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Abstract

Decentralized matching platforms on the internet allow large numbers of agents to in-
teract anonymously at virtually no cost. Very little information is available to market
participants and trade takes place at many different prices simultaneously. We propose
a decentralized learning process in such environments that leads to stable and efficient
outcomes. Agents on each side of the market make demands of potential partners and
are matched if their demands are mutually compatible. Matched agents occasionally ex-
periment with higher demands, while unmatched agents lower their demands in the hope
of attracting partners. This learning process implements core allocations even though
agents have no knowledge of other agents’ strategies, payoffs, or the structure of the
game, and there is no central authority with such knowledge either.
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1. Introduction

Electronic technology has created new forms of markets that involve large numbers of
agents who interact in real time at virtually no cost. Interactions are driven by repeated
online participation over extended periods of time without public announcements of bids,
offers, or realized prices. Even after many encounters, agents may learn little or noth-
ing about the preferences and past actions of other market participants. Our goal is
to construct a dynamic model that incorporates these features, and to explore its con-
vergence and welfare properties. We see this as a first step toward developing a better
understanding of how such markets operate, and how they might be more effectively
designed.

We shall be particularly interested in bilateral markets where agents on each side of
the market submit “demands” and are matched provided that their demands are mu-
tually compatible. Examples include online platforms for matching buyers and sellers
of goods, for matching workers and firms, and for matching hotels with hotel clients.
These matching markets have traditionally been analyzed using game-theoretic methods
(Gale & Shapley [1962], Shapley & Shubik [1972], Roth & Sotomayor [1990]). In much of
this literature, however, it is assumed that agents submit preference menus to a central
authority, which then employs a suitably designed algorithm to match them. The model
we propose here is different in character: agents submit bids that are conditional on the
characteristics of those with whom they are matched, and the only role of the central
authority is to create a compatible (not necessarily optimal) set of matches at each point
in time. There is no presumption that agents or the central authority know anything
about the preferences of the others, or that they can deduce such information from prior
rounds. Instead agents employ a trial-and-error learning model: matched agents occa-
sionally ratchet up their demands to see if they can “get away with it”, while unmatched
agents ratchet down their demands in the hope of attracting partners.

We show that a class of learning rules with simple adjustment dynamics of this type
implements the core. The main contribution of the paper is to show how little information
may be necessary to implement efficient outcomes, in particular, that such outcomes are
achieved even though agents have no knowledge of other agents’ strategies or the structure
of the game, and there is no central authority with such knowledge either.

The paper is structured as follows. The next section discusses the related literature
on matching and core implementation. Section 3 formally introduces assignment games
and the concepts of bilateral stability and the core. Section 4 describes the process of
adjustment and search by individual agents. In section 5 we prove that this process
converges to the core. Section 6 concludes.

2. Related literature

To the best of our knowledge there is no previous work on dynamic learning models
applied to decentralized matching markets. However, there is a sizeable literature on



matching algorithms that grows out of the seminal paper by Gale & Shapley [1962].
In this approach agents submit preferences for being matched with agents on the other
side of the market, and a central clearing algorithm matches them in a way that yields
a core outcome (provided that the reports are truthful).? These algorithms have been
successfully applied in situations where agents engage in a formal application process,
such as students applying for admission to universities, or doctors applying for hospital
residencies.?

In the present paper, by contrast, we consider situations where the market is fluid and
decentralized. Agents are matched and rematched over time, and the information they
submit takes the form of prices rather than preferences. We shall show that even when
agents have minimal amounts of information and use very simple price adjustment rules,
the market evolves towards core outcomes. During the necessary adjustment process,
there is a positive probability that the relevant resulting adjustment chains mirror key
features of the Hungarian (primal-dual) algorithm (Kuhn [1955]). In particular, sequences
occur with positive probability where matches, breakups, and rematches occur in such a
way that shares of the surplus move from one side of the market to the other in a random
fashion. We prove that this leads in expectation to higher degrees of stability and fewer
single agents in the market. Crucially, however, unlike the Hungarian method or related
algorithms, neither a central authority nor the agents know that they are implementing
any paths with global significance.

This result fits into a growing literature showing how cooperative game solutions can be
understood as outcomes of a dynamic learning process (Agastya [1997], [1999]; Arnold &
Schwalbe [2002], Rozen [2010a], [2010b]; Newton [2010], [2011]; Sawa [2011]). To illustrate
the differences between these approaches and ours, we shall briefly outline Newton’s model
here; the others are similar in spirit.* In each period a player is selected at random and
demands a share of the surplus from some targeted coalition of players. He chooses
a demand that amounts to a best reply to the expected demands of the others in the
coalition, where his expectations are based on a random sample of the other players’ past
demands. In fact he chooses a best reply with probability close to one, but with small
probability he may make some other demand. This noisy best response process leads to
a Markov chain whose ergodic distribution can be characterized using the theory of large
deviations. Newton shows that, subject to various regularity conditions, this process
converges to a core allocation in games that possess a nonempty interior core.’?

The approach we take here requires considerably less information on the part of the
agents. Unlike in Newton’s model, players know nothing about current or past behavior

2See Crawford & Knoer [1981], Kelso & Crawford [1982], Demange & Gale [1985], Demange, Gale &
Sotomayor [1986] for examples. See Shimer [2005], Elliott [2010], [2011] for models with costly search.

3See, for example, Roth [1984] for a discussion of the medical resident market in the US and the
National Residency Matching Program.

4Newton’s [2011] model nests the models of Agastya [1997], [1999] and Rozen [2010a], [2010b] as
special cases. Unlike the other papers, Arnold & Schwalbe [2002] assume further random perturbations
outside the core.

5The core of an assignment game typically has an empty interior, hence the model’s results cannot
be translated directly in the present structure.



of other market participants. No information is available about other players’ choices,
intentions, or payoffs. Thus, they have no basis on which to best respond to the other
players’ strategies; they simply experiment to see whether they might be able to do bet-
ter. Rules of this type have a long history in the psychology literature (Thorndike [1898],
Hoppe [1931], Estes [1950], Bush & Mosteller [1955], Herrnstein [1961]). Furthermore it
has recently been shown that there are families of such rules that lead to equilibrium be-
havior in generic noncooperative games (Karandikar, Mookherjee, Ray & Vega-Redondo
[1998], Foster & Young [2006], Germano & Lugosi [2007], Marden, Young, Arslan &
Shamma [2009], Young [2009], Pradelski & Young [2010]).

To the best of our knowledge this framework has not previously been used to study
learning dynamics in cooperative games.® It seems especially well-suited to modeling
behavior in large decentralized markets, where agents have little information about the
overall game and the identity of the other market participants. Here we shall restrict our
attention to the analysis of learning dynamics in matching (assignment) games, which
constitutes a particularly important class in practice.

3. Assignment games

In this section we shall introduce the conceptual framework for analyzing matching mar-
kets. The next section will introduce the learning process itself.

A population N = {F U W} consisting of firms F = {fi,..., f,} and workers W =
{wy, ...,w,} repeatedly interacts in a two-sided market submitting demands to a central
market authority (“the Center”); one-to-one partnerships form between firms ¢ € F' and
workers j € W if they are compatible.”

Willingness to pay. Each firm ¢ has a willingness to pay, pjj, for being matched to
worker 7.

Willingness to accept. Each worker j has a willingness to accept, g;;, for being matched
with firm 4.

We assume that these numbers are specific to the agents and are not known to the other
market participants or to the Center.

Value of trade. Assume that utility is linear and separable in money. For each part-
nership (i,j) € F x W, the value of trade is the potential surplus of a match which we
assume to be positive, that is,

Qv :p;; —q; > 0.
Bids and payoffs. The way in which the value of a trade is distributed among the
partners depends on their bids. Each agent submits conditional bids to the Center.
Agent i € F submits a vector of numbers b} = (p}, ..., p},) where pj; is the amount i

6Sandholm [2008] reviews many of the previous applications.
"The two sides may also represent buyers and sellers, or men and women.



would pay if matched with 7 € W. Similarly, agent j € W submits a vector of bids
b5 = (qi;, -, 4n;) Where gf; is the amount j would accept if matched with i € F.

Only these bids are known to the Center who can deduce which matches are compatible,
that is, for whom pj; > ¢j;, a subset of which is implemented.

Central information. At any moment in time, the Center observes
e current bids p;;, g;; for all 4, 7,
e who is matched with whom,
e compatibility of any possible match ¢, .

If 7 is matched with j, given their bids p;; > ¢;;, we assume the resulting “price” is the
larger of the two bids. Thus, in any matched pair, the entire surplus is allocated by
definition. The resulting payoffs to ¢ and j are ¢; = p;; — pij and ¢; = py; — q;;- We can
assume that ¢;, ¢; > 0, that is, no one bids more than his willingness to pay or less than
his willingness to accept: for all (¢,7) and for all ¢, p; < p; and ¢f; > ¢;;. Furthermore,
we shall assume that each bid by a given agent would yield the same surplus if realized.
In other words, an agent factors the expected benefits from each possible match into his
bid. This means that each agent’s bid vector has a very simple structure: there exist
numbers ¢;, ¢; such that

for every i, p;; = p;; — ¢; for all j, (1)

for every j, qi; = ¢; — q;; for all 4. (2)

We can think of each agent’s strategy as a demand for a certain level of surplus (¢;
or ¢;). Two bids are compatible if pgj > qu, which the Center can observe. This is
equivalent to saying that their demands d;, d; satisfy the inequality d; + d; < a;; where
the latter is not known to the Center (or even to the players). Equations 1 and 2 imply
that when a pair is matched, we have

di -+ dj = Oéij. (3)
In what follows, however, it will be convenient to formulate the adjustment algorithm in
terms of the surplus demanded rather than in terms of the bids themselves.

Assignment market. The assignment market is now described by [F, W, a, A] in the
standard way:

o '={f1,..., fm} is a set of m firms (or men or sellers).
o W =A{wy,...,w,} is a set of n workers (or women or buyers).

a1 ... Qqp

o o= SCTPR is the matrix of partnership values.

[0 7 E 8 Poepey

a specifies the total surplus generated by any possible match in a given assignment.



o A= Coay is a particular assignment matrix with

aij =0or1 Zaijgland Zaijglforall(z',j)eFxW

JjEW i€F
The set of all possible assignments is denoted by A.

Cooperative assignment game. Given [F,W, o, A], the cooperative assignment game
G(v, N) is defined as follows. Let N = FUW and definev: S C N — R such that

e v(i) = v(0) = 0 for all singletons i € N,
o v(S) =qy; for all S = (7,7) such that i € F and j € W,
e v(S) = max{v(iy, j1) + ... + v(ix, jr)} for every S C N,

where the maximum is taken over all sets {(i1, 1), ..., (i, Jx)} consisting of disjoint pairs
that can be formed by matching firms and workers in S. The number v(N) specifies the
value it takes of an optimal assignment.

Optimality.
An assignment A is optimal if 37 ; i pow ijai; = V(N).

To simplify the notation, we shall add dummies to the smaller side of the market so that
there is an equal number of firms and workers in the market, that is, |F| = |W| = n, and
the value of any match with a dummy is zero.

Now we turn to feasibility of an outcome, by which we mean an assignment A € A
together with a payoff vector ¢ € R2".

Feasibility.
A partnership (i, j) is feasible if d;+d; < cu; (equivalently, their observable demands
are compatible). An outcome [A, @] is feasible if ¢; + ¢; < ayj for all pairs (i, )
with Q5 = 1.

Henceforth we shall restrict our attention to feasible outcomes. However, a feasible out-
come may be unstable if alternative partnerships can form that improve the deviating
partners’ positions.

Pairwise stability.
(A, @] is pairwise stable if for all (i, j) with a;; =1, ¢;+¢; = auj and ¢i+d; > vr;
for every alternative firm i and ¢; + ¢ > ayj for every alternative worker j'.

If [A, ¢] is not pairwise stable, two agents exist who have a common incentive to deviate
and form a new partnership.

The Core.
The core of an assignment game, G(v, N), consists of the set C of all outcomes,
[A, @], such that A is an optimal assignment and ¢ is pairwise stable.



Shapley & Shubik [1972] show that the core of any assignment game is always nonempty
and coincides with the set of pairwise stable allocations that are supported by optimal
assignments. In particular [A, @] is in the core if all a;; = 0 or 1, all ¢; > 0 and the
following conditions hold ®:

(7) Vi, ZjeN a;; <1,

(i) Vi g, di+ &5 = g,

(i) Vi, Y ey <1 = ¢ =0.
(iv) Vi, 7, a5 =1 = ¢ + Q5 = .

Subsequent literature has investigated the structure of the assignment game core, which
turns out to be very rich.”

4. Evolving play

A fixed population of agents, N = FUW repeatedly plays the assignment game G(v, N)
by submitting nonnegative real number demands to an electronic market maker and
adjusting them dynamically as the game evolves.

States. At any period of time ¢, the state Z* consists of a triple [A?, d', ¢']:
e the assignment is A,
e the demand vector is d* = {d, ..., d5, },

e the payoff vector is ¢’ = {¢t, ..., ¢, } where,
for any i € F,
d; if aj; =1 for some j

o=atanay={ LY

if at. =0 for all j
and, for any j € W,

ij

a;; —db if al; =1 for some i

t _ t t gty __ 7 1]
(bj_gbj(A’d)_{O if at; = 0 for all ¢

(]
These payoffs follow from the assumption that one side’s (the firms’) bids are accepted.!”

The set of all states will be denoted by 2. To simplify the analysis, we shall assume that
all demands, d;, and all partnership values, «;;, are multiples of an incremental rate of
demand adjustment, § € R™.

Note that the demand vectors constitute the invisible dual variables of the process and
are such that, for all matched pairs 7, j in any period ¢, d + d; = ;.

8These are the feasibility and complementary slackness conditions for the associated linear program
and its dual.

9See, for example, Roth & Sotomayor [1992], Balinski & Gale [1987], Sotomayor [2003].

10 Another assumption could be made here.



4.1. Behavioral dynamics

The essential features of the learning process are as follows:

1. Matched agents occasionally try to ratchet up their demands.
2. Unmatched agents ratchet down their demands in the hope of being rematched.

3. Existing matches are preserved unless made infeasible due to changes in demands
or rematches with an active agent.

We shall now describe these transitions more precisely.

Given state Z' at the beginning of period t + 1, an agent ¢ € N is drawn uniformly at
random and becomes activated. All other agents’ demands are held fixed at their period-
t aspiration levels (at the previous demand if single, or the previous payoff if matched):
d?“ = max{dﬁ-, ¢§} The agent ¢ who is selected makes new demands with probabilities to
be specified below. The updating rule differs according to whether 7 is currently assigned
(aj; = 1 for some j) or is unassigned. Note that unassigned agents currently receive a
payoff of zero, while assigned agents receive what they demand.

(i.)  Assigned agent

If selected at the start of period t + 1, an agent starts “looking around” with positive
probability. An agent i (currently matched with j) probes for just a little bit more, i.e.,
he temporarily raises his demand by J; otherwise he sticks with his previous demand
throughout the period. (See Figure 1 for illustration.)

If there exists at least one j' € N such that (di+0)+d}, < a;j, such a j' is drawn uniformly
at random (by the Center) and accepts the proposed match with ¢ with probability
p € (0,1). As a result, i’s former partner is now unassigned. If there exists no such j’,
and j remain matched with their previous demands.

(13.) Single agent

A single agent ratchets down his demand in the hope of attracting a partner. (See Figure
2 for an illustration.)

If selected, the single agent ¢ demands df. If there exists at least one j € N such that
dt + d; < @j, such a j is drawn uniformly at random by the Center and accepts the
proposed match with ¢ with probability p € (0,1). If no such j exists, i reduces his
demand to df“ = d! — 0 with positive probability, otherwise continues to demand dt. A
special case is when d! = 0, in which case dfj“ = 0 with probability 1.

Ezxample

Let N = FUW = {fi, fo, fs} U {wi, wo, w3}, a1 = oo = az3 = a1 = agg = 1 and
a;; = 0 for all other (7,j) (we omit the connections worth zero). Now suppose that
(f2,w2) and (f3,ws) are assigned and f; and w; are unassigned in period t. Let § = 0.1.



Figure 1: Demand increase by a matched agent.
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Figure 2: Demand decrease by a single agent.
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(i.)  Increases by matched agents.

Suppose that fy probes +0.1, which is incompatible with w,. f3’s new demand is com-
patible for w; and ws. With positive probability, fo is matched at his new demand with
wi.
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Next suppose that f; probes 4+0.1. No feasible match exists at the higher demand 0.6,
hence f3 returns to his previous demand and his previous partner ws.

s
0.5+D:

Zt+2

(13.) Decreases by single agents.

Now suppose that the single agent f; reduces his demand by 0.1 to 0.5. With positive
probability, he is then matched with the single agent wj.

11
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Next suppose that wy reduces his demand by 0.1 to 0.5. With positive probability, he is
then matched with the single agent w,, and the resulting state is core-stable.
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d. Stability

Recall that a state Z is defined by an assignment A and demands d that jointly determine
payoffs ¢. Recall that an outcome [A, @] is in the core, C, if conditions (i)-(iv) are

12



satisfied. We shall write C for the subset of the core in which everyone is assigned.!!

Theorem 1. Given an assignment game G(v, N), and 0 < v < 1, there erists a time
T, < oo such that [At, ¢'] € C with probability at least 1 — .

Proof. Start with Z!, demands d' and a partial matching A’

Claim 1. There is a positive probability path to demands d such that d; + d; > «;; for
all 7, 7.

Suppose d; + d; < o;.

Case 1.) i is single (or j is single).

With positive probability, either ¢ or j is activated and 7,7 match. As a result, next
period, one of them has higher realized surplus which becomes new demand.

Case 2.) i and j are matched with each other.

In this case, d; + d; = «;; because whenever two players are matched the entire surplus
is allocated.

Case 3.) i and j are both matched but not with each other.

In this case, with positive probability, either i or j is activated and 7, j match. As a result,
next period, one of them has higher realized surplus which becomes his new demand, and
other’s surplus has not decreased.

Therefore, a suitable path can be constructed under which d increases monotonically until
the claim is satisfied.

Claim 2. There is a positive probability path to demands d such that d; + d; > «;; for
all 7, 7 and, for every i, either there exists a j such that d; +d; = «;; or else d; = 0.

The first part of the claim follows from claim 1. To establish the second part, let A be
the current assignment. If A we are done. Else A is incomplete and there exists at least
one single 7. Assume d; > 0, else we are done. With positive probability, ¢ is selected and
searches unsuccessfully, and lowers his demand by . Therefore, a suitable path can be
constructed under which d decreases monotonically until the claim is satisfied. Note that
at the end of this path not every agent with a positive demand needs to be matched.

Claim 3. There is a positive probability path to a pair (d, A) such that d; + d; > «;; for
all 7,7 and A is complete.

Note that if the latter holds, then A and d are complementary dual variables so both are
optimal and A is stable. (Recall complementary slackness holds.)

By claims 1 and 2, we know that d; + d; > «;; for all 4,j. Furthermore, for every ¢,
there exists at least one j such that d; + d; = ay; or else d; = 0. Let A be the current

Recall there may be dummy agents i with aj; = 0 for all j € N. Such agents need not be matched
in the core, and there are optimal allocations where not everyone is matched.

13



assignment which is incomplete (or else we are done).

Without loss of generality, we can assume there exists a single firm, say f;, such that
dg, > 0. Otherwise all single agents with demand 0 match with positive probability and
the claim follows. Say an edge is tight if d; + d; = c;. Starting at f;, we shall construct
a maximal path P of tight edges which alternate between unmatched and tight (dashed),
and matched edges (solid) which are also tight by construction. We shall show that there
exists a positive probability path of bounded length to a state which still satisfies the
dual feasibility conditions and |A| increased.

Case 1.) Starting at f;, there exists a maximal alternating path P of odd length.

A

Let P = (f1, w1, fo, wa, ..., wg_1, fr, ws). First note that, since the path is maximal and
of odd length, w, must be unmatched. Now, with positive probability, f; is selected,
searches and snags w,. It follows that f5 is now single. Again with positive probability,
fo is selected, searches and snags we. Hence after k periods (k being the number of firms
on path P) a state is reached where all players on P are matched and the demands have
remained constant. Thus the number of matched pairs has increased by one.

14



Let P = P!, P2 ... P! be the family of maximal alternating paths starting at f;. On
any path P" € P where P" = (fT,w}, f3,w}, ..., fi_ir, wir, fir), first note that, since the
path is maximal and of even length, all other agents must be matched. With positive
probability, f; is selected, searches unsuccessfully and reduces his demand by 4. f;
remains single. Next with positive probability, w] is selected, can increase his demand
and match with f;. f; is matched but w]’s former partner fJ is single. With positive
probability, given fI has a positive demand, f; will reduce and be rematched with w7,
allowing wj to increase and snag fj. Now, reiterate the latter sequence of transitions
up to firm f;, and then for all » € 1,2,...,[. Hence, after a finite number of periods, a
state is reached where all players on every path P € P have been unmatched, rematched,
and are finally again matched with their original partners. In that state, the number of
reductions by 6 outnumbers the number of increases by one. Note that the new demand
vector remains dual feasible.

15



+0

As long as all firms on paths in P have positive demands, the same path reoccurs with
positive probability.

f le Jo /,
d, —md df‘ -mod=0 d ,—mo a'f11 —-mo d , —mod
5 f A f

d 4+m,5 d +md d +mo
w, . Wy
wll W, w;

Let m -6 (m > 0) be the minimal demand of any firm on P € P at the beginning of the
described transitions. After m-many rounds of reductions by the firms, a firm f] on P
exists with current demand zero (f; in the illustration) and hence no further reduction
by fI' can occur. (If multiple firms in P have demand zero after m rounds, choose any
firm which on its alternating path is the first firm with demand zero.) Hence after m
rounds of reductions, with positive probability, the single agent f; searches successfully
at current demand dy, — md and snags w]. Then f; becomes single. Again f;, with
positive probability, snags w4 until f; is reached who is now single with demand zero.
Note that all other paths in P did not change in the meantime and dual feasibility still
holds since demands did not change. The described sequence of transitions led from an
alternating path of even length with a single demanding > 0 to no alternating paths (in
P) and the only single agent in P demanding zero. Note that from the latter together

16



with the fact that families of even alternating path only have one single agent, it follows
that all other such families P" are disjunct with P.

; 1

F Aor R

d,—mod dfl -mo d
Ja !
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- o

d N +mo d +mo d )+m5
1 w2

1 1
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Thus by iterating case 2 for all disjunct families of even alternating paths, a state is
reached where all single agents demand zero while preserving dual feasibility. Finally,
with positive probability the single agents in the state (if there are any) find each other
and are matched (at demands zero) with positive probability. The result is a complete
core matching which is an absorbing state.

Consequently claims 1-3 jointly give a finite, positive probability path in which the process
reaches a termination at state variables (A, d) € C. The theorem follows.

]

Readers familiar with the Hungarian method will note that our proof mirrors the adjust-
ment chain of the algorithm introduced in Kuhn [1955]. It should be noted here that
adjustment chains off the Hungarian paths, too, have positive probability because there
is no central market authority enforcing any paths with global significance. With posi-
tive probability, however, agents — even though without knowledge of others’ strategies,
payoffs, or the structure of the game — behave as if implementing these adjustment and,
thus, eventually implement the core by themselves.

6. Conclusion

In this paper we have demonstrated that agents in large decentralized matching mar-
kets can learn to play stable and efficient outcomes through a trial-and-error learning
process. The agents need have no information about the distribution of others’ prefer-
ences, their past behavior, or about the values of different partnerships. Core allocations
are achieved by experiments on the singles market and resulting transition chains, even
though the underlying behavior is nonstrategic, mirror key features of the Hungarian

17



primal-dual method. A direction for further research would be to test experimentally
how agents actually do adjust their bids and offers in markets of the type discussed
above. Prior experimental work has shown that in fairly large matching games (seven
on each side), agents frequently do converge to core outcomes (Corominas-Bosch [2004],
Charness, Corominas-Bosch & Frechette [2007]). Convergence to the core is achieved
relatively quickly as agents learn each others’ preferences. It would be interesting to see
whether this result holds up in situations with many more agents and when less informa-
tion is made available. It would also be useful to examine their revision procedures as the
game is repeated. Is there an asymmetry in the size of upward and downward revisions?
Does giving agents more information about the others’ preferences change their behavior?
The answers to these questions will suggest ways in which the theoretical learning model
can be aligned more closely with empirical behavior.
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