Divorce Laws, Remarriage and Spousal Welfare*

Pierre-Andre Chiappori†, Murat Iyigun‡ and Yoram Weiss§

October 2009

Abstract

We develop a two-sided matching model with positive sorting, divorce and remarriage. Competition determines lifetime expected utilities but, upon divorce, intra-temporal utilities depend on the laws that govern the distribution of spousal incomes (or the underlying assets that produce those incomes). We analyze the impact of changes in the property division upon divorce, considering for instance a reform that favors women. The short-term impact of the reform on the allocations of already married wives is positive. However, its long-term impact on yet unmarried women is not because such a reform generates lower utility for women within marriage which exactly offsets their higher prospective divorce settlements. When remarriage is possible, more complex effects occur: the reform typically alters divorce probabilities and it may affect the total surplus generated by marriage. Due to competition in the marriage markets, the impact of changes in the property division divorce laws on spousal welfare is typically more subdued than their impact on incomes or wealth. Similarly, the effects of reductions in the gender wage gap and the reversal in the gender skill gap on women’s welfare could also be mitigated due to marriage and remarriage market dynamics.

*We thank Robert Pollak for useful comments and suggestions as well as workshop participants at the 2008 SOLE Meetings, the University of Chicago, New York University, Cornell University, the University of Calgary and the conference on the New Economics of the Family at the Milton Friedman Institute for Research in Economics. Pierre-Andre Chiappori gratefully acknowledges financial support by the NSF Economics award No: SES-05-32398 and Murat Iyigun thanks NSF for Human and Social Dynamics Grant No: SES-0527751.

†Corresponding author: Economics Department, Columbia University, 1009A International Affairs Building, MC 3308, 420 West 118th Street, New York, NY 10027. E-Mail: pc2167@columbia.edu. Phone: (212) 854-6369. Fax: (212) 854-8059.

‡University of Colorado, CID at Harvard University and IZA

§Tel Aviv University and IZA
1 Introduction

The spousal matching and assignment model has been an important workhorse of the literature on the economics of the family since the seminal contributions of Shapley and Shubik (1972) and Becker (1981). This model is applicable to the analysis of marriage patterns in a given isolated “marriage market” under static conditions. In particular, it can predict who marries whom and the division of marital gains between husbands and wives.\(^1\)

In this paper, we propose a spousal matching model with divorce and remarriage that can be applied to modern marriage markets which are characterized by high turnover, whereby many individuals divorce and remarry (Browning et al., in progress, ch.1). Turnover is generated by introducing match-specific random shocks that are observed after marriage has taken place. In contrast to search models that impose frictions in the form of random meetings that are spaced over time (e.g., Mortensen, 1988), we maintain the competitive spirit of the assignment model by putting no restrictions on meetings. However, some non-competitive elements appear in our model too due to ex-post rents that arise when match quality is revealed.

We employ this model to investigate the impact of some recent demographic trends as well as changes in the policy environment. First, we analyze how changes in divorce settlement laws might affect individuals’ marriage patterns and the intra-marital allocation of resources. In particular, we consider a reform that increases the wives’ share of household wealth after divorce. In the absence of remarriage opportunities, such a change in post-divorce property rights cannot affect divorce probabilities in our Becker-Coase world. However, it can influence the allocation of resources within a household, both before and after divorce—even among couples who do not eventually divorce.

We show that the short- and long-term consequences of the reform are different and generally opposite of one another. For couples already married, the reform can only improve the wives’ welfare at the husbands’ expense. While the exact scope of the reform depends on assumptions regarding commitment, either some or all

\(^1\)In recent years, there have also been various efforts to unify these models with stages of the life cycle prior to marriage. Embedding a spousal assignment framework into a model of pre-marital investment is relevant to the extent that the educational attainment and labor supplies of men and women respond to not only the returns in the labor market, but also incentives in the markets for marriage. See, Iyigun and Walsh (2007) and Chiappori, Iyigun and Weiss (2009).
women will strictly gain from the reform and no woman can lose (equivalently, no man can gain). Regarding couples who marry after the reform, the logic is quite different, because the new divorce settlement is taken into account at the matching stage, resulting in a different inter-temporal allocation of resources and welfare between spouses. Specifically, a change in divorce settlements aimed at favoring women typically generate offsetting intra-household transfers, eventually resulting in lower intra-marital allocations for all married women.²

This basic insight remains valid when the option of remarriage is introduced. Again, among married couples women can only benefit from a reform increasing the wives’ share after divorce. On the contrary, for couples who match after the reform, competition on the marriage market generates intra-household transfers that tend to offset its impact. However, many other aspects of the analysis change substantially because the income of agents in the remarriage market depends on the income of the ex-spouse whom they initially married. Thus, the whole income distribution shifts between the marriage and the remarriage markets, which can impact the assignment and prospective gains from divorce and remarriage. Consequently, redistributive policies are generally not neutral and can affect the expected surplus generated by (first period) marriages.

This has several consequences. First, even in our transferable utility setting, divorce probabilities typically depend on divorce settlement laws. Second, the decision to get married or remain single could also be affected by these laws. For instance, if high-income men marry and are forced to pay a large transfer to their ex-wives upon divorce, they will enter the remarriage market with much less wealth than they had originally. But then some men may be better off postponing marriage and entering the remarriage market at the top the (new) wealth distribution. Third and more fundamentally, the welfare consequences of changes in divorce settlement laws have the paradoxical property that they tend to increase or decrease the utility of both spouses simultaneously. The intuition is that any legislation that decreases the total surplus generated by marriage tends to harm both partners, after the adjustments implied by equilibrium. We actually provide a simple example in which a policy

²A direct empirical application of this notion is in fact investigated by Ambrus et al. (forthcoming). They document that mehr, a form of Islamic brideprice which functions as a prenuptial agreement in Bangladesh due to the practice of it being only payable upon divorce, influences dowries positively in the marriage markets.
that raises the share of wives in family income upon divorce ends up reducing social welfare according to the Pareto criterion.

Finally, our model can be used to explore the consequences of recent demographic evolutions on marriages, intra-household allocations, divorce and spousal welfare. One of the salient trends in recent decades is the increased investment in education by women and the closing of the gap in schooling between men and women. In several developed countries, women now have more schooling than men. For instance, among the individuals between the ages of 30 and 40 in the United States, the proportions of women with some college education, college completion and advanced degrees (M.A., Ph.D.) have increased much faster than the corresponding proportions for men. By 2003, women had overtaken men in all of these three categories. Moreover, couples sort positively according to schooling and, for about 50 percent of the married couples, the husbands and wives had the same level of schooling for the cohorts born between 1930 and 1970. However, the changes in the aggregate number of educated men and women had a marked influence on who marries whom; 30 percent of the couples in the earlier cohorts had husbands who were more educated, whereas 30 percent of the couples in recent cohorts had wives with higher levels of educational attainment.\footnote{For further details, see Goldin et al. (2006) and Chiappori, Iyigun and Weiss (2009).} Using our theoretical framework, and based on mechanisms that are similar to the one which creates policy neutrality of changes in the divorce settlement laws, we find that the effects of reductions in the gender wage gap and the reversal in the gender skill gap on women’s welfare could be mitigated due to marriage market dynamics.

The main ingredients of our model are as follows: There is a continuum of men and women who live for two periods. Each agent is characterized by a single attribute, income (or human capital), with continuous distributions of incomes on both sides of the marriage market so that each agent has a close substitute. The economic gains from marriage arise from joint consumption of a public good and from a non-monetary common factor that is match specific. This match quality for each couple is revealed ex post and those with poor matches may divorce. Finally, we rely on a ‘Becker-Coase’ framework, in the sense that utility is transferable both between spouses and after divorce.

For analytical purposes, we proceed in two steps: In the first part of the paper,
we analyze a model in which remarriage is ruled out following divorce. Then, in the second part, we examine a more comprehensive model in which divorcees can rematch with others in the same cohort (who could either be never married or divorcees themselves).\footnote{We assume that marriages and remarriages occur within a cohort. However, extending our model to incorporate marriages and remarriages that occur across cohorts would be straightforward; one would need to adjust the sex ratios and distributions of income by gender in the two markets and proceed with the analyses as we do below.} We assume throughout that a unilateral divorce law is in effect and that divorce laws determine the spousal distribution of incomes upon divorce. Therefore, income distributions in the remarriage market and the first-marriage market may differ. We also assume that lending or borrowing is not an option.\footnote{Given the assumptions of fixed income and static conditions, the assumption of no borrowing or lending seems innocuous. However, when divorce is taken into account, issues such as who owns what and which married partner is responsible for family debts arise. As we shall show, divorce will affect the distribution of income and consumption over time even in the absence of any motive for saving or borrowing such as income growth or time preference.} Because of public goods, spousal incomes complement each other, which can be shown to generate positive assortative matching according to income, even though divorce is endogenous. Finally, to avoid potential knife-edge outcomes, we assume that there are more women than men in the marriage market.\footnote{For reasons that we do not address, empirically it is true that women marry earlier than men. Hence, if there is some population growth, there will be excess number of women.} As a consequence, we always have some unmarried women each period, though not necessarily the same women.

Extending the assignment model in such fashion enables us to distinguish between the expected lifetime utility of an agent and the inter-temporal pattern of per-period utilities. In a first marriage, before the match specific quality is realized, each individual has a very close substitute and competition fully determines the share that each person receives in marriage based on the anticipated outcomes following divorce. These shares are determined by two basic principles: (a) Due to competition from single women with slightly lower income but who are otherwise identical, married women in the lowest income classes cannot get any surplus in marriage (relative to being single), and (b) married spouses receive exactly their marginal contributions to marital surplus, or else they can be replaced by husbands or wives with slightly lower contributions. In the second period, after the quality of match is revealed, marriage continues if and only if the surplus of the marriage, including its non-monetary benefit, exceeds the sum of the outside options of the spouses, which depend on whether
or not remarriage is possible.

However, if the marriage is of high quality and the partners wish to continue it, competition alone can no longer determine the shares within marriage during the second period. We consider here two possibilities: a Nash bargaining model in which people systematically renegotiate at the beginning of the second period, taking their second period outside opportunities as threat points. And an alternative framework which allows pre-commitment to second-period allocations. But in neither case can spouses commit not to divorce, which imposes some second-period individual rationality constraints. We show that, under the assumptions of our model, these two alternatives are equivalent. The simplifying assumption responsible for this result is the absence of spousal investments that can influence the quality of a match. This assumption is restrictive but allows us to pin down the assignments and lifetime expected payoffs when both divorce and remarriage are feasible.

The ability of our simple model to generate explicit predictions regarding the impact of divorce laws on intra-family allocations is important for empirical work using collective models of the household. Such models can estimate a couple-specific sharing rule based on observed work and consumption patterns of married couples. Researchers have specified sharing rules that relate the shares of husbands and wives in the marital surplus to “distribution factors” such as sex ratios and divorce laws (Chiappori et al., 2002), welfare benefits (Rubacalva et al., 2008) and the legalization of abortion (Oreffice, 2007). This paper provides a theoretical underpinning for such rules, showing how an equilibrium analysis of the marriage market can theoretically restrict the form of the sharing rule and predict the impact of specific policy changes, thus opening the possibility of direct empirical tests. Last but not least, the paper suggests new directions for future empirical explorations. For instance, we predict that reforms of the laws governing divorce can have different, and actually opposite effects on couples married before or after the reform; it follows that an empirical analysis of these consequences should find a short term impact (on the stock of married couples) that should gradually vanish and eventually be reverted, as the proportion of couples married after the reform increases. Some evidence of effects of this type have been found in the literature (see for instance Wolfers); needless to say, more empirical work will be needed.
2 The Model

2.1 Preferences

The economy is made up of individuals who live two periods. Individuals are characterized by their income, \(y \) for men and \(z \) for women. In each period, they derive utility from consumption of \(n \) private goods, \(q^1, \ldots, q^n \) and \(N \) public goods \(Q^1, \ldots, Q^N \). Let \(p^1, \ldots, p^n \) and \(P^1, \ldots, P^N \) denote the corresponding prices, with the normalization \(p^1 = 1 \). Married people also derive satisfaction from the quality of their match, \(\theta \).

The husbands’ and wives’ individual utilities take the form

\[
U_i = u_i(q_i, Q) + \theta, \quad i = h, w, \tag{1}
\]

where \(q_i = (q^1_i, \ldots, q^n_i) \) is the vector of private consumption of member \(i \), \(Q = (Q^1, \ldots, Q^N) \) is the vector of public consumption by the couple, and \(\theta \) is the quality of the couple-specific match. In order to remain as close as possible to the standard, ‘Becker-Coase’ framework, which relies on transferable utilities, we assume that preferences of married individuals are of the generalized quasi-linear (GQL) form (see Bergstrom, 1989).

\[
u_i(q_i, Q) = A(Q) q^1_i + B^m_i (Q, q^{-1}_i) + \theta, \tag{2}
\]

where \(Q = (Q^1, \ldots, Q^N) \) and \(q^{-1}_i = (q^2_i, \ldots, q^n_i) \). Here, \(A \) and \(B^m_i \), \(i = h, w \), are positive, increasing, concave functions such that \(A(0) = 1 \) and \(B^m_i(0) = 0 \), and good 1 is the ‘numeraire’ that can be used to transfer utility between spouses at a constant ‘exchange rate’. Similarly, when single or after divorce, preferences take the strictly quasi-linear form:\(^8

\[
u^s_i(q_i, Q) = q^1_i + B^s_i (Q, q^{-1}_i), \tag{3}
\]

7 The number of public and private goods need not be strictly greater than one. Our main conclusions go through intact in a more specific version of the model in which \(n = N = 1 \).

8 Both GQL preferences when married and quasi linear utilities when single are necessary to generate the Becker-Coase benchmark in which, in a static context, divorce laws do not affect divorce probabilities; see Clark (1999) and Chiappori, Iyigun, Weiss (2007).

Since one of our primary objectives is to explore if and when property division laws in divorce and remarriage prospects affect divorce rates, we adopt these preference specifications as our benchmark. See Appendix A for an example of a household model which generates a strictly linear Pareto frontier after divorce.
where again the B^*_i, $i = h, w$, are increasing concave functions, with $B^*_i(0) = 0$. This utility is quasi-linear; in particular, the optimal consumptions of public goods and private goods other than good 1 are given by the conditions:

$$\frac{\partial B^*_i(Q, q^{-1}_i)}{\partial Q^j} = P^j, \quad 1 \leq j \leq N \quad \text{and} \quad \frac{\partial B^*_i(Q, q^{-1}_i)}{\partial q^k_i} = p^k, \quad 2 \leq k \leq n.$$

Neither these conditions nor the optimal levels of all private and public consumptions (except for good 1) depend on income. Let the latter be denoted $(\bar{Q}, \bar{q}^{-1}_i) = (\bar{Q}^1, ..., \bar{Q}^N, \bar{q}^{-1}_{i_1}, ..., \bar{q}^{-1}_{i_n})$. To simplify notations, we choose units such that $B^*_i(\bar{Q}, \bar{q}^{-1}_i) = \sum_{j=1}^N P^j \bar{Q}^j + \sum_{k=2}^n p^k \bar{q}^k_i, \ i = h, w$. Then, the indirect utility of a single person equals his or her income.

If a man with income y is matched with a woman with income z, they can pool their incomes. Given GQL preferences, utility is transferable between spouses. There is a unique efficient level for the consumption of each of the public goods and each of the private goods 2 to n. Moreover, these levels depend only on the total income of the partners. The Pareto frontier is linear and given by

$$u_h + u_w = \max_{(Q, q^{-1}_h, q^{-1}_w)} \left\{ A(Q) \left[t - \sum_{j=1}^N P^j Q^j - \sum_{k=2}^n p^k \left(q^h_k + q^w_k \right) \right] + B_h(Q, q^{-1}_h) + B_w(Q, q^{-1}_w) \right\} + 2\theta$$

$$\equiv \eta(t) + 2\theta,$$

where $t \equiv y + z$ is the total family income while u_h and u_w are the attainable utility levels that can be implemented by the allocations of the private good q^1 between the two spouses, given the efficient consumption levels of all other goods. Assuming, as is standard, that the optimal public consumptions are such that $A(Q)$ is increasing in Q, we see that $\eta(t)$ is increasing and convex in t.\(^9\)

Due to the consumption of public goods, the two individual traits, y and z of a married couple, are complements within the household. This complementarity generates positive economic gains from marriage in the sense that the material output $\eta(t)$ the partners generate together exceeds the sum of the outputs that the partners can obtain separately. Specifically, the marital surplus $\eta(t) - t$ rises with the total income of the partners, t, and equality holds only when both partners have no income.

\(^9\)By the envelope theorem, the derivative $\eta'(t)$ is equal to $A(Q)$. Therefore, η is increasing in t and, if $A(Q)$ is increasing in t as well, then η is convex. Note that a sufficient (but by no means necessary) condition is that public consumptions are all normal.

8
For any couple, match quality \(\theta \) is drawn from a fixed distribution \(\Phi \) with a mean \(\bar{\theta} \geq 0 \). Upon marriage, both spouses expect to derive the same non-monetary utility from marriage, \(\bar{\theta} \). At the end of the first period, the match quality is revealed; a realized value of \(\theta \) that is below the expected level \(\bar{\theta} \) constitutes a negative surprise that may trigger divorce.\(^{10}\)

2.2 Family Decisions and Commitment

An important modeling issue is how families make decisions and in particular whether or not they can commit. In our model, the decision variables for a couple in each period are the amounts of the public and private goods that the couple purchases and the division of the ‘numeraire’ private good between them. At the beginning of each period, partners agree to buy the unique efficient levels of all goods but the numeraire, namely the quantities which shifts the linear utility Pareto frontier outward as much as possible. There are no commitment issues involved here because (by construction) the levels of consumption within a period cannot be changed and each spouse can predict that, in the second period, consumptions will be chosen at the unique and efficient level.\(^{11}\) Concerning the division of the numeraire good, however, there is a conflict between the two partners and the question is how it is resolved. As we shall show, competition at the time of marriage fully determines the expected lifetime utility shares of the partners. The marriage market is cleared by a set reservation values of the expected lifetime utility that each agent requires to marry anyone of the opposite sex. Each agent marries the spouse that provides him or her with the highest surplus given these requirements (see Browning et al., in progress, chapter 8). This outcome requires the possibility of bidding away potential spouses by offering them a larger amount of the private good within marriage. In the two period context discussed here, the share of the private good that each married spouse receives can vary across periods and the second-period division is anticipated when partners choose to marry. We shall consider here two cases: Either the next period

\(^{10}\)One could also incorporate random income shocks into our model. In that case, such shocks could trigger divorce as well, but our qualitative conclusions would not be altered as long as the shocks in question are transitory.

\(^{11}\)One could also imagine that partners play a non-cooperative contribution game that ends up with lower utility for both spouses. But given that the efficient level of \(Q \) can be easily implemented simply by buying and consuming that quantity of the public good, such an assumption is hard to justify here.
allocation is determined by some known mechanism such as Nash Bargaining and the marriage market clears based only on the flexibility in the first-period allocations. Or alternatively, partners can sign binding contracts which determine allocations in both periods.

2.3 Endowments

There exists a continuum of men and a continuum of women. The measure of men is normalized to unity and the measure of women is denoted by r, where $r > 1$. Each man receives an idiosyncratic income at the beginning of each period; their incomes, denoted y, are distributed over the support $[y_m, y_M]$, $0 < y_m < y_M$, according to some distribution F. Similarly, each woman gets an income z at the beginning of each period, and the z’s are distributed over the support $[z_m, z_M]$, $0 < z_m < z_M$ according to the distribution G.

Following divorce, there can be income transfers between the ex-spouses. We assume here that these transfers are fully determined by law and no further voluntary transfers are made. Specifically, if a man with income y marries a woman with income z, her income following divorce is $z' = \beta(y + z)$ and his income is $y' = (1 - \beta)(y + z)$. Note that the net income of a divorced person is generally different from what his or her income would have been had he or she not married. Therefore, marriage in the first period is associated with a potential cost (benefit) that depends on the identity of the prospective spouse. Consequently, the distribution of incomes among divorcees can differ from the distribution of income in the whole population.

Incomes in our model can be interpreted as either labor or property income.\footnote{For simplicity, we do not allow savings or human capital investments during marriage so that both property and human capital are constant. Given that we abstract from savings and the accumulation of wealth or human capital, the distinction between the post-divorce division of property and alimony payments is mostly semantic here. If there were stock variables of the sort to which we just alluded, then a more accurate interpretation of the payments between ex-spouses would be alimony. Alternatively, one could interpret the variables y' and z' as the stream of incomes generated from the (underlying) assets of the couple which were redistributed due to property division laws which apply after divorce.}

Redistribution corresponds to a legal approach where property incomes or spousal...
earnings are treated as a common resource and each spouse has some claim on the income of the other. The special case in which all incomes are considered private, implying no redistribution, is represented by a β that is couple-specific, namely $\beta \equiv \frac{z}{y+z}$.

3 A Marriage Market Without Remarriage

We begin our analysis assuming no “second hand” marriage market so that, following divorce, a person remains single for the rest of his or her life. In the first period, all men and women wish to marry because the expected economic and non-monetary gains from marriage are positive. However, because $r > 1$, some women will have to remain single.

As usual, we solve the model backwards, starting with the divorce decision.

3.1 Stable Matches and Lifetime Utilities

3.1.1 Divorce

At the end of the first period, the true value of match quality is revealed and each partner of a couple (y, z) can decide whether or not to stay in the marriage, based on the realization of θ. Because utility is transferable within marriage and upon divorce, the Becker-Coase theorem applies and divorce occurs whenever the total surplus generated outside the relationship is larger than what can be achieved within it.\(^\text{13}\) Denoting total income of the partners by $t = y + z$, divorce occurs whenever

$$\eta(t) + 2\theta < t,$$ \hspace{1cm} (5)

or, equivalently,

$$\eta(t) + 2\theta < t \iff \theta < \hat{\theta}(t) = -\frac{1}{2}[\eta(t) - t].$$ \hspace{1cm} (6)

In words, a marriage dissolves if the sum of the outside options, here t, exceeds $\eta(t) + 2\theta$, implying that reservation utilities are outside the Pareto frontier if the marriage continues.

On this basis, the ex-ante probability of divorce for a couple with endowments of y and z is

\(^{13}\text{See Clark (1999) and Chiappori, Iyigun and Weiss (2007) for detailed investigations of the transferability in the presence of public goods.}\)
\[\alpha(t) \equiv \Phi[\hat{\theta}(t)]. \]

(7)

Note that the threshold \(\hat{\theta}(t) \) rises with the income of the couple, \(t \), and consequently the probability of divorce \(\alpha(t) \) declines. Because of the complementarity of individual incomes in the household production process, the economic loss generated by divorce is higher for wealthier couples.

The expected marital output (i.e. sum of utilities) generated over the two periods of a married couple with incomes \(y \) for the husband and \(z \) for the wife is

\[S(t) = \eta(t) + 2\hat{\theta} + [1 - \alpha(t)] \left\{ \eta(t) + 2E[\theta | \theta \geq \hat{\theta}(t)] \right\} + \alpha(t) t. \]

Note, first, that \(S(t) > 2t \), because \(\eta(t) \geq t \) and \(E[\theta | \theta \geq \hat{\theta}(t)] > \bar{\theta} \geq 0 \). Hence, all individuals prefer to get married rather than stay single. Secondly, \(S(t) \) is increasing in \(t \), hence in each partner’s income. In particular, whenever women strictly outnumber men so that \(r > 1 \), women belonging to the bottom part of the female income distribution remain single. Finally, individuals will sort positively into marriage. Indeed, since the marriage surplus only depends on total income \(t \), the cross partial \(\partial^2 S/\partial y \partial z \) is equal to \(S''(t) \). One can readily prove that \(S(t) \) is convex and therefore that the traits of the two partners are complements even after the risk of divorce is taken into account (see Appendix B).

3.1.2 Matching

Who Marries Whom? Given the results of transferable utility and the complementarity of individual incomes in generating marital surplus, a stable assignment must be characterized by positive assortative matching. That is, if a man with an endowment \(y \) is married to a woman with an endowment \(z \), then the mass of men with endowments above \(y \) must exactly equal the mass of women with endowments above \(z \). This implies the following marriage market clearing condition:

\[1 - F(y) = r[1 - G(z)]. \]

(8)

As a result, we have the following, spousal matching functions:

\[y = F^{-1} [1 - r (1 - G(z))] \equiv \phi(z) \]

(9)
or equivalently:

\[z = G^{-1} \left[1 - \frac{1}{r} \left(1 - F(y)\right) \right] \equiv \psi(y). \quad (10) \]

For \(r > 1 \), all men are married and women with incomes below \(z_0 = G^{-1} \left(1 - 1/r\right) \) remain single. Women with incomes exceeding \(z_0 \) are then assigned to men according to \(\psi(y) \) which indicates positive assortative matching.

Positive assortative matching has immediate implications for the analysis of divorce. Because divorce is less likely when a couple has higher total income and individuals sort into marriage based on income, individuals with higher income are less likely to divorce.\(^{14}\)

The Linear Shift (LS) case A simple illustration of these results obtains under the assumption that the income distribution of women can be derived from that of men by a *linear* change in variables such that

\[G(z) = F(\lambda z + \delta), \quad (11) \]

for some fixed \(\lambda \) and \(\delta \). This is the case, for instance, when both distributions are lognormal for \(y \geq y_m \) and \(z \geq z_m \) with mean and variance \((\mu_m, \sigma_m)\) for men and \((\mu_f, \sigma_f)\) for women, if we assume that \(\sigma_m = \sigma_f \). Then, \(\lambda = \exp(\mu_m - \mu_f) \) and \(\delta = y_m - \lambda z_m \). If \(\lambda > 1 \) and \(\delta \geq 0 \), the distribution of men dominates that of women in the first order. Then, for \(r \geq 1 \), each married man is wealthier than his spouse. In the special case with \(r = 1 \), the assignment function is linear, given by \(\phi(z) = \lambda z + \delta \). We shall refer to this case as a linear shift or *LS*.

3.1.3 **Stability Conditions**

The allocations which support a stable assignment must be such that the implied expected lifetime utilities of the partners satisfy

\[U_h(y) + U_w(z) \geq S(t); \quad \forall \ y, \ z, \quad (12) \]

where \(U_h(y) \) and \(U_w(z) \) respectively represent the expected lifetime utilities of the husband and the wife over the two periods. For any stable marriage, equation (12) is

\(^{14}\)Such a result is consistent with empirical findings on marriage and divorce patterns by schooling: individuals sort positively into marriage based on schooling and individuals with more schooling are less likely to divorce. See Browning, Chiappori, Weiss (in progress, ch. 1).
satisfied as an equality, whereas for a pair that is not married, (12) would be satisfied as an inequality. In particular, we have

\[U_h(y) = \max_z [S(t) - U_w(z)] , \]

\[U_w(z) = \max_y [S(t) - U_h(y)] . \]

(13)

It is important to note that the stability conditions above constrain the total (two-period) expected utilities \(U_h\) and \(U_w\), but have no implication for the intertemporal distribution of utility over the two periods.

3.1.4 Determination of Expected Lifetime Utilities

General Characterization Conditions in subsection (3.1.3) lead to an explicit characterization of the intra-household allocations. The envelope theorem applied to these conditions yields the differential equations:

\[U_h'(y) = S'[y + \psi(y)], \]

(14)

and

\[U_w'(z) = S'\phi(z) + z . \]

(15)

To derive the expected spousal allocations over the two periods and along the assortative marital order, we integrate the expressions in (14) and (15). Hence, surplus share of a married man with income \(y\) is

\[U_h(y) = k_h + \int_{ym}^y U_h'(x) \, dx , \]

(16)

and the surplus share for a married woman with income \(z\) is

\[U_w(z) = k_w + \int_{zm}^z U_w'(x) \, dx , \]

(17)

for some constants \(k_h\) and \(k_w\) which we determine below.
Pinning Down the Constants The constants k_h and k_w are pinned down by two conditions. First, for all married couples, the total output is known as expressed by equations (16) and (17). Hence,

$$k_h + k_w = S[y + \psi(y)] - \int_{y_m}^{y} U_h'(x) \, dx - \int_{z_m}^{\psi(y)} U_w'(x) \, dx,$$

(18)

where the left-hand side, by construction, does not depend on y. Secondly, it must be the case that ‘the last married person is just indifferent between marriage and singlehood. In the case with more women than men, $r > 1$, we have

$$U_w(z_0) = 2z_0 \iff k_w = 2z_0 - \int_{z_m}^{z_0} U_w'(x) \, dx,$$

(19)

with $z_0 \equiv \Phi(1 - r)$. Hence,

$$k_h = S[\phi(z_0) + z_0] - 2z_0,$$

$$U_w(z) = 2z_0 + \int_{z_0}^{z} U_w'(x) \, dx,$$

(20)

$$U_h(y) = S[y + \psi(y)] - U_w[\psi(y)] = S[y + \psi(y)] - \left(2z_0 + \int_{z_0}^{\psi(y)} U_w'(x) \, dx\right).$$

It is important to stress that the stability conditions apply without any assumption about the level of commitment attainable by the spouses or the option of remarriage. The insight is that the conditions on the first marriage market determine the allocation of lifetime utilities between spouses: because of competition, a wife would not agree to marry a husband who would provide less than the equilibrium utility (since many perfect substitutes exist), and neither would the husband.

3.1.5 An example (A Linear Spousal-Income Shift with $r = 1$)

The Framework In this special case, (11) becomes $\psi(y) = \frac{y - \delta}{\lambda}$ and equation (14) takes the form:

$$U_h'(y) = S'\left(y + \frac{y - \delta}{\lambda}\right) = S'(t),$$

(21)
where \(t = y + \frac{y - \delta}{\lambda} = \frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda} \) is the total household income. It follows that, using the change in variables \(u = \frac{\lambda + 1}{\lambda} x - \frac{\delta}{\lambda} \):

\[
U_h(y) = k^h + \int_{y_m}^{y} S'(x + \frac{x - \delta}{\lambda}) \, dx = k^h + \frac{\lambda}{\lambda + 1} \int_{t_m}^{t} S'(u) \, du \tag{22}
\]

\[
= k^h + \frac{\lambda}{\lambda + 1} [S(t) - S(t_m)],
\]

where \(t_m = y_m + z_m \) is the income of the poorest married couple. Similarly,

\[
U_w(z) = k^w + \frac{1}{\lambda + 1} [S(t) - S(t_m)] \tag{23}
\]

And since utilities add up to \(S(t) \), finally:

\[
U_h(y) = \frac{\lambda}{\lambda + 1} S(t) + k, \tag{24}
\]

\[
U_w(z) = \frac{1}{\lambda + 1} S(t) - k.
\]

In words, each spouse’s utility consists of a fixed share of the surplus plus or minus some constant. Note that the share reflects the local characteristics of the two distributions; specifically, it only depends on the linear shift parameter \(\lambda \). The constant, on the other hand, is indeterminate since the numbers of males and females are exactly equal in this case. It is however bounded by the constraint that no married person would be better off as a single:

\[
U_h(y) = \frac{\lambda}{\lambda + 1} S\left(\frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}\right) + k \geq 2y, \tag{25}
\]

\[
U_w(z) = \frac{1}{\lambda + 1} S((\lambda + 1) z + \delta) - k \geq 2z, \tag{26}
\]

for all \(y, z \). Since \(S'(t) \geq 2 \) for all \(t \), it is sufficient to check these inequalities for \(y = y_m \) and \(z = z_m \). Therefore,

\[
\frac{\lambda}{\lambda + 1} S(t_m) - 2y_m \leq k \leq \frac{1}{\lambda + 1} S(t_m) - 2z_m. \tag{27}
\]

where \(t_m = y_m + z_m \) denotes the minimal household income in the population.
An Exogenous Increase in Female Income Using this form, we can describe the impact on intra-household allocations of an change in women’s income. To keep things simple, we consider the linear spousal income shift framework (LS), and we assume that all female incomes are multiplied by a given constant larger than one. In practice, this means that the coefficient λ decreases (say by $-d\lambda$), while δ remains unchanged.

Since assortative matching is preserved, the identity of any individual’s spouse is unaffected by this increase. However, while couples are unchanged, the intra-couple allocation of resources may in principle respond to these changes in respective incomes. For small decreases in λ, one can actually directly compute the variation in intra-household allocation by differentiating equations (25) and (26) with respect to λ. Indeed, we have that:

$$dU_h(y) = -\frac{\partial U_h(y)}{\partial \lambda} d\lambda = \frac{y - \delta}{\lambda(\lambda + 1)} S'(\frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}) d\lambda - \frac{1}{(\lambda + 1)^2} S\left(\frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}\right) d\lambda .$$

The variation in male utility is the sum of two terms. One reflects the increase in the couple’s total income t; specifically, since Mr. y now marries a wealthier wife, their total income $t = y + z = \frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}$ grows by $dt = \frac{y - \delta}{\lambda^2} d\lambda$. The corresponding gain in surplus, equal to $S'(t) dt$, is divided between the spouses according to the previous proportions; i.e., he gets $\frac{\lambda}{\lambda + 1}$ and she gets $\frac{1}{\lambda + 1}$ of the increase. However, the income shift also affects the sharing proportions themselves: since λ shrinks, his share of the total surplus is reduced by $\frac{1}{(\lambda + 1)^2} d\lambda$, as reflected by the second term. Equivalently, one can write the change in female welfare as the sum of her share of the additional surplus and her gain from the shift in intra-household allocation:

$$dU_w = \frac{y - \delta}{\lambda^2(\lambda + 1)} S'(\frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}) d\lambda + \frac{1}{(\lambda + 1)^2} S\left(\frac{\lambda + 1}{\lambda} y - \frac{\delta}{\lambda}\right) d\lambda .$$

In other words, besides the increase in household income, the shift results in a redistribution of the surplus in favor of the wife, the magnitude of which can readily be computed.
3.2 The Intertemporal Allocation of Utility

3.2.1 The Commitment Issue

We continue our analysis with the case in which remarriage is not an option and consider the allocation of lifetime utilities U_h and U_w between the two periods. At this point, commitment issues become crucial. While some degree of commitment is clearly achievable, there may be limits on the extent to which couples are able to commit—after all, couples could not and would not commit not to divorce. Two broad views emerge from the existing literature. Some contributors argue that only short-term commitment is attainable and that long-term decisions are generally open to renegotiation at a further stage. Others authors point out that a set of instruments, including prenuptial agreements, are available to sustain commitment. They, therefore, claim that divorce is the only limitation on commitment. Technically, marriage contracts should be seen as long-term efficient agreements under one constraint—namely that a person who wants to divorce can always choose to do so.15

In our framework, these two alternative views about commitment have a natural translation. Specifically, we can entertain two scenarios: In the first case (‘commitment’), couples can commit to their spousal allocations in both periods conditional on the continuation of their marriage; the corresponding contingent allocations are ex-ante efficient under the sole constraint that divorce is unilateral. Therefore, the only constraint on intra-temporal allocation of resources is that second-period utility should exceed singles’ utility, at least insofar as divorce is not an efficient outcome. Finally, should an unexpected event occur between the two periods, such as a reform of divorce laws (an example we consider below), this would not trigger a renegotiation of the initial agreement, unless the new individual rationality constraint is violated for one spouse. In the latter case, such a spouse would receive an additional share of household resources so that she becomes just indifferent between marriage and singlehood under the new law.16

15As in standard contract theory, we do assume in all cases that a minimal level of commitment, whereby agents are able to at least commit to first-period allocations when they get married, is attainable. See Lundberg and Pollak (1993) for alternative assumptions. Also see Lundberg and Pollak (1993) and Mazzocco (2007) for further discussions of commitment issues within marriage.

16Such contracts are actually (second best) efficient under the constraint that agents cannot commit not to divorce. Similar ideas are used in different contexts, in particular risk sharing agreements under limited commitment. See Ligon et al. (2002) and Kocherlakota and Pistaferri (2008).
In the alternative, polar case (‘no commitment’), serious limits exist on the spouses’ ability to commit. To capture this idea, we assume that couples can only commit to the immediate (i.e. first period) allocation of resources; future allocations cannot be contracted upon and will therefore be determined by a bargaining mechanism at the beginning of the second period. Of course, this feature is known ex ante by the agents and it influences the decisions regarding first-period allocations. Finally, if a reform occurs between the two periods, the new situation is taken into account during second-period bargaining; i.e., bargaining always take place ‘in the shadow of the law’.

3.2.2 Second-period Utilities

The Commitment Case We first consider couples who can commit to their spousal allocations in marriage. No renegotiation can therefore take place unless divorce is credible. Moreover, if renegotiation does occur, it results in the minimal change needed for a marriage to continue, if that is indeed optimal.

Let \(u^2_h(y) \) and \(u^2_w(z) \) denote the monetary components of utility derived from the intra-marital allocations respectively of husband with endowment \(y \) and wife with endowment \(z \) in the second period should they continue with their marriage. Hence, the husband’s (wife’s) total second-period utility is \(u^2_h(y) + \theta \) (resp. \(u^2_w(z) + \theta \)) if the marriage continues. Feasibility constraints require that

\[
u^2_h(y) + u^2_w(z) = \eta(t).
\]

Under unilateral divorce, each spouse can walk away with the share of family income determined by law, \(\beta t \) for the wife and \((1 - \beta) t \) for the husband, where \(t = (y + z) \) is family income. Individual rationality implies that these outside options cannot exceed the utility payoffs if the marriage continues. Therefore, it must be the case that

\[
u^2_h(y) + \theta \geq (1 - \beta) t \quad \text{and} \quad u^2_w(z) + \theta \geq \beta t,
\]

which we shall hereafter refer as the individual rationality constraints (IR). Note that these conditions jointly imply that

\[
u^2_h(y) + u^2_w(z) + 2\theta = \eta(t) + 2\theta \geq t,
\]

or equivalently that \(\theta \geq \hat{\theta}(t) \), so that divorce is not the efficient outcome.
Any allocation such that (29) is satisfied can be implemented as part of a feasible marital contract. A natural question, however, is whether the material allocation \((u^2_h, u^2_w)\) can be contingent upon the realization of \(\theta\). Contingent allocations raise specific problems. For instance, depending on the enforcement mechanism, they may require that the quality of the match be verifiable by a third party. Whether such verifiability is an acceptable assumption is not clear. It turns out, however, that under our assumption of common \(\theta\), verifiability is not an issue because there exists (exactly) one allocation allocation that satisfies the incentive compatibility constraints for all \(\theta\). That is,

Proposition 1 *With commitment and unilateral divorce, there exists exactly one allocation that is not \(\theta\)-contingent and guarantees that all the constraints are satisfied for any realization of \(\theta\).*

Proof. The key remark is that the *individual rationality constraints* (29) must be binding when \(\theta = \hat{\theta}(t)\) since, for that value, the couple is indifferent between marriage and divorce. Hence,

\[
u^2_h(y) = (1 - \beta)t - \hat{\theta}(t) = \frac{1}{2} (\eta(t) + (1 - 2\beta)t), \tag{31}
\]

\[
u^2_w(z) = \beta t - \hat{\theta}(t) = \frac{1}{2} (\eta(t) - (1 - 2\beta)t). \tag{32}
\]

Note that, for any realization of \(\theta\), either \(\theta < \hat{\theta}(t)\) and divorce takes place or \(\theta \geq \hat{\theta}(t)\) and utilities are equal to \((1 - \beta)t + \theta - \hat{\theta}(t)\) and \(\beta t + \theta - \hat{\theta}(t)\) for the husband and the wife respectively, so that the time consistency constraints are fulfilled for both spouses.

Interestingly, the second-period utilities in marriage exactly reflect the utilities if divorced, with the addition of the difference between the actual match quality \(\theta\) and the threshold \(\hat{\theta}\). In particular, any increase of, say, the wife’s utility in divorce is exactly reflected in her second-period utility even if divorce does not take place.

No Commitment For couples who won’t divorce but also cannot make pre-marital allocative commitments, renegotiation systematically takes place at the beginning of the second period. We assume that such couples reach a Nash-bargaining solution
with the utility of the husband and the wife in case of divorce as the relevant threat points. Hence, the allocations which we denote \((v_h^2 (y), v_w^2 (z))\), satisfy

\[
v_h^2 (y) + v_w^2 (z) = \eta(t)
\]

and solve

\[
\max_{v_h^2 (y), v_w^2 (z)} \left[v_h^2 (y) + \theta - (1 - \beta) t \right] \left[v_w^2 (z) + \theta - \beta t \right].
\]

The solution is given by the following statement:

Proposition 2 In the no-commitment case, the Nash-bargained, second-period utilities are:

\[
v_h^2 (y) = \frac{1}{2} [\eta(t) + (1 - 2\beta) t],
\]

\[
v_w^2 (z) = \frac{1}{2} [\eta(t) + (2\beta - 1) t].
\]

Proof. The program maximizes the product of two terms, the sum of which is constant and equal to \(\eta(t) + 2\theta - t\). Therefore

\[
v_h^2 (y) + \theta - (1 - \beta) t = \frac{\eta(t) + 2\theta - t}{2} = v_w^2 (z) + \theta - \beta t,
\]

hence, the conclusion. ■

These values are exactly the same as in the non \(\theta\)-contingent allocation under commitment. In other words, the unique second-period allocation that is not \(\theta\)-contingent and guarantees that the individual rationality constraints are satisfied for any realization of \(\theta\) is also the Nash solution to a second-period bargaining.\(^{17}\)

For completeness, let us briefly discuss the case of different valuations of the match quality by the husband and wife. In this case, individual utilities take the form

\[
U_i = u_i(q_i, Q) + \theta_i, \quad i = h, w,
\]

where the pair \((\theta_h, \theta_w)\) is jointly distributed over some support in \(\mathbb{R}^2\) which need not be the diagonal. If we denote \(\theta = (\theta_h + \theta_w) / 2\) the average valuation, the total

\(^{17}\)The Nash Bargaining outcome is independent of common changes in \(\theta\) because of Nash’s symmetry requirement.
surplus generated by marriage is \(\eta (t) + \theta_h + \theta_w = \eta (t) + 2\theta \). In particular, the analysis of divorce probabilities and lifetime utilities remains unchanged, since in our Becker-Coase framework they are driven by the total marital surplus only. The main difference relates to the inter-temporal distribution of welfare. Specifically, second-period utilities in the no commitment case are given by:

\[
\begin{align*}
v^2_h (y) &= \frac{1}{2} [\eta (t) + (1 - 2\beta) t + (\theta_w - \theta_h)], \\
v^2_w (z) &= \frac{1}{2} [\eta (t) + (2\beta - 1) t + (\theta_h - \theta_w)].
\end{align*}
\] (37)

These allocations are contingent on the realization of \((\theta_h, \theta_w)\) reflecting the fact that, should the marriage continue, a spouse whose evaluation is poor must be compensated by an adequate monetary transfer. Again, this allocation can be implemented in the commitment case as well, although it is now \(\theta\)-contingent (it requires transfers that depend on the difference in the valuations of the husband and wife).

3.2.3 First-period Utilities

For each choice of \(k\), we can now recover the first-period allocations. The expected two-period utilities equal

\[
\begin{align*}
U_h (y) &= u^1_h (y) + \bar{\theta} + (1 - \alpha (t)) \left\{ u^2_h (y) + E \left[\theta \mid \theta \geq \hat{\theta}(t) \right] \right\} + \alpha (t) (1 - \beta) t, \\
U_w (z) &= u^1_w (z) + \bar{\theta} + (1 - \alpha (t)) \left\{ u^2_w (z) + E \left[\theta \mid \theta \geq \hat{\theta}(t) \right] \right\} + \alpha (t) \beta t,
\end{align*}
\] (38) (39)
where \(\alpha(t) = \Pr(\theta < \hat{\theta}) \) is the divorce probability. These utilities must coincide with the equilibrium values derived above. Therefore, for \(r > 1 \),

\[
\begin{align*}
 u^1_w(z) &= z_0 + \int_{z_0}^{z} S'[\phi(x) + x] \, dx \\
 &- (1 - \alpha(t)) \left\{ u^2_w(z) + E[\theta | \theta \geq \hat{\theta}(t)] \right\} - \alpha(t) \beta t, \\
 u^1_h(y) &= S[y + \psi(y)] - z_0 - \int_{z_0}^{\psi(y)} S'[\phi(x) + x] \, dx \\
 &+ (1 - \alpha(t)) \left\{ u^2_h(y) + E[\theta | \theta \geq \hat{\theta}(t)] \right\} - \alpha(t) (1 - \beta) t.
\end{align*}
\]

(40)

3.3 An Application: Reforming Divorce Laws

Various reforms of divorce laws have been discussed and implemented in the past. Much of the analysis of these focused on the impact of the switch from mutual consent to unilateral divorce.\(^{18}\) Here, though, we focus on the impact of the changes in the division of the property rights over family assets, including human capital. In several countries, the law has shifted towards viewing all family assets as common to some extent, implying that each partner has some property rights over the income of his or her spouse if the marriage dissolves.\(^{19}\) We consider a change in divorce laws such

\(^{19}\)Among the United States, nine states including Arizona, California, Idaho, Louisiana, Nevada, New Mexico, Texas, Washington and Wisconsin are “community property” states where assets and wealth accumulated during marriage are split equally. All other states, except Mississippi are “equitable distribution” states where property division “ought to be fair and equitable but not necessarily equal.” In Mississippi, property division is based on the ownership of legal title, but if title is jointly held, division upon divorce is equal.

Many other countries, such as the Netherlands, the United Kingdom, Sweden and Turkey, have adopted some variant of the “community property” rule according to which marital assets and wealth are split 50-50 between the spouses. Moreover, the legal requirements for divorce have been relaxed in many countries. For example, the adoption of the no-fault unilateral divorce laws in the United States in the 1970s granted individuals the right to seek a divorce without the consent of their spouses. This marked a dramatic departure from earlier divorce laws which required the consent of both parties to a divorce. In the United Kingdom the Divorce Reform Act, which made divorce possible after two years of separation in the case of dual consent and after five years in the case of no consent, was passed in 1969. The Matrimonial and Family Proceedings Act, which reduced the required wait in either case to twelve months, was enacted in 1984.
that the share of aggregate household resources rewarded to the wives is increased from \(\beta \) to \(\hat{\beta} \). Note, however, that \(\beta \) may be couple-specific (as it would be in a private-property regime).

If remarriage is not an option, the Becker-Coase theorem applies and such a change does not affect divorce probabilities. In particular, the threshold \(\hat{\theta} (t) \) only depends on the surplus generated by marriage, not on its post-divorce division between (ex-)spouses; a couple splits if and only if its realized \(\theta \) lies below the threshold, irrespective of the \(\beta \) in place. But, under unilateral divorce laws, changes in \(\beta \) typically result in a redistribution of the surplus between spouses during marriage. Whether a wife would benefit from the new property division rules would depend on her income, her marriage match quality, and the level of commitment achieved between the spouses.

Concerning the impact on the division of marital gains, it is crucial to distinguish between existing couples, who are already married when the change becomes effective and those who are not yet married. For the former, unexpected legislative changes may trigger a renegotiation within the household and alter the original contract implemented. For the latter, the new legislation would be taken into account at the matching stage and reflected in the expected allocations entering marriage. We now consider these two cases successively.

3.3.1 Existing Marriages

Consider a married couple with endowments \(y \) and \(z \) for the husband and wife, respectively, whose match quality \(\theta \) strictly exceeds the threshold \(\hat{\theta} (t) \). Since the intra-household spousal allocations, as determined in the marriage market, were individually rational, it must have been the case that neither spouse had an incentive to get divorced with the original \(\beta \) in place.

Commitment Assume, first, that the spouses feel committed by the contract they initially chose, although they do not feel obligated to remain married. If \(\theta \) is large enough, the wife’s individual rationality requirements given by (29) are satisfied for both \(\beta \) and \(\hat{\beta} \). This occurs if

\[
\theta \geq \hat{\beta} t - u^2_w (z),
\]

where \(u^2_w (z) \) denotes the continuation utility of the wife under the current agreement. Then, due to the commitment assumption, the change in divorce laws has no impact
on intra-household allocations. If, on the contrary, \(\theta \) is such that
\[
\hat{\beta} t - u_w^2(z) > \theta \geq \beta t - u_w^2(z)
\]
then the initial agreement is no longer enforceable, since it would violate the wife’s individual rationality. Hence, her second-period allocation must be adjusted upward to \(\hat{u}_w^2(z) = \hat{\beta} t - \theta \), which requires an additional transfer equal to
\[
T = (\hat{\beta} - \beta) t - \theta - \frac{\eta(t) - t}{2} \geq 0.
\]

From a comparative perspective, the probability of a renegotiation taking place depends on the distribution of \(\theta \). In the benchmark case where \(\theta \) is more or less uniform over a ‘large enough’ support, the probability is proportional to \((\hat{\beta} - \beta) t \). When both \(\beta \) and \(\hat{\beta} \) are identical across couples, the reform affects a larger proportion of higher-income couples. Regarding the size of the transfer, one can readily check that if \(\beta \) and \(\hat{\beta} \) are identical across couples, the transfer \(T \) given by (43) is concave in total wealth \(t \). It increases in \(t \) for small \(t \) but if the surplus function \(\eta(t) \) is convex enough, it decreases in \(t \) when \(t \) is large enough. Then, the magnitude of the transfer is non-monotonic in income; it is smaller for the poorest and the highest-income couples and maximal for intermediate income levels. In the special case of a move from private to common property, then \(\beta = z/(y + z) \), the reform, not surprisingly, is more likely to affect those couples for whom the initial distribution of incomes was biased in favor of the husband. The transfer can be written as
\[
T = \hat{\beta} t - z - \theta - \frac{\eta(t) - t}{2}.
\]

It is still concave in \(t \). Moreover, for any given \(t \), it decreases in \(z \), implying that it is larger for initially unequal couples.

We conclude that the reform will affect intra-household allocations of some—but not all—couples. For couples with a low realized match quality, the second-period marital allocation of the wife may no longer be sustainable in marriage. As a result, there will be more recontracting in favor of women among such couples. And since first-period spousal allocations would have already been sunk for all of the existing marriages at the time of the legislative change, a more generous settlement rule for the wives would imply higher allocations for them in the second period and over their lifetimes.
No Commitment In the absence of commitment, renegotiation takes place between all spouses. The reform directly impacts the respective threat points. Therefore, it affects all couples. Assuming, as above, a Nash bargaining solution with utilities in case of divorce as threat points, we see that the wife’s gain from the reform is

\[
\hat{v}^2_w(z) - v^2_w(z) = (\hat{\beta} - \beta) t, \tag{45}
\]

while the husband loses the same amount.

We conclude that when a reform of divorce laws is favorable to women and there is no commitment to ex-ante spousal allocations between spouses, all wives will benefit and all husbands will lose. This exemplifies the case of ‘bargaining in the shadow of the law’.

3.3.2 Future Marriages

Now consider a couple who is not yet married at the time of the legislative change. The expected lifetime allocations of such a couple, as given by equations (38) and (39), can be decomposed into three parts: the first-period utility, the second-period utility if marriage is continued, and the second-period utility in case of divorce. Unlike existing marriages, however, this effect is fully anticipated by the agents in the matching phase and reflected in the equilibrium allocations. This has two consequences. First, the reform influences intra-household allocation in both periods. This is because the allocation of lifetime utility, which involves first- and second-period welfare, is decided during the matching process, taking into account the new law. A second and more subtle implication is that the impact of the reform on a future marriage is the same whether or not agents are able to commit to specific intra-household allocations ex ante. Indeed, we have seen in subsection 3.2.2 that the (non-\(\theta\)-contingent) allocation decided ex ante is the same in both contexts.

Using (31) and (32), we can compute the impact of a change in post-divorce allocations on individual utilities. If \(\beta\) is identical across couples before and after the reform—one may think of a redefinition of ‘equitable distribution’ in a sense more favorable to women—the variations in individual utilities are given by:

\[
\Delta u^1_h = \Delta u^2_w = (\hat{\beta} - \beta) t, \quad \Delta u^2_h = \Delta u^1_w = - (\hat{\beta} - \beta) t,
\]

26
while if the switch is from private to common property, then,

$$\Delta u_1^h = \Delta u_2^w = \beta t - z, \quad \Delta u_2^h = \Delta u_1^w = -\left(\beta t - z\right),$$

In both cases, a divorce law that mandates more generous divorce settlements for women increases their utility in the second period whether or not the couple divorces. However, the reform also lowers their first-period allocations by the same amount. Implicit in the above argument is what we have already established in (20): in marriages not yet formed, a legislative change has no effect on the expected lifetime allocations of each spouse, $U_h(y)$ and $U_w(z)$. But given that equilibrium spousal allocations need to be individually rational, more favorable divorce rules may lead to a more rapidly rising allocation path for the wives-to-be in order to ensure that their marital commitments are time consistent; in practice, they get more at the end but less at the beginning of the union. In particular, all wives’ expected intra-marital allocations conditional on remaining married are reduced and the reduction exactly offsets their gain in case of divorce.

We conclude with the following general proposition:

Proposition 3 A change in the rules governing property rights over the distribution of family assets has no impact on welfare as measured by expected lifetime utilities at the time of marriage. To the extent that the policy raises the utility of women following divorce, it must reduce their total utility while married.

The neutrality of mandated divorce settlements is similar to Lazear’s (1990) result on the neutrality of mandated severance payments in the context of worker-firm relationships. In both cases, an attempt by the government to redistribute income among agents is completely undone by a redistribution over time within families or firms and does not affect the competitive outcome.²⁰

4 Divorce with Potential Remarriage

We now relax the assumption that divorcees must remain single during the second period. Instead, we introduce a remarriage market at the beginning of the second

²⁰The same point is made by Lundberg and Pollak (1993) regarding child allowances. These neutrality results are also related to the literature on Ricardian equivalence (see Barro, 1974) in that an attempt by the government to redistribute income among agents is completely undone by a redistribution over time within family units. Note, however, that our result relies on market forces rather than altruism to endogenize redistribution between spouses.
period, when all singles—never married individuals and recent divorcees—can find a new spouse.

The analysis of a matching model with remarriage is difficult in general, because the possibility of remarriage has a complex impact on the initial marital choice in particular. To deal with this issue, we first consider a particular case characterized by two additional assumptions under which the model can be completely solved. Then, we discuss the general framework and present various numerical examples to highlight some implications of remarriage for spousal assignments and intra-household allocations.

4.1 A Special Case

In this subsection, we maintain the following two assumptions:

A1 The average match quality $\bar{\theta}$ is ‘large’ so that all agents are willing to marry in the first period.

A2 Define, as above, $z_0 = G^{-1}(1 - 1/r)$. Then $\beta (z_0 + y_m) > z_0$.

A characteristic feature of remarriage markets is that they may generate ‘strategic postponement’ whereby some agents decide not to marry during the first period in order to improve their marital prospects in the second. A large enough expected first-period surplus eliminates such strategies, which is the motivation of Assumption A1. Regarding A2, note that if matching is assortative, the last married woman has income z_0 and she marries a man with the lowest income y_m. Thus, A2 stipulates that she is wealthier after divorce than before. A consequence is that in the remarriage market, she will be in a better position than any never married woman, which helps to pin down the pattern of remarriage matching.

Indeed, we shall see that under Assumptions A1 and A2, one can fully characterize the stable matches. A technical difficulty is that, while the game must be solved by backward induction starting with the remarriage matching game, the analysis of remarriage depends on post-divorce income distributions which themselves reflect the characteristics of the initial match (especially, whether or not it was assortative). It is important to note, however, that since utility remains transferable, the stable matching profile maximizes total surplus; therefore it is generically unique. Our
strategy is, thus, to (i) assume that lifetime surplus is increasing and supermodular so that initial matching is positively assortative; (ii) solve the game backward under this assumption; and (iii) show that the resulting total surplus is indeed supermodular; if a candidate equilibrium satisfies all the stability conditions, it must be the unique equilibrium.

For expositional simplicity, we start with the case $r = 1$ — i.e., there are equal measures of men and women so that all agents marry initially. Couples who draw a poor match quality may divorce. In that case, they enter the remarriage market with their post-divorce allocations, respectively equal to $y^D = (1 - \beta) (y + z)$ for men and $z^D = \beta (y + z)$ for women. Then, the static matching game is played once. Note, however, that the income distributions are not the same as the initial one because of the transfers between spouses induced by divorce settlements.

4.1.1 Equal Numbers of Men and Women ($r = 1$)

Remarriage We start with the remarriage game. In the remarriage market, there are equal numbers of men and women, because each divorce increases the male and female supplies by one unit each. Moreover, for each gender, individual income rankings are not modified. Indeed, if a couple (y, z) was initially wealthier than (y_m, \bar{z}), it must be the case that $y \geq y_m$ and $z \geq \bar{z}$ due to assortative matching. If both couples divorce, the first husband, with an income $y^D = (1 - \beta) (y + z)$, remains wealthier than the second, whose income is only $y^D_m = (1 - \beta) (y_m + \bar{z})$ and similarly for the wives. It follows that the number of men wealthier than y^D equals the number of women wealthier than z^D. Since matching is assortative in the remarriage market due to the supermodularity of the one-period surplus η, we conclude that each divorced man marries a ‘clone’ of his former wife - i.e., a woman who just divorced a husband with the same initial income as his own.

In terms of income, if his initial income was y and hers was z, now his income is $(1 - \beta) (y + z)$. Moreover, the current incomes of his new and of his ex wife are both equal to $\beta (y + z)$ (and analogous comparisons apply to women). If $y^D = \phi^R (z^D)$ (or equivalently $z^D = \psi^R (y^D)$) denotes the new assignment, we simply have

$$y^D = \phi^R (z^D) = \frac{1 - \beta}{\beta} z^D \quad \text{or equivalently} \quad z^D = \psi^R (y^D) = \frac{\beta}{1 - \beta} y^D. \quad (46)$$

Note that, in general, β may vary across couples. In the particular case where β
is identical across couples, we see that *irrespective of the initial income distributions* and the corresponding assignment profile, the male and female distributions of income in the remarriage market are deduced from each other by a linear transform, and we are therefore in the linear shift (LS) case studied above.

The new intra-household allocation of resources is again driven by the stability conditions in the remarriage market. Specifically, let $u^R_h (y^D)$ and $u^R_w (z^D)$ respectively denote the monetary components of the husbands’ and wives’ equilibrium utilities after remarriage, so that the true utilities are $u^R_h (y^D) + \theta^R$ and $u^R_w (z^D) + \theta^R$, where θ^R is the match quality of the new marriage. Stability requires that

$$u^R_h (y^D) = \max_{z^D} [\eta (y^D + z^D) - u^R_w (z^D)],$$

and

$$u^R_w (z^D) = \max_{y^D} [\eta (y^D + z^D) - u^R_h (y^D)].$$

Again, the envelope theorem gives

$$\frac{du^R_h (y^D)}{dy^D} = \eta' (y^D + z^D) = \frac{du^R_w (z^D)}{dz^D}.$$

Therefore,

$$u^R_h (y^D) = \int_{(1-\beta)(y_m+z_m)}^{y^D} \eta' [u + \psi^R (u)] du + K^h,$$

$$u^R_w (z^D) = \int_{(1-\beta)(y_m+z_m)}^{z^D} \eta' [\phi^R (u) + u] du + K^w.$$

If β is identical across couples, we can use the linear transform property, and we finally get that

$$u^R_h (y^D) = (1 - \beta) \int_{y_m+z_m}^{t} \eta' (u) du + K = (1 - \beta) \eta (t) + K,$$

$$u^R_w (z^D) = \beta \int_{y_m+z_m}^{t} \eta' (u) du - K = \beta \eta (t) - K,$$

for some constant K. Here $t = y^D / (1 - \beta) = z^D / \beta = y^D + z^D$ is the total income of the new couple (y^D, z^D). In words, she gets a fraction β and he gets a fraction $1 - \beta$ of the surplus plus some positive or negative constant K. Since men and women are
in equal number, the exact value of the constant K is indeterminate, but it must be such that no remarried man or woman are better off as single, which implies that

$$\beta [\eta (y_M + z_M) - (y_M + z_M)] \geq K \geq (1 - \beta)[(y_m + z_m) - \eta (y_m + z_m)],$$

where (y_M, y_m) and (z_M, z_m) are the lower and upper bounds of the male and female incomes, respectively.

Divorce We now consider the divorce decision. Let $u^2_h(y)$ and $u^2_w(z)$ denote, as before, the monetary components of utility derived from the intra-marital allocations respectively of the husband with endowment y and the wife with endowment z in the second period should they continue with their marriage. Under unilateral divorce, individual rationality requires that spouses cannot remain married unless

$$u^2_h(y) + \theta \geq u^R_h(y^D) + \bar{\theta} \quad \text{and} \quad u^2_w(z) + \theta \geq u^R_w(z^D) + \bar{\theta}.$$

This can be satisfied only if

$$\begin{align*}
u^2_h(y) + u^2_w(z) + 2\theta &= \eta (y + z) + 2\theta \\
\geq\quad u^R_h (y^D) + u^R_w (z^D) + 2\bar{\theta} &= \eta (y + z) + 2\bar{\theta}
\end{align*}$$

which boils down to $\theta \geq \bar{\theta}$: couples divorce if and only if the quality of their current match is below the mean, thus exploiting the option to redraw provided by divorce. The divorce probability is therefore identical for all couples; if the distribution of θ is symmetric around its mean, the probability is now .5 for all couples. Note that, although the second-period utilities are no longer transferable between former spouses—neither $u^2_h(y)$ nor $u^2_w(z)$ are linear in general—the framework still satisfies the Becker-Coase property that divorce is independent of the laws governing settlements. This property, however, is due to the fact that each person remarries a clone of their former spouse; it would not hold in more general settings.

First-period Marriage We can now analyze the first-period matching game. Several remarks can be made:

- Despite the possibilities opened by the existence of a remarriage market, utility is still transferable in this game because of the transferable structure of first-period utilities.
• Moreover, the lifetime surplus generated by a first-period marriage still depends only on total income \(t = y + z \). It is actually given by

\[
S^R (t) = \eta (t) + 2\bar{\theta} + \frac{1}{2} [\eta (t) + 2E [\theta \mid \theta \geq \bar{\theta}]] + \frac{1}{2} (\eta (t) + 2\bar{\theta})
\]

\[
= 2\eta (t) + 3\bar{\theta} + E [\theta \mid \theta \geq \bar{\theta}].
\]

In particular, the surplus is supermodular since \(\eta \) is convex, and the assortative matching conclusion is verified.

• The allocation of the lifetime surplus between spouses is now

\[
U^R_h (y) = k^h + 2\int_{y_m}^y \eta' [x + \psi (x)] dx \quad \text{and} \quad U^R_w (z) = k^w + 2\int_{z_m}^z \eta' [\phi (x) + x] dx,
\]

where the constants \(k^h \) and \(k^w \) satisfy:

\[
k^h + k^w = 2\eta (t) + 3\bar{\theta} + E [\theta \mid \theta \geq \bar{\theta}] - \int_{y_m}^y \eta' [x + \psi (x)] dx - \int_{z_m}^z \eta' [\phi (x) + x] dx.
\]

• Finally, the analysis of the inter-temporal allocation goes through as before. Taking, for instance, the non-commitment, Nash bargained solution, we find that the second-period allocation, which we denote \((v^2_R (y), v^2_R (z))\), solves

\[
\max_{v^2_h (y), v^2_w (z)} [v^2_h (y) + \theta - (\beta \eta (t) + K + \bar{\theta})] [v^2_w (z) + \theta - ((1 - \beta) \eta (t) - K + \bar{\theta})],
\]

which gives

\[
v^2_h (y) = \beta \eta (t) + K \quad \text{and} \quad v^2_w (z) = (1 - \beta) \eta (t) - K
\]

for some constant \(K \). Again, this allocation satisfies the equilibrium conditions of the commitment case and it is not contingent on \(\theta \).

4.1.2 More Women than Men (\(r > 1 \))

Now consider \(r > 1 \). Some women will remain single at the end of the first period and may enter the remarriage market during the second period. In this context, we show that the stable matching profile entails assortative matching and that its main characteristics are actually the same as when \(r = 1 \). Indeed, if the first-period
surplus is increasing and supermodular, single women are all at the bottom of the female income distribution. That is, there exists a threshold z_0 such that a woman is married if and only if her income is above z_0. At the beginning of the second period, all never married women have an income below z_0, whereas all divorcees have an income equal to $\beta (z_0 + y_m)$, which is larger than z_0 due to assumption $A2$. Therefore, the support of the second-period female income distribution consists of two disjoint intervals, $[z_m, z_0]$ and $[\beta (z_0 + y_m), \beta (y_M + z_M)]$. Since the second-period surplus η is supermodular and increasing, the second-period matching is positively assortative and only women in the $[\beta (z_0 + y_m), \beta (y_M + z_M)]$ interval—all recent divorcees—remarry.

In particular, the shares on the remarriage market are still indeterminate within some bounds, because the poorest ‘marriageable’ women with income $\beta (z_0 + y_m)$ do not have close substitutes. However, in the initial marriage market, the shares are exactly determined by the standard argument that the ‘last married’ woman does not gain from marriage.

In other words, the first-period marriage market splits the female population into two disjoint subsamples. Women who do not marry in the first period will remain single forever; the marriage market and the remarriage markets are de facto limited to women whose initial incomes are above z_0. By definition, such women are exactly as numerous as men. We conclude that the previous analysis, in which r was equal to 1, exactly applies in this case too. And, as seen before, the first-period surplus is indeed supermodular and increasing.

4.2 The General Case

If assumptions $A1$ or $A2$ fail to hold, the model becomes more complex. Indeed, divorce may now change the relative rankings by income both for men and for women. As a result, it is no longer the case that divorced men remarry a ‘clone’ of their ex-wives. A first consequence is that the Becker-Coase property (that divorce probability is independent of the legal system) does not hold. Changes in divorce settlements (our β) modify individual utilities in the remarriage market in a non-transferable way. Actually, the lifetime surplus generated by the initial marriage, while still transferable, also depends on β. Secondly, assortative matching is not guaranteed to hold; indeed, when the impact of the couple-specific divorce probability is taken into account, the
lifetime surplus may fail to remain supermodular. Thirdly, agent’s first-period marital strategy becomes more complex because some agents may choose to strategically postpone marriage. For instance, a never married man may have a much better ranking in the remarriage market than in the initial marriage market, especially if, in the latter market, most of his competitors are recent divorcees whose incomes are fairly depleted by divorce settlements.\footnote{Rasul (2006) and Matouschek and Rasul (2008) identify a similar finding whereby changes in the cost of divorce affect not only the incentive of those existing couples to stay married, but also the flow of those individuals that are selected into the marriage market.} While the stable matching profile is still generically unique (because of transferability), its determination must therefore rely on a fixed-point argument, whereby the agents’ initial anticipations regarding the remarriage market turn out to be self-fulfilling. To highlight some of these results, we shall next discuss some numerical examples (see Kapan, 2008, for further investigations).

4.2.1 Numerical Examples

We use a rudimentary structural model to trace the equilibria in an assignment model with divorce and remarriage and apply it to illustrate the role of changes in divorce laws on outcomes. To proceed, we assume that the husbands’ and wives’ individual utilities take the following specific form:

\[U_i = q_i Q + \theta, \quad i = h, w, \]
\[(51) \]

where \(q_i \) represents member \(i \)'s private consumption, \(Q \) is the public good consumed jointly (shared) by the couple, and \(\theta \) is the quality of the couple-specific match.

For any single or divorced individual, \(s \), preferences take the \textit{strictly quasi-linear} form:

\[u_s = q_s + Q_s. \]
\[(52) \]

Upon marriage, the marginal utility from the private good consumed by each spouse, \(q_i \), equals the joint consumption of the public good, \(Q \), which is the same for both partners. Hence, together with the specification of singles’ utility in (52), utility is transferable within and without marriage Appendix A provides an illustration of spousal interactions following divorce that could generate a linear Pareto frontier.
If man i marries woman j, their joint income is $m_i + w_j$. With transferable utility, any efficient allocation of the family resources maximizes the partners’ sum of utilities given by $(m_i + w_j - Q)Q + 2\theta$. In an interior solution with positive expenditure on the public good, the maximized material output is

$$\zeta_{ij} = \frac{(m_i + w_j)^2}{4}.$$ \hfill (53)

Note that the wages of the husband and wife complement each other in generating marital output, which is a consequence of sharing the public good.

For simplicity, we assume throughout that θ is uniformly and independently distributed over the interval $[-2, 2]$. In all cases, there are two kinds of men and women in the marriage markets: skilled, S, and unskilled, U. All individuals within a skill level and of a given gender earn the same income but wages may differ by gender. For ease of exposition, we shall denote the wages of type k men as m^k and those of type k women as w^k, where $k = S, U$.

Start with Case I in which there are 5 percent more women than men in the marriage market ($r = 1.05$), marital laws do not redistribute income upon divorce ($\beta = w_j / (m_i + w_j)$), and 40 percent of women and 60 percent of men are skilled. Wage incomes of skilled men and women are 5 and 4, whereas those of unskilled men and women are 3 and 1, respectively. In this baseline case, therefore, we have a gender wage gap both among skilled and unskilled workers although, to be consistent with available empirical evidence, the wage gap is assumed to be narrower among the skilled.

We will compare this benchmark with three other cases in which $r = 1.05$ throughout. In case II, our parameter choices are as in Case I, except that divorce laws redistribute household income (or the underlying household wealth which generates the spousal incomes) equally between ex-spouses ($\beta = .5$). Case III replicates Case II except the fact that there is no gender wage gap among the skilled, with $w^S = m^S = 5$. And, in Case IV, all parameters are as in the previous case, save for the fact that gender education (i.e., skill) gap is reversed, with 60 percent of women and 40 percent of men being skilled.

Table 1.A lists the parameter choices for all four cases. As shown at the bottom of the table, the incidence of divorce equalizes the distributions of income between men and women in all cases except Case I.
Table 1.A: Fixed Parameters

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redistribution of Divorce (β)</td>
<td>$\frac{u_w}{(u_w+u_h)}$</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>Sex ratio (r)</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>Distribution of Match Quality (θ)</td>
<td>$[-2, 2]$</td>
<td>$[-2, 2]$</td>
<td>$[-2, 2]$</td>
<td>$[-2, 2]$</td>
</tr>
<tr>
<td>Fraction of Skilled Women</td>
<td>.4</td>
<td>.4</td>
<td>.4</td>
<td>.6</td>
</tr>
<tr>
<td>Fraction of Skilled Men</td>
<td>.6</td>
<td>.6</td>
<td>.6</td>
<td>.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Marital Wages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w^U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>w^S</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>m^U</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>m^S</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Divorce Wages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Match: (w^U, m^U)</td>
<td>(1, 3)</td>
<td>(2, 2)</td>
<td>(2, 2)</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>Initial Match: (w^U, m^S)</td>
<td>(1, 5)</td>
<td>(3, 3)</td>
<td>(3, 3)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Initial Match: (w^S, m^S)</td>
<td>(4, 5)</td>
<td>(4.5, 4.5)</td>
<td>(5, 5)</td>
<td>(5, 5)</td>
</tr>
<tr>
<td>Initial Match: (w^S, m^U)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>(4, 4)</td>
</tr>
</tbody>
</table>

In Table 1.B, we list the marriage market outcomes and divorce likelihoods for different types of marriages. Since we assume that there 5 percent more women than men in the marriage market throughout, and the household production technology dictates positive assortative sorting in equilibrium, 5 percent of unskilled women stay single in the first period. Furthermore, divorce laws either do not redistribute incomes (as in Case I) or when they do redistribute household incomes, they are (weakly) favorable to divorced women (as in all other cases).

The implication of this is that those unskilled women who remain single when young actually never marry. In particular, when an unskilled woman divorces an unskilled man, her income as a divorcee equals 2, whereas if she divorces a skilled man, her divorce settlement nets her an income of 3. In both cases, she would have a strictly better ranking in the marriage markets than never-married women who all have an income level of 1.

Next, note that all four cases produce some sort of mixed-matching equilibria: In all four equilibria, 40 percent of all first-time marriages involve skilled husbands.
and skilled wives and another 40 percent are between unskilled spouses. But, in the first three cases, in which there are more skilled men on the marriage market, 20 percent of the marriages involve skilled men and unskilled women. When the gender education gap reverses as in Case IV, however, 20 percent of all initial marriages involve unskilled husbands and skilled wives.

All four cases meet the assumptions specified by (A1) and (A2). Thus, despite the fact that the divorce laws entail some degree of income redistribution between the ex-spouses in all cases except Case I, divorce and remarriage prospects do not alter the rankings of men and women in the remarriage markets in neither of the four cases. This is the reason why marital surplus is not affected due to divorce or remarriage in any case, as a consequence of which the divorce likelihood of all types of marriages equals 50 percent, as shown in the middle panel of Table 1.B.

If any marriage dissolves, the husband retains his relative ranking in the male distribution and the wife retains hers in female distribution. Consequently, each divorcee can remarry a clone of a former spouse in all of the four cases. In other words, any given marriage and a potential remarriage involving the ex-spouses of the original marriage are materially equivalent. Consequently, the remarriage market reflects a microcosm of the initial marriage market, with half of all types of marriages dissolving after the first period and all ex-spouses from those marriages remarrying in the second, as shown in the bottom panel of Table 1.B.
Table 1.B: Who Marries Whom & Divorce Probabilities

<table>
<thead>
<tr>
<th>1st Period Matches:</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>((w^U, m^U))</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>((w^S, m^S))</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>0</td>
</tr>
<tr>
<td>((w^S, m^U))</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Stays Single</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
</tr>
<tr>
<td>Divorce Probability of ((w^U, m^U))</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Divorce Probability of ((w^U, m^S))</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Divorce Probability of ((w^S, m^S))</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Divorce Probability of ((w^S, m^U))</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Period Matches:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>((w^U_d, m^U_d))</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>((w^S_d, m^S_d))</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>0</td>
</tr>
<tr>
<td>((w^S_d, m^U_d))</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>((w^S_d, m^T))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10%</td>
</tr>
<tr>
<td>((w^U_d, m^T))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Remains Never Married</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
<td>(w^U) (5%)</td>
</tr>
</tbody>
</table>

Tables 1.C and 1.D turn to the descriptions of the intra-household allocations between spouses as well as intra- and inter-temporally. The common characteristic of these four cases is that the excess ratio of women in the marriage markets depresses their intra-marital allocations and the redistributive impact of divorce laws are not significant enough to alter the rankings of potential spouses in the remarriage market. In all four cases, unskilled women married to unskilled men get their reservation levels of utility, as shown in the first row of Table 1.C. This, of course, is due to the excess sex ratio in favor of men. This is also the reason why unskilled women get a reservation lifetime utility of 2 even in the three cases in which some unskilled women marry skilled men, as shown in the second row of Table 1.C.

At the high-end of the marriage market, there is an excess supply of skilled men in Cases I through III, as a result of which their expected lifetime utility levels remain lower than those of skilled women with whom they are matched. As shown in the
second block of Table 1.C, skilled men get the same expected lifetime utility level in Cases I through III, regardless of whether they marry a skilled or unskilled wife. When their wife is unskilled, skilled husbands capture all of their marital surplus due to the impact of the competition of single unskilled women on the marital return of unskilled wives. And although skilled men married to skilled women are able to extract lifetime utility levels that are identical to those of skilled husbands married to unskilled wives, skilled men relinquish a larger part of the marital surplus of being married to skilled women because, at the higher-end of the marriage market, there are more skilled men than skilled women.

Now we can explore the impact of the closing of the gender wage gap among the skilled and the reversal of the gender skill gap. When the wages of skilled men and women equalize, as they do in Case III, the welfare impact is quite stark because all of the additional marital gains due to the higher wages of skilled wives accrue to themselves, as shown in the third line of the top panel of Table 1.C. But when the gender skill gap reverses too, as it does in Case IV, most of the additional benefit of the closing of the gender wage gap is garnered by skilled husbands, as indicated by the sharp drop (rise) in the lifetime utility levels of skilled women (men) in Case IV.

A common thread among these four examples is provided by the fact that no one prefers to delay marriage. Of course, this is naturally the case when divorce laws reflect no redistribution as in Case I. But no one prefers to delay even when $\beta = .5$ and household income is divided equally between the spouses in case of divorce; under the so-called community property division rule. Further, we have already alluded to the fact that the redistribution implicit in the income distributions by gender and $\beta = .5$ are still modest enough that divorce does not influence the relative rank of people who enter the remarriage market in the second period.

Finally, note how a change in the property division laws entails full policy neutrality. The switch from Case I to Case II involves a radical change in property distribution after divorce: in the first case, there is no redistribution whereas in all the three cases that follow, divorce laws are fully redistributive with ex-spouses sharing the household income equally between them regardless of their relative earnings.
Table 1.C: Expected Lifetime Utilities & 1st-Period Allocations

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[U]$ of w^U women (husband m^U)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$E[U]$ of w^U women (husband m^S)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>n.a.</td>
</tr>
<tr>
<td>$E[U]$ of w^S women (husband m^S)</td>
<td>24.5</td>
<td>24.5</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>$E[U]$ of w^S women (husband m^U)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>26</td>
</tr>
<tr>
<td>$E[V]$ of m^U men (wife w^U)</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>$E[V]$ of m^U men (wife w^S)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6.5</td>
</tr>
<tr>
<td>$E[V]$ of m^S men (wife w^S)</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>24.5</td>
</tr>
<tr>
<td>$E[V]$ of m^S men (wife w^U)</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>n.a.</td>
</tr>
<tr>
<td>1st-period utility of w^U (husband)</td>
<td>1</td>
<td>.50</td>
<td>.50</td>
<td>.50</td>
</tr>
<tr>
<td>1st-period utility of w^S (husband)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>n.a.</td>
</tr>
<tr>
<td>1st-period utility of w^S (husband)</td>
<td>21.5</td>
<td>11.25</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>1st-period utility of w^U (husband)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>16</td>
</tr>
<tr>
<td>1st-period utility of m^U (wife)</td>
<td>3.5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1st-period utility of m^S (wife)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>1st-period utility of m^S (wife)</td>
<td>6.5</td>
<td>9.5</td>
<td>9.5</td>
<td>4.5</td>
</tr>
<tr>
<td>1st-period utility of m^U (wife)</td>
<td>6.5</td>
<td>9.5</td>
<td>9.5</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

As the comparison of second-period allocations in remarriage, shown in the bottom panel of Table 1.D, indicates, redistributive divorce laws do affect spousal allocations if and when a couple divorces in the second period: all wives’ remarriage payoffs rise and those of all men fall. But, as shown in the top panel of Table 1.D, this legislative change has no impact of second-period spousal allocations in case the marriage survives. Nor does it impact expected lifetime utility levels of anyone. Hence, as shown in the bottom panel of Table 1.C, it invariably depresses the 1st-period allocations of all women and stimulates those of all men.

All in all, then, the impact of a higher β in Case II can be seen on the second-period allocations of women, which is higher. But those gains are fully offset by the lower first-period allocations women get in response to the change in β, leaving the expected lifetime utility levels of men and women unchanged in response to the change in divorce law.
Table 1.D: 2nd-Period Allocations

<table>
<thead>
<tr>
<th>Outcomes:</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Marriages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd-period utility of $w_U (m_U \text{ husb.})$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2nd-period utility of $w_U (m_S \text{ husb.})$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n.a.</td>
</tr>
<tr>
<td>2nd-period utility of $w_S (m_S \text{ husb.})$</td>
<td>12.25</td>
<td>12.25</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2nd-period utility of $w_S (m_U \text{ husb.})$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>10</td>
</tr>
<tr>
<td>2nd-period utility of $m_U (w_U \text{ wife})$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2nd-period utility of $m_U (w_S \text{ wife})$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6</td>
</tr>
<tr>
<td>2nd-period utility of $m_S (w_U \text{ wife})$</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>2nd-period utility of $m_S (w_S \text{ wife})$</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>n.a.</td>
</tr>
<tr>
<td>Remarriages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd-period utility of $w_d (m_U \text{ husb.})$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2nd-period utility of $w_d (m_S \text{ husb.})$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>n.a.</td>
</tr>
<tr>
<td>2nd-period utility of $w_d (m_U \text{ husb.})$</td>
<td>12.25</td>
<td>14.25</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2nd-period utility of $w_d (m_d \text{ husb.})$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>10</td>
</tr>
<tr>
<td>2nd-period utility of $m_d (w_U \text{ wife})$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2nd-period utility of $m_d (w_S \text{ wife})$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>7</td>
</tr>
<tr>
<td>2nd-period utility of $m_d (w_d \text{ wife})$</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>2nd-period utility of $m_d (w_U \text{ wife})$</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

These numerical examples illustrate that the welfare impact of demographic and economic changes—such as the closing of the gender wage gap among the skilled or the reversal of the gender skill gap—could be mitigated because of marriage market conditions, such as the sex ratio, or the impact of market dynamics and spousal competition on intra-household allocations. Our examples have also shown that changes in property division laws that regulate divorce are subject to policy neutrality. But how general are these conclusions and, in particular, how does the sex ratio interact with other parameters and features of the marriage market to produce these results?

In order to answer these questions, we now turn to four other examples in which $r = .95$, so that there are more men than women in the marriage market. Cases V through VIII below are identical to Cases I through IV above, respectively, except for the fact that there are 5 percent less women in the initial marriage market (instead of 5 percent more).
This modification proves to be more than trivial for a couple of reasons. First, due to the fact that there is an excess supply of men in the first-period marriage market, 5 percent of men remain single when young in Cases I through IV. In the first four cases, however, none of the unskilled, divorced women remained single in old age; they were all able to remarry. Instead, in Cases VI through VIII, 5 percent of divorced men who are unskilled cannot remarry and they remain single when they are old. The reason for this is that, when there are more men than women in the remarriage markets and $\beta = .5$, the redistributive impact of divorce laws disadvantage unskilled divorced men to such an extent that their ranking relative to single unskilled men slips when they try to remarry. As a result, some unskilled women who divorce unskilled men are able to marry single unskilled men with higher incomes than divorced, unskilled men.

Table 2.B: Who Marries Whom & Divorce Probabilities

<table>
<thead>
<tr>
<th>1st Period Matches:</th>
<th>Case V</th>
<th>Case VI</th>
<th>Case VII</th>
<th>Case VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w^U, m^U)</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
<td>38%</td>
</tr>
<tr>
<td>(w^U, m^S)</td>
<td>22%</td>
<td>.22</td>
<td>.22</td>
<td>0</td>
</tr>
<tr>
<td>(w^S, m^S)</td>
<td>38%</td>
<td>38%</td>
<td>38%</td>
<td>40%</td>
</tr>
<tr>
<td>(w^S, m^U)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17%</td>
</tr>
<tr>
<td>Stays Single</td>
<td>m^U (5%)</td>
<td>m^U (5%)</td>
<td>m^U (5%)</td>
<td>m^U (5%)</td>
</tr>
</tbody>
</table>

Divorce Probability of (w^U, m^U): 50% 66% 66% 66%
Divorce Probability of (w^U, m^S): 50% 50% 50% n.a.
Divorce Probability of (w^S, m^S): 50% 50% 50% 50%
Divorce Probability of (w^S, m^U): n.a. n.a. n.a. 50%

<table>
<thead>
<tr>
<th>2nd Period Matches:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(w^_d, m^_d)$</td>
<td>17.5%</td>
<td>21%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>(w^*_d, m^U_d)</td>
<td>11%</td>
<td>11%</td>
<td>11%</td>
<td>0</td>
</tr>
<tr>
<td>(w^*_d, m^S_d)</td>
<td>19%</td>
<td>19%</td>
<td>19%</td>
<td>20%</td>
</tr>
<tr>
<td>$(w^_S_d, m^_d)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.5%</td>
</tr>
<tr>
<td>$(w^*_S_d, m^U_d)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(w^*_d, m^U)</td>
<td>0</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Remains Never Married</td>
<td>m^U (5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
This leads to a second salient observation: The probability of couples getting divorced is still 50 percent in all our new cases, except that, in Cases VI through VIII, unskilled couples are 66 percent likely to get divorced. Here is why: if the realized non-monetary match quality of an unskilled couple θ is bad enough, they get divorced. Following divorce, a low-wage wife becomes richer when $\beta = .5$, keeping 2 out of a total income of 4 in her terminating marriage. Walking away from the marriage, though, she can find a never-married unskilled man in the remarriage market with whom she can access a pooled-income level of 5. This is why the marriage of a low-wage man and low-wage woman can end in divorce even if $\theta > 0$, provided that its value falls short of the material gain from divorce. Thus, despite the assumption of transferable utility, when remarriage is an option, the Becker-Coase Theorem fails to hold; redistribution can affect the divorce probability and the size of the “pie” that can be divided in a first-period marriage.

Table 2.C: 1st-Period Allocations

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Case V</th>
<th>Case VI</th>
<th>Case VII</th>
<th>Case VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[U]$ of w^U women (husband m^U)</td>
<td>2.5</td>
<td>3.93</td>
<td>3.93</td>
<td>3.93</td>
</tr>
<tr>
<td>$E[U]$ of w^U women (husband m^S)</td>
<td>2.5</td>
<td>3.93</td>
<td>3.93</td>
<td>n.a.</td>
</tr>
<tr>
<td>$E[U]$ of w^S women (husband m^U)</td>
<td>25.4</td>
<td>26.4</td>
<td>35.93</td>
<td>26.5</td>
</tr>
<tr>
<td>$E[U]$ of w^S women (husband m^S)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>26.5</td>
</tr>
<tr>
<td>$E[V]$ of m^U men (wife w^U)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>$E[V]$ of m^U men (wife w^S)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>6</td>
</tr>
<tr>
<td>$E[V]$ of m^S men (wife w^S)</td>
<td>16</td>
<td>14.57</td>
<td>14.57</td>
<td>24</td>
</tr>
<tr>
<td>$E[V]$ of m^S men (wife w^U)</td>
<td>16</td>
<td>14.57</td>
<td>14.57</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>1st-period utility of w^U (m^U hsb.)</th>
<th>1st-period utility of w^U (m^S hsb.)</th>
<th>1st-period utility of w^S (m^S hsb.)</th>
<th>1st-period utility of m^S (w^U hsb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st-period utility of w^U (m^U hsb.)</td>
<td>1.5</td>
<td>1.45</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1st-period utility of w^U (m^S hsb.)</td>
<td>1.5</td>
<td>1.93</td>
<td>1.93</td>
<td>n.a.</td>
</tr>
<tr>
<td>1st-period utility of w^S (m^S hsb.)</td>
<td>12.75</td>
<td>13.17</td>
<td>10.57</td>
<td>21.5</td>
</tr>
<tr>
<td>1st-period utility of m^S (w^U hsb.)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>22</td>
</tr>
<tr>
<td>1st-period utility of m^U (w^U wife)</td>
<td>3</td>
<td>3.66</td>
<td>3.66</td>
<td>3.66</td>
</tr>
<tr>
<td>1st-period utility of m^U (w^S wife)</td>
<td>11</td>
<td>10.57</td>
<td>10.57</td>
<td>4</td>
</tr>
<tr>
<td>1st-period utility of m^S (w^U wife)</td>
<td>11</td>
<td>10.57</td>
<td>10.57</td>
<td>n.a.</td>
</tr>
<tr>
<td>1st-period utility of m^S (w^S wife)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Indeed, when one compares the total expected lifetime utilities generated by unskilled matches in Cases II through IV with those in Cases VI through VIII (shown in the first rows of Tables 1.C and 2.C), it is clear that the prospect of remarriage with a never-married unskilled husband as opposed to one who is a divorcée raises the expected surplus of a first-period marriage between two unskilled individuals: the sum of expected lifetime utilities of unskilled spouses in Table 1.C amounts to 8.5, whereas in Table 2.C it equals 9.93. Unskilled married men have lower expected lifetime utilities when their wives have the option of divorcing them and marrying a single unskilled men with higher incomes than the husbands would have in case of divorce. But this should not obscure the fact that, in general, the extra surplus of this option would accrue to both the husband and the wife. The reason we don’t see that in Tables 1.C and 2.C is due to the fact that the sex ratio turns unfavorable for men in Table 2.C.

While policy neutrality no longer may hold, the effect of changes in property division divorce rules is still smaller on spousal welfare than it is on incomes, as indicated by the equilibrium spousal allocations shown in Tables 2.C and 2.D. There are a couple of reasons for this. One, an excess supply of men helps women attain higher intra-marital allocations and welfare than they were able to in Cases I through IV. Nevertheless, unskilled men still need to receive their reservation levels of utility in marriage and they have higher incomes than unskilled women. Consequently, while unskilled women now capture all of the marital surplus of their marriages with unskilled men, this doesn’t amount to much, due to the fact that the marital surplus of unskilled matches is relatively small. At the higher end of the marriage market, women do capture a larger share of the marital surplus of marriages between skilled spouses, as long as the supply of skilled men exceeds that of skilled women, as it does in Cases V through VII. And as with the earlier cases in which there is an excess supply of women in the market, the welfare of skilled women doesn’t rise much when their wages equalize with those of skilled men, but it suffers most when more women than men attain higher skill levels.
Table 2.D: 2nd-Period Allocations

<table>
<thead>
<tr>
<th>Outcomes:</th>
<th>Case V</th>
<th>Case VI</th>
<th>Case VII</th>
<th>Case VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Marriages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd-period utility of $w^V (m^V husb.)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2nd-period utility of $w^S (m^S husb.)$</td>
<td>12.25</td>
<td>12.25</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>2nd-period utility of $w^S (m^V husb.)$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>5</td>
</tr>
<tr>
<td>2nd-period utility of $w^V (m^S husb.)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n.a.</td>
</tr>
<tr>
<td>2nd-period utility of $m^V (w^V wife)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2nd-period utility of $m^S (w^S wife)$</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>2nd-period utility of $m^S (w^V wife)$</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>n.a.</td>
</tr>
<tr>
<td>2nd-period utility of $m^V (w^S wife)$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3</td>
</tr>
<tr>
<td>Remarriages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd-period utility of $w^V_d (m^V_d husb.)$</td>
<td>1</td>
<td>3.25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2nd-period utility of $w^S_d (m^S_d husb.)$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>n.a.</td>
</tr>
<tr>
<td>2nd-period utility of $w^S_d (m^V_d husb.)$</td>
<td>12.25</td>
<td>14.25</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>2nd-period utility of $w^V_d (m^S_d husb.)$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4</td>
</tr>
<tr>
<td>2nd-period utility of $m^V_d (w^V_d wife)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2nd-period utility of $m^V_d (w^S_d wife)$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4</td>
</tr>
<tr>
<td>2nd-period utility of $m^S_d (w^S_d wife)$</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>2nd-period utility of $m^S_d (w^V_d wife)$</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

5 Conclusion

We have proposed a tractable assignment model with divorce and remarriage. Apart from making the assignment model more realistic, this extension has allowed us to address the impact of policy changes under different assumptions about commitment.

When remarriage is not an option, we obtained a basic neutrality result which shows that any redistribution that the law imposes upon divorce can be undone within marriage, implying that, in the *long run*, changes in the laws governing divorce have no impact on the *lifetime utility* of the participants in the marriage market. In particular, if the policy improves the economic status of women upon divorce, then it must be the case that, while married, they receive a lower share of the monetary gains from marriage. Thus, an attempt to improve the status of women within marriage by transferring more resources to them in the case of divorce can be effective only in
the short run for couples who were already married when the new policy is enacted. In this case, government intervention can have a different scope depending on the presence of prior commitments made at the time of marriage: only some of the pre-committed couples, but all of the non-committed ones will choose to renegotiate their ex-ante contracts.

We have also shown that in general, neutrality fails to hold if remarriage is an option, although it may continue to hold under some strong assumptions. The new element introduced by remarriage is that redistribution of family assets upon divorce influences the income distributions of men and women that participate in the remarriage market. These changes can cause a reassignment of men to women with potentially important implications for marriage, divorce and the distribution of the gains from marriage.

We also explored the effects of a narrowing of the gender wage gap and the reversal of the gender education gap on intra-household allocations and spousal welfare in the context of our model. In general, based on mechanisms that are similar to the one which creates policy neutrality of changes in the divorce settlement laws, we found that the effects of reductions in the gender wage gap and the reversal in the gender skill gap on women’s welfare could also be mitigated due to marriage market dynamics.

It is important to compare the results of our paper with the results that would obtain in a search framework which include frictions. As shown by Mortensen (1988), such models can easily handle transitions across marital states, including divorce and remarriage, as well as learning about the quality of the match during marriage. However, in a search model, meetings occur randomly and are spaced over time. Therefore, when two agents meet and each of the matched partners can choose whether to marry or continue to search for an alternative mate, they are both aware of the cost of finding such an alternative. This creates a match-specific rent and some bargaining over the division of this rent takes place prior to marriage, with the continuation values of being single and maintaining the search serve as the natural threat points. In our model, there are neither frictions nor ex-ante rents as, irrespective of traits, each agent has a close substitute in the marriage market. This absence of rents allows us to pin down the sharing of marital gains based only on competitive forces.

In principle, one can embed our model in a more realistic search model with frictions. Then, our results will hold in the limit when meetings occur at high frequency
and the discount factor is close to one (see Gale, 1986). Some of our results would hold even outside the limit. For instance, Garibaldi and Violante (2005) have shown that Lazear’s result about the neutrality of severance payments also holds in a search economy. However, frictions can influence the patterns of assortative mating because agents are usually willing to compromise. For instance, the household production function \(\zeta_{ij} = (w_i + w_j)^2/4 \) that we used in subsection 4.2.1 ensures positive assortative matching without friction but not with frictions. In general, a stronger degree of complementarity is required in the presence of frictions (see Shimer and Smith, 2000). Still, two main messages would remain valid. The first is the differentiated effects of any reform on existing couples on the one hand, and couples yet to be formed on the other hand. An improvement in the wives’ post-divorce situation will favor women who are already married when the reform is implemented. However, couples who marry after the reform take the new law into account; to the extent that the nature of competition on the first marriage market is not changed by the reform (say, by attracting new potential spouses), lifetime utilities are likely to regress to their initial values, and (expected) gains in the second period will be paid for during the first. Secondly, while the reform is unlikely to have long-term effects on the allocation of welfare within the couple, it may well change the total surplus generated by marriage (it does even in our Becker-Coase framework when remarriage is taken into account, and frictions are likely to reinforce this effect). But then it has the paradoxical effect of either increasing both spouses’ utilities, or decreasing both - quite the opposite of what one would expect.

Finally, there are important features of the marriage relationship we did not address. In particular, we did not consider investments that influence the value of continued marriage or the outside options of the partners. When such considerations are added, the division of marital gains and the post-divorce settlement influence the size of marital surplus and the incentives to dissolve the marriage. Such a generalization is a natural extension that is subject for further work. Browning, Chiappori, Weiss (2003), Rasul (2006) and Rainer (2007) discuss investments in marriage but not in an equilibrium framework, which is yet to be done. Other possible extensions include risk aversion and different match valuations for the two spouses as in Chiappori and Weiss (2003) and limits on transferability as in Legros and Newman (2008).
References

A Linear Pareto Frontier after Divorce

Suppose that, regardless of their marital status, a couple shares the consumption of one maritally public good, Q, which is based on the wellbeing of their children. Then, the sum of the utilities of ex-spouses will be represented by

$$u_h + u_w = (q_h + q_w)Q,$$ \hspace{1cm} (A.1)

where q_i represents the private consumption of spouse i, and Q is the wellbeing of the couples’ children as measured by the time and pecuniary resources invested in them.

Following divorce, assume that both the custody of children and household income are divided between ex-spouses. The person who has custody of the children controls the expenditures on children during his or her “tenure”. As usual, we assume that individuals do not internalize the impact of their choices on their ex-spouses. Let τ be the time spent with the child by the husband $(1 - \tau)$ by the wife. Let $t = y + z$ be total family income and let βt be the share of the wife after divorce.

The transfers between ex-spouses that are implicit in β can be interpreted as child support transfers, which as in our main model is assumed to be set by divorce laws. In contrast, ex-spouses can jointly decide how much time each parent spends with the children, with the agreed-upon τ being enforced by law as a voluntary custody contract signed after divorce and stamped by the courts.

Then, the utilities of the husband and the wife, respectively, are

$$u_h = \frac{\tau t (1 - \beta)^2}{4} + \frac{(1 - \tau) \beta (1 - \beta) t^2}{2} \quad \text{and} \quad u_w = \frac{(1 - \tau) (\beta t)^2}{4} + \frac{\tau \beta (1 - \beta) t^2}{2},$$ \hspace{1cm} (A.2)

For any fixed β, we have

$$\frac{du_h}{d\tau} = \frac{[\beta t]^2}{4} - \beta (1 - \beta) t^2 \quad \text{and} \quad \frac{du_w}{d\tau} = -\frac{(\beta t)^2}{4} + \beta (1 - \beta) t^2,$$ \hspace{1cm} (A.3)

So that the slope of the utility frontier upon divorce is linear with a slope,

$$\frac{du_h}{du_w} = -\left[\frac{[\beta t]^2}{4} - \beta (1 - \beta) t^2\right] \div \left[\frac{(\beta t)^2}{4} + \beta (1 - \beta) t^2\right].$$ \hspace{1cm} (A.4)

In particular, if family the income is divided equally after divorce (which is quite reasonable in the present case as it ensures a fixed child expenditure) then the slope upon divorce is -1 and the Becker-Coase theorem applies. Note, however, that because of the uninternalized externalities, divorce is costly. For $\beta = .5$:

$$u_h + u_w = (1 - \tau) \frac{t^2}{8} + (1 - \tau) \frac{t^2}{8} = \frac{t^2}{8},$$ \hspace{1cm} (A.5)
while staying together the partners jointly obtain obtain $\frac{\sigma^2}{4}$.

B Assortative matching

It is sufficient to show that the expected *surplus* of a marriage, given by $\tilde{S}(t) = S(t) - 2t$, is increasing and convex in t, where $t = y + z$.

\[
\tilde{S}(t) = \eta(t) + 2\hat{\theta} + (1 - \alpha(t)) \left(\eta(t) + 2E \left[\theta \mid \theta \geq \hat{\theta}(t) \right] \right) + \alpha(t) t - 2t \tag{A.6}
\]

\[
\tilde{S}(t) = \eta(t) + 2\hat{\theta} + \int_0^\infty (\eta(t) + 2\theta) f(\theta) d\theta + t \int_{-\infty}^{\hat{\theta}} f(\theta) d\theta - 2t,
\]

with

\[
\hat{\theta}(t) = -\frac{1}{2} (\eta(t) - t). \tag{A.7}
\]

Recall that $\eta(t)$ is strictly convex and $\eta'(t) > 1$. Therefore,

\[
\tilde{S}'(t) = \eta'(t) \left(1 + \int_0^\infty f(\theta) d\theta \right) + \int_{-\infty}^{\hat{\theta}} f(\theta) d\theta + f(\hat{\theta})[-\eta(t) - 2\hat{\theta} + t] \hat{\theta}'(t) - 2 \tag{A.8}
\]

\[
= \eta'(t) + \eta'(t) \int \theta f(\theta) d\theta + \int_{-\infty}^{\hat{\theta}} f(\theta) d\theta - 2 > 0.
\]

and

\[
\tilde{S}''(t) = \eta''(t) \left(1 + \int \theta f(\theta) d\theta \right) + f(\hat{\theta})[-\eta'(t) + 1] \hat{\theta}'(t) \tag{A.9}
\]

\[
= \eta''(t) \left(1 + \int \theta f(\theta) d\theta \right) + f(\hat{\theta}) \frac{[\eta'(t) + 1]^2}{2} > 0.
\]

Hence, $S(t)$ is convex in t, implying that z and y are complements.