction of ambiguity
increases expected utility, when evaluated at some random utility U. For some

1 Compactness refers to the weak topology on the set of square-integrable Radon-Nykodym
densities in L? = L2(Q,H,P). The continuity of Pr is with respect to the norm topology
|| - llLse on [0,1p] and the weak* topology o(L*", L?) on Zp.

11



utility index v : R — R and a given and H—measurabldﬂ endowment £ : 2 — R,
we may have U = u(F).

Definition 2 Fiz the agent’s given information o(F) = 0(Xy, : h € F) = F
and let U € L*(Q,H,P) be a given random utility. The utility from additional
information f € [0,1y], f: H — [0, 1], is given by

U(fy= min E”[U] — min EFU] >0. (4)

PePr(f) 5691«“

S/

TV vV
with new information  only old information

The [A—correspondence f — Pp(f) is that of Definition [I} for & see (I)).
The second summand of U(f) in is a normalization; If some information
commodity f contains no additional information, i.e. f < 1p, thisimplies U(f) =
0 by the definition of the IA—correspondence. In this case, we have Pg(f) = Pp.

The properties of the IA-correspondence, stated in Proposition [1} deliver in
turn a list of important properties for the utility from additional information.
The following result lists clear counterparts of the usual utility specifications for

standard commodities.
Theorem 1 Let f,g, f, € [0, 1g]. Utility from information U : [0, 14] — R is

1. monotone: If f<gthenU(f) <U(g).
2. continuous:  If fr, — fin || - ||o then im, U(f,) = U(f).

3. concave: For every o € [0, 1] we have
aUf)+(1—-a)U(g) < U(af+(1—a)g).

In view of the usual non—concavity for the value of information, such as con-
sidered in Radner and Stiglitz| (1984)), the third part of the theorem is most
remarkable. It means in particular that ambiguity aversion implies a preference
for diversification of information.

Example [ applies Theorem [1}1 to the Ellsberg urn from Section 2.

Example 5 Let there be two gambles X9, X" on the urn. $16 is paid if a specified
color (r = red or g = green) is drawn and 30 else. The color is chosen after

receiving additional information. A priori the agent only knows that there are

12Note that the underlying commodity space for contingent claims X : Q — R is L?. Since
utility is complete on this space by incorporating all possible extensions from F to H, we may
assume that endowment is measurable with respect to the finest information o-algebra H. By
1] ‘fl—g is square integrable. We have EF'U < oo for all P € &5 by the Minkowski inequality.

12



three red and green balls. According to Examplel]], the probability p" to draw a red

ball lies in [§, 3] ~ Pp(0), where F = {1,...,6}. Now suppose the agent receives

information that the 7th and 8th ball are red, then p" € [15—2,%] ~ Pp(lirsy)-
The revealing of a 9th and 10th ball, when both are green, yields p" € [%, %] ~

Pr(1gz7,..101). With a utility index u(x) = /r and U = VX", we derive

max (U?(178)), U (1gzsy)) = U'(lgzsy)

= min  EFU" — min EFU"
PEPF(l{’?,S}) PGPF(O)
5) 2
2u16) 3

The same calculation yields U9(1z, 10y) = U (147, 10)) = % Full information
Lpe = 1=1p let the ambiguity vanish, thus U" (17, 12)) = U9(1z7,.12}) = EPu9 =
1. The indifference price C°(f) = v~ (max (UY(f),U"(f))) of the gamble X =
U? for the respective information commodities, reveals the reservation price for

additional information: § = C'(1zsy) = C°(Lgz..10y) < C’(1lpe) = 1.

In view of Theorem [1}3, we discuss situations where information yields a strict
utility improvement and situations where this is not the case.

Example 6 In view of Example[3, the utility of additional information can be
U(lgzgy) = 0, if the gamble X9 is fived at the beginning. In that case, the
alternative information lgg 10y yields a strict utility improvement. However, a
priori the agent is unaware about the colors of the two additional balls and hence
indifferent between 1{7gy and lgg10y. In the interim step, she can only choose to
accept the gamble or not. Before making this choice, she will hedge the ambiguity
about colors and strictly prefer f = $1(78y + 510,10y with U(f) > 5(340) >0 =
min(U(1¢zsy), U(lg9,10y)), as she cannot choose the color to bet on.

The illustrated effect of Example[6] can be considered as a discontinuity of pure
information commodities. We mention several alternative functional forms of
utility under ambiguity.

Remark 2 In Definition[q and Theorem [l we analyze the case of extreme am-
biguity aversion found in |Gilboa and Schmeidler (1989). This representation
for ambiguity aversion serves as a device to receive a utility representation for
information that quantifies the reduction of consistent priors. Alternative con-
struction through other functional forms that quantify ambiguity attitudes include
smooth ambiguity of |[Klibanoff, Marinacci, and Mukeryi (2005) and variational
preferences of Maccheroni, Marinacci, and Rustichini (20006).

13



5 Prices and Demand for Information

To quantify optimal behavior under budget constraints with a given preference
relation for information in the sense of Section 4, we specify what we mean
by a (consistent) price system for information. Then we consider the resulting
budget set and the single-agent optimization problem. However, the concavity
of U provides early insights into the presence of a supporting hyperplane and of
following, in some situations, the classical approach to those notions needed to
define a meaningful equilibrium concept.

5.1 Commodity—Price Duality

We now return to the commodity space L3 = L*®(H,B(H), ) introduced in
Subsection 3.2. The triple (L%, | - ||, <) is a classic Banach lattice, such that
(LY )+ has a nonempty norm interior. It is straightforward to define a linear and
positive price system p”(-) = [ -dv. The (topological) dual space ba(H, B(H), ),
the space of bounded finitely additive set functions on (H, B(H)) being absolutely
continuous with respect to u seems to be rather large. As such we restrict our
attention to price functionals within the subspace L}, = L'(H, B(H), ). In this
situation, a positive price system for information p” : Ly — R can be represented
by an information—price density ¢ : H — R such that ¢ = g—; €Ly andy >0
yields

() = (. f) = /H () () (), (5)

where (-,-) is the natural bilinear form of the pairing (Lk, L5%). Let f = 1w
be simple. An immediate consequence of is p’(1p) = [ ¥dp = v(F'). In
general, the price system p” : [0, 15] — R satisfies three natural basic properties:
1. additivity of disjoint information: Let F,G € B(H) be disjoint then
v(FUG) =v(F)+ v(G). This condition refers to the linearity of disjoint

fractions of information, which holds for countable disjoint sets as well.

2. homogeneity of degree one for precision: Let F' € B(H), a € [0,1] then

p’(alp) = / alpdy = a/ dv = av(F) = ap”(1F).
H F
For the PI a, homogeneity quantifies the reliability of information F'.
3. monotonicity: Let FF C G in B(H) then p’(1r) < p“(lg). This simply

means that noisier information is cheaper. The same form of monotonicity
holds for f < g in [0, 1x].
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Property 1. can be extended if ¢ = > a;14, € [0,15] and (4;) are pairwise
disjoint then p”(g) = > a;v(A;). If the collection of sets (A;) fails to be disjoint
then we have p”(g) > > a;v(A;), since A; N Ay, # 0, for some i # k, implies that
some information in g appears with a higher PI. The sub-additivity then follows
from the unique representation in terms of mutually disjoint indicatior functions.

Summing up, the commodity price duality is given by (L3, L};).

Remark 3 The present notion allows us, in principle, to model a negative value
of information, as examined in |Hirshleifer| (1971). In that case, agent’s utility
and the price system are no longer monotone increasing. By the Yoshida—Hewitt
decomposition, the representing measure is the sum of a negative and positive

measure.

5.2 Walrasian Budget Set for Information

Motivated by the last subsection, we may consider a budget set based on a
given price system p” : Ly — R, amount of wealth w > 0 and information
F =0(Xy:heF) for some F € B(H). The budget set is given by

B(p*,w, F) = {g € [0,1p] :p"(g) S w} € [0, 1], (6)

where the positive and o-additive measure v : ‘H — R, represents the given
linear and positive price system p” via p”(¢g) = [ g¢pdu. Formally, the resulting
budget correspondence is given by B : L}, x Ry x [0,15] = [0, 1x]. Some prop-
erties, such as convex—, compact—valuedness, follow directly from the definition

in @

Lemma 2 1. The budget sets B(p”,w, F) in (@) with le_;l: =1 > 0 are non—

empty, conver and weakly o(Li;, L5?)-compact.

2. For any fized F' € B(H), the budget correspondence B(-,-, F') is homoge-
neous of degree zero in price—wealth pairs.

3. Let X be a finite dimensional subvector space of L35, p be the restriction
of p¥ to X and w > mingep 1) pr (cheaper point). Then BX(p,w, F) =
B(p,w, F) N X is a continuous correspondence at (p,w) in X.

The budget set in (6)) allows for several modifications. As preparation for
the information—trade economy, we mention here one type of extension that also

incorporates information sells.
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We could allow the agent to sell parts of her information through the price
system p”, as long as the agent owns this information, that is f* € [0, 1p].
The positive number p”(f*¢"") then denotes the realized proceeds. The resulting
budget correspondence with information sales B® : Lj; x [0, 1] x Ry x [0, 15] =
[0, 1] is then given by

BO(pV,F,’LU’del) — {g c [07 1FC] :pu(g) S w +p” (fsell) } (7)

In (7)), we only consider the case of single information sales. If there is more
than one agent demanding some information in [0, 1z] then information can be
sold simultaneously to several agents, and extends B° in the appropriate way. In
Section 6, the budget set B* in and the information—trade protocol takes
this into account.

The following remark departs from an alternative perspective and discusses

the agent’s ability to sell information that she does not possess.

Remark 4 Consider an economy with two agents, J and K. If K buys an infor-
mation commodity from J, then K may believe that J is not reporting truthfully
or he does not own the information that is reported. For the latter case, this does
not imply that the sold information is not trueE Of course we could assume that
the agents care about their reputation or follow a gentleman’s agreement, and for
this reason such complications may not occur. However, the present setting also
allows us to incorporate dishonest sellers. We mention two ways this information
creates friction that can enter the budget set.

The first way requires collateral to sell information at a given price system
p¥. If J sells to K information G € B(H), then he must hold some wealth w,.
A restriction of collateral is then p*(1g) < wg. This collateral is transferred to
agent K, if it turns out that J delivered false information. As in |Geanakop-
los (2010), this reliability problem lets contracts become pairs of promises and
collateral (1, w,).

An alternative approach refers to buying with awareness of imprecision. Sup-
pose seller J offers the pure bundle 1. In the case that J enjoys a questionable
reputation about telling the truth, then agent K may interpret the offered bundle
as a¥1g. Here, a¥ € [0,1] captures the precision or the likelihood of K that
J reports true information. For agent K, the personalized value of 1g, to be
delivered by J, reduces to aX¥p”(1¢).

3However, this thought experiment also applies to Arrow-Debreu modeling where contingent
claims with future maturity are traded and promised today.
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5.3 Demand for Information

Fix a price system p” : [0,15] — R in L}, initial wealth w € R, and initial
information F' € B(H). The next step points to a solvable formulation of the
agent’s optimization problem. Combining the utility specification of Section 4
and the budget set of Section 5.2, the individual utility maximization problem
reads as follows,

max _U(h). (8)

heB(p”,w,F)
Proposition [2] justifies many properties from classical demand theory.
Proposition 2 Let F' € B(H) be the given amount of initial information. The
price system v and wealth w are given as well. The problem in (@ has a solution

and the demand correspondence for information D : L, x R, x [0, 1x] = [0, 14]
defined by

D(p”,w, F) = arg max _U(h) (9)

heB(p¥,w,F)

is nonempty—, conver— and o(Li;, L%)-compact-valued. Moreover, D is homo-
geneous of degree zero in (p¥,w), that is D(ap’,aw, F) = D(p”,w, F) for all
a > 0.

So far, D is formulated only for pure information bundles of indicator type 1p.

For general f € [0, 15] the same conclusions follow analogously.

6 The Information—Trade Economy

In this section, we consider a finite set of agents I = {1,...,I}. FEach i is
characterized by a random utility U; and private information F; = o(F;). As in
the standing assumption, the set F; generates the o-algebra F; = 0(X, : h € F})
on €. The information—trade economy is summarized by

gInfO —_— {[O’ 1H]7 Ui7 E}ieﬂ’

where each U; is induced by U; € L*(2, H,P) and Definition [2 Since we allow
the agents to sell their given information, we do not consider initial wealth.
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6.1 Feasible Information Allocations

Information (as a commodity) inherits the special property that its release to
some agent leaves the previous property rights unchanged. For this reason, the
concept of a feasible information allocation differs from feasibility of physical
commodities.

Let g;(k) € [0,1x] denote the information that agent k receives from agent
7. In this notation, an individually rational bilateral trade of information, say
91(2), g2(1), between agent 1 and 2 has to satisfy an individual rationality con-
dition (g1(2), 92(1)) € [0, 15] x [0, 1x,] N[0, 1 5] x [0, 1ge].

Definition 3 Fiz an initial information allocation (Fy,...,F;) € H' and set
[0,1F,¢] = [0, 1pnre]. An (individually rational) information exchange protocol

(IEP) matrix G is given by:

@ 91(2) e gl(I) @ [O’ 1F2,C1] [O’ lFI,C1]
1 e I 0.1z ¢ e 10,15 c
G — 92( ) @ ) 92( ) cF — [ ) .FI,Q] @ . ’ 'FI,Q] 7
gr(1) gr(2) -+ 0 0,1p¢] [0,15,5] - 0

where B =TF(Fy, ..., Fr) only depends on (Fy,..., Fy).

Here F; ; = [0, 1F, <] contains all information commodities that agent i owns and
which j is interested in. We receive for each pair (i, j) the restriction g;(j) € F; ;
for the feasibility of the IEP-matrix. The initial information allocation can be
generalized to arbitrary allocations in [0, 15]”.

Information releases are collected for each agent in the respective column,
TE) =3 i1 95(1) as the information sales of agent i. Information acquisitions
are listed in the corresponding row, set ‘g; := 3° ic19i(J)-

Lemma 3 The set of feasible allocations F is weakly compact and convez.

Once again, let us reconsider the Ellsberg urn from Section 2.

Example 7 Let there be three agents seeing the urn in Section 2 from three
different angles. As illustrated in Figure 2, agent 1 is only able to identify the
balls in part A = {1,2,3} and B = {4,5,6}, agent 2 (or 3) sees parts B and C
(or C and D). In the present case, the set of individually rational and feasible

information exchanges can be summarized by the following IEP matriz

0 [O’ 1F2,C1] [07 1F3,C1] 0 [07 1A] [07 1AUB]
F=|[01ry 0 [0.1ms) | =] 01c] 0 (0,14
0, 154] [0,1p,¢] 0 0,1cup] [0, 1p] 0
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Figure 2: The unfolded lateral area of the Ellsberg urn from Section 2 — each agent
captures only a share of the urn. An initial allocation of information with three agents
is then given by Iy = AUB, Fh =BUC, F5=CUD.

6.2 Existence of an Information—Trade Equilibrium

Each agent can sell the same information more than once. To account for this
aspect, we modify the budget set such that the received wealth from information
sales can be incorporated. The general budget correspondence B* : L}, x R, X
0,14] x [0, - 15] = [0, 1] with multiple information sales is given by

B (¥, F| G (4)) {g € [0, 1m0 (G0 < 30" (el } (10)

k#i

where ¢ (i) = > ri 9k(@). Note that, (i.) the price system p” is defined on the
entire commodity space L3, (ii.) the sum and p” in commutes, (iii.) Lemma
holds by the same arguments, also for the present budget set B* and (iv.) the
strategy /budget set depends not only on prices, but also on the behavior of the
other agents.

The notion of equilibrium, when information commodities are traded is in-

troduced in the following definition.

Definition 4 Fiz an economy E™F° = {[0,14],U;, F;}ie1. The feasible IEP-
matriz G* = (g;(j)) € F and a price system v € ba(H,B(H), n), with v > 0,
build an Information-Trade (IT) Equilibrium, if

1. for each i € I, ‘g mazimizes U; in B*(p”, F;| ¢*(i))

S < 3 T6) in L.

In equilibrium, each agent considers the amount and multiplicity of total infor-
mation sales 7(2) < I —1 as given. However, the additional feasibility condition
in the second part of Definition {4] is needed to check if in the aggregate, the
received information is indeed delivered by anyone.

For the existence of equilibrium we need the following conditions for the

primitives of the economy.
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Assumption 1 (Adequacy condition) There is a 6 > 0, arbitrarily small, such
that for each i € 1, the information of agent i is given by (1 — 6)1g + 6 €
int((L§)+). For every i we have pu(Ff) > 0 (no omniscient agent). Agent’s
utility functions U : [0, 1] — R are monotone, continuous and concave.

The first part is a variation of the cheaper point assumption. In the present
setup it means that ¢ yields a slighter smaller set of priors. Instead of & the
agent starts with Prsg = 0P+ (1 — ) Pp. By Corollary we have P € #Zr and
hence Prsy C Pr.

Here is the main result of this section.

Theorem 2 Under Assumption[l], an IT-Equilibrium exists.

To prove the existence of equilibrium a careful look is needed when it comes
to the question which group of agents participates in delivering information to
some agent . For instance, it must be clarified what happens when agent i
demands information that is owned by more than one agent, say J agents own
this information. In that case, we assume that the market mechanism divides
the supply in J shares of equal sizes. This is an equal-treatment property in the
trading mechanism. To accomplish this property, we use a protocol procedure
that controls the feasibility of the IEP-matrix. In step 2 of the proof for Lemma
[ the procedure is spelled out in detail.

1Fz‘c

Figure 3: Trade of information bundles. Using the typical notation, we consider the
situation for agent i. She sells a piece of information twice. One share is sold to agent
k from which she buys g;(k) = alpe at price p”(gi(k)) = a [ 1 (h)du(h).

Finally, we move back to the finite case from Section 2. The following ba-
sic and fundamental lemma is the starting point for the proof of Theorem
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For finite H, as in Example [T the commodity space for information is finite

dimensional and the consumption set becomes the order interval [0, 1]1#1.

Lemma 4 Under Assumption 1, IT-equilbria exist for every finite dimensional

subvector space of L.

To develop an intuition about Theorem [2] and Definition [4] the following example

considers an IT—equilibrium in the economy of Example [7]

Example 8 Fiz the initial information endowment in Figure 2 of Example [7
(departing from the urn in Section 2) and the common random utility U; = u;(X)
of Example @ with u;(+) = /- for i = 1,2,3. X is a gamble, where $16 is
paid if red is drawn and $0 if the ball is green. To simply the notation, let the
urn be divided into subgroups, such that H = {A, B,C, D}. For this economy,
an IT-equilibrium is given by the price system p”(f) = Y pcpyv(h) - f(h), with
v=(2,1,1,2) and the IEP-matrix

] 4 la+s3ls 0 [0, 1a] [0, Taug]
%10 1] %13 € 0, 1¢] 0 [0, 15]
1p + %10 %11,3 0 [0,1cup] [0,1p] 0

The optimal information allocation of the IT-equilibrium (?1,?2,?3) =
(1eup, }llAUD, laug) s fully revealing for agent 1 and 3, but not for agent 2,
since she does not own a sufficient amount of exclusive information. Agent 2
diversifies her information consumption (}1114 + %1,3), due to the concavity of her

information utility functional.

An asymmetric distribution of initial information implies no trade IT-
equilbria. To see this, assume an economy with initial wealth. Let F} C --- C
F,C Fpyy--- CFp=Fandw < ... <w <wg < ... < wr. In this
situation agent ¢ + 1 would not buy information from 7. Suppose now that
wy > ... > w; > Wiy > ... > wr and utility comes from wealth and informa-
tion, via V;(w, f) = w;(w) + U;(f). This specification of the primitives will lead
to trade in equilibrium.

A central question points to statements of the form: Is the equilibrium allo-
cation of information fully revealing? In the framework of this paper, this is an
endogenous property (see Example [8] where the equilibrium is not fully reveal-
ing). In the following we give a condition that depends on the equilibrium price

measure.

Corollary 2 Let v be an equilibrium price for information. If v(F;) < v(Ff),
then agent i is unable to receive all the information in the economy.
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7 Conclusion

Information economics often models the agent’s ability to observe the realization
of some signal, such that information then relies on the observation itself. In this
paper, the notion of information relies on the accuracy of the knowledge about
the exact distribution of the signal. Minimal information refers to knowledge of
the expected value of the probability distribution and corresponds to the trivial
o-algebra being generated by the trivial partition.

Knowledge about some payoff-relevant distribution remains in central focus
for the quantification of utility. An agent is willing to pay for the reduction of
imprecision that excludes possible priors. Without this additional consumption
of information, these priors are considered as possible candidates for the agent’s
expected utility. Under the assumption of ambiguity aversion, the reduction of
possible priors increases the utility. The possibility of excluding different priors
has different effects on the worst case expected utility.

The approach taken by this paper relies on marginal aspects. A marginal
change of utility comes from a marginal change in the size of ambiguity, which in
turn is directly induced by a change of information. This reasoning allows us to

assign a positive endogenous equilibrium price to any information commodity.

A Proofs for Section 4

Proof of Lemma 1 Starting with Pr(ala + blg) = Pra1,(blg), the claim di-
rectly follows by the rules of the IA—correspondence:
Pr(aly +blg) = Pra,(bls)
= 0Pra,(1B) +b Prai,
= b(a”Prp+ aPrp(la)) +b Pr(ala)
= b(a”Prp + aPrpa) +b (aPr+aPr(la))
= ba"Prp+b aPpa+baPrpa+0b-a Pr
Note that Pr(als + blp) = Pryy(ala) delivers the same result. [ |

In the following, we give an extension of Lemma [I| for those information com-
modities that can be represented as finite sums. Let f = ZkeN arla, < 1lp,
with N € N and A, € B(H), pairwise disjoint, then the IA—correspondence is
given by

Pe(f)= D puPru, 4 (11)

Me2N
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where the probability weights ({pas}rrean) € A(2Y) are given by

pv = pr({antrenr) = H ap H (1—ay).

keM  keN\M

As the consumption set [0, 1] allows for more general B(H )-measurable func-
tions f : H — [0, 1] as representation of information, the next step clarifies how
Definition 1| extends to arbitrary element in [0, 15].

A successive repetition of the rules of Definition [I] gives us for a general

[ =2 nenanla, in [0,15] the following set of consistent priors

PF(f) = Z pN({am}m€N>PF (1Um€NAm) = / PF((L’)dp(l’), (12)
Ne2N [0:1)

where Pp(z) = Pr, . 4 With 2 =b(N). As in (TI)), py = p(2) is induced by

the inductive application of Lemmal[l] We apply here the existence of a bijection

b: 2N — [0,1) between the power set of natural number and the interval [0, 1).

p is a probability measure on [0, 1).

Proof of Proposition 1 In abuse of notation, set Pr(la) = P(A) = Pra. By
construction, the correspondence maps into the convexr subset of Pp.

1. Pr(h) is a convex set, as (Minkowski) sums of convez sets are again con-
ver. Similar arguments holds true for compactness: The Minkowski sum
of compact sets is closed. Since the sum is in a compact set Pr the sum

15 therefore compact.

2. The correspondence Pr has a compact Hausdorff range. Hence by the
Closed Graph Theorem it suffices to show that Pr has a closed graph with
respect to the norm to weak topology || - || x o((L?)*, L?). As mentioned
in footnote 7, we assume that priors in Pr are absolutely continuous with
respect to P and have a square integrable Radon—Nykodym derivative, for
this reason, we may take the weak star topology of L* = L*(Q2, H,P).

Fiz a general information bundle f € [0,1y] and note that Pr is weakly
compact. In order to show upper hemi-continuity, it suffices to prove that
[ = Pr(X1cncns @nla,) has a closed graph in the above mentioned topol-
ogy. For the rest of the proof we set any PI a, € [0,1] to 1, since they
solely appear as factors. In general, the proof follows by the same conver-

gence argument.
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Set AF = Ur<n<kAp. Consider a sequence fF = Elgngk 14, converging in
the || - ||o-norm to f. Let P* converge to P> in the weak star o((L?)*, L?)
topology, where P* € Pr(f*). We have to prove that P® € Pr(f).

Now suppose P> ¢ Pr(f). This means there is an event E € o(A>) =
o(Xy : h € A®) such that |P(E) — P¥(E)| > e. From this we infer, that

for large m there is an event E™ € o(A™) such that
IP(E™) — P®(E™)| > %

As P™ converges to P>* € Pr, there is a n > m such that
|P"(E™) — P®(E™)| < i

Note that the probability measure P™ : o(A") — [0,1] can evaluate E™
since n > m. Combining the last two inequalities via the sublinearity of |- |

gilves us

[P(E™) — PM(E™)]

> [P(E™) — P¥(E™)| — |P"(E™) — P*(E™)] (13)
> g — Z > 0.

But since P" € Pp(A") we have P" = P,an), where Pyany denotes
the restriction of P to o(A™). This holds by the definition of the IA-
correspondence and yields a contradiction with respect to .

3. This follows directly from the construction. Consider als and bl with
a < b. By definition, the precision a € [0, 1] gives less weight to the smaller
set in the Minkowski sum. Hence Pp(ala) D Pr(bla) follows. The case
aly and alg, with A C B results by a similar argument. The conclusion for
arbitrary sums follows then by the stability of the inclusion under arbitrary
intersection, i.e. if A, C B, for all n then N, A, C N,B,.

4. First we consider the case f = aly and g = blg. By Lemmal[l], we derive
Pr(aaA+ (1 — a)bB)

= a blaa) " Ppp+ (" b)"aaPra + aaa bPppa + (o~ b)” (aa)” Pr

C ab Pre + aaPras+aa- Pr +a b Pr

= o (bPFB + bHPF) + a(aPFA + CI*'PF)
= Oéipr(blB) + CY’PF(alA).
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The inclusion follows from the following list of facts: Pr O Prp,Pra,
Prp, Pra O Prpa, ab > a blaa)” and aa > (a~b)” aa.

The case of f = > cnarla, < 1g, with N finite, follows by the same
argument, where we apply , the extension of Lemma 1| and apply the

above arguments repeatedly.

The general case follows by a similar argument. In view of @, we utilize
the continuity of the integral: Let f = 3 _vanla,, 9 = >, cnbnlp,, we
get Plaf + (1 —a)g) C aPr(f) + (1 — a)Pr(g). The inclusion follows
from the same argument as in the case for f¥ = >, _yarla, and g =
> 1<ken belp,, by applying lim f~ + g% = f +g. |

Proof of Corollary 1 This follows directly from Pr(ly) = {P}, as stated in
(@, and an application of Proposition .2. |

Proof of Theorem 1 1. Monotonicity follows directly from the monotonic-
ity of the IA—correspondence. If f < g then P(f) 2 P(g) and U(f) < U(g)

then directly by the maxmin functional form.

2. Continuity follows from the norm to weak upper hemi-continuity of the
IA—correspondence and an application of a version of Berge’s maximum
theorem of |Tian and Zhou (1992). Specifically, we apply their Theorem 1.

For the sake of completeness let us check the conditions:

(a) Since the expectation ETU is linear in P, upper semi-continuity holds.

(b) The IA—correspondence has a weak (and hence Hausdorff) compact
range space and is upper hemi-continuous, by Proposition 1. By the

closed graph theorem, the correspondence s closed.

(c) “feasible path transfer lower semi-continuity” holds since the primi-
tive function P — ET is linear in P and does not depend on the f

argument in the IA-correspondence.

With the additional upper hemi-continuity of Pr(-) from Pmposition we
get the continuity of f — U(f).
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3. concavity: Let A € [0,1] and set A= =1 — X. We derive

AU AU = X min EPU+ )\~ min ETU
(f)+ (9) in + Juin

= min EXU+ min EFU
PeXP(f) Pel=P(g)

= min EPu
PeXP(f)+A~P(g)

< min ~ ETU
PEP(Af+Ag)

= UM +X7g),

where the inequality follows from the convezity of the IA—correspondence,
stated in Proposition 1.4. The third equality can be achieved by a direct
computation:

A min EFU+ )\ min EFU = MEDU+ AEPU
PeP(f) PeP(g)

FAPrHA Poyg

min Efu
PeXP(f)+XA—P(g9)
ENPFA P

v

NEFFU+ N EfU

A min EXU+ )\~ min EFU
PeP(f) PeP(g)

v

The first inequality employs the fact APy + A" Py € AP(f) + A\"P(g). The
other derivations hold, since each P(-) is a weakly compact-valued corre-
spondence, by Proposition 1.1, and hence in each case the minimum is
attained, by the linearity of P — ETU. Consequently, the inequalities of
the last derivation are indeed equalities. |

B Proofs for Section 5 and 6

Proof of Lemma 2 1. By (@, the budget set is an intersection of a closed
half spaces that contains a zero within the consumption set [0, 1g]. Hence,
the budget set is nonempty, closed, bounded and conver. Compactness fol-

lows by Alaoglu’s theorem.

2. From (@, we directly see that a doubling of p¥ and w leaves the budget set
unchanged.
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3. The definition of B agrees with that of a standard truncated budget cor-
respondence. Hence, upper hemi—continuity follows immediately. Due to

the cheaper point condition, lower hemi—continuity follows by the standard
proof. |

Proof of Proposition 2 By Lemma [3, the budget set is nonempty and
o(LL, L%)~compact. By Theorem |1, U : [0,15] — R is continuous and con-
cave and hence o(L};, L) upper semi—continuous. A maximizer exists.

By standard results from conver analysis, D(p”,w,F) is conver and
o(LL,, L3)-compact.

Homogeneity of degree zero follows directly from the homogeneity of degree
zero of B, stated in Lemma |3, 2. |

Proof of Lemma 3 Clearly, F is a subset of (L%)™! and consequently the prod-

uct of o(L', L) ~compact and convex order intervals. |

Proof of Theorem 2 We follow the proof strategqy of Theorem 1 in |[Bewley
(1972). In Lemma the existence of equilibria for finite dimensional information
commodity spaces, that contain {1, }ie1, is established. This serves as a base to
find a converging a (sub)-net (?{V, c ?fv,pN) of equilibra in the finite dimen-
sional economy. The application of the Krein—Rutman version of Hahn—Banach
and Alaoglu theorem are exactly the same and will not be repeated. We have a
candidate equilibrium (?’{, cee ??,p*). Note that by Lemma@ [F is compact and
closed, hence (‘\g%,...,%q%) is feasible.

Clearly, the price system p* € ba(H,H, u) is positive. From the subnet con-
vergence, we have 1 = ||pN || = p™ (15) — p*(1x), whence p* # 0.

To show that the candidate is indeed an IT-equilibrium in E™°, the proof of
Bewley (1972) for the optimality condition of a quasi-equilibrium

Ullg) 2 U'('g7) = p"(9) 2 °(97)

follows again exactly by the same lines.

The adequacy condition in Assumption |1l and p* > 0 implies p*(?j‘) >
infyeo,1,) p*(9) which in turn implies mazimality of ?;‘ in the i-th agent’s budget
set.

It remains to show that p* € L'. By the Yosida—Hewitt theorem, we decompose
p* = pe + py in the countable additive part p. and finitely additive part py. By
contradiction we show py = 0.
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Suppose there is another agent | ¢ I. With F, = 0. In view of Assumption
1, she is endowed with 61y. Clearly, as this information commodity is owned by
all other agents, no agent demands this commodity. Hence agent [, cannot affect
the equilibrium outcome. Her priors are Ps = (1 — 0)Py + 0P. Assume U; is
chosen such that
P
{P} = arg lr_pe%fE U, and P # P,.

We may find an (extremely desirable) information bundle 14 with A € B(H)
such that P, ¢ Ps(14) and moreover for every ¢ € (0,1) we still have P, ¢
Ps(ela) = ePs(1a) + (1 — €)Ps, i.e. a small fraction of A already allows to
exclude P, from the new set of consistent priors.

Suppose pr(1g) > 0, then p.(01y) < p*(01y), by the positive homogeneity of
p*. Now choose an ¢ sufficiently small such that p.(61y) + p(ela) < op(1y) and
e+0<1.

On the other hand, there is a decreasing sequence of sets A, € B(H) such
that 1(A,) — 0 and pg(H\ Ay,) = 0 for each n. Define y, = 01\ a, € [0, 15| and
since Yy, — 01y in measure and hence also in the Mackey topology, lower semi-
continuity of U' and U801y + ely) > UY(01y) implies Uy, + elg) > UN(01g)
for n large.

However we have p¢(y,) = 0 for every n and consequently p*(y, + cla) <
p*(61y), a contradiction, and therefore p; = 0 and p* € L'(H, B(Q), ). |

The last part of the proof follows the proof of Theorem 8.2 of [Mas-Colell and
Zame| (1991). The assumption that each convex consumption set coincides with
the positive cone, can be weakened as only the presence of the 0 in the consump-

tion set matters for the proof.

Proof of Lemma 4 In abuse of notation, we formulate the information com-
modities as 1g instead of 6 + (1 — §)1p, as required in Assumption .

By Lemma [3, the budget correspondence is nonempty, convexr and compact
valued. Moreover it is continuous. A truncation of the economy is not needed.

We divide the proof in several steps.

1. Individual demand: By Proposition[3, for every i € I, D;(p, Fi|q (i) is a
nonempty-, convex- and compact-valued correspondence. Note that in this
finite dimensional setup the weak and norm topology coincide. Lemmal[ 3.
and an application of Berge’s maximum theorem yields the upper hemi-
continuity of the demand correspondence.
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2. Recovery of the IEP matrix : Let us fix some demand ?l eD; C [0, 1]
for some agent i. We identify those agents who are part of ?, The
following 2—step procedure clarifies this.

(a) Decomposition via Ff: There is a unique partition of Ff, indexed by

Fvic _ U FiJ7

Jc2i-1

the set of coalitions,

where FY denotes the information which only the agents j € J are
aware of. If J is singleton, then the agent therein has an information

monopoly. We can decompose ?Z in the following way

. o
9i= Z 1F{7 AR
Jc2\{i}

(b) Determining the protocol entries: In order to fix the protocol entries,
we have to specify what happens on FY if J is non singleton. In this
case, delivery of information to agent i is shared among the agents
equally. By wvirtue of of (a), the protocol entry on the information

that agent k # 1 sells to agent i can now be formulated as

1
Jeal\lit ke g

The procedure in (a) and (b) can be summarized as a function f; : [0, 1pc] —

0, 1F5]1_17 given by fl(?z) = {9i(k) }ken gy, that is continuous in view of
(I

3. Price player: Let prices be normalized. Define the price player’s corre-
spondence P : [0, 15]" = Ay by
IP({?Z}) = arg max Zp(?z)

PEA| | -

Clearly, TP is monempty—, convexr—, compact—valued and upper hemi—

continuous, by Berge mazximum Theorem.

4. Fixed-point: The correspondence (D;) x TP : [0, 15])" x Ay = [0,14]" %
Ajpy has a fized-point (?{,...,?’},p*) by the usual application of the
Kakutani fixed—point theorem and step 1 and 3.

14Given the initial information allocation, the procedure allows to decompose the demand
for information of agent ¢ into the entries of i—th row of the IEP matrix.
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5. Feasibility: Consider a fized—point of step 4. By the budget set restriction
in (10), we have p* (7)) < p* (7*(0)) for every agent i. This yields

0= > (7 -70)
- (X9 -70)
> (T -70),
for every p € Ay We have 32,57 < 32, 9*(i), i.e. the received infor-

mation does not exceeds delivered information. Feasibility in the sense of

the IEP matriz is accomplished by step 2. |
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