
Econometrica, Vol. 88, No. 2 (March, 2020), 569–594 

THE SPEED OF INNOVATION DIFFUSION IN SOCIAL NETWORKS 

ITAI ARIELI 
Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology 

YAKOV BABICHENKO 
Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology 

RON PERETZ 
Department of Economics, Bar Ilan University 

H. PEYTON YOUNG 
Department of Mathematics, London School of Economics and Nuffield College, Oxford 

New ways of doing things often get started through the actions of a few innovators, 
then diffuse rapidly as more and more people come into contact with prior adopters 
in their social network. Much of the literature focuses on the speed of diffusion as a 
function of the network topology. In practice, the topology may not be known with 
any precision, and it is constantly in flux as links are formed and severed. Here, we 
establish an upper bound on the expected waiting time until a given proportion of the 
population has adopted that holds independently of the network structure. Kreindler 
and Young (2014) demonstrated such a bound for regular networks when agents choose 
between two options: the innovation and the status quo. Our bound holds for directed 
and undirected networks of arbitrary size and degree distribution, and for multiple 
competing innovations with different payoffs. 

KEYWORDS: Innovation diffusion, social networks, speed of equilibrium conver-
gence. 

1. INTRODUCTION 

SOCIAL AND TECHNOLOGICAL ADVANCES are essential to economic development, but the 
mere existence of new and better ways of doing things does not guarantee that they will 
be widely used. The time it takes to dislodge inferior practices is another crucial factor in 
explaining how rapidly development can occur. This lag time depends on several crucial 
factors. One is lack of information: it may not be immediately evident that the innovation 
is in fact superior to the status quo. A second factor is network externalities: the desir-
ability of an innovation depends not only on its inherent payoff but on how many others 
in one’s social network have also adopted. Dislodging an inferior practice or technology 
requires a coordinated shift in expectations and behaviors among members of the group, 
which may take a long time even if it is already evident that everyone would be better off 
if they were to do so.  

There is a substantial theoretical and empirical literature on these issues that we shall 
discuss below. In contrast to much of this literature, which is concerned with learning 
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about payoffs from the actions of prior adopters, our focus here will be on the time it 
takes to dislodge an inferior practice when there are increasing returns from adoption 
and the payoffs are already known. This allows us to separate the effects of pure network 
externalities from the problem of learning about the payoffs by observing the behavior 
of others. Moreover, unlike much of the literature, we shall focus on the question of 
how long it takes to dislodge an inferior practice or technology when little or nothing is 
known about the topology of social interactions. Although this would appear to omit the 
main variable of interest, this is not the case. In particular, Kreindler and Young (2014) 
demonstrate that the expected waiting time to overturn an inferior equilibrium can be 
usefully bounded from above for all undirected regular networks. 

The theoretical contributions of this paper are three-fold. First, we establish an upper 
bound on the expected waiting time that holds for networks of any size and degree distribu-
tion, whether directed or undirected. Second, we show how to extend the analysis to multiple 
competing innovations, instead of a single innovation versus the status quo, which is the 
usual assumption in the literature. Third, we show how the network topology affects the 
results by deriving waiting time bounds that hold for specific classes of networks, includ-
ing regular networks and star networks. The mathematical techniques are novel and rely 
on results characterizing the distribution of arbitrarily large sums of independent random 
variables. 

1.1. Related Literature 

The importance of social interactions in spreading new ideas and practices has been 
documented in a wide variety of situations. Ryan and Gross (1943) demonstrated that 
farmers’ decisions to adopt an agricultural innovation—hybrid corn—were strongly in-
fluenced by the adoption decisions of their neighbors. Subsequently, Griliches (1957) 
showed that the decision to adopt also depended on the expected gains in payoff from 
the innovation relative to the status quo. At about the same time, sociologists Coleman, 
Katz, and Menzel (1957) analyzed the role of social networks among doctors in the adop-
tion of a new medical treatment (in this case tetracycline), and showed that adoption was 
driven to a significant extent by peer effects.1 

Since then a substantial theoretical literature has developed on the rate of innovation 
diffusion as a function of the network topology. A recurrent theme is that interaction 
among small close-knit groups can speed up the adoption process. The logic is that the 
innovation can gain a local foothold relatively quickly, and from different local footholds 
it then spreads throughout the network (Ellison (1993), and Young (1998, 2011); Monta-
nari and Saberi (2010)). Experimental studies of games played on networks are consistent 
with these predictions (Centola and Baronchelli (2015)).2 

A related line of work is concerned with the time it takes for a new idea to spread when 
it is seeded at one or more locations. Here, the key features are the centrality of the nodes 
where the new idea is seeded, and the degree of connectivity of the network (Morris 
(2000); Banerjee, Chandrasekhar, Duflo, and Jackson (2013)). These are instances of 
“threshold” models, in which a given individual adopts once a sufficient number of his 

1For subsequent empirical work on innovation diffusion in networks, see Valente (1995, 2005); Foster and 
Rosenzweig (1995, 2010), Kohler (1997), Kohler, Behrman, and Watkins (2001), Udry and Conley (2001), 
Rogers (2003), and Munshi (2006). 

2There is also a recent literature on the speed of convergence in games where agents interact globally instead 
of with a fixed set of neighbors; see, in particular, Ellison, Fudenberg, and Imhof (2016) and Arieli and Young 
(2016). 
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neighbors have adopted (Watts (2002)). In this literature, adoption decisions are typically 
treated as irreversible, whereas in the present paper we treat adoption (and disadoption) 
as random variables that depend on the distribution of choices by one’s neighbors and 
stochastic shocks to their perceived payoffs; they are not deterministic. 

Yet another branch of the literature investigates how network structure affects the rate 
at which agents update their priors about the desirability of the innovation, based on 
observation of their neighbors’ choices. issue here is the identification of conditions on 
the network topology and updating rules under which the process converges to correct 
beliefs and optimal actions.3 The actual learning behavior of subjects who are embedded 
in different types of networks has been investigated experimentally by Gale and Kariv 
(2003) and Mäs and Nax (2016). 

In this paper, we focus instead on the situation where the payoffs are known in advance 
or have already been learned. In particular, we assume that people know that the new 
practice or technology would be inherently better than current practice provided that a 
sufficient number of people in one’s network adopted it. The source of such network 
externalities depends very much on the situation. A social website is more valuable the 
more people who use it. A market is more valuable the more traders it attracts. A simi-
lar logic holds for communication technologies, technological standards, and many other 
innovations with increasing returns.4 

A different type of network externality arises when people are sanctioned for not con-
forming to a current norm or practice. Demographers have found, for example, that social 
norms are a significant factor in explaining the pace and pattern of contraceptive use in 
developing countries.5 In the United States, norms of medical treatment for a given med-
ical condition differ widely among states and even among counties within the same state. 
These differences appear to be the product of two types of network externality: peer ef-
fects and information sharing. Physicians tend to conform to the choices of local opinion 
leaders, and once a given practice becomes established its benefits are enhanced by local 
knowledge sharing within the group.6 

These and other sources of network externalities can be modelled as a network game 
in which individuals repeatedly play a coordination game against their neighbors. Indi-
viduals periodically update their choices according to a random arrivals process. When 
individuals update they choose an optimal response given the inherent payoff from the 
choice as modified by the current choices of their neighbors (the coordination payoff) 
plus an idiosyncratic utility shock.7 

The contribution of the current paper is to establish an upper bound on the expected 
waiting time until a given proportion of the population has adopted, where the bound is 
independent of the size and topology of the network itself. This result is similar in spirit 
to the framework of Kreindler and Young (2013, 2014), who establish an upper bound on 

3See Banerjee (1992), Bikhchandani, Hirschleifer, and Welch (1992), Ellison and Fudenberg (1993), Bala 
and Goyal (1998), Jackson (2008), Solan, Rosenberg, and Vieille (2009), Golub and Jackson (2010, 2012), 
Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), Mueller-Frank (2013), Mueller-Frank and Pai (2016), and 
Mossel, Sly, and Tamuz (2015). 

4David (1985) and  Arthur  (1994). 
5See Bongaarts and Watkins (1996), Montgomery and Casterline (1996), Kohler (1997), Kohler, Behrman, 

and Watkins (2001), and Munshi and Myaux (2006). 
6See Wennberg and Gittelsohn (1973), Phelps and Mooney (1993), Chandra and Staiger (2007), and Burke, 

Fournier, and Prasad (2007, 2010). 
7See among others Blume (1993), Jackson and Yariv (2007), Jackson (2008), Vega-Redondo (2007), and 

Golub and Jackson (2010, 2010). 
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the waiting time for all regular undirected networks and a logit model of errors. Here, 
we employ different mathematical methods to establish a more general bound on the 
waiting time that holds for all directed and undirected networks of arbitrary size, and  for  
a very broad class of error distributions. These bounds are especially useful when the 
network is difficult to observe and is constantly changing as agents form and sever links 
with one another.8 The mathematical techniques rely on recent advances in estimating 
the distribution of arbitrarily large sums of independent random variables (Feige (2006), 
Garnett (2020)). 

A common technique for the analysis of innovation diffusion in large networks is the 
mean field approach (see, e.g., Young (2009)). We use this approach in Proposition 6.1 to 
derive a tight bound on the expected waiting time in large regular networks. The mean 
field approach, however, is not suitable for proving our main result (Theorem 3.1) which  
holds even when agents are arbitrarily heterogeneous with respect to their degree and the 
influence they exert on one another. 

The plan of the paper is as follows. In the next section, we formulate the stochastic up-
dating model. In Sections 3–4, we establish a general bound on the expected waiting time 
until a target proportion of the population has adopted, starting from the state where 
everyone is playing the status quo. The bound depends on the shape of the error distribu-
tion, on the payoff gap between the innovation and the status quo, and on the magnitude 
of the coordination payoffs relative to the inherent payoffs from different choices, but it 
does not depend on the topology of the network per se. Section 5 extends the analysis to 
multiple competing innovations. In Section 6, we show how the waiting time depends on 
the topology of the network by considering two contrasting cases: regular networks and 
star networks. In particular, we show that the bound established by Kreindler and Young 
(2014) for large regular networks can be substantially improved. 

2. MODEL 

A weighted directed network with m nodes can be represented by an m × m row-
stochastic matrix P(t)  = {Pij(t)}. We interpret Pij(t) as the probability that agent i in-
teracts with j during the current period.9 Alternatively, we can view Pij(t) as the relative 
weight that i attaches to interactions with j in the current period. For expositional sim-
plicity, we shall begin by considering the situation where each agent chooses one of two 
actions: the innovation (action 1) or the status quo (action 0). In Section 5, we shall extend 
the analysis to multiple innovations with different payoffs. 

The payoff from choosing an action consists of two parts: (i) an inherent payoff that 
is independent of how many others choose it, and (ii) a coordination payoff that results 
from coordinating with others. For an interaction with a single neighbor, we represent the 
payoffs by the following 2 × 2 matrix:  

0 
1 

0 
c 

a 

1 
0 

a + c 

8There is a large literature on the dynamics of link formation in social networks. See, among others, Skyrms 
and Pemantle (2000), Jackson and Watts (2002), Goyal and Vega-Redondo (2007), and Jackson (2002). 

9We allow for the possibility that Pii(t) > 0, that is, i’s own action in the previous period increases the 
probability that he chooses it again next period. This can be interpreted as a form of inertia. 
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Here, a >  0 is the payoff difference between the innovation 1 and the status quo 0, and 
c >  0 is the coordination payoff that results from making the same choice as someone 
with whom one interacts. Note that when c < a  the innovation is a dominant strategy and 
there is a unique equilibrium whereas if c > a  there are three equilibria: two pure and 
one mixed. The subsequent analysis holds in either case but we shall typically assume that 
there are multiple equilibria. 

The state of the process at the end of each period t is an m-vector s(t) ∈ {0 1}m, where  
si(t) = 1 if  agent  i chooses the innovation at t, and  si(t) = 0 otherwise. The updating 
process works as follows. Time is continuous and the initial state is s(0) = (0 0). We  
suppose that every agent receives updating opportunities according to a Poisson arrival 
process with rate one per time period, where these processes are independent among 
the individuals. Suppose that i receives such an opportunity at time t. Given the current 
network structure P = P(t)  and the current state s(t), let 

xi(t) = Pijsj(t)� 
j∈[m] 

Thus i’s expected payoff from interacting with a randomly drawn neighbor (drawn ac-
cording the distribution P(t)) is  ui(1) = a + cxi(t) if he chooses action 1, and ui(0) = 
c(1 − xi(t)) if he chooses action 0. 

Let us assume that the difference between the payoff from 1 and the payoff from 0 
is perturbed by a random payoff shock i(t) with c.d.f. F(  ). For ease of interpretation, 
we shall assume that F has a density f (  )  and that all shocks are i.i.d. among agents 
and among time periods. If the perturbed payoff difference is positive, agent i chooses 
action 1; otherwise he chooses action 0. This class of perturbed best reply dynamics is 
very general and includes such standard dynamics as the logit response, where the payoff 
shocks are extreme-valued distributed. Experimental evidence on learning in networks 
shows that subjects do deviate from best reply with a probability that is decreasing in the 
resulting payoff loss, which is consistent with this class of models (Maes and Nax (2016)). 

Conditional on receiving an updating opportunity at time t, the probability that i 
chooses 1 is 

P si(t) = 1|xi(t) = P a + i(t) + cxi(t) > c 1 − xi(t) 
= P i(t) > c − a − 2cxi(t) = 1 − F c − a − 2cxi(t) (1) 

We shall call this the response function and write 

r xi(t) = 1 − F c − a − 2cxi(t) (2) 

Note that r(·) is monotone, nondecreasing, continuous, and 0 ≤ r(0) ≤ r(1) ≤ 1. (Con-
tinuity follows from our assumption that F has a density.) In what follows, we shall as-
sume that r(0) >  0, that is, F(c  − a) < 1. This amounts to saying that even when none of 
i’s neighbors has adopted the innovation, there is a positive probability that i will switch 
from 0 to 1 due to receiving a sufficiently large payoff shock. 

Figure 1 shows an example of a response function based on the normal distribution. 
Although we have derived the response function from a specific shock distribution F , in  

what follows we can view the response function as a primitive of the model: r(x) specifies 
the probability that an agent chooses action 1 whenever a (weighted) proportion x of 
the agent’s neighbors choose action 1. Note that the same response function holds for all 
agents and is independent of the particular network through which they interact. 
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FIGURE 1.—A response function based on the normal distribution. 

Given a response function r(x), define  the supporting line L(x) to be the unique line 
that solves the following maximization problem: 

max L(0) 

subject to L(1) = r(1) and L(x) ≤ r(x) for x ∈ [0 1] 

The slope of L will be denoted by 1 − α := L(1) − L(0) <  1, and its fixed point will be 
L(0) 10denoted by p = 
α 

, as shown in Figure 2. 
In what follows, we shall focus on the case L(0) >  0. The conditions under which this 

assumption holds are discussed in Section 3.1. In particular, it fails to hold if the response 
function is too “bowed,” and crosses the 45◦ line at a low value of x as shown in Figure 3. 
In this case, the adoption process can become trapped in a low-level equilibrium for a 
very long time; indeed the expected waiting time until a low proportion q of the agents 
have adopted is unbounded in the network size for some classes of networks, as we show 
in Section 6.3. 

FIGURE 2.—Supporting line L(x) (dashed) and response function r(x) (solid). 

10We note that the fixed point p of the supporting line is always smaller than the fixed point of the response 
function. 
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FIGURE 3.—Response function with L(0) <  0, and a low value q such that r(q) < q. 

3. A GENERAL RESULT ON WAITING TIMES 

The question we wish to address is the following: starting from the state s(0) = 
(0 0) and given a target proportion q ∈ [0 1], how long does it take in expectation to 
reach a state in which at least qm agents have adopted the innovation? More precisely, 
we wish to find an upper bound on the expected waiting time defined as follows: 

1 
Tq F� P(t) = E min t : si(t) ≥ q� s(0) = (0 0) 

m 
i∈[m] 

We can now state our main result. 

THEOREM 3.1: Let F be an error distribution function with density f . Suppose that the 
supporting line L(x) satisfies L(0) >  0, has slope 1 − α, fixed point p, and q < p. Then for 
every dynamic network P(t)  we have 

7 2 p 7 2 p
Tq F� P(t) ≤ 1 + ln = 1 + ln (3)

pα p − q L(0) p − q 

The crucial point is that the right-hand side does not depend on the network structure 
or on how rapidly it is evolving. 

As we mentioned earlier, the closest result in the literature is due to Kreindler and 
Young (2014). Using martingale methods, they derive the following upper bound on the 
expected waiting time until at least qm agents have adopted and P(t)  is any regular, 
undirected network, namely11 

1 
Tq F� P(t) ≤ (4)

α(p − q) 

11To illustrate their approach, let G be a complete undirected network. Given q < p, let  μ = L(q) − q. 
Assuming that L(0) >  0, we have L(x)−x > μ  ≥ 0, for all x ∈ [0 �q ]. Given a proportion x(t) ≤ q, the expected 
increase next period is E[x(t + 1) − x(t)|x(t)] ≥ μ>  0. It follows that the expected waiting time until x(t) ≥ q 
is at most 1 . Since  L(x) = (1 − α)x + αp, μ = α(p − q), and hence T ≤ 1 . In fact, the same bound holds 

μ α(p−q) 
1 0 42 for all regular networks; moreover, if q = the bound can be improved to T ≤ (Kreindler and Young 2 α(p−q) 

(2014), Lemma 2). 
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The same bound holds for irregular networks provided that the target q is expressed 
as the degree-weighted proportion of adopting agents. This criterion is different from 
insisting that a given proportion of agents adopt. In a star network, for example, a degree-
weighted majority (q = 1

2 ) is achieved when just the central node has adopted. A compar-
ison of (3) and  (4) shows that the latter is a better (i.e., lower) bound unless q is very close 
to p. Indeed (4) is less than (3) provided that 

p p
> 7 2 1 + ln 

p − q p − q 

which holds whenever q <  0 969p. However, our bound is much more general because it 
holds for directed and undirected networks of any size and degree distribution. In Sec-

ption 6.1, we show that for large regular networks the waiting time is precisely 1 ln( ),
α p−q 

which is considerably tighter than the Kreindler–Young bound. Note, however, that for a 
pfixed p our general bound (3) is just a linear transformation of the special bound 1 ln( )

α p−q 

which is tight for regular networks. This result shows that our bound is of the right order 
with respect to q for a given p. 

3.1. Discussion of the Condition L(0) >  0 

A key assumption underlying Theorem 3.1 is that the tangent line L(x) must have a 
strictly positive intercept L(0). If this is not the case, the theorem does not apply. When 
will L(0) be negative? The answer is when the payoff advantage a is small relative to 
the coordination payoff c, and/or the variance of the distribution F is small. Recall that 
r(0) = 1 −F(c  − a) and r(1) = 1 −F(−a − c). For ease of exposition suppose also that f 
is symmetric about 0, so that the inflection point of F occurs at 0. Then r(0) = F(a  − c) 
and r(1) = F(a+c). Increasing  a to a+b shifts the origin as shown in Figure 4. When  b is 
large enough, the intercept of the supporting line become positive (see Figure 4, bottom 
panel). 

The second case is illustrated in Figure 5. Rescaling the standard deviation by an 
amount σ is equivalent to rescaling the horizontal axis by 

σ 
1 , which leads to a positive 

intercept if σ is large enough, as shown in the bottom panel of Figure 5. 
More generally, given a response function r(x) we have 

r(x) − xr(1)
L(0) = inf (5) 

x∈[0 1) 1 − x 

Therefore, L(0) >  0 iff  r(x) > xr(1) for every x ∈ [0 1). If  r is induced by a c.d.f. F , 
then r(x) = 1 −F(c  − a − 2cx). In this case, the condition becomes 1 −F(c  − a − 2cx) > 
x(1 − F(−a − c)) for every x ∈ [0 1).12 

3.2. Proof Sketch of Theorem 3.1 

Conditional on receiving a revision opportunity, an agent chooses action 1 with proba-
bility r(x), where  x is the weighted average proportion of his neighbors who are currently 

12In case a ≥ c and the density f is symmetric and unimodal, the response function is concave, and hence 
L(0) >  0. 

https://�[01).If
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FIGURE 4.—For a given c.d.f. F(  ), increasing the payoff advantage of the innovation by an amount b 
increases the intercept L(0). Here, F(a  + b − c) = r(0) and F(a  + b + c) = r(1). 

FIGURE 5.—Increasing the standard deviation of the error distribution by a factor σ increases the intercept 
L(0). Here, F( a− 

σ
c ) = r(0) and F( a+ 

σ
c ) = r(1). 
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choosing 1. The idea is to analyze the linear dynamic where an agent that faces the pro-
portion x updates his action to 1 with probability L(x) instead of r(x). Since  L(x) ≤ r(x), 
for every time t we have 

r xi(t) ≥ pα + (1 − α) Pij(t)sj(t)� 
j 

In particular, the expected time it takes for the linear dynamic to reach the threshold q is 
at least as long as the expected time under the actual dynamic. 

An advantage of analyzing the linear dynamic is that it can be viewed as an imitation 
dynamic. Namely, at every revision opportunity, the revising agent i acts as follows: with 
probability α he chooses his action according to a coin toss with probability of success p. 
With probability (1 −α), he imitates a neighbor that is drawn according to the distribution 
Pi(t).13 Thus the probability that i chooses 1 is 

αp + (1 − α)xi(t) =L xi(t) (6) 

In what follows, it will be notationally convenient to analyze the corresponding discrete 
time linear dynamic such that at each time t one agent is chosen uniformly at random to 
update his action. (This discrete time dynamic is m times slower than the corresponding 
continuous time dynamic, where m is the number of agents.) 

A history of the imitation dynamic up to time T induces an imitation forest, which  is  
defined as follows. Each vertex of the imitation forest is a pair (i t) ∈ [m] × [T ]. There  is  
an edge from (i t) to (j t − 1) if at time t agent i copied agent’s j action at time t − 1. In 
addition, there is an edge from (i t) to (i t − 1) if i was not chosen to update at time t. 
This construction is illustrated in Figure 6. 

The imitation forest admits two types of roots. A coin-toss root is a vertex (i t) such 
that i tossed a coin at time t. An  origin root is a vertex (i 0) for i ∈ [m]. This induces a 
partition of the population at time t into two groups. A coin-toss agent is one that belongs 
to a tree with a coin-toss root. Similarly, an origin agent is one that belongs to a tree with 
an origin root. 

The proof of Theorem 3.1 consists of two key steps. 

Step 1. First, we show that the proportion of coin-toss agents increases at a rate that is 
bounded below by a simple formula that is independent of the network. This provides an 
explicit formula for the expected number of coin toss agents at each time t. We then apply 
Markov’s inequality to show that with high probability the proportion of coin-toss agents 
is large at all sufficiently large times t. 

Step 2. At each point in time, the proportion of agents that play 1 is a weighted av-
erage of a sequence of 0–1 random variables that correspond to prior coin tosses. Since 
we allow the network to evolve over time, analyzing these weights is extremely difficult. 
Nevertheless, we are able to overcome this hurdle by the following lemma, which follows 
readily from Feige’s inequality (Feige (2006)) and its subsequent improvement by Garnett 
(2020). (See the Appendix for further details).14 

13This set-up bears some resemblance to the “voter model” in which a randomly drawn agent imitates a 
randomly drawn neighbor Liggett (1999). In our model, by contrast, imitation only occurs with probability 
1 − α; otherwise the agent chooses action 1 with probability p. This leads to a fully ergodic process whereas 
the voter model eventually absorbs into the all-0 or all-1 state. 

14Billingsley ((2008), Theorem 9.2) has a different bound that depends on higher moments of the Bernoulli 
random variable, but the bound is not as good for values of p close to 1. See Appendix A for further details. 
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1 

2 

3 

4 

5 

Agents 
Origin agents 

Coin-toss agents 

0 1 2 3 4 5 6 7 
time 

FIGURE 6.—The imitation forest of the following history. At time t = 1, agent 3 imitates agent 2. At time 
t = 2,  agent 4 tosses a coin. At time  t = 3, agent 2 imitates agent 4. At time t = 4, agent 2 imitates agent 1. At 
time t = 5, agent 3 imitates agent 2. At time t = 6,  agent 1 tosses a coin. At time  t = 7, agent 5 imitates agent 
4. Square nodes are points where an agent tossed a coin. 

LEMMA 1: Let c1 �����c k be i.i.d. Bernoulli(p) random variables. For all k and every 
sequence of weights  1 � k ≥ 0, 

k 

P  ici ≥  i p ≥ 0 14p� 
i=1 i 

This corollary allows us to place a nonzero lower bound on the probability that a given 
proportion of the agents are choosing action 1 by time t, which leads to an upper bound 
on the expected waiting time to reach a given target proportion q for any interaction 
structure. 

4. PROOF OF THEOREM 3.1 

As was mentioned in the proof sketch (Section 3.2), we shall analyze the discrete-time 
imitation dynamic in which one randomly drawn agent updates per period. Since each 
agent’s Poisson clock has rate 1, the discrete process is m times slower then the actual 
continuous process. We shall prove that for the discrete dynamic the expected waiting 
time satisfies the bound 

7 2m p
Tq F� P(t) ≤ 1 + ln 

pα p − q 

First, we analyze the diffusion of coin-toss agents. Consider the following process: the 
initial state is y(0) = (yi(0))i∈[m] = (0 0), and in each period one player i ∈ [m] is 
drawn at random to update. With probability α, yi(t) = 1, and with probability 1 − α, 
yi(t) = yj(t − 1), where  j is drawn according to Pi(t). 

LEMMA 2: The probability that an agent is coin-toss at time t is independent of the network 
structure and is equal to p(t) = P(yi(t) = 1) = 1 − (1 − 

m
α )t . 
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PROOF: This claim is established by induction on t. For  t = 0, the claim is trivial. As-
sume that the equality holds for t. Than it holds  for  t + 1, because 

1 1
P yi(t + 1) = 1 = α + (1 − α)p(t) + 1 − p(t) 

m m 

α α = + 1 − p(t) 
m m 

α α α
t 

= + 1 − 1 − 1 − 
m m m 

t+1
α = 1 − 1 − = p(t + 1)� 
m Q.E.D. 

PROOF OF THEOREM 3.1: Let  T̃ 
q be the first time at which at least qm agents have 

adopted. We seek to bound E[T̃ q] =  Tq(F P(t)) from above independently of P(t). 
Lemma 2 shows that the expected number of coin-toss agents at time t is given by 
E[ yi(t)] =  m − m(1 − α )t . Let us set a threshold of qm for the number of coin-toss i m p 

agents. We use Markov’s inequality to bound the probability that the number of coin-toss 
agents is less than 

p

q m, namely, 

P yi(t) < 
q
m = P 1 − yi(t) > 1 − q m 

p p
i i 

E 1 − yi(t) α t 

1 − 
m≤ i = q (7) 

q 1 −1 − m pp 

At each point in time t, let  R(t) = {r1(t)� rk(t)(t)}, be the relevant coin-toss roots 
at t, and denote by c1(t)� ck(t)(t) ∈ {0 1} their realized actions. Note that for any 
fixed t, c1(t)� ck(t)(t) are i.i.d. Bernoulli(p) random variables. For notational con-
venience, we let c0 = 0. Let ϕ(i t) be the function that associates each coin-toss agent 
with the corresponding root. Formally, if i is a coin-toss agent at time t and (i t) be-
longs to a tree with root rj(t) then ϕ(i t) = j. If  i is an origin agent at time t, we let  
ϕ(i t) = 0. Finally, for every j ∈ [k(t)] we let  j(t) = |{i : ϕ(i t) = j}| be the num-
ber of appearances of the coin-toss root j, with the corresponding action cj(t). Note  
that i∈[m] yi(t) = j∈[k(t)]  j(t). The state of the dynamic s(t) can be expressed as 
si(t) = cϕ(i t), hence si(t) =  j(t)cj(t).i j∈[k(t)]

In order to bound T̃ q from above, we define the stopping time 

τ := min t : yi(t) > 
q
m 

p
i 

and the event 

E := ω :  j τ(ω) cj τ(ω) ≥  j τ(ω) p 
j j 
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⎧ ⎪ ⎪ ∞ ∞ ⎪ ⎨ 
E[τ] =  P(τ > t) ≤ min 1 ⎪ ⎪t=0 t=0 ⎪ ⎩ p ⎭ 

m 

1 − α 

m 

t 

1 − q 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ 
≤ 

ln 1 − q 

p 

ln 1 − α 
+ 

∞ 

t=0 

1 − α 

m 

t 

Note that ω ∈ E implies that T̃ q(ω) ≤ τ(ω). Since  τ is measurable with respect to the 
imitation process and {c1(τ)� ck(τ)(τ)} are i.i.d. Bernoulli(p) random variables condi-
tioned on the imitation process, Lemma 1 implies that 

P(E |τ) ≥ 0 14p� (8) 

We next show that 

m p
E[τ] ≤  1 + ln (9)

α p − q 

Indeed, 

p
ln 

p − q m m p m = −  + ≤ ln + 
α α α p − q α

ln 1 − 
m 

The first inequality follows from (7), and the last inequality from the inequality ln(1+x) ≤ 
x. 

By restarting a new imitation process after τ, we can define a sequence of stopping 
times τ = τ1 < τ2 < · · · , and corresponding sequence of events E1 E2 in the above 
fashion. Namely, τi+1 is the first time at which there are at least 

p

q m coin-toss agents in 
the imitation process that starts at time τi, and  Ei+1 is the event that the corresponding 
weighted sum of coin-toss realizations reaches or exceeds its expectation. Letting i∗ be 
the first success of one of the events Ei , we have  T̃ 

q ≤ τi∗ . Since the law of (τi+1 − τi Ei+1) 
(conditioned on the history up to time τi) obeys the same conditions as those of (τ E), 
the uniform bounds (8) and  (9) apply also to the pairs (τi+1 − τi Ei+1), i = 1 2 con-
ditioned on the history up to time τi . Therefore, 

1 m p 7 2m p
Tq F� P(t) = E[T̃ q] ≤ E[τi∗ ] ≤  1 + ln = 1 + ln

0 14p α p − q pα p − q 

Recalling that the actual adoption dynamic with i.i.d. Poisson updating is m times faster 
than the discrete time dynamic, the statement of Theorem 3.1 follows. Q.E.D. 

5. MULTIPLE TECHNOLOGIES 

So far we have analyzed the case where there are two competing technologies: the 
status quo and the innovation. In practice, multiple innovations may be competing for 
acceptance at any given point in time. In this section, we explain how our results can be 
extended to this more general case. 
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Consider the case where the action set A = {1 �k } consists of k alternatives, includ-
ing the status quo. We shall assume that the payoff matrix U has the following form: 

U = 

1 2 · · ·  k 

1 a1 + c a1 · · ·  a1 

2 a2 a2 + c · · ·  a2 

k ak ak · · ·  ak + c 

Here, ai is the utility from choosing technology i and c is the utility from coordination, 
which for simplicity we assume is the same for all technologies. (The model can also ac-
commodate heterogeneous coordination payoffs but the notation is more cumbersome.) 
We shall assume, without loss of generality, that a1 > a2 > · · ·> ak. Let  j be the idiosyn-
cratic payoff shock from playing alternative j. We assume that the shocks (� j)j=1 �k are 
nonatomic, i.i.d., and have mean zero. 

Given a distribution x = (x1 �����x k) ∈ α(A), let  ri(x) be the probability that technol-
ogy i is the best-reply alternative for an agent facing this distribution: 

ri(x) = P (Ux)i ≥ (Ux)j for all j ∈A 

Let r(x) = (r1(x)  �r k(x)) denote the multidimensional response function. 
For every value x ∈ [0 1], let  ρ(x) be the minimum probability that an agent adopts 

technology 1 when the proportion x of his neighbors have adopted technology 1: 

ρ(x) = min r1(x)� (10) 
x∈αk s.t. x1 =x 

We replace the function r of the two technologies case with the function ρ. We now ap-
proximate ρ using a linear function L as described above. Note that for every vector of 
proportions x, 

r1(x) ≥ ρ(x1) ≥L(x1)� 

We can therefore use Theorem 3.1 to approximate the expected waiting time until a pro-
portion q < p  have adopted the superior technology 1. 

Deriving the function ρ explicitly from the multidimensional response function r is not 
always straightforward. However, for a wide class of shock distributions used in empirical 
applications, ρ can easily be derived from r, as the following result shows. 

LEMMA 3: If the payoff shock distribution F is log concave, then for every x ∈ [0 1], 
ρ(x) = r1(x� 1 − x� 0 0)� 

In other words, if F is log concave, then the technology distribution that minimizes the 
switching probability to technology 1 across all distributions with x1 = x occurs when the 
proportion playing technology 2 equals 1 − x.15 

15For example, the extreme value distribution, which generates the logit response, is log concave, and so is 
the normal distribution, which generates the probit response. In contrast, the Cauchy and the Pareto distribu-
tions are not log concave. 
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583 THE SPEED OF INNOVATION DIFFUSION 

Before providing the proof, note that 

Ux = (a1 + cx1 �a 2 + cx2 �����a n + cxn)� 

PROOF: Consider the case where the realized payoff shock for technology 1 equals ε1. 
In this case the payoff from using technology 1 is u1 = a1 + cx +ε1. It is sufficient to show 
that across all x ∈ αk with x1 = x, the vector (x� 1 − x� 0 0) minimizes the probability 

P (Ux)j + j ≤ u1 for j = 2 �k (11) 

Note that the probability in (11) equals  

F(u1 − a2 − cx2) · · ·F(u1 − ak − cxk)� (12) 

We wish to find x ∈ αk that minimizes (12) subject to x1 = x. It follows from the log 
concavity of F that the product in (12) is also log concave. Since the domain, {x ∈ αk : 
x1 = x}, is convex and compact it follows that the minimum is attained at an extreme 
point. 

It remains to show that the extreme point at which the minimum is attained is (x� 1 − 
x� 0 0). We contend that the log concavity of F implies that for every j ∈A \ {1 2}
the function 

g(z) = ln F(u1 − aj + z) − ln F(u1 − a2 + z) 

is decreasing in z. To see this, note that u1 − aj > u1 − a2 for all j ≥ 3. Since the function 
h(z) = ln(F(z)) is concave, the slope 

ln F(u1 − aj + z) − ln F(u1 − a2 + z) 

a2 − aj 

is decreasing in z. In particular, g(0) ≤ g(−(1 − x)c). This implies that for every j ∈ 
A \ {1 2}, 

F u1 − a2 − (1 − x)c F(u1 − aj) ≤ F(u1 − a2)F u1 − aj − (1 − x)c 

Therefore, for every j ∈A \ {1 2} 
F u1 − a2 − (1 − x)c F(u1 − a3) · · ·F(u1 − ak) 

≤ F(u1 − a2) · · ·F u1 − aj − (1 − x)c · · ·F(u1 − ak)� 

This concludes the proof of the lemma. Q.E.D. 

6. THE ROLE OF THE  NETWORK  

Our main result shows that, under certain conditions on the payoff shock distribution, 
the expected waiting time until the innovation is adopted by a large fraction of the popu-
lation is uniformly bounded for all networks of arbitrary size. Moreover, the bound remains 
valid even when the network varies over time. In this section, we discuss the role that the 
network topology plays in the diffusion process when the network remains fixed. We focus 
on simple classes of networks such as regular networks and star networks and demonstrate 
network-dependent behavior in these cases. 
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We address three closely related questions. First, for regular networks and star net-
works, we derive bounds on the speed of convergence that improve on the bound in The-
orem 3.1. Furthermore, we show that for star networks, rapid convergence holds even for 
values of q that are greater than the fixed point p. 

Second, we study the question of persistence. Once the adoption process reaches a 
high proportion q of adopters, how likely is it that the proportion remains high for an 
extended period of time? As we shall see, the answer depends on both the size of the 
network and its topological structure. When the network is small, it only takes a handful 
of agents to revert to playing action 0 for the proportion to drop substantially below q. 
Indeed, reversion for any particular agent will occur with probability at least 1 − r(1), 
which will typically be positive. Therefore, for small networks we cannot expect that a high 
proportion of adopters will be maintained for very long. Even if the network is large, the 
degree of persistence is sensitive to the network topology. We shall show in particular that 
for large regular networks persistence is high, whereas for large star networks persistence 
is low (see Section 6.2). 

Finally we ask, given a response function r, for which values of q is the expected waiting 
time unbounded? The answer depends on the topology of the network. In star networks, 
the expected waiting time to reach a target q <  r(1) is bounded above for all monotone 
increasing response functions (Proposition 6.2). In contrast, for regular networks, the ex-
pected waiting time to reach a target q <  r(q)  increases exponentially in the degree of the 
network (Proposition 6.5). 

6.1. Convergence Rates for Specific Networks 

We begin by providing an exact formula for the convergence time of the linear dynamic 
in large regular networks. An undirected network G is regular if all agents have the same 
degree d ≥ 0. As before, for every q ∈ [0 1], we let  Tq(G) be the expected waiting time 
until at least the proportion q of the agents have adopted. 

PROPOSITION 6.1: Let r(x) = L(x) = (1 − α)x + αp be a linear dynamic and let 
q ∈ [0 �p). For every m ≥ 1, let Rm be an undirected, regular network with m nodes. Then 

plimm→∞ Tq(Rm) = 1 ln( ).
α p−q 

PROOF: We rely on stochastic approximation results due to Benaim (1998) and Roth 
and Sandholm (2013). Let {xm�t } be the discrete time process representing the proportion 
of adopters in Rm at time t. Let  Ft be the sigma algebra that is generated by the sequence 
of actions of the agents in Rm up to and including time t. For any proportion x ∈ [0 1], let 
V (x)  = α(p − x). We contend that 

V (xm�t)
E(xm�t+1 − xm�t |Ft) = 

m 

In particular, the expected change in next period’s proportion depends only on the current 
proportion and not on the network configuration. 

To see this, consider the case where the current proportion xm�t = x and an agent is se-
lected uniformly at random to revise his strategy choice. With probability α, the selected 
agent chooses action 1 with conditional probability p, and chooses action 0 with condi-
tional probability 1−p. With probability 1−α, the agent imitates the action of a randomly 
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chosen neighbor. Let d(t) be the number of edges i�j where the actions of agents i and j 
are distinct. We can write 

Similarly, 

P 
1 

xm�t+1 − xm�t = 
m 

Ft 
d(t) = (1 − xm�t)αp + (1 − α)
2|E| (13) 

1
P xm�t+1 − xm�t = −  

m 

It follows from (13) and  (14) that 

Ft 
d(t) = αxm�t(1 −p) + (1 − α)
2|E| (14) 

P 
E(xm�t+1 − xm�t |Ft) = 

1 
xm�t+1 − xm�t = |Ft 

m
− P 

m 

1 
xm�t+1 − xm�t = −  |Ft 

m

V (xm�t) = (15) 
m 

Hence for any m and t we can write 

Um�t+1 V (xm�t) 
xm�t+1 − xm�t − = (16) 

m m 

where Um�t+1 =m(xm�t+1 −xm�t)−V (xm�t) is a bounded Ft+1-measurable random variable. 
Furthermore, equations (15) and  (16) imply that E(Um�t+1|Ft) = 0. Therefore, the process 
{(Um�t)t}m satisfies the conditions of Proposition 2.3 in Roth and Sandholm (2013) and  we  
can use Theorem 3.2 in Roth and Sandholm (2013) to approximate our process {(xm�t)t}m 

by a differential equation as illustrated below. 
Let {xm(s)}s≥0 be the continuous-time process defined by 

xm(s) = xm� ms 

For any x ∈ [0 1], let  zx be the solution of the following differential equation: 

ż =L(z) − z = V (z)  z(0) = x� 

Theorem 3.2 in Roth and Sandholm (2013) implies that, for every δ >  0, x ∈ [0 1] and 
T >  0, 

lim P sup xm(s + t) − zx(s) ≥ δ xm(t) = x = 0 
m→∞ s∈[0 �T ] 

where the limit holds uniformly in x. Note that z0(s) = p(1 − exp(−αs)) and for s = 
1 ln( p ) we have z0(s ) = q. In addition, for every x ∈ [0 1] and every �> 0 we  have  
α p−q 

zx(s + �) > q. Therefore, for every �> 0, x ∈ [0 1] and t >  0, limm→∞ P(xm(s + t + �) < 
q|xm(t) = x) = 0, and hence 

1 p
lim Tq(Rm) = ln 
m→∞ α p − q 

as was to be shown. Q.E.D. 
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Next, we turn to estimating the expected convergence time for large star networks. Let 
Sm consist of m vertices with central vertex 1 and edges {1 �j } for all j ∈ [m] such that j >  1. 
We shall show that for every monotone increasing response function, rapid convergence 
can hold for values q > p  beyond the fixed point. 

Let Tq(Sm) be the expected waiting time to reach at least qm adopters in the star net-
work with m agents. 

PROPOSITION 6.2: Consider any star network Sm and an adoption dynamic that is gov-
erned by a monotone increasing response function r : [0 1] → [0 1]. For every q <  r(1), 

r(1) 1 r(1)
lim sup Tq(Sm) ≤ + ln 
m→∞ r(1) − q r(0) r(1) − q 

PROOF: Consider the following event: agent 1 updates his action to 1 and thereafter 
r(

q 
1)m agents receive a revision opportunity. We claim that the expected waiting time for 

this event is bounded above by 

1 r(1)+ ln 
r(0) r(1) − q 

Indeed, 
r( 

1
0) bounds the expected waiting time for agent 1 to switch to action 1, and 

mqln( r(1) ) bounds the expected waiting time for at least agents to have a revision op-
r(1)−q r(1) 

portunity (this is an instance of the coupon collector problem; see, e.g., Section 3.6 in 
Motwani and Raghavan (1995)). Note that with probability r(

r( 
1) 

1 
− 
)

q agent 1 is not part of 
the fraction 

r(

q 
1) of agents who receive a revision opportunity. 

Now consider the following event: agent 1 updates his action to 1 and thereafter at least 
r(

qm 
1) of the agents, not including 1, receive a revision opportunity. By the preceding, the 

expected waiting time for this event is at most 

r(1) 1 r(1)+ ln 
r(1) − q r(0) r(1) − q 

Each of the 
r(

qm 
1) agents who receives an updating opportunity chooses action 1 with proba-

bility r(1) because during their revision time agent 1 is playing action 1. Therefore, condi-
tional on this event, the probability of reaching a threshold of q − ε adopters approaches 
one as m goes to infinity, for every �> 0. This establishes Proposition 6.2. Q.E.D. 

We note, in particular, that for a linear dynamic on star networks, the determinant of 
the fast adoption regime is L(1) and not the fixed point p<L(1). Hence even when q is 
close to p, the expected waiting time to reach at least qm adopters is much faster in large 
star networks than in large regular networks. 

6.2. The Persistence of Innovation 

In this section, we show that innovation is persistent for large regular networks, whereas 
it is not persistent for star networks. 

Recall that p denotes the fixed point of the linear dynamic. Fix q �q ∈ (0 �p)  with q < q  
and consider the expected waiting time for the population to reach a state with at most 
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q m adopters from a state with at least qm adopters. Say that innovation is persistent for 
a class of networks if this expected waiting time grows to infinity with the population size 
m for any such pair q�q . 

Formally given a pair q < q <p  and a network G, let  Iq� q (G) be the minimal expected 
waiting time to reach a state in which the proportion of adopters is q or less, where the 
minimum is taken across all initial conditions with proportion at least q. We next show  
that innovation is persistent for the class of regular networks. 

PROPOSITION 6.3: Let Rm be a regular network with m agents. For every 0 < q  < q < p, 
mthere exists a constant c = c(q q ) >  1 (independent of m) such that Iq� q (Rm �) ≥ c . 

It follows that the expected waiting time until the fraction of adopters is lower than q , 
starting from a state where the fraction is at least q > q  , grows exponentially with the 
number of agents m. (The proof is contained in the Appendix). In contrast, for the class 
of star networks, persistence fails and the adoption dynamic escapes from any targeted 
proportion relatively quickly, as the following proposition shows. 

PROPOSITION 6.4: Let Sm be a star network with m agents and let r(x) be a response 
function with r(1) <  1 and r(0) <  12 . There exists a constant c >  0 (independent of m) such 
that I1 1 (Sm) ≤ c. 

2 

Thus, even if we start in the state where all agents have adopted, the expected waiting 
time to reach a state with a proportion of adopters below 1

2 is bounded above. 

3−2r(0)PROOF: The proof is similar to the the proof of Proposition 6.2. Let  γ = . Note  4(1−r(0)) 
that since r(0) <  1/2 we  have  γ− 

γ 
1/2 > r(0) and γ <  1. Consider the following event: agent 1 

updates his action to 0 and thereafter a fraction γ of agents receive a revision opportunity. 
As above, the expected waiting time for this event is bounded above by 

1 1 + ln
1 − r(1) 1 − γ 

Note that with probability 1 − γ agent 1 is not part of the fraction 
r(

q 
1) of agents who 

receive a revision opportunity. 
Therefore, the expected waiting time of the following event: agent 1 updates his action 

to 0 and thereafter a fraction γ of the agents, which does not include agent 1, receive a 
revision opportunity is 

1 
(1 − γ) 

1 + ln
1 − r(1) 

1 
1 − γ 

Each of the γm agents who receives an updating opportunity chooses action 1 with prob-
ability r(0) because during their revision time agent 1 is playing action 0. By the choice 
of γ, there exists a positive probability w >  0  that at most  γ− 

γ 
1/2 > r(0) of the γm agents 

have chosen action 1, independently of m. If this holds, the number of adopters is at most 
γ γ−1/2 

γ 
+ (1 − γ) ≤ 1/2. 

This shows that 
1 1 1 

I1 1 ≤ + ln 
2 w(1 − γ) 1 − r(1) 1 − γ 

which establishes Proposition 6.4. Q.E.D. 
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6.3. Slow Convergence 

A crucial assumption for our main result (Theorem 3.1) is that the supporting line L(x) 
of the response function r(x) must intersect the y-axis at a positive value. If this is not the 
case, the corresponding imitation dynamic is not well-defined. In this section, we ask, 
given a monotone increasing response function r(·), when does fast convergence fail to 
hold for a given target q? A natural candidate would be any value of q such that r(q) < q, 
for then the adoption process gets caught in a bottleneck. In particular, this situation 
arises when r is convex-concave and is too sharply bowed in the convex part (see Figure 3 
for an example). Proposition 6.2 shows, however, that this is not a sufficient condition: 
star networks exhibit fast convergence for any value q <  r(1). In this section, we show 
that the condition r(q) < q does lead to slow convergence for large regular networks; in 
particular, the expected waiting time to reach such a target q grows exponentially with the 
degree of the network. 

PROPOSITION 6.5: Let Rm be a sequence of undirected dm-regular networks, and let the 
response function be monotone increasing with r(q) < q. There exists a constant c >  0 (inde-

) ≥ ecdmpendent of m) such that Tq(Rm m 
. 

PROOF IDEA: Instead of considering the first time τ when the fraction of adopting 
agents reaches a threshold q, we study the first time τ̃ where there exists an agent in 
the network who has a fraction of at least q adopting neighbors. (The regularity of the 
network implies that τ̃ ≤ τ.) 

We rely on the fact that prior to time τ̃, all updating agents in all periods revise their 
action to 1 with probability at most r(q). (This follows from the monotonicity of r.) From 
the perspective of a single player, his neighbors update their actions in an i.i.d. manner 
with probability of success c ≤ r(q). We can therefore deduce (using Lemma 1 in Benaim 
and Weibull (2003)) that the expected waiting time ro reach a fraction q of adopters in a 
dm-regular network with m agents is bounded by e

cd

m

m for some constant c >  0. Q.E.D. 

Proposition 6.5 does not hold for regular networks of fixed degree d. To see this, note 
mthat for every constant d, the union of 
d+1 cliques of size d + 1 has the fast-convergence 

property. Since the mixing time T of a single clique of size d + 1 is constant, after time T 
we will obtain a large number of cliques whose configurations are distributed according 
to the invariant distribution, and this fraction will be very close to the expected fraction 
under the invariant distribution (i.e., a high fraction of adopters). 

7. CONCLUSION 

In this paper, we have established an upper bound on the expected waiting time until 
an innovation is adopted by a large fraction of a given population. The formula for the 
bound is universal in the sense that it holds for all directed and undirected networks of 
arbitrary size and degree distribution. Moreover, the bound holds when the network itself 
is evolving over time. Previous results on this topic rely on the existence of a potential 
function and hold only for regular networks with symmetric interactions, as in Kreindler 
and Young (2014). We have also established waiting time bounds for the diffusion of 
multiple innovations instead of just a single innovation, which is the usual case treated in 
the literature. 

Our bound holds for a wide variety of perturbed best response processes where agents 
choose optimal responses under random payoff shocks. Particular cases include errors 
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that are normally or extreme-value distributed, for example. These models are consistent 
with empirical evidence on subjects’ learning behavior in network games (Mäs and Nax 
(2016)). The formula for the bound is expressed in terms of the slope and intercept of 
a suitably chosen ‘linearization’ of the perturbed response process. In particular, the ex-
pected waiting time to reach a given proportion of adopters is inversely proportional to 
the initial amount of ‘noise’ in the linear process when no one has yet adopted (L(0) in 
expression (3)). 

Given more information on the topological structure of the network, one can obtain 
significantly tighter bounds on the expected waiting time, as we showed in Section 6. The  
usefulness of our main result arises from the fact that in practice it is very difficult to 
observe the topology of interactions and the degree of influence that different actors exert 
on one another. By contrast, it may be possible to estimate the response probabilities of 
agents conditional on the choices of their neighbors using longitudinal data. From this, 
one can derive the linearized process and the upper bound on the expected waiting time 
to reach a given adoption threshold. 

APPENDIX A: FEIGE’S INEQUALITY AND LEMMA 1 

The following theorem is due to Feige (2006). 

THEOREM A.1: Let X1 �����X n be nonnegative independent random variables, with 
E[Xi] ≤ 1 ∀i, and let X = n 

1 Xi . Then for any n,i= 

P X <E[X] + 1 ≥ γ >  0 

for some γ ≥ 1/13. 

Garnett (2020) improved upon the constant γ and show that γ ≥ 0 14. We next prove 
Lemma 1 from the above theorem.16 

PROOF OF LEMMA 1: Let  c1 �����c k be i.i.d. Bernoulli(p), and let  1 ����� k be positive 
real numbers. We can assume without loss of generality that  i ≤ 1 for all i ∈ [k], and  1−p 

that  1 = 1/(1 − p). Let  Xi =  i(1 − ci)� mi =  i(1 − p)� X = X2 + · · · +Xk, and  m = 
m2 + · · ·+mk. We must show that P( i∈[k]  ici ≥ i∈[k]  ip) = P(X1 +X ≤m + 1) ≥ γp. 
Indeed, by the above theorem, 

P(X1 +X ≤m + 1) ≥ P(X1 = 0)P(X <m + 1) ≥ γp Q.E.D. 

A related result due to Billingsley ((2008), Theorem 9.2) says the following. 

THEOREM: If E(Z) = 0, E(Z2) = s2, and E(Z4) = ξ4, then P(Z ≥ 0) ≥ 4 
s
ξ 

4

4 . 

To apply this in our setting, let c1 �c k be i.i.d. Bernoulli(p) and let  1 ����� k ≥ 0. 
k k kLet Z = 1  i(ci −p). Note that P(Z ≥ 0) = P( 1  ici ≥ ( 1  i)p). The preceding i= i= i= 

16The proof of Lemma 1 was first communicated to us by Terence Tao (see https://mathoverflow.net/ 
questions/278117/convex-combination-iid-bernoulli-random-variables). We thank Yuval Peres for pointing out 
to us the result by Feige (2006). 

https://mathoverflow.net/questions/278117/convex-combination-iid-bernoulli-random-variables
https://mathoverflow.net/questions/278117/convex-combination-iid-bernoulli-random-variables
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theorem shows that 

k 2 

p(1 −p)  2 
i 

P(Z ≥ 0) ≥ 
k 

i=1 

4 21 − 3p + 3p  4 
i + 3p(1 −p)  2 2 

i j 

i=1 i� j:i �=j 

For values of p that are close to 1
2 , Billingsley’s inequality provides a better bound than the 

one by Feige and Garnett. However, for p close to 1 the right-hand side is close to zero 
whereas the corollary to Feige’s lemma shows that P(Z ≥ 0) ≥ 0 14p. For certain values 
of p, the bound of Theorem 3.1 can be further improved. Concretely, a result by Garnett 

p(1−p)(2020, Theorem 1.2), can be applied to establish the bound min{ 1 } for p ≥ 1 
2 . 

This bound is slightly better than 0 14 for p <  0 835. To see this let X = i  i(p − ci). 
By Garnett’s theorem P(X < 0) ≥ 1 provided E(X4) ≤ c[E(X2)]2 and E(X3) ≥ 0. The 

6 2(1−3p+3p2) 

2c 
E(X4) = λ 1−3p+3p i  i 

4 

latter holds for p ≥ 1 . Now  
2 +(1−λ)3 where  λ = 

)2 . Hence we may 2 [E(X2)]2 p(1−p) ( i  
2 
i 

(1−3p+3p2)take c = max{3 } from which the bound follows.17 Since we prefer not to limit
p(1−p) 

the range of p, however, the Feige–Garnett inequality is more useful for our purposes. 

APPENDIX B: PROOFS OF PROPOSITIONS 6.3 AND 6.5 

PROPOSITION 6.3: Let Rm be a regular network with m agents. For every 0 < q  < q < p, 
mthere exists a constant c = c(q q ) >  1 (independent of m) such that Iq� q (Rm �) ≥ c . 

PROOF OF PROPOSITION 6.3: As in the proof of Theorem 3.1, we analyze the discrete-
time linear dynamic. Recall that 1 − α =L(1) −L(0), and that s(t) represents the imita-
tion dynamic: with probability α the updating agent tosses a coin with success probability 
p, and with probability 1 − α he imitates a random neighbor. 

If we prove that the expected time to reach the fraction q under the discrete-time 
mdynamic is at least ĉ c >  1, then the original dynamic satisfies the exponential for some ˆ 

bound ĉm/m. (The factor  m is a result of changing from discrete to continuous time.) 
mNote that for all sufficiently small 1 < c < ĉ we have ĉm/m ≥ c , hence the exponential 

lower bound on the discrete-time dynamic provides an exponential lower bound on the 
original dynamic. 

Given s(t) ∈ {0 1}m, let  z(t) = si(t) ∈ N be the number of adopters. We denote by i 

d(t) = |{[i�j] ∈ E : si(t) = 0 �s j(t) = 1}|/|E| ∈ [0 1] the fraction of “disagreement” edges 
in the graph, where the agents are playing opposite actions. 

The process z(t) is a random walk with z(t + 1) − z(t) ∈ {−1 0 1}. We shall  provide  
an explicit formula for the probability that z(t) moves to the left, to the right, or stays 
put. Given s(t) one agent is drawn at random in period t + 1. The probability is α that 
this agent tosses a coin. Conditional on the coin toss, the agent switches from 0 to 1 with 
probability (1 − z(t)/m)p. (The first term is the probability that he was initially choosing 
0, and the second term is the probability that he updates to 1). With probability 1 −α, the 
agent imitates. Let d(t) be the number of edges {i�j} where the actions of agents i and j 

17We thank an anonymous referee for pointing this out. 
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are different. Then 

P z(t + 1) − z(t) = 1|s(t) = α 1 − z(t)/m p + (1 − α)d(t)/2 (17) 

Similarly, we deduce that 

P z(t + 1) − z(t) = −1|s(t) = α z(t)/m (1 −p) + (1 − α)d(t)/2 (18) 

For z(t) ∈ [mq �mq], the ratio between moving left and right can be bounded by 

P z(t + 1) − z(t) = −1|s(t) 
P z(t + 1) − z(t) = 1|s(t) 

α z(t)/m (1 −p) + (1 − α)d(t)/2 = 
α 1 − z(t)/m p + (1 − α)d(t)/2 

αq(1 −p) + (1 − α)d(t)/2 αq + 1 ≤ ≤ 
α(1 − q)p + (1 − α)d(t)/2 αp + 1 

αq+1We denote this constant by   = 
αp+1 < 1. Given s(t) with z(t) = mq − 1, we want to 

estimate the probability that the process will reach the low value z = nq before it visits 
z = nq. This question has a precise answer for any biased random walk with bias  <  1 
(see Feller (2008) Chapter XIV.2). Namely, if we let n = (q − q )m, the probability of 

 n−1− nreaching z = mq is 1− n , which is bounded above by  n−1. Therefore, the expected 
mtime until our process reaches z(t) = q m is at least (

  
1 )n−1 ≥ ĉ for some sufficiently 

small constant ˆ Q.E.D. c >  1. 

PROPOSITION 6.5: Let Rm be a sequence of undirected dm-regular networks, and let the 
response function be monotone increasing with r(q) < q. There exists a constant c >  0 (inde-
pendent of m) such that Tq(Rm) ≥ ecd

m

m . 

PROOF OF PROPOSITION 6.5: Consider  a  dm-regular graph with m agents. Let τ := 
min{ 1 si(t) ≥ q} be the first time such that the fraction of adopters is at least q. Let  

m i 

τ̃ be the first time such that there exists an agent i with at least dmq neighbors who have 
adopted. It follows from the regularity of the network that τ̃ ≤ τ. We shall bound E(τ) 
from below by providing a lower bound for E(τ)˜ . 

It follows from the monotonicity of r that, prior to time τ̃, any agent that updates his 
strategy chooses action 1 with probability at most r(q). Thus in order to bound E(τ)˜ from 
below we can assume that, prior to τ̃, all agents choose action 1 with probability r(q). 
Assume that at time t < τ̃ the fraction of i’s neighbors that have adopted lies weakly below 
r(q)+q . Consider the following two events: (a) at time t +1 the fraction of i’s neighbors who 
have adopted lies above r(q)+q ; (b) there exists a time s ∈ [t� t + 1] where the fraction of i’s2 
neighbors who have adopted exceeds q. It follows from Lemma 1 in Benaim and Weibull 
(2003) that if all neighbors of i choose action 1 with probability r(q) at every revision 
opportunity, then the probability that either (a) or (b) holds is at most e−cdm for some 
constant c >  0. 

Now assume that the fraction of adopting neighbors of every agent i at time t < τ̃ lies 
below r(q) 2 

+q . Then the probability that there exists an agent i for which either (a) or (b) 

2 
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holds is at most  me−cdm . If neither (a) nor (b) holds for every agent at every time pe-
riod t = 0 �����n , then ˜ τ) ≥ ecd

m

m
τ > n  + 1. It follows that E( ˜ . This concludes the proof of 

Proposition 6.5. Q.E.D. 
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