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Abstract. The diffusion of an innovation can be represented by a process in which agents choose 

perturbed best responses to what their neighbors are currently doing.   Diffusion is said to be fast 

if the expected waiting time until the innovation spreads widely is bounded above independently 

of the size of the network. Previous work has identified specific topological properties of 

networks that guarantee fast diffusion.  Here we apply martingale theory to derive topology-free 

bounds such that diffusion is fast whenever the payoff gain from the innovation is sufficiently 

high and the response function is sufficiently noisy. We also provide a simple method for 

computing an upper bound on the expected waiting time that holds for all networks. For 

example, under the logit response function it takes on average less than 80 revisions per capita 

for the innovation to diffuse widely in any network, provided that the error rate is at least 5% 

and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold 

for other smoothed best response functions and populations that experience heterogeneous 

payoff shocks.  

 

                                                 
*  We thank Glenn Ellison and participants in the MIT theory workshop and the Brown University Mini-Conference 

on Networks for constructive suggestions. 
1 This research was sponsored by the Office of Naval Research, grant N00014-09-1-0751 and the Air Force Office 

of Scientific Research grant #FA9550-09-1-0538. 



2  

 

1 Local interaction topology and fast diffusion  

New ideas and ways of doing things often spread through social networks. Agents adopt an 

innovation with increasing likelihood depending on the proportion of their friends and neighbors 

who have adopted it.  The innovation in question might be a technological advance such as a new 

piece of software, a medical drug (Coleman, Katz and Menzel 1957), or a new hybrid seed 

(Griliches 1957). Or it might represent a social practice, such as contraception (Munshi and 

Myaux 2006), a novel form of employment contract (Young and Burke 2001), or a group 

behavior such as binge drinking (Kremer and Levy 2008). 

In recent years such diffusion models have been extensively studied from both a theoretical and 

empirical standpoint. Some authors have highlighted the importance of the payoff gains from the 

innovation: larger gains lead to faster adoption (Griliches 1957, Bala and Goyal 1998). Others 

have pointed to the role that the network topology plays in the rate at which an innovation 

spreads (Blume, 1993, 1995; Bala and Goyal, 1998; Valente, 1995; 2005; Morris, 2000; Watts, 

2002; Watts and Dodds, 2007; Jackson and Yariv 2007, Jackson and Rogers, 2007, Vega-

Redondo, 2007; Golub and Jackson, 2010; Jackson, 2010, Montanari and Saberi 2010, Newton 

and Angus 2013).  

A key topological feature of this nature is local clustering. Consider a group of individuals who 

have most of their interactions with each other as opposed to outsiders. Such a group is said to be 

cohesive (Morris, 2000) or close-knit (Young, 1998).  Suppose also that the adoption process is 

stochastic: a given individual adopts with a probability that is increasing in the proportion of his 

neighbors who have adopted. This holds if the technology has positive network externalities and 

individuals choose best responses subject to a small utility shock.  In this situation the topology 

of the network structure can profoundly influence the speed with which such a technology will 

spread.  In a small close-knit group the innovation can gain a foothold relatively quickly, and 

maintain its hold even when those outside the group have not yet adopted.  If everyone is 

contained in a sufficiently close-knit group of bounded size, the technology can spread quite 

rapidly through the whole population as it gains independent footholds among many groups 

scattered across the network. In such a case the expected waiting time until the innovation 

becomes widely adopted can be bounded independently of the network size. More precisely it 

can be shown that for a given small level of noise in the individual response functions, the 
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expected waiting time is bounded for all populations provided that the payoff gain from the 

innovation (relative to the status quo) is sufficiently large (Ellison 1993; Young 1998, 2011). In a 

similar vein, Montanari and Saberi (2010) employ a topological notion called “tilted cutwidth” to 

identify an even broader class of networks in which the convergence time is bounded.  

We will show in this article that one can obtain qualitatively similar results without placing any 

topological restrictions on the network.  The methods we use to establish this result are quite 

different from those in the prior networks literature, many of which rely on the parallel 

decomposition argument outlined above. Here we use a different approach that takes its 

inspiration from another branch of the learning literature, namely the analysis of noisy best 

response dynamics when agents draw samples uniformly at random from the whole population. 

When the population is large, such a process can be well-approximated by a deterministic (mean-

field) dynamical system (McKelvey and Palfrey 1995, Sandholm, 2001, Blume and Durlauf 

2003, Lopez-Pintado 2006, Jackson and Yariv 2007, Oyama, Sandholm and Tercieux 2012, 

Kreindler and Young 2013).  

This set-up is quite different from network models, in which agents choose noisy best responses 

to a fixed set of neighbors.  To see the distinction, consider the situation where agents can 

coordinate on one of two actions: A (the innovation) or B (the status quo). Assume for the 

moment that they choose pure (instead of noisy) best responses to the actions of their neighbors. 

Such a game will typically have a vast number of heterogeneous equilibria whose structure 

depends on the fine details of the network topology. By contrast, in a global interaction model 

with sampling there will typically be just three equilibria, two of which are homogeneous and 

stable and the other heterogeneous and unstable.  

Now consider a (possibly noisy) best response process and an unboundedly large number of 

agents who interact globally. The expected motion can be represented by a deterministic, 

continuous-time dynamic of the form  𝑥𝑡̇ = 𝑓(𝑥𝑡) − 𝑥𝑡 where 𝑥𝑡 is the proportion of agents 

playing action 𝐴 at time 𝑡, and 𝑥𝑡̇ is the rate of change of this variable.  Under fairly general 

assumptions 𝑓(𝑥) has a convex-concave shape as shown in Figure 1. Depending on the choice of 

parameters, such a curve will typically have either one or three rest points. In the latter case the 

middle one (the up-crossing) is unstable and the other two are stable.  One can employ a mean-
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field approach to study the effects of varying the payoffs and the distribution of sample sizes on 

the location of these rest points. The lower is the unstable rest point, the smaller the basin on 

attraction of the status quo equilibrium; hence the easier it is to escape that equilibrium (Jackson 

and Yariv 2007, López-Pintado 2006).  

Of particular interest is the case where there is a single rest point and it lies above the halfway 

mark (. 5, .5). (See the right panel in Figure 1).2 In this case the process moves from the initial 

state (all-𝐵) to a majority playing 𝐴 in a bounded length of time. In an earlier paper we examined 

the implications of this observation for the logit best response function (Kreindler and Young, 

2013).  The main result in that paper is that, if the payoff gain from the innovation and/or the 

noise level is sufficiently large, then there is a unique rest point lying above (.5, .5) and the 

expected waiting time until a majority of the agents choose 𝐴 is bounded above independently of 

the population size; moreover we give an explicit estimate of the expected waiting time. 

However, this argument depends crucially on the assumption that the agents interact globally, 

which ensures that the expected dynamics have the simple form shown in Figure 1. This allows 

one to employ standard stochastic approximation techniques to estimate the waiting time as a 

function of the payoffs, noise level, and sample size. In a network setting, by contrast, the 

underlying state space is vastly more complex and generally the unperturbed process will possess 

a large number of rest points, each with a different stochastic potential.  Thus the approximation 

techniques from our earlier paper do not apply to this case.   

The contribution of the present paper is to show that, in spite of the complications introduced by 

the network setting, we can derive an upper bound on the rate of diffusion that holds uniformly 

for all networks provided that payoff gain from the innovation is sufficiently high and the noise 

level is not too low. These results are established using martingale arguments rather than the 

stochastic approximation methods that are common in the prior literature. The bound we 

establish is easy to compute given the payoffs and the shape of the stochastic response function. 

Thus our approach provides a practical estimation method that can in principle be applied to 

empirical data. 

                                                 
2 McKelvey and Palfrey (1995) show that in almost any normal form game with logit response function, for 

sufficiently large noise levels there is a unique rest point (a quantile equilibrium).  Sandholm (2001) and Oyama et 

al (2011) examine the case when agents best-respond to random samples; they show that if there exists a 
1

𝑘
-dominant 

equilibrium (where 𝑘 is a suitably chosen sample size) then the dynamics have a unique stable rest point. 
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Figure 1 – The logit response function 

 

The remainder of the paper is organized as follows. Section 2 introduces the adoption model with 

local interactions. In section 3 we establish the main results for regular networks, and in section 4 

we show how to extend the arguments to general networks. In section 5 we show that the results 

are robust for a large family of stochastic best response functions other than the logit. We also 

show that the results can be interpreted in terms of payoff heterogeneity instead of noisy best 

responses. 

2 The local interaction model 

The model is expressed in terms of a stochastic process denoted Γ(𝛼, 𝛽, 𝐺) that depends on three 

parameters: the potential gain 𝛼, the noise level 𝛽, and the interaction graph 𝐺. Consider a 

population of 𝑁 agents numbered from 1 to 𝑁 linked by an undirected graph 𝐺. Each agent 

chooses one of two available actions, 𝐴 and 𝐵. Interaction is given by a symmetric 2 × 2 

coordination game with payoff matrix  
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(1)  

 
𝐴 𝐵 

𝐴 𝑎, 𝑎 𝑐, 𝑑 

𝐵 𝑑, 𝑐 𝑏, 𝑏 
 

 

where 𝑎 > 𝑑 and 𝑏 > 𝑐. This game has potential function 

 

 
𝐴 𝐵 

𝐴 𝑎 − 𝑑 0 

𝐵 0 𝑏 − 𝑐 

Define the normalized potential gain of passing from equilibrium (𝐵, 𝐵) to (𝐴, 𝐴) as 

𝛼 =
(𝑎 − 𝑑) − (𝑏 − 𝑐)

𝑏 − 𝑐
. 

Assume without loss of generality that the potential function achieves its strict maximum at the 

equilibrium (𝐴, 𝐴), or equivalently 𝛼 > 0. Hence (𝐴, 𝐴) is the risk-dominant equilibrium of the 

game; note that (𝐴, 𝐴) may or may not also be the Pareto-dominant equilibrium. Standard results 

in evolutionary game theory imply that (𝐴, 𝐴) will be selected in the long run (Kandori, Mailath 

and Rob 1993, Young 1993, Blume 2003). 

An important special case is when interaction is given by a pure coordination game with payoff 

matrix 

(2)  

 
𝐴 𝐵 

𝐴 1 + 𝛼, 1 + 𝛼 0,0 

𝐵 0,0 1,1 
 

 

In this case we can think of 𝐵 as the “status quo” and of 𝐴 as the “innovation.” The term 𝛼 > 0 

is now the payoff gain of the adopting the innovation relative to the status quo. Note that the 

potential function of the pure coordination game is proportional to the potential function in the 

general case. It follows that for the logit model and under a suitable rescaling of the noise level, 

the two settings are in fact equivalent. 



7  

 

Payoffs are as follows. At the start of each time period every pair of agents linked by an edge 

interact once and they receive the one-shot payoffs from the game defined in (2).  Thus each 

agent’s payoff in a given period is the sum of the payoffs from his pairwise interactions in that 

period. Note that players with a high number of connections will, ceteris paribus, have higher 

payoffs per period. Formally, let 𝜋(𝑥𝑖 , 𝑥𝑗) be 𝑖’s payoff from interacting with 𝑗, when 𝑖 plays 𝑥𝑖 

and 𝑗 plays 𝑥𝑗. Letting 𝑁𝑖 denote the set of 𝑖’s neighbors, the total payoff for 𝑖 from playing 𝑥𝑖 is 

∑ 𝜋(𝑥𝑖 , 𝑥𝑗)𝑗∈𝑁𝑖
. 

We posit the following revision process. At times 𝑡 = 𝑘/𝑁 with 𝑘 ∈ ℕ, and only at these times, 

one agent is randomly (independently over time) chosen to revise his action.3 When revising, an 

agent observes the actions currently used by his neighbors in the graph 𝐺. Assume that a fraction 

𝑥 of agent 𝑖’s neighbors are playing 𝐴, then 𝑖 chooses a noisy best response given by the logit 

model: 

(3)  Pr(𝑖 chooses A | 𝑥) = 𝑓(𝑥; 𝛼, 𝛽) =
𝑒𝛽(1+𝛼)𝑥

𝑒𝛽(1+𝛼)𝑥 + 𝑒𝛽(1−𝑥)
, 

 

where 1/𝛽 is a measure of the noise in the revision process. For convenience we will sometimes 

drop the dependence of 𝑓 on 𝛽 in the notation and simply write 𝑓(𝑥; 𝛼), and in some cases we 

shall drop both 𝛼 and 𝛽 and write 𝑓(𝑥). Let 𝜀 = 1/(1 + 𝑒𝛽) denote the error rate at the start of 

the process when nobody has yet adopted the innovation A. This will be called the initial error 

rate.  Both 1/𝛽 and 𝜀 measure the noise level of the process. Since 𝜀 is easier to interpret as the 

rate at which agents depart from best response at the outset, we shall sometimes express our 

results in terms of both 𝛽 and 𝜀. 

Embedded in the above formulation is the assumption that the error rate depends only on the 

proportion of an agent’s neighbors playing 𝐴 or 𝐵, and it does not depend on the number of 

neighbors, that is, on the agent’s degree. This follows naturally if we assume that in each period 

each agent experiences an idiosyncratic shock that affects his realized payoffs from all 

interactions during that period. In other words, an agent expects to obtain direct payoffs 𝜖𝐴 and 

                                                 
3 The results in this article also hold under the following alternative revision protocol. Time is continuous, each 

agent has a Poisson clock that rings once per period in expectation, and an agent revises his action when his clock 

rings. 
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𝜖𝐵 from playing 𝐴 and 𝐵, respectively, in addition to the coordination game payoffs, from each 

of the agent’s interactions. The logit model (3) results when the payoff shocks 𝜖𝐴 and 𝜖𝐵 are i.i.d. 

extreme value distributed (McFadden, 1976). This is one of the most commonly used models in 

the literature on stochastic learning and also in the literature on discrete choice (McFadden 1976, 

Anderson, Palma and Thisse 1992, Blume 1993, Blume 1995, Brock and Durlauf 2001). The key 

feature of logit for our results is that the probability of choosing one action decreases smoothly 

as a function of the payoff difference between the two choices. In section 5 we show that the 

main result in this paper remains true for a large family of smooth stochastic response functions 

that are qualitatively similar to the logit. The stochastic response functions we consider emerge 

in a setting where agents myopically best respond to the actions of their neighbors, and payoffs 

from playing each action are subject to random shocks.4 

The above revision process fully describes the stochastic process Γ(𝛼, 𝛽, 𝐺). The states of the 

process are the adoption vectors 𝑥(𝑡) = (𝑥𝑖(𝑡))
1≤𝑖≤𝑁

, where 𝑥𝑖(𝑡) = 1 if agent 𝑖 plays 𝐴 at time 

𝑡, and 𝑥𝑖(𝑡) = 0 otherwise. The adoption rate is defined as 𝑥̅(𝑡) = (1/𝑁) ∑ 𝑥𝑖(𝑡)𝑁
𝑖=1 . By 

assumption, the process starts in the all-𝐵 state, namely 𝑥(0) = (0, … ,0). 

We now turn to the issue of speed of diffusion, measured in terms of the expected time until a 

majority of the population adopts action 𝐴. This measure is appropriate because it captures the 

time it takes for the system to escape the status quo equilibrium (𝐵, 𝐵). Formally, define the 

random hitting time5 

𝑇(𝛼, 𝛽, 𝐺) = min {𝑡 ∶ 𝑥̅(𝑡) ≥
1

2
}. 

More generally, given 𝑝 < 1 one can consider the waiting time 𝑇(𝛼, 𝛽, 𝐺, 𝑝) until 𝑥̅(𝑡) is at least 

𝑝 for the first time. The method of analysis in this paper can be extended in a straightforward 

way to treat this case. 

Fast diffusion is defined as follows. 

                                                 
4 The response functions can also be viewed as a primitive element of the model that can be estimated directly from 

empirical data. 
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Definition 1. Given a family 𝒢 of graphs, we say that the family of processes {𝛤(𝛼, 𝛽, 𝐺) ∶ 𝐺 ∈

𝒢} displays fast diffusion if there exists a constant 𝑆 = 𝑆(𝛼, 𝛽, 𝒢) such that for any 𝐺 ∈ 𝒢 the 

expected waiting time until a majority of agents play 𝐴 under process Γ(𝛼, 𝛽, 𝐺) is at most 𝑆 

independently of 𝐺, that is 𝐸𝑇(𝛼, 𝛽, 𝐺) < 𝑆. 

When the above conditions are satisfied we say that 𝛤(𝛼, 𝛽, 𝒢) displays fast diffusion. 

3 Topology-free fast diffusion in regular networks  

In this section we establish our first result on sufficient conditions for fast diffusion in 𝑑-regular 

networks, and we provide an upper bound on the expected waiting time for a majority of the 

population to adopt. In the next section we shall show how to extend these arguments to general 

networks.  

3.1 Fast diffusion in regular networks 

In order to find sufficient conditions for fast diffusion, we begin by lower bounding the expected 

change in the adoption rate in any state where adopters constitute a weak minority.  

A graph 𝐺 is 𝑑-regular if every node in 𝐺 has exactly 𝑑 neighbors. Denote by 𝒢(𝑑) the family of 

all 𝑑-regular graphs. Fix a payoff gain 𝛼, a noise level 𝛽 and a graph 𝐺 ∈ 𝒢(𝑑), for some 𝑑 ≥ 3. 

Consider a state 𝑥(𝑡) of the process Γ(𝛼, 𝛽, 𝐺)  such that 𝑥̅(𝑡) ≤ 1/2. For any 𝑘 ∈ {0,1, … , 𝑑}, 

denote by 𝑞𝑘(𝑡) the fraction of players who have exactly 𝑘 neighbors currently playing 𝐴.  

The expected next period adoption of an agent 𝑖 who has 𝑘 neighbors currently playing 𝐴 is  

𝐸𝑥𝑖 (𝑡 +
1

𝑁
) =

1

𝑁
𝑓 (

𝑘

𝑑
) +

𝑁 − 1

𝑁
𝑥𝑖(𝑡) 

⇒ 𝐸𝑥𝑖 (𝑡 +
1

𝑁
) − 𝑥𝑖(𝑡) =

1

𝑁
(𝑓 (

𝑘

𝑑
) − 𝑥𝑖(𝑡)) 

Note that each agent is chosen to revise with equal probability, hence the expected change in the 

population adoption rate is  
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(4)  𝐸𝑥̅ (𝑡 +
1

𝑁
) − 𝑥̅(𝑡) =

1

𝑁
[∑ 𝑞𝑘(𝑡)𝑓 (

𝑘

𝑑
)

𝑑

𝑘=0

− 𝑥̅(𝑡)]. 
 

We wish to bound expression (4) from below, since this provides a lower bound on the expected 

change in the adoption rate for all configurations that have a minority of adopters. Let us begin 

by observing that the weights 𝑞𝑘(𝑡) “convexify” the set of points 𝐹𝑑 ≡ {(
𝑘

𝑑
, 𝑓 (

𝑘

𝑑
)) ∶ 0 ≤ 𝑘 ≤

𝑑}. Denote by 𝑓𝑑(𝑥) the lower envelope of the convex hull of 𝐹𝑑. Figure 2 illustrates the 

construction.  

 

Figure 2 – The function 𝒇𝒅 (red dashed line) is the lower envelope  

of the convex hull of the set 𝑭𝒅 (blue circles). 

 

For each player 𝑖, consider the fraction of 𝑖’s neighbors who have adopted the innovation. The 

adoption rate can be expressed as the population average of this quantity. Let 𝑁𝑖 denote the set of 

neighbors of 𝑖. We can then write 

𝑥̅(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)

𝑁

𝑖=1

 

𝑥 

𝑓(𝑥) 
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=
1

𝑁
∑

1

𝑑
∑ 𝑥𝑗(𝑡)

𝑗∈𝑁𝑖

𝑁

𝑖=1

 

= ∑
𝑘

𝑑
𝑞𝑘(𝑡)

𝑑

𝑘=0

. 

Using this identity and Jensen’s inequality for the convex function 𝑓𝑑 we obtain 

∑ 𝑞𝑘(𝑡)𝑓(𝑘/𝑑)

𝑑

𝑘=0

≥ 𝑓𝑑(𝑥̅(𝑡)). 

Using identity (4) we obtain  

(5)  

 
𝐸𝑥̅ (𝑡 +

1

𝑁
) − 𝑥̅(𝑡) ≥

1

𝑁
[𝑓𝑑(𝑥̅(𝑡)) − 𝑥̅(𝑡)]. 

 

Given 𝛼𝛽and 𝑑 ≥ 3 define the quantities 

𝜇(𝛼, 𝛽, 𝑑) ≡ 𝑓𝑑  (1/2) − 1/2 

and 

ℎ(𝛽, 𝑑) = min{𝛼 ∶  𝜇(𝛼, 𝛽, 𝑑) ≥ 0}. 

If the function 𝑓𝑑 lies strictly above the identity function (the 45-degree line) on the interval 

[0,1/2] or, equivalently, if 𝜇(𝛼, 𝛽, 𝑑) > 0, then the expected change in the adoption rate is 

positive for any state 𝑥(𝑡) with a weak minority of adopters. This implies diffusion for the family 

of 𝑑-regular graphs, as the following result shows. (The entire argument can be adapted to 

estimate the waiting time until a proportion 𝑝 < 1 of players have adopted; here we have stated 

the results in terms of the target 𝑝 =  1/2 for simplicity.)  

Theorem 1. There exist uniform lower bounds on the payoff gain and the noise level such that 

the expected waiting time until a majority of agents play 𝐴 is bounded for all regular graphs of 

degree at least three, irrespective of the number of agents. Concretely, 𝛤(𝛼, 𝛽, 𝒢(𝑑)) displays 

fast diffusion whenever 𝛼 > 0.83 and 𝜀 ≥ 5%. Furthermore, given any 𝑑 ≥ 3, 𝛤(𝛼, 𝛽, 𝐺(𝑑)) 

displays fast diffusion whenever 𝛼 > ℎ(𝛽, 𝑑). 
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Prior work in the literature on fast diffusion in evolutionary models has focused mainly on the 

topological properties of the graphs in the family 𝒢 that guarantee fast diffusion (Ellison 1993, 

Young 1998; Montanari and Saberi, 2010). In contrast, Theorem 1 establishes topology-free 

bounds that guarantee fast diffusion for the entire family of 𝑑-regular graphs. 

Proof. The proof proceeds in two steps. First, we show that the expected change in the adoption 

rate is strictly positive whenever the adoption rate is at most 1/2. Secondly, we show that the 

expected waiting time until a majority adopts is bounded for all graphs in 𝒢(𝑑). 

Fix some 𝛼 > ℎ(𝛽, 𝑑). By construction, 𝜇(𝛼, 𝛽, 𝑑) = 𝑓𝑑(1/2) − 1/2 > 0. In addition, the 

following lemma provides a positive lower bound for 𝑓𝑑(𝑥) − 𝑥 for all 𝑥 ≤ 1/2. It follows from 

(5) that the expected change in the adoption rate is strictly positive for any state such that 𝑥̅(𝑡) ≤

1/2.  

Lemma 1. Let 𝜇𝑑 = 𝜇(𝛼, 𝛽, 𝑑), then 𝑓𝑑(𝑥) − 𝑥 ≥ 2𝜇𝑑(1 − 𝑥) for all 𝑥 ∈ [0,1/2]. 

Proof. Because 𝑓 is first convex and then concave, there exists 𝑘∗ < 𝑑/2 such that for any 𝑘 ≤

𝑘∗ we have 𝑓𝑑(𝑘/𝑑) = 𝑓(𝑘/𝑑), and for any 𝑥 > 𝑘∗/𝑑 we have 

𝑓𝑑(𝑥) = 𝑓(𝑘∗/𝑑) 
1 − 𝑥

1 − 𝑘∗/𝑑
+ 𝑓(1)

𝑥 − 𝑘∗/𝑑

1 − 𝑘∗/𝑑
. 

The right hand side is the equation of the line 𝐿(𝑥) passing through the points (𝑘∗/𝑑, 𝑓(𝑘∗/𝑑)) 

and (1, 𝑓(1)). In particular, we have that 𝑓𝑑(𝑥) ≥ 𝐿(𝑥) for all 𝑥 ∈ [0,1]. 

We claim that 𝐿(𝑥) − 𝑥 ≥ 2𝜇𝑑(1 − 𝑥) for all 𝑥 ∈ [0,1/2]. Note that by definition this holds 

with equality for 𝑥 = 1/2. Moreover, 𝐿(1) − 1 = 𝑓(1) − 1 < 0 = 2𝜇𝑑(1 − 1), so the opposite 

inequality must hold for 𝑥 < 1/2. This completes the proof of Lemma 1.             ∎ 

The following claim provides explicit conditions that ensure that 𝛼 > ℎ(𝛽, 𝑑). 

Claim 1. If 𝜀 = 1/(1 + 𝑒𝛽) > 5% then ℎ(𝛽, 𝑑) < 0.83. It follows that when 𝛼 > 0.83 the 

expected change in the adoption rate is positive in any state with 𝑥̅(𝑡) ≤ 1/2.  

The proof of Lemma 1 implies that 𝜇𝑑 > 0 provided that, for every 𝑘 ≤ 𝑑/2 we have 
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𝑓(𝑘/𝑑) 
1/2

1 − 𝑘/𝑑
+ 𝑓(1)

1/2 − 𝑘/𝑑

1 − 𝑘/𝑑
>

1

2
. 

This inequality can be rewritten as 

(6)  𝑓 (
𝑘

𝑑
) > 1 − 𝑓(1) + (2𝑓(1) − 1)

𝑘

𝑑
 . 

 

To establish Claim 1, it suffices to show that inequality (6) holds whenever  𝜀 = 1/(1 + 𝑒𝛽) >

5% and 𝛼 = 0.83. We prove that more generally for all 𝑥 ∈ [0,
1

2
],  

(7)  𝑓(𝑥) − (1 − 𝑓(1)) − (2𝑓(1) − 1)𝑥 > 0.  

Denote by 𝑥∗ a point where the left hand side of (6) achieves its minimum on [0,
1

2
]. The first-

order condition is 𝑓′(𝑥∗) = 2𝑓(1) − 1. Using the formula 𝑓′(𝑥) = 𝛽(𝛼 + 2)𝑓(𝑥)(1 − 𝑓(𝑥)) 

we obtain the quadratic equation 

𝑓(𝑥∗) − 𝑓(𝑥∗)2 =
2𝑓(1) − 1

𝛽(𝛼 + 2)
. 

Let 𝛾 = (2𝑓(1) − 1)/(𝛽(𝛼 + 2)) . When 𝛾 >
1

4
 there is no interior solution and 𝑥∗ =

1

2
. When 

𝛾 ≤
1

4
 we have  

𝑓(𝑥∗) =
1 − √1 − 4𝛾

2
. 

We need to check that inequality (7) holds at 𝑥∗. (Note that all terms depend on 𝛼 and 

𝛽, although we have suppressed them from the notation.)6 It is straightforward to check 

numerically that the inequality holds for 𝛼 = 0.83 and 𝛽 = log (19) (the solution to 𝜀 = 5%). 

Figure 3 plots the function 𝑢(𝛽) = 𝑓(𝑥∗) − (1 − 𝑓(1)) + (2𝑓(1) − 1)𝑥∗; the function is 

positive for all 𝛽 ∈ [0, log(19)]. 

This completes the proof of Claim 1 and the first step in the proof of Theorem 1.  

                                                 
6 For 𝑥∗ we use the explicit formula 𝑓−1(𝑦) =

1

𝛼+2
(1 −

1

𝛽
log (

1−𝑦

𝑦
)). 
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Figure 3 - The function 𝒖(𝜷) 

We now turn to the second step in the proof, namely that the expected waiting time to reach a 

majority of adopters is bounded for the family 𝒢(𝑑) of 𝑑-regular graphs whenever 𝛼 > ℎ(𝛽, 𝑑).  

We already know that for any 𝛽 and for any 𝛼 ≥ ℎ(𝛽, 𝑑), for any graph 𝐺 ∈ 𝒢(𝑑) and any state 

𝑥(𝑡) of the process Γ(𝛼, 𝛽, 𝐺) such that the adoption rate is at most one half, the expected change 

in the adoption rate is positive. By Lemma 1 we know that 

(8)  𝐸 (𝑥̅ (𝑡 +
1

𝑁
)) − 𝑥̅(𝑡) ≥

1

𝑁
𝜇𝑑(1 − 𝑥̅(𝑡)) > 0. 

 

We shall now establish a uniform upper bound on the expected waiting time for all 𝑑-regular 

graphs (of any size), expressed in terms of 𝜇(𝛼, 𝛽, 𝑑). 

Lemma 2. Assume that 𝜇𝑑 = 𝑓𝑑(1/2) − 1/2 is positive. Then for any 𝑁 ≥ 3 the expected 

waiting time until a majority of the population adopts the innovation satisfies 

𝐸𝑇(𝛼, 𝛽, 𝐺) <
0.42

𝜇𝑑
. 

Proof. Partition the states of the process Γ(𝛼, 𝛽, 𝐺) according to their adoption rate. Specifically, 

let 𝑋𝑚 = {𝑥 ∈ {0,1}𝑁 ∶ 𝑥̅ = 𝑚/𝑁}. In any given period, the change in the adoption rate can only 

be −1/𝑁, 0 or 1/𝑁. Given any state 𝑥, let 𝑝(𝑥) denote the probability that the adoption rate 

increases by 1/𝑁, and let 𝑞(𝑥) denote the probability that the adoption rate decreases by 1/𝑁. 

Thus for every 𝑥𝑖 ∈ 𝑋𝑚 we have 𝑝(𝑥𝑖) = Pr(𝑥(𝑡 + 1/𝑁) ∈ 𝑋𝑚+1 | 𝑥(𝑡) = 𝑥𝑖  ) and 𝑞(𝑥𝑖) =

Pr( 𝑥(𝑡 + 1/𝑁) ∈ 𝑋𝑚−1 | 𝑥(𝑡) = 𝑥𝑖  ). By inequality (8), for any state 𝑥 with  𝑥̅ ≤ 1/2, 
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𝑝(𝑥) − 𝑞(𝑥) ≥ 2(1 − 𝑥̅)𝜇𝑑. 

For convenience, let 𝜇𝑑
𝑚 = 2𝜇𝑑(1 − 𝑚/𝑁). 

Given any 𝑥𝑖 ∈ 𝑋𝑚 let 𝑊(𝑥𝑖) denote the expected waiting time until the process first reaches a 

state in 𝑋𝑚+1 when starting from 𝑥𝑖. Let 𝑊𝑚 = max
𝑥𝑖∈𝑋𝑚

𝑊(𝑥𝑖) denote the longest expected waiting 

time to reach 𝑋𝑚+1 from a state in 𝑋𝑚. The waiting time to reach a majority of adopters satisfies  

(9)  𝐸𝑇(𝛼, 𝛽, 𝐺) ≤ 𝑊0 + 𝑊1 + ⋯ + 𝑊⌊𝑁/2⌋. 
 

We now show that 𝑊𝑚 is at most 1/(𝑁𝜇𝑑
𝑚) for all 𝑚 < 𝑁/2. We proceed by induction in 𝑚. By 

definition 𝑞(𝟎) = 0 where 𝟎 = (0, … ,0), hence 𝑝(𝟎) ≥ 𝜇𝑑
0  and 𝑊0 ≤ 1/(𝑁𝜇𝑑

0). (Recall that 

each time period lasts 1/𝑁. ) Assume that 𝑊𝑚−1 ≤ 1/(𝑁𝜇𝑑
𝑚−1); we shall show that 𝑊𝑚 ≤

1/(𝑁𝜇𝑑
𝑚). 

Consider some 𝑥𝑖
+ ∈ 𝑋𝑚 such that 𝑊(𝑥𝑖

+) = 𝑊𝑚. From 𝑥𝑖
+ the process moves forward to a state 

in 𝑋𝑚+1 with probability 𝑝(𝑥𝑖
+), it stays put with probability 1 − 𝑝(𝑥𝑖

+) − 𝑞(𝑥𝑖
+), and it moves 

backward to a state in 𝑋𝑚−1 with probability 𝑞(𝑥𝑖
+). In the last case, it will take at most 𝑊𝑚−1 

periods in order for the process to return to 𝑋𝑚. It follows immediately that 𝑊(𝑥𝑖
+) satisfies 

(𝑝(𝑥𝑖
+) + 𝑞(𝑥𝑖

+))𝑊(𝑥𝑖
+) ≤ 1/𝑁 + 𝑝(𝑥𝑖

+) ⋅ 0 + 𝑞(𝑥𝑖
+)(𝑊𝑚−1 + 𝑊𝑚). 

Noting that 𝑊(𝑥𝑖
+) = 𝑊𝑚 it follows that  

𝑝(𝑥𝑖
+)𝑊𝑚 ≤ 1/𝑁 + 𝑞(𝑥𝑖

+)𝑊𝑚−1.We know 𝑝(𝑥𝑖
+) − 𝑞(𝑥𝑖

+) ≥ 𝜇𝑑
𝑚, and the induction hypothesis 

states that 𝑊𝑚−1 ≤ 1/(𝑁𝜇𝑑
𝑚−1). It follows that 

(𝑞(𝑥𝑖
+) + 𝜇𝑑

𝑖 )𝑊𝑚 ≤
𝜇𝑑

𝑚

𝑁𝜇𝑑
𝑚 + 𝑞(𝑥𝑖

+)
1

𝑁𝜇𝑑
𝑚−1 

≤
𝜇𝑑

𝑚 + 𝑞(𝑥𝑖
+)

𝑁𝜇𝑑
𝑚  . 
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The second inequality uses the fact that 𝜇𝑑
𝑚−1 = 2𝜇𝑑(1 − (𝑚 − 1)/𝑁) > 2𝜇𝑑(1 − 𝑚/𝑁) = 𝜇𝑑

𝑚. 

Simplifying we obtain 𝑊𝑚 ≤ 1/(𝑁𝜇𝑑
𝑚). This concludes the induction step. Using (9) and the 

inequalities that we have just proved we conclude that  

𝐸𝑇(𝛼, 𝛽, 𝐺) ≤
1

2𝜇𝑑
⋅

1

𝑁
( ∑

1

1 − 𝑚/𝑁

⌊𝑁/2⌋

𝑚=0

). 

The second term is a discrete approximation of the integral  

∫
1

1 − 𝑥
𝑑𝑥

1/2

0

= log 2 ≈ 0.69. 

 It is straightforward to show that this term is strictly less than 0.84 for any 𝑁 ≥ 3, and we obtain 

𝐸𝑇(𝛼, 𝛽, 𝐺) < 0.42/𝜇𝑑. In fact, for any 𝑁 ≥ 100 this inequality improves to 𝐸𝑇(𝛼, 𝛽, 𝐺) <

0.35/𝜇𝑑. This concludes the proof of Lemma 2 and that of Theorem 1.                    ∎ 

3.2 Upper bound on the expected waiting time 

We now show how to obtain a bound on the absolute magnitude of the waiting time for any 

regular graph, irrespective of size or degree, using a technique similar to one contained in the 

proof of Theorem 1. 

Fix the payoff gain 𝛼 and the noise level 𝛽 and let 𝐺 be a 𝑑-regular graph on 𝑁 vertices. Given 

an adoption level  𝑥̅(𝑡) ≤ 1/2, the expected change in the adoption rate is given by (4). We want 

to lower-bound this quantity independently of 𝑑. To this effect, let 𝑓min (𝑥) denote the lower 

envelope of the convex hull of the graph {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ [0,1]}. The function 𝑓min (𝑥) − 𝑥 is 

convex, so it follows that for any 𝑑 

(10)  𝐸𝑥̅ (𝑡 +
1

𝑁
) − 𝑥̅(𝑡) ≥

1

𝑁
(𝑓min(𝑥̅(𝑡)) − 𝑥̅(𝑡)). 

 

It is easy to show that 𝑓min(𝑥) − 𝑥 ≥ 2𝜇(1 − 𝑥), where 𝜇 = 𝜇(𝛼, 𝛽) ≡ 𝑓min (1/2) − 1/2. (The 

proof is similar to that of Lemma 1.)  
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We can now apply Lemma 2 to establish a uniform upper bound on the expected waiting time, 

for any 𝑑 and any 𝑑-regular graph (of any size), in terms of the shape of the function 𝑓min. 

Specifically, we have that for any 𝛼 and 𝛽 such that 𝜇 > 0, and for any regular graph 𝐺 we have 

𝐸𝑇(𝛼, 𝛽, 𝐺) <
0.42

𝜇
. 

Figure 4 shows the expected waiting time to reach a majority of adopters, based on the above 

upper bound and on numerical simulations of the term 𝜇 = 𝑓min(1/2) − 1/2. The expected 

waiting time is at most 100, 60 and 40 revisions per capita for payoff gains 𝛼 lying above the 

red, orange and green lines, respectively.  

The figure shows, for example, that for 𝜀 = 5% and 𝛼 = 1.10, the expected waiting time is at 

most 60 revisions per capita, for regular graphs of arbitrary size.  

 

Figure 4 – Expected waiting times to reach a majority of adopters.  

The expected waiting time is at most 100, 60 and 40 revisions per capita  

for payoff gains above the red, orange and green lines, respectively. 

𝜀 = 1/(1 + 𝑒𝛽) 

𝛼 
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4 General networks 
 

In this section we shall show how our framework can be applied to more general families of 

graphs. We shall derive a similar result to Theorem 1, but the proof is more complex and relies 

on stopping time results in the theory of martingales. Consider a finite graph 𝐺, and let 𝑑𝑖 denote 

the degree of agent 𝑖. Denote the average degree in the graph by  

𝑑̅ = (1/𝑁) ∑ 𝑑𝑖
𝑁
𝑖=1 . We will use the following measure of the adoption rate.  For a state 𝑥(𝑡), 

define  

𝑥̃(𝑡) =
1

𝑁𝑑̅ 
∑ 𝑑𝑖𝑥𝑖(𝑡)

𝑁

𝑖=1

. 

This is the probability of interacting with an adopter when placed at the end of a randomly 

chosen link in the graph (López-Pintado 2006, Jackson and Yariv 2007). In particular, adopters 

with higher degrees are weighted more heavily because they are more “visible” to other players. 

Note that the adoption rate  𝑥̃(𝑡) always lies in the interval [0,1]. 

The definitions of the expected waiting time 𝐸𝑇(𝛼, 𝛽, 𝐺) and of fast diffusion introduced in 

section 2 extend naturally to the adoption rate measure 𝑥̃(𝑡). Concretely, a family 𝒢 of graphs 

displays fast diffusion if for any graph 𝐺 ∈ 𝒢 the expected waiting time until 𝑥̃(𝑡) ≥ 1/2 is 

bounded independently of the size of 𝐺. Note that the analysis that follows carries through if we 

define fast diffusion relative to a threshold 𝑝 ∈ (0,1) other than 1/2. 

We shall begin by considering graphs with degrees bounded above by some integer 𝐷 ≥ 3. 

Denote by 𝒢+(𝐷) the family of all such graphs. Fix a state 𝑥(𝑡) such that  𝑥̃(𝑡) ≤
1

2
. We propose 

to study the expected change in the adoption rate 𝐸𝑥̃(𝑡 + 1/𝑁) − 𝑥̃(𝑡).  

Choose some individual 𝑖 and let 𝑛𝑖(𝑡) ≡ ∑ 𝑥𝑗(𝑡)𝑗∈𝑁𝑖
 be the number of adopters among 𝑖’s 

neighbors at time 𝑡. The expected change in 𝑖’s adoption rate is  

𝐸𝑥𝑖 (𝑡 +
1

𝑁
) − 𝑥𝑖(𝑡) =

𝑁 − 1

𝑁
𝑥𝑖(𝑡) +

1

𝑁
𝑓 (

𝑛𝑖(𝑡)

𝑑𝑖
) − 𝑥𝑖(𝑡) 

=
1

𝑁
(𝑓 (

𝑛𝑖(𝑡)

𝑑𝑖
) − 𝑥𝑖(𝑡)). 
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Summing across all agents we obtain 

𝐸𝑥̃ (𝑡 +
1

𝑁
) − 𝑥̃(𝑡) =

1

𝑁𝑑̅
∑

1

𝑁
(𝑑𝑖𝑓 (

𝑛𝑖(𝑡)

𝑑𝑖
) − 𝑑𝑖𝑥𝑖(𝑡))

𝑁

𝑖=1

. 

Note that we can rewrite the adoption rate as 

(11)  

 

𝑥̃(𝑡) =
1

𝑁𝑑̅ 
∑ 𝑑𝑖𝑥𝑖

𝑁

𝑖=1

(𝑡) 

=
1

𝑁𝑑̅
∑ ∑ 𝑥𝑗(𝑡)

𝑗∈𝑁𝑖

𝑁

𝑖=1

 

=
1

𝑁𝑑̅
∑ 𝑑𝑖

𝑛𝑖(𝑡)

𝑑𝑖
 

𝑁

𝑖=1

. 

 

Hence the expected change in the state variable can be written 

(12)  𝐸𝑥̃ (𝑡 +
1

𝑁
) − 𝑥̃(𝑡) =

1

𝑁𝑑̅
∑

1

𝑁
(𝑑𝑖𝑓 (

𝑛𝑖(𝑡)

𝑑𝑖
) − 𝑑𝑖

𝑛𝑖(𝑡)

𝑑𝑖
)

𝑁

𝑖=1

. 
 

Let 𝑋𝐷 = {
𝑘

𝑑
∶ 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝐷 and 𝑑 ≠ 0} and consider the set 𝐹𝐷 = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝑋𝐷}. 

Let  𝑓𝐷 denote the lower envelope of the convex hull of the set 𝐹𝐷. Note that 𝑓(𝑥) ≥ 𝑓𝐷(𝑥) for 

all 𝑥 ∈ 𝑋𝐷 so (12) implies that  

𝐸𝑥̃ (𝑡 +
1

𝑁
) − 𝑥̃(𝑡) ≥

1

𝑁𝑑̅
∑

1

𝑁
(𝑑𝑖𝑓̃𝐷 (

𝑛𝑖(𝑡)

𝑑𝑖
) − 𝑑𝑖

𝑛𝑖(𝑡)

𝑑𝑖
)

𝑁

𝑖=1

. 

By definition 𝑓𝐷 is convex, and a fortiori so is 𝑓𝐷(𝑥) − 𝑥. By applying Jensen’s inequality and 

using (11) we obtain 

(13)  𝐸𝑥̃ (𝑡 +
1

𝑁
) − 𝑥̃(𝑡) ≥

1

𝑁
(𝑓̃𝐷(𝑥̃(𝑡)) − 𝑥̃(𝑡)). 

 

Thus, a sufficient condition for the expected motion to be positive is that 𝑓𝐷 lies strictly above 

the identity on the interval [0,1/2]. The function 𝑓𝐷(𝑥) − 𝑥 is decreasing on this interval, hence 

this condition is equivalent to 
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(14)  𝜇(𝛼, 𝛽, 𝐷) ≡ 𝑓𝐷 (
1

2
) −

1

2
> 0. 

 

Note that 𝑓𝐷(1/2) is a weighted average of 𝑓(1) and 𝑓(𝑘/𝑑), where 𝑘/𝑑 approximates the point 

on the interval [0,1/2] where 𝑓 is closest to the diagonal. Define the function 

ℎ̃(𝛽, 𝐷) = inf{𝛼 : 𝜇(𝛼, 𝛽, 𝐷) ≥ 0}. 

Several key properties of the function ℎ̃(𝛽, 𝐷) are summarized in the following result.  

Proposition 1.  ℎ̃(𝛽, 𝐷) < 𝐷 − 2, and ℎ̃(𝛽, 𝐷) < 0.83 for  𝜀 ≥ 5% (𝛽 < log(19)).   

Proof. The intuition for the first statement is that when 𝛼 > 𝐷 − 2 it is a best response to play 𝐴 

whenever at least one neighbor plays 𝐴. Formally, for 𝛼 ≥ 𝐷 − 2 we have 𝑓(𝑘/𝑑) ≥ 1/2 for all 

0 < 𝑘 ≤ 𝑑 ≤ 𝐷. It follows that the lower envelope of the convex hull of the set 𝐹𝑑 ≡

{(
𝑘

𝑑
, 𝑓 (

𝑘

𝑑
)) ∶ 0 ≤ 𝑘 ≤ 𝑑} is given by the line that joins (0, 𝑓(0)) and (1, 𝑓(1)). This implies 

that 𝜇(𝛼, 𝛽, 𝐷) = (𝑓(0) + 𝑓(1))/2 − 1/2, which is strictly positive. The last two statements of 

Proposition 1 follow from inequality (7) in the proof of Theorem 1         ∎ 

In order to study the family of all networks, we can consider the limit as 𝐷 tends to infinity. We 

claim that ℎ̃(𝛽) = sup
𝐷

ℎ̃(𝛽, 𝐷) is finite for all 𝛽. Indeed, let 𝑓min denote the lower envelope of 

the convex hull of the set {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ [0,1]}, and let  

𝜇(𝛼, 𝛽) = 𝑓min(1/2) − 1/2. 

If we define ℎ̃(𝛽) = inf{𝛼 : 𝜇(𝛼, 𝛽) ≥ 0}, then for all 𝛼 > ℎ̃(𝛽) the expected change in the 

adoption rate is positive for any network as long as 𝑥̃(𝑡) ≤ 1/2. 

The next result extends Theorem 1 to the family of all networks. It establishes the existence of a 

payoff threshold for fast diffusion, as well as an absolute bound on the expected waiting time. 
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Theorem 2. Given a noise level 𝛽 > 0, if the payoff gain 𝛼 exceeds the threshold ℎ̃(𝛽) then 

diffusion is fast for all  graphs. Moreover with 𝜇 = 𝜇(𝛼, 𝛽), for any graph the expected waiting 

time until the adoption rate is at least 1/2 satisfies 

𝐸𝑇(𝛼, 𝛽, 𝐺) <
1

𝜇
. 

Theorem 2 shows that for any graph the expected time until the adoption rate 𝑥̃(𝑡) reaches 1/2 is 

uniformly bounded above as long as the payoff gain is greater than a threshold value that depends 

on the noise level. Moreover, the theorem provides an explicit bound on the expected waiting 

time that is easily computed and has a simple geometric interpretation.  

We can improve on the threshold ℎ̃(𝛽) in Theorem 2 if we restrict ourselves to graphs with 

degrees bounded by some number 𝐷. Specifically, for any integer 𝐷 ≥ 3, if the payoff gain 

exceeds ℎ̃(𝛽, 𝐷) then diffusion is fast for all graphs with degrees bounded by 𝐷. Moreover, if  

𝜇 = 𝜇(𝛼, 𝛽, 𝐷), the expected waiting time satisfies 𝐸𝑇(𝛼, 𝛽, 𝐺) < 1/𝜇 for every graph 𝐺 ∈

𝒢+(𝐷). 

A notable feature of these results is that the bounds are topology-free: they do not depend on any 

of the network details. The only other result in the literature of this nature is due to Young (2011, 

Proposition 4), who shows that 𝛼 > 𝐷 − 2 guarantees fast diffusion for all graphs in 𝒢+(𝐷).  

(The same bound arises in a number of other evolutionary models that are based on deterministic 

best-response processes; see in particular Ellison (1997), Morris (2000), Sandholm (2001) and 

Oyama et al (2011)). Proposition 1 shows that the bound ℎ̃(𝛽, 𝐷)  is better than this; indeed for 

many families of graphs it is much better.  

Figure 5 plots the threshold ℎ̃(𝛽, 𝐷) for several values of 𝐷. The figure also includes the 

threshold ℎ̃(𝛽); combinations of 𝛼 and 𝛽 above this line have the property that diffusion is fast 

for the family of all finite graphs. 
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Figure 5 – Threshold  𝒉̃(𝜷, 𝑫) for 𝑫 = 𝟏𝟎 (blue, solid), 𝑫 = 𝟐𝟓 (red, dashed),  

𝑫 = 𝟓𝟎 (green, dots) and 𝒉̃(𝜷) (black, solid). 

For each pair (𝛼, 𝜀) and for any value of 𝐷, the term 𝜇 = 𝜇(𝛼, 𝛽, 𝐷) is uniquely determined by 

the shape of the function 𝑓(⋅; 𝛼, 𝛽) and can be easily calculated. Table 1 presents the bounds on 

the expected waiting time established in Theorem 2. The bounds apply to all finite graphs, 

irrespective of maximum degree or size. For example, when 𝜀 = 5% and 𝛼 = 2, it takes at most 

55 revisions per capita in expectation until the adoption rate 𝑥̃(𝑡) exceeds 1/2.  

Remark: Note that the waiting time upper bound in Theorem 2 cannot be lower than 2/𝜀. 

Indeed, the points (0, 𝜀) and (1, 𝑓(1)) are always part of the graph of 𝑓 and 𝑓𝐷, which implies 

that 𝜇 is at most 𝜀/2.   

 

 

 

 

𝜀 = 1/(1 + 𝑒𝛽) 

𝛼 
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Table 1 – Upper bounds on the expected waiting time for any graph. 

 𝜀 

 1% 2.5% 5% 10% 

𝛼 = 1 − − 205 30 

𝛼 = 2 − − 55 21 

𝛼 = 4 − 116 41 20 

𝛼 = 8 437 81 40 20 

 

These numbers are expressed in terms of revisions per capita. The actual rate at which 

individuals revise will depend on the particular situation that is being modeled. For example, 

consider a new communication technology that is twice as good as the old technology when used 

by two agents who communicate with each other. Suppose that people review their decision 

about which technology to use once a week, and that they choose a best response nine times out 

of ten initially (when there are no adopters). The model predicts that the new technology will be 

widely adopted in less than seven months irrespective of the network topology. 

 

Proof of Theorem 2. Inequalities (13) and (14) imply that for any 𝑥̃(𝑡) ≤ 1/2 we have 

(15)  𝐸𝑥̃(𝑡 + 1/𝑁) − 𝑥̃(𝑡) ≥ 𝜇/𝑁.  

We want to estimate the stopping time 𝑇 = min{𝑡 ∶  𝑥̃(𝑡) ≥ 1/2}. Note that the process 𝑥̃(𝑡) 

stopped at 𝑇 is a submartingale. Define the process 𝑋(𝑡) = 𝑥̃(𝑡) − (𝑡 ⋅ 𝑁)𝜇/𝑁 and note that by 

(15) we know that 𝑋(𝑡) stopped at 𝑇 is still a submartingale.  

Doob’s Optional stopping theorem says that if 𝑋(𝑡) is a submartingale and if the stopping time 𝑇 

satisfies 𝑃(𝑇 < ∞) = 1, 𝐸|𝑋(𝑇)| < ∞ and 𝐸(𝑋(𝑇)|𝑇 > 𝑛) Pr(𝑇 > 𝑛) → 0 as 𝑛 → ∞, then 

𝐸𝑋(𝑇) ≥ 𝐸𝑋(0) (Grimmett and Stirzaker 1992). In our case, note that there exists 𝑝 > 0 such 

that with probability at least 𝑝 we have 𝑥̃(𝑡 + 1/𝑁) − 𝑥̃(𝑡) ≥ 𝑝, which implies that 𝐸(𝑇) < ∞. 

This implies the three conditions of the theorem. Rewriting this result we obtain  

𝐸𝑥̃(𝑇) ≥ 𝜇 ⋅ 𝐸(𝑇). 
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Noting that 𝑥̃(𝑇) ≤ 1 we obtain 𝐸(𝑇) ≤ 1/𝜇, as was to be proved.7            ∎ 

 

Remark. When more is known about the specific degree distribution we can obtain even more 

precise results. To illustrate, suppose we are given a degree distribution 𝑃 = (𝑝𝑑)𝑑, where 𝑝𝑑 

denotes the fraction of agents in the network that have degree 𝑑. To be specific let us consider 

the case where 𝑃 is described by the truncated power law 𝑝𝑑 ∝ 𝑑−𝛾 for some 𝛾 > 2. (Such a 

network is said to be scale-free).  Empirical studies of real networks show that they often 

resemble scale-free networks; examples include author citation networks, the World Wide Web, 

and the networks of sexual partners (Liljeros et al 2001). A network formation process that 

generates scale-free networks is the preferential attachment model, where a new agent added to 

the network is more likely to link with existing nodes that have a high degree (Barabási and 

Albert 1999). However, we want to stress that apart from the degree distribution, our results do 

not impose any constraints on the realized topology of the network. 

Figure 6 plots a numerically simulated upper bound on the threshold for fast diffusion for the 

truncated distribution 𝑝𝑑 = 𝜂𝑑−2.5 on the interval 5 ≤ 𝑑 ≤ 5000, where 𝜂 is a normalizing 

constant. These simulations show that for small noise levels the threshold for the truncated 

power law is significantly lower compared to the threshold for all graphs.  

 

                                                 
7 The method of proof for Theorem 1 is different because then we could establish the stronger bound 0.42/𝜇 instead 

of 1/𝜇. 
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Figure 6 – The estimated bound (blue, dashed) for topology-free fast diffusion  

for a power-law degree distribution (𝒑𝒅 ∝ 𝒅−𝟐.𝟓 for 𝟓 ≤ 𝒅 ≤ 𝟓𝟎𝟎𝟎). 8 Also shown is the 

threshold 𝒉̃(𝜷) (black, solid). 

The estimated curve in Figure 6 has a very similar shape to the curves in Figure 5. In particular, 

fast diffusion is achieved when the noise level is 5% and the payoff gain is at least 𝛼 = 0.81. 

Changing the exponent and the parameters of the degree distribution yields qualitatively and 

quantitatively similar threshold functions. 

5 Smooth stochastic best response functions 

In this paper we have established the existence of a payoff gain threshold that ensures fast 

diffusion in networks. The bound is “topology-free” in the sense that it holds for all networks. In 

this section we shall show that our method for proving these results does not depend in any 

crucial way on the logit response function: results similar to Theorems 1 and 2 hold for a large 

family of response functions that are qualitatively similar to the logit, and that arise from 

idiosyncratic payoff shocks.Assume that at the start of each period each agent’s payoffs from 

playing 𝐴 and 𝐵 are perturbed by independent payoff shocks 𝜖𝐴 and 𝜖𝐵. These shocks alter the 

player’s payoffs from all interactions during the period. In particular, agent 𝑖’s payoff from an 

interaction with 𝑗 when playing 𝑥𝑖 is 𝜋(𝑥𝑖 , 𝑥𝑗) + 𝜖𝑥𝑖
.  His total payoff over the period is  

                                                 
8 Empirical studies of scale-free networks typically find exponents between 2.1 and 4 (Barabási and Albert 1999). 

𝜀 

𝛼 
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∑ 𝜋(𝑥𝑖, 𝑥𝑗)

𝑗∈𝑁𝑖

+ 𝑑𝑖𝜖𝑥𝑖
, 

where 𝑁𝑖 is the set of 𝑖’s neighbors, which has 𝑑𝑖 elements. 

Note that the shocks 𝜖𝐴 and 𝜖𝐵 are assumed to be constant for all of the agent’s interactions in a 

given period; they are also independent across agents and across periods. Let us assume that the 

shocks are identically distributed with cumulative distribution function Θ(𝜖; 𝛽) and density 

𝜃(𝜖; 𝛽). The variance of the shocks is captured by the noise parameter 𝛽; as 𝛽 tends to infinity 

the variance goes to zero. Let Θ2(Δ; 𝛽) denote the cdf of the random variable 𝜖𝐴 − 𝜖𝐵.  

Suppose that 𝑥 is the proportion of adopters (i.e., 𝐴-players) in the neighborhood of a given 

agent 𝑖 in a given period. The expected payoff difference from choosing 𝐴 or 𝐵 in a single 

interaction is  

Δ(𝑥; 𝛼) = (1 + 𝛼)𝑥 − (1 − 𝑥). 

If agent 𝑖 has 𝑑𝑖 neighbors, the payoff difference from choosing 𝐴 versus 𝐵 equals 𝑑𝑖Δ(𝑥; 𝛼). 

Assume that whenever an agent revises his action, he chooses a (myopic) best response given his 

realized payoffs in that period. Thus from an observer’s standpoint the probability that 𝑖 chooses 

𝐴 is  

𝑓𝜃(𝑥; 𝛼, 𝛽) = Pr((1 + 𝛼)𝑑𝑖𝑥 + 𝑑𝑖𝜖𝐴 > 𝑑𝑖(1 − 𝑥) + 𝑑𝑖𝜖𝐵) 

= Pr(𝑑𝑖(𝜖𝐴 − 𝜖𝐵) > −𝑑𝑖Δ(𝑥; 𝛼)) 

= Pr((𝜖𝐴 − 𝜖𝐵) > −Δ(𝑥; 𝛼)) 

= 1 − Θ2(−Δ(𝑥; 𝛼); 𝛽). 

Note that this probability does not depend on the agent’s degree.  

If the shocks are drawn from an extreme-value distribution of the form  

Θ(𝜖; 𝛽) = 1 − exp(−exp (𝛽𝜖)), then 𝜖𝐴 − 𝜖𝐵 is distributed according to a logistic distribution, 

and the resulting response function is the logit. 
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Another natural example is given by normally distributed payoff shocks. If the shocks are 

normally distributed with mean zero and standard error 𝛽−1, the resulting response function is 

the probit choice rule (Myatt and Wallace 2003), given by  

Pr(A | 𝑥, 𝛼, 𝛽) = Φ (
𝛽Δ(𝑥; 𝛼)

√2
), 

where Φ is the cumulative distribution function of the standard normal distribution. It will be 

seen that this response function, plotted in Figure 7, is very similar in shape to the logit. 

Moreover, the bound between slow and fast diffusion is qualitatively very similar to the other 

models.  

         

Figure 7 Left Panel: Logit response function (black solid) and normally distributed payoff 

shocks (gray dots). (𝜶 = 𝟏, 𝜺 = 𝟓%).     Right panel: Thresholds for topology-free fast diffusion: 

logit (black solid) and normally distributed payoff shocks (gray dots). (𝒅 = 𝟏𝟓) 

In general, consider a family of densities 𝜃(𝜖; 𝛽) with parameter 𝛽 > 0. Assume that 𝜃 satisfies 

the following conditions: 

1. 𝜃(𝜖; 𝛽) is continuous; for every 𝛽 > 0 it is quasi-concave in 𝜖 and symmetric around 0; 

𝛼 

𝜀 𝑥 

𝑓(𝑥) 
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2. For any 𝛽′ > 𝛽 the distribution given by 𝜃(⋅; 𝛽′) second-order stochastically dominates 

the distribution given by 𝜃(⋅; 𝛽). Moreover, 𝜃(𝜖; 𝛽) tends to zero as 𝛽 tends to zero, and 

it tends to the Dirac delta function 𝛿(𝜖) as 𝛽 tends to infinity. 

The first condition implies that 𝜖𝐴 − 𝜖𝐵 is also quasi-concave and symmetric around zero. This 

implies that the function Θ2(Δ; 𝛽) is convex for Δ < 0 and concave for Δ > 0. Hence the 

response function 𝑓𝜃 has a convex-concave shape. The second condition says that the amount of 

payoff disturbances is arbitrarily large for small 𝛽, decreases in 𝛽 and tends to zero as 𝛽 tends to 

infinity. It follows that 𝑓𝜃 converges to random choice for 𝛽 close to 0 and to the best response 

function for 𝛽 large. 

We are now in a position to extend Theorem 2 to general families of response functions. Let 

𝑓𝜃,min denote the lower envelope of the convex hull of the set {(𝑥, 𝑓𝜃(𝑥)) ∶ 𝑥 ∈ [0,1]} , and let  

𝜇(𝛼, 𝛽, 𝜃) = 𝑓𝜃,min (
1

2
) −

1

2
. 

The next result extends Theorem 2 to families of payoff shocks that satisfy conditions 1 and 2.  

Theorem 3. Assume that agents experience independent and identically distributed payoff shocks 

with a density 𝜃(𝜖; 𝛽) that satisfies conditions 1 and 2. For any noise level 𝛽 > 0, there exists a 

payoff threshold ℎ̃(𝛽, 𝜃) such that whenever 𝛼 > ℎ̃(𝛽, 𝜃), diffusion is fast for all graphs. 

Moreover, if 𝜇 = 𝜇(𝛼, 𝛽, 𝜃) > 0, then for every graph 𝐺 the expected waiting time until the 

adoption rate is at least 1/2 is at most 1/𝜇. 

We now present a different characterization of response functions that are similar to the logit, 

which turns out to be equivalent to the one we have just described. A salient characteristic of the 

logit is that the probability of an error can be expressed as a decreasing function of the payoff 

difference between the two alternatives. As Blume (2003) has shown, the risk-dominant 

equilibrium remains stochastically stable for a large class of such response functions.  

We begin by modeling the probability of making an error. An error function 𝜉: ℝ+ × ℝ+ → [0,1] 

takes as arguments the relative payoff difference Δ ≥ 0 and a noise parameter 𝛽. We assume that 

𝜉has the following properties: 
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i) 𝜉 is continuous, it is decreasing and convex in Δ and decreasing in 𝛽, 

ii) 𝜉(0; 𝛽) = 1 and lim
Δ→∞

𝜉(Δ; 𝛽) = 0 for any 𝛽 > 0, 

iii) 𝜉(Δ, 0) = 1 and lim
𝛽→∞

𝜉(Δ, 𝛽) = 0 for any Δ > 0. 

Recall that an agent’s total payoff difference between choosing 𝐴 and 𝐵 is 𝑑Δ(𝑥; 𝛼), where 𝑥 is 

the fraction of adopters in her neighborhood,  𝑑 is her degree, and Δ(𝑥; 𝛼) is the expected payoff 

difference from a single interaction when the probability of interacting with an adopter is 𝑥. For 

example, when there are no adopters the payoff difference is equal to −𝑑. Hence the term 

Δ(𝑥; 𝛼) may also be interpreted as the payoff difference between choosing 𝐴 and 𝐵, relative to 

the state when there are no adopters. Denote the best response function by  

𝐵𝑅(𝑥; 𝛼) = {
1, if   Δ(𝑥; 𝛼) > 0
0, otherwise.

 

Let the probability that an agent chooses 𝐴 be given by  

𝑓𝜉(𝑥; 𝛼, 𝛽) = 𝐵𝑅(𝑥; 𝛼)(1 − 𝜉(|Δ(𝑥; 𝛼)|; 𝛽)) +
1

2
𝜉(|Δ(𝑥; 𝛼)|; 𝛽). 

𝑓𝜉  is a weighted average of the best response and an equal probability random choice. The 

weight on the random choice is equal to the error function evaluated at the relative payoff 

difference between choosing 𝐴 and 𝐵. Because of our assumption that 𝜉 is decreasing in Δ, the 

distance between 𝑓𝜉  and the best response is decreasing in the payoff difference between the two 

actions. 

The function 𝑓𝜉  is qualitatively similar to the logit function. It is increasing, continuous, initially 

convex and then concave, and converges to the best response as the noise level 𝛽 tends to 

infinity. Figure 8 plots three examples of functions 𝑓𝜉  for 𝛼 = 1, normalized such that 𝜀 = 5%. 

The logit response function is obtained from the error function 𝜉𝑙𝑜𝑔𝑖𝑡(Δ, 𝛽) = 2/(1 + 𝑒𝛽Δ), and 

the exponential and power error functions are given by 𝜉𝑒𝑥𝑝 = 𝑒−𝛽|Δ| and 𝜉𝑝𝑜𝑤 = (1 + 𝛽|Δ|)−3. 
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Figure 8 – Response functions: logit (black solid), exponential error function (blue dashed)  

and power error function (red dot-dash). (𝜶 = 𝟏, 𝜺 = 𝟓%) 

The following result establishes that the characterization of families of response functions in 

terms of error functions is equivalent to the characterization using payoff disturbances. 

Proposition 2. There exists a one-to-one correspondence 𝜑 between error functions 𝜉 and 

families of payoff disturbances 𝜋 that satisfy conditions 1 and 2, such that 𝜉 and 𝜋 = 𝜑(𝜉) 

generate the same family of response functions, namely for any 𝛽 > 0 

𝑓𝜉(𝑥; 𝛼, 𝛽) = 𝑓𝜋(𝑥; 𝛼, 𝛽). 

The straightforward proof is omitted. It follows from Proposition 2 and Theorem 3 that the main 

message of Theorems 1 and 2 carries through for any error function 𝜉.  

6 Conclusion 

In this paper we have studied some of the factors that affect the speed of diffusion of innovations 

on social networks. The two main factors that we identify are the payoff gain of the innovation 

relative to the status quo and the amount of noise in the players’ response functions.  

As has been noted by a number of authors, including Griliches (1957) in his classic study of 

hybrid corn, larger payoff gains tend to increase the speed with which an innovation spreads. 

𝑥 

𝑓(𝑥) 
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This makes intuitive sense. A less obvious but equally important factor is the amount of noise or 

variability in the players’ behavior. This variability can be variously interpreted as errors, 

experimentation, or unobserved payoff shocks. Under all of these interpretations, greater 

variability tends to increase the speed at which an innovation spreads. The reason is that higher 

variability makes it easier to escape from the initial low equilibrium. A particularly interesting 

finding is that different combinations of variability and payoff gain determine a threshold above 

which diffusion is fast in a ‘strong’ sense, namely the expected diffusion time is uniformly 

bounded irrespective of population size and interaction structure. These results are robust to quite 

general parameterizations of the variability in the system. For the logit, which is commonly used 

in empirical work, the waiting time is bounded (and quite small absolutely) if the initial error rate 

is at least 5% and the payoff gain from the innovation is at least 83% relative to the status quo.  

Unlike previous results, a central feature of our analysis is that the bounds on waiting time are 

topology-free. The results apply to all networks irrespective of size and structure. In addition, our 

method of analysis extends to families of graphs with restrictions on the degree distribution. The 

virtue of this approach is that it yields concrete predictions that are straightforward to compute 

even when the fine details of the network structure are unknown, which is arguably the case in 

many real-world applications. Moreover, in practice social networks are constantly in flux, 

which makes predictions that depend on the specific network topology quite problematic. We 

conjecture that our framework can be extended to settings where the network co-evolves with 

players’ choices, as in Jackson and Watts (2002) or Staudigl (2010) for example, but this issue 

will be left for future work. 
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