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Abstract 

 

A person learns by trial and error if he occasionally tries out new strategies, 

rejecting choices that are erroneous in the sense that they do not lead to higher 

payoffs.  In a game, however, strategies can become erroneous due to a change of 

behavior by someone else.  Such passive errors may also trigger a search for new 

and better strategies, but the nature of the search is different than when a player 

is actively engaged in experimentation.   This paper introduces a simple version 

of this idea, called interactive trial and error learning, which has the property that it 

implements Nash equilibrium behavior in games that have at least one pure 

Nash equilibrium and no payoff ties.   Unlike regret testing (Foster and Young, 

2006), it requires no statistical estimation. Unlike a learning procedure proposed 

by Hart and Mas-Colell (2006), it requires no knowledge of the other players’ 

actions: learning proceeds purely by responding to one’s own payoff history.   
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1. Introduction 

 

Consider a situation in which people interact, but they do not know how their 

interactions affect their payoffs.   In other words, they are engaged in a game, but 

they do not know what the game is or who the players are.   For example, 

commuters in a city can choose which routes to take to work.  Their choices affect 

congestion on the roads, which determines the payoffs of other commuters.  But 

no single commuter can be expected to know the others’ commuting strategies or 

how their strategies influence his own commuting time.    Similarly, in a market 

with many competing firms, no single firm is likely to know precisely what the 

other firms’ marketing and pricing strategies are, or how these strategies affect 

its own profits (even though this assumption is routinely invoked in textbook 

models of competition).   Likewise, traders in a financial market are typically 

unable to observe the strategies of the other traders, and probably do not even 

know the full set of players participating in the market.  

 

In situations like these, one would like to have a learning procedure that does not 

depend on any knowledge of the others’ actions or on their payoffs.  Such a rule 

is said to be payoff-based or radically uncoupled (Foster and Young, 2006).  Are 

there simple payoff-based learning rules such that, when used by everyone in a 

game, period-by-period play comes close to Nash equilibrium play a large 

proportion of the time?  Several recent papers show that the answer is 

affirmative.  Foster and Young (2006) introduced a learning procedure called 

regret testing that has this property for all finite, two-person games.  

Subsequently, Germano and Lugosi (2007) showed that regret testing leads to 

Nash equilibrium behavior in generic -person games on a given finite action 

space.    

n
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More recently, Marden, Young, Arslan, and Shamma (2007), hereafter 

abbreviated MYAS, show that there are even simpler payoff-based learning rules 

that come close to pure Nash equilibrium behavior in the class of weakly acyclic 

games.   These games have the property that from every joint action-tuple there 

exists a sequence of best replies -- one player moving at a time -- that ends at a 

pure Nash equilibrium.  (Potential games and congestion games are special 

cases.)   MYAS propose the following learning process: each player experiments 

in each period with very small probability, and adopts the experimental action if 

and only if his payoff increases.   They prove that in any weakly acyclic game, 

this simple experimentation procedure implements Nash equilibrium in the sense 

that equilibrium behavior is observed in a very high proportion of all time 

periods. 

 

A key feature of regret testing and the MYAS algorithm is that they cause period-

by-period behavior to come close to equilibrium in a probabilistic sense, but 

behavior does not necessarily converge to equilibrium.  Indeed, Hart and Mas-

Colell (2003) have shown that there are severe limits to what can be achieved if 

one insists on convergence and the learning procedure is not, in a certain sense, 

‘rigged.’   One definition of ‘not rigged’ is that each player’s learning rule should 

be independent of the opponents’ payoffs; such a rule is said to be uncoupled.   

Suppose further that each player’s learning rule is deterministic and depends 

solely on the frequency distribution of past play (as in fictitious play).   Hart and 

Mas-Colell (2003) show that there exists a large class of games for which no such 

rule, when used by all players, causes period-by-period behavior to converge to 

Nash equilibrium behavior.  In a subsequent paper, they examine the situation 

where the learning procedure is stochastic, and is stationary with respect to 

histories of bounded length (Hart and Mas-Colell, 2006).  In this case one can 

4 
 



design simple, uncoupled rules that converge almost surely to Nash equilibrium 

behavior for games with a pure Nash equilibrium, but not for games in general.1

 

The results in the present paper differ from those of Hart and Mas-Colell in two 

key respects.   First, we shall not insist on convergence to Nash equilibrium; it 

suffices that period-by-period play come close to Nash equilibrium quite often.  

Second, we shall show to achieve this by a learning process that does not depend 

on the opponents’ payoffs or their actions.   (The framework in Hart and Mas-Colell 

(2006) relies on the observability of others’ actions; in other words their learning 

procedure is uncoupled but not radically uncoupled.)   Unlike regret testing, the 

learning rule proposed here does not rely on statistical estimation; it is also 

intuitively more plausible as a behavioral model.  Unlike the simple trial-and-

error procedure of MYAS, the rule works for almost all games that possess at 

least one pure Nash equilibrium.2   

 

A novel aspect of the approach is that a player’s learning behavior depends on 

his mood, which can change if his recent payoffs are above or below his current  

expectations.   Mood-driven learning has been suggested as an empirical 

phenomenon in a number of recent studies (Capra, 2004; Smith and Dickhaut, 

2005; Kirchsteiger, Rigotti, and Rustichini, 2006), but to my knowledge the formal 

properties of such rules have not been previously investigated.    In any event the 

rule proposed here is not intended to be an empirical model of mood-driven 

                                                 
1 The rule operates as follows: if everyone played the same action over the past two periods, and 

if player i’s action is a best response to the others’ actions, i plays that action again; otherwise i 

chooses an action uniformly at random.    

2 A game G on a finite action space A can be represented as a point in the Euclidean space n AR . 

The subset of games with at least one pure Nash equilibrium has positive Lebesgue measure in 

n AR , and a property holds for almost all such games if it holds except on a subset of Lebesgue 

measure zero.   
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learning, though it is composed of intuitively plausible elements that may turn 

out to have empirical validity.  Rather, my intention is to show that rules of this 

type can be effective methods for learning equilibrium in situations where 

players have no knowledge of what other players are doing.   

 

2. Interactive trial and error learning 

 

We shall consider a learning rule in which each agent has one of four possible 

moods: content, discontent, watchful, and hopeful.  When an agent is content, he 

occasionally experiments with new strategies, and switches if the new one is 

better than the old.   When discontent he tries out new strategies frequently and at 

random, eventually becoming content with a probability that depends on how 

well his current strategy is doing.  These are the main states, and reflect the idea 

that search can be of two kinds: careful and directed (when content), or flailing 

around (when discontent).    

 

The other two states are transitional, and are triggered by changes in the 

behavior of other agents.    Specifically, if an agent is currently content and does 

not experiment in a given period but his payoff changes anyway (because 

someone else changed strategy), then he becomes hopeful if his payoff went up 

and watchful if it went down.  If he is hopeful and his payoff stays up for one 

more period, he becomes content again with a higher expectation about what his 

payoff should be.  If he is watchful and his payoff stays down for one more 

period, he becomes discontent. 3  

 

I shall call this process interactive trial and error learning.  It differs from ordinary 

trial and error learning, which involves trying new things and accepting them if 
                                                 
3 The assumption of a one-period waiting time is purely for convenience; it could be any specified 

number of periods. 
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and only if they lead to higher payoffs.  (This is the MYAS procedure.)    In an 

interactive situation, however, “errors” can arise in two different ways:  by trying 

something that turns out to be no better than what one was doing, or by 

continuing to do something that turns out to be worse than it used to be.  The 

latter are passive errors, whereas the former are active errors.   A key feature of ITE 

learning is that these two types of errors trigger different behavioral responses.   

 

Let us now consider the states and transitions of the process in more detail.  Let 

 be an -person game with players G n 1, 2,...,i n= , finite joint action space 

iA A=∏ , and utility functions .   A state of player i  at a given point in 

time is a triple 

:iu A R→

( , , )i i iz m a u= i , where  is ’s current mood (content ( c ), 

discontent ( ), hopeful ( ), or watchful ( )), 

im i

d h w ia  is ’s current benchmark action, 

and 

i

iu  is ’s current benchmark payoff.   A state  of the process specifies a state 

 for each player. We shall write this in the form 

i z

iz ( , , )uz m a= , where each of the 

three components is an -vector describing the players’ moods, action 

benchmarks, and payoff benchmarks respectively.  Let 

n

Z  be the finite set of 

states corresponding to a given game G  on A .  

 

Given any state , a joint action-tuple z Z∈ a A∈  is realized next period according 

to a conditional probability distribution ( | )a zψ .  It will be useful to study the 

structure of these transitions without estimating the transition probabilities 

precisely (that will come later).  In particular we shall examine how the state 

variable of each player shifts given the player’s current state and the current 

realization of actions .  There are four cases to consider, depending on the 

player’s current mood. 

a

 

Content: ( , , )i iz c a u= i .  Agent i  chooses  next period, which differs from ia ia   if 

and only if i  is experimenting.  The possible transitions are:  
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                         ( , , )i ic a u                      ,  ( )i i ia a u a ui≠ ≤                   (1) 

                                                 (                 , , ( ))i ic a u a ,  ( )i i i iu a ua a≠ >                   (2) 

( , , )iz c a= i iu                            (                     , , )i iw a u ,  ( )i i ia a u a ui= <                   (3) 

                                                 ( ,                      , )i ic a u ,  ( )i i ia a u a ui= =                   (4) 

                                                 (                      , , )i ih a u ,  ( )i i i iu a ua a >                   (5) =

                                                                          

The first case says that if  experiments and his payoff does not increase, then i  
keeps the previous benchmarks and remains content.  The second case says that 

if  experiments and his payoff does increase, he adjusts his benchmark payoff to 

the new higher level, takes the new strategy as his benchmark strategy, and 

remains content.  The next three cases deal with the situation in which  does not 

experiment.  He becomes watchful, content, or hopeful depending on whether 

the realized payoff was lower, the same, or higher than his benchmark.  

i

i

i

 

Watchful: ( , , )i iz w a u= i . Agent  plays his benchmark strategy next period i

( i ia a= ) .  If the realized payoff  is below his benchmark, he becomes 

discontent; if it equals his current benchmark he becomes content with the old 

benchmarks; if it is higher he becomes hopeful with the old benchmarks.    

( )iu a

                                                                                                                        

                                              (              , , )i id a u ,  ( )i i ia a u a ui= <                                (6)                                    

 ( , , )iui iz w a=                       ( ,               , )i ic a u ,  ( )i i ia a u a ui= =                                (7) 

                                              (               , , )i ih a u ,  ( )i i i iu a ua a >                                (8)                     =
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Hopeful: ( , , )i iz h a u= i . Agent i  plays his benchmark strategy ( i ia a= ) : if the 

realized payoff is lower than his benchmark he becomes watchful with the old 

benchmarks; if the realized payoff equals the benchmark he becomes content 

with the old benchmarks. If the realized payoff is higher, he becomes content 

with the realized payoff as the new benchmark.  

 

                                              (                            , , )i iw a u ,  ( )i i i iu a ua a <                  (9)    =

 ( , , )ii iz h a u=                        ( ,                             , )i ic a u ,  ( )i i ia a u a ui= =                 (10)         

                                              (                        , , ( ))i ic a u a ,  ( )i i i iu a ua a >                 (11)       =

  

Discontent: ( , , )i iz d a u= i .  In this case the agent’s benchmark strategy and  

benchmark payoff do not matter:  he plays a strategy  drawn uniformly at 

random from .   Spontaneously he becomes content with probability 

ia

iA

( ( ), )iu a uiφ , where the response function φ  is bounded away from 0 and 1, that is, 

( , ) 1i iu uθ φ≤ ≤ θ−  for some 0θ > .4   When agent i  becomes content, his current 

strategy  and payoff level u a  serve as his new benchmarks; otherwise he 

continues to be discontent with the old benchmarks. 

ia ( )i

 

                                                (      with prob , , ( ))i ic a u a ( ( ))iu aφ                            (12) 

( , , )i i iz d a u=  

                                                (          with prob 1 (, , )i id a u )( )iu aφ−                        (13) 

 

The precise form of the response function φ  is not important for our results, 

though from a behavioral standpoint it is natural to assume that it is monotone 

increasing in the realized payoff u  and monotone decreasing in the benchmark i iu :  

                                                 
4 The response functions can differ among agents without changing the results; purely for 
notational convenience we shall assume that the same φ  applies to everyone.   
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higher values of the former and lower values of the latter mean that the agent is 

more likely to become content again.  Note, however, that there is no guarantee 

that the agent will become content no matter how high  is relative to iu iu ; in 

particular he may remain discontent even if his previous benchmark is realized, 

and may become content even when it is not.   In this sense the procedure differs 

from most forms of aspiration learning, where payoffs above or below the 

aspiration level determine the response more sharply (references).5   

 

Definition.  A game  is interdependent if any proper subset of players can 

influence the payoff of at least one player not in  by some (joint) choice of 

actions.   More precisely, G  is interdependent if  

G S

S

 

, , , , S SS S N a A i S a a′∀ ∅ ⊂ ⊂ ∀ ∈ ∃ ∉ ∃ ≠ ,  ( , ) ( , )i S S i S Su a a u a a− −′ ≠ .                              (14) 

 

For a randomly generated game G  on a finite strategy space A , interdependence 

holds generically, because it holds if there are no payoff ties.   Notice, however, 

that interdependence is a considerably weaker condition: there can be many 

payoff ties so long as there is enough variation in payoffs that each subgroup can 

affect the payoff of someone not in the group by an appropriate choice of 

strategies.   

 

Definition.  Consider a stochastic process { }tX  and suppose that each realization 

of tX  either does or does not have some property .  Given any realization of 

the process, let 

P

tp  be the proportion of times that property  holds in the first t  P

                                                 
5 An agent may forget what his earlier benchmark was. For example, he might remain discontent 
even though his realized payoff is higher than it ever was before, or he might become content 
even though his payoff is lower than the level that originally made him discontent.  One is 
reminded of the rabbi who instructed the unhappy peasant to put a goat in his house: later he 
was delighted when the rabbi said he could take it out again.     
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periods.   Property  holds at least  of the time if P r lim tp r≥  for almost all 

realizations.                                      

 

 

 

Theorem 1.   Let 0
AG  be the set of all n-person, interdependent games  on a  finite joint 

action space A such that G  possesses at least one pure Nash equilibrium.  Suppose the 

players use ITE learning with experimentation probability 

G

ε .  If ε  is sufficiently small, 

then for all  a pure Nash equilibrium is played at least 1G∈G 0A ε−  of the time.   

 

Notice that the theorem holds for all games in the given class provided that ε  is 

small enough; in other words, the rate of experimentation does not have to be 

adjusted to the particular game in hand. 

 

3. Discussion 

 

Before proving theorem 1 formally let us briefly outline the argument.  On the 

one hand, if the learning process is in a non-equilibrium state, it takes only one 

person to experiment with the ‘right’ action and the experiment will succeed 

(yield a higher payoff).  Hence the process transits to a state having different 

benchmarks with probability at least ( )O ε .  On the other hand, if the process is in 

an equilibrium state, then at least two people must experiment together (or in 

close succession) for the experiments to succeed.  Hence the process transits to a 

state with new benchmarks with probability at most 2( )O ε .   Thus, when ε  is 

very small, the process stays in the equilibrium states much longer than in the 

disequilibrium states. The key point to establish is that the process enters an 

equilibrium state with reasonably high probability starting from an arbitrary 
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initial state.  This requires a detailed argument and is the place where the 

interdependence property is used.   

 

As we have already remarked, a much simpler version of this procedure works 

for potential games and the more general class of weakly acyclic games.  A game 

 is weakly acyclic if, from every pure strategy-tuple there exists at least one 

sequence of strict better replies, one player moving at a time, that ends in a pure 

Nash equilibrium strategy-tuple.   If all players use ordinary trial and error 

learning with sufficiently small experimentation probability 

G

ε , and if the game is 

weakly acyclic, they play a stage-game pure Nash equilibrium at least 1 ε−  of the 

time (Marden, Young, Arslan, and Shamma, 2007).  As we have also pointed out, 

ITE learning is not the only payoff-based procedure that leads to Nash 

equilibrium with high probability.  Regret testing also has this property, and 

works for generic games with pure or mixed equilibria (Foster and Young, 2006; 

Germano and Lugosi, 2007).  Regret testing is more complex, however, because it 

relies on statistical estimation.  Agents collect data and periodically compare the 

average payoffs generated by their current strategies with the average payoffs 

produced by occasional deviations.   When the average payoff from deviating 

exceeds the average payoff from the current strategy by more than some 

tolerance level 0τ > , the agent switches to a randomly chosen new strategy.  In 

particular, the agent does not necessarily choose the strategy that actually did 

better when experimenting, hence the search has an undirected aspect.  In ITE 

learning, by contrast, successful experiments are always implemented.   Random 

search arises when payoffs got worse and the agent did not experiment; moreover 

even in this case the search is directed because higher realized payoffs lead the 

player to abandon the search with higher probability (assuming that φ  is 

monotone increasing).   This seems like a plausible behavioral hypothesis.  

 

4. Proof of theorem 1: preliminaries 
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The proof uses the theory of perturbed Markov chains (Young, 1993).   Suppose 

that all players in the game  use ITE learning with experimentation probability  G
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ε  and a given response function φ  (which will be fixed throughout).6  Let the 

probability transition matrix of this process be denoted by Pε , where for every 

pair of states ,z z Z′∈ , 'zzPε

 is the probability of transiting in one period from  to 

.  We assert that 

z

z′ 'zzPε  is a polynomial in ε  (with coefficients depending on φ ).  To 

see why, suppose that  is the current state with benchmark strategies z a , and 

suppose that the vector  is realized next period, resulting in the state a z′ .  If 

a a≠ , some subset of  content players experimented.  The probability of this 

event is  where c  is a constant. (The other 

k

(1 )kcε ε −− n k n k−  players were either 

not content in , or were content and did not experiment, but all of these events 

have probabilities that do not depend on 

z

ε .) If a a= , no one experimented but 

someone’s mood may have changed, the probability of such an event is 

independent of ε , which is trivially a polynomial in ε .  Hence in all cases 'zzPε

 is a 

polynomial in ε , possibly of degree zero.   

 

Definition. The resistance of the transition z z′→  , written , is the lowest 

exponent on 

(r z z′→ )

ε  among all nonzero terms in the polynomial describing .  (Note 

that   can be zero.) 

zzP ′

r

 

Let 1 2, ,..., hZ Z Z  be the distinct recurrence classes of the Markov chain Pε . 

Starting from any initial state, the probability is one that the process eventually 

enters one of these classes and stays there ever after.   To characterize the long-

run behavior of Pε , it therefore suffices to examine its long-run behavior when 

restricted to each of the classes jZ .  Let jPε  denote the process restricted to the 

recurrence class jZ .  This process is irreducible, and the resistances of its 

                                                 
6 Players can have different experimentation probabilities provided they go to zero at the same 
rate.  We could assume, for example, that each player i  has an experimentation probability 

, where the parameter 0iλ ε > ε  is varied while the iλ  are held fixed. This complicates the 
notation unnecessarily, so in the proofs we shall assume a common rate ε .  
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transitions are defined just as for Pε . Hence the restricted process is a regular, 

perturbed Markov chain (Young, 1993), and we can study its asymptotic 

behavior for small ε  using the theory of large deviations.   

 

Given a state jz Z∈ , a tree rooted at , or , is a set of | |z -z tree 1jZ −  directed edges 

that span the vertex set jZ , such that from every { }jz Z z′∈ −  there is a unique 

directed path from  to .   Denote such a tree by .  The resistance of  is 

defined to be the sum of the resistances of its edges: 

z′ z zT zT

 

                                                           
( , )

( ) ( )
z

z
z z

r r z
′ ∈

z′= →∑
T

T .                                  (15) 

 

The stochastic potential of   is defined to be  z

 

                                             ( ) min{ ( ) :  is a tree rooted at }z zz r zρ = T T .                    (16) 

 

Let Z −   be the subset of all states  that minimize z ( )zρ .  The following result 

follows from Young (1993, theorem 4).                                          

 

For each class jZ  and each jz Z∈  , let  be the long-run probability of  z in  the  

process 

( )
j

zεμ

jPε . Then 
0

lim ( ) ( )
j jz zε

ε
μ μ

→
=  exists and ( ) 0j zμ >  only if z Z −∈ .                    (17) 

 

The states  such that z ( ) 0j zμ >  are said to be stochastically stable (Foster and 

Young, 1990). In effect, they are the only states that have nonvanishing 

probability when the parameter ε  becomes arbitrarily small.  
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5. Proof of theorem 1.   

 

The proof of theorem 1 amounts to showing that: i) every recurrence class jZ  

contains at least one all-content state in which the benchmarks constitute a pure 

Nash equilibrium of G ; ii) the stochastically stable states are all of this type.   

 

Let oZ  be the subset of states ( , , )z m a u=  such that ( )i iu u a= for all agents i . In 

other words, oZ  is the subset of states such that the agents’ benchmark payoffs 

and benchmark actions are aligned.   Let  be the subset of such states in 

which all agents are content.  Let  be the subset of  in which the benchmark 

actions 

oC Z⊂ o

oE oC

a  form a pure Nash equilibrium of .  Finally, let G ( )oZ a  denote the set 

of all states in oZ  such that the action benchmarks are some given a .   

 

Definition. A path in Z  is a sequence of transitions  such that 

all states on the path are distinct.  

1 2 ... mz z z→ → →

 

Claim 1.  For every  there exists a zero-resistance path of length at most 

three from  to some state in .  

oz C∉

z oC

 

Proof.  Given any state ( , , )z m a u= oC∉ ,  I claim that the benchmark action-tuple 

a  is played next period with probability 0( )O ε .   Consider the cases: i) if in state 

 agent i  is content, he plays z ia  next period with probability 1 ε− ; ii) if agent i  

is hopeful, he plays ia  again for sure and waits to see the payoff; iii) if agent i  is 

watchful he plays ia  again for sure and waits to see the payoff; iv) if agent i  is 

discontent, he plays ia  with probability 1/ iA .  Therefore a  is played with 
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probability 0( )O ε .  Moreover, when a  is played, each discontent agent i  

spontaneously becomes content with probability at least , in which case  

new benchmark action is 

0q > 'i s

ia  and his new benchmark payoff is ( )iu a  .   Denote the 

resulting state by .  By construction, z′ z′  has the benchmark actions a ; 

furthermore, all the content agents in z′  have the corresponding payoff 

benchmarks ( )iu a .   (If i  just became content, i  adopts the payoff from the 

preceding period as his benchmark, which was in fact  ( )iu a .)   

 

It could be that the transition z z′→  caused some players to become hopeful, 

watchful, or discontent, so in state z′  these players may have payoff benchmarks 

that are not aligned with the action benchmarks a .   In the next period, however, 

the same events occur with probability 0( )O ε :  a  will again be played and the 

discontent players will all become content with the appropriate payoff 

benchmarks.   Call this state z′′ .  Since a  was played twice in succession on the 

path z z z′→ → ′′ , everyone’s payoff stayed the same for one period.   Hence 

every hopeful player in  has now become content with payoff benchmark z′

( )iu a ; furthermore every watchful player in z′  has now become discontent. 

Meanwhile all the watchful players in z′  have (by assumption) become content 

in  with the appropriate payoff benchmarks.  Thus in one more transition of the 

same type, 

z′′

a  will be played and everyone will become content with the payoff 

benchmarks ( )iu a .   We have therefore shown that it takes at most three 

transitions, each having zero resistance, to go from any state not in  to some 

state in .   

oC
oC

 

Claim 2.  If ( , , ) oe m a u E= ∈  and  has action benchmarks different from z a , then 

every path from  to  has resistance at least two.  e z
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Proof.  Consider any path .   By definition of , 

everyone in  is content and they are playing a pure equilibrium, namely, 

1 2 ... me z z z→ → → → = z oE

e a .  

Hence  , because at least one agent must experiment for the process 

to exit from e .   If  we are done.   Suppose therefore that 

, that is, the transition involves an experiment by exactly one agent 

(say ).   Since 

1( )r e z→ ≥1

2

r e z→ =

1( )r e z→ ≥

1( ) 1

i a  is an equilibrium,  experiment does not lead to a payoff 

improvement for .  Hence in state  the benchmark actions are still 

'i s

i 1z a , and the 

benchmark payoffs are still u .  (Note, however, that in  some agents may have 

become hopeful or watchful, though none is yet discontent.)    

1z

 

Suppose that, in the transition , none of the contented agents 

experiments.   Then 

1z z→ 2

a  is played, so in  all the hopeful and watchful agents (if 

any) have reverted to a contented mood with benchmarks 

2z

,a u .  But this is the 

original state , which contradicts the assumption that a path consists of distinct 

states.  We conclude that at least one agent does experiment in the transition 

, which implies that . Hence the total resistance along the 

path is at least two, as claimed.  

e

1z z→ 2 1

1 0

1 2( )r z z→ ≥

 

Definition. A transition from state  to another state is easy if it has the lowest 

resistance among all transitions out of .  A sequence of transitions 

 is an easy path from  to  if all states are distinct and all 

transitions are easy. 

z

z
1 2 ... mz z z→ → → 1z mz

 

In particular, if   is an easy path, then for every k ,  1 2 ... mz z z→ → → m<

 

                          and0
1( )k k kz C r z z +∈ ⇒ → = 0

1( )k k kz C r z z +∉ ⇒ → = .              (19) 

 

18 
 



 

 

Claim 3.   For every state not in , there exists an easy path to some state in .  oE oE

 

Proof.  Suppose that .  If also , then by claim 1 there exists a zero-

resistance path to some state , which is obviously an easy path.  If 

we are done.   Otherwise it suffices to show that there exists an easy path 

from  to some state in .  Let 

oz E∉ oz C∉

1 oz C∈

1 oz E∈

1z
oE ( , )a u  be the benchmarks in state , which are 

aligned in the sense that 

1z

( )i iu u a=  for all i , because .  Since , 

there is an agent  and an action 

1 oz C∈ 1 o oz C E∈ −

i ia ai≠  such that ( , ) ( , )i i i i i i iu a a u a a u− −> = .   The 

probability that ( , )i ia a−  is realized next period is 1(1 )nε −− /(| | 1)iAε − , which 

occurs when i  experiments and chooses , while the others do not experiment.  

This results in a state  where i  is content,  new benchmarks are  and 

ia

2z 'i s ia

( , )i i iu a a−  respectively, and the others’ benchmarks are as before (though their 

moods may have changed).   Note that  payoff benchmark has strictly 

increased, while the others’ payoff benchmarks have stayed the same.   Note also 

that the lowest order term in 

'i s

1(1 )nε −− /(| | 1)iAε −  has order one (in ε ), so 

.   Since all other transitions out of  have resistance at least 1,  

 is an easy path.  As we have just noted, this is also a monotone increasing 

path in the sense that no one’s benchmark payoff decreases and someone’s 

strictly increases.    

1 2( ) =1r z z→

2

1z

1z z→

 

If  we are done.  Otherwise there are three possibilities to consider: i) 

everyone in  is content; ii) some are hopeful and no one is watchful; iii) 

someone is watchful.  (No one can be discontent at this stage, since it takes at 

least two periods of disappointing payoffs to become discontent.)   

2 oz E∈

2z
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In the first case everyone is content, so evidently  change of action did not 

change anyone else’s payoff. Hence  and we can simply repeat the earlier 

argument to extend the path by one more transition, , having resistance 1. 

This is an easy and monotone increasing continuation of the path.   In the second 

case there is a zero-resistance (hence easy) transition to a state  in which 

everyone becomes content, the benchmark payoffs for everyone are at least as 

high as they were in state , and they are strictly higher for those who were 

hopeful (this happens when everyone in state  plays his action benchmark).  

So again there is an easy and monotone increasing continuation of the path. 

'i s
2 oz C∈

2z → 3z

3 oz C∈

2z
2z

 

We shall consider the third case in a moment. Notice, however, that if the 

continuation of the path always involves cases i) and ii), then it will always be 

monotone increasing. Since the state space is finite, it must come to an end, 

which can only happen when it reaches some equilibrium state in .  oE

 

We now consider the other case, namely, the path reaches a first transition where 

some agent becomes watchful, but no one is yet discontent.   Suppose this 

happens in the transition 1k kz z +→ .  Up to this point, transitions have either: i) 

involved a single contented agent making an experiment that led to a better 

payoff for himself; or ii) involved one or more hopeful agents playing their 

benchmark actions and becoming content with new higher benchmark payoffs  

(but not both i) and ii)).  It follows that there are no hopeful agents in state , 

because hopeful agents do not try new actions, so they cannot cause someone else 

to become watchful (which is what happened for the first time in the transition 

 ).  Thus all agents in  are content, , and in the transition 

 there is exactly one agent, say , who successfully experimented and 

caused the payoff of some other agent, say 

kz

1k kz z +→ kz kz C∈ o

1k kz z +→ i

j , to go down.   
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Let ,k ka u  be the benchmark actions and payoffs in state ; these are aligned 

because .   Let 

kz

0kz C∈ 1,k ka u+ +1  be the benchmarks in state 1kz + .  Note that only 

 benchmark action and payoff changed between the two states; agents who 

became watchful or hopeful in 

'i s
1kz +  have not changed their benchmarks yet (they 

will wait one more period).   In the next period the probability is at least 1(1 )nε −−  

that the current action benchmarks 1ka +  will be played again.  In this case all the 

watchful agents experience another disappointing payoff and become discontent, 

while all the other agents become content.  Thus the process transits with zero 

resistance to a state  in which there is at least one discontent agent and there 

are no hopeful or watchful agents.  In state 

2kz +

2kz +  the benchmarks are still 
1,k ka u+ +1 , and they are partially aligned in the sense that 1( )k

ju a u+ = 1k
j
+  for all 

agents j  who are not discontent.    

 

Let  be the subset of discontent agents in D 2kz + .  To avoid notational clutter let 

us drop the superscripts on the current benchmarks and denote them by ( , )a u .   

By assumption G  is interdependent, hence there exists an agent  and an 

action-tuple 

j D∉

Da′  such that ( , ) ( , )j D N D j D N D ju a a u a a u− −′ ≠ = .   We claim that there is a 

sequence of four (or fewer) easy transitions that make all the agents in  

discontent.  

{ }D j∪

 

Case 1. ( , ) ( , )j D N D j D N Du a a u a a− −′ > .   

 

Consider the following sequence: in the first and second period the players in  

play 

D

Da′  and in the third and fourth periods they revert to Da , all the while 

remaining discontent.   (In each of these periods the players not in  keep 

playing 

D

N Da − .)  This initially raises  expectations, which are later quashed (an 'j s
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inverted goat strategy).  The sequence of transitions and play realizations looks 

like this: 

 

2 3 4 5 6

                       

         

                           

( , )           ( , )          ( , )            ( , )

                                        
D N D D N D D N D D N D

k k k k

j ju u

a a a a a a a a

z z z z z
− − − −

+ + + +

↑ ↑

′ ′

→ → → →

                                                                         

                 

    

ju

k+

j hopeful j content j watchful j discontent

↓
         

 

I claim that each of these transitions has zero resistance, so this is an easy path.  

Indeed, in each transition the players in   play their required actions and stay 

discontent, which has probability at least 

D
| |( / ) Dmθ , where .  

Meanwhile each of the players 

max | |i im A=

i D∉  continues playing his benchmark ia , which 

has probability 1 ε−   if content, probability at least / mθ  if discontent, and 

probability 1 if watchful or hopeful.  These probabilities are all bounded away 

from zero when ε  is small, hence all the transitions have zero resistance.  Thus 

by state , and possibly earlier, the set of discontent agents has expanded from 

  to  or more .   

6kz +

D { }D j∪

 

Case 2.  ( , ) ( , )j D N D j D N Du a a u a a− −′ <  

 

This case just involves two transitions: everyone in  plays D Da′  and stays 

discontent, while the others play  N Da − .  This makes player j  discontent in two 

steps.   

 

Thus in both cases there is an easy path from 2kz +  to a state  in which all 

agents are discontent.   Given any 

*z

e E∈ , the probability is at least  that ( / )nmθ

*z e→  in one period; indeed this happens if all n  agents choose their part of the 

equilibrium specified by   and spontaneously become content.    e
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We have therefore shown that, from any initial state  there exists an easy 

path to some state in .  This establishes claim 3.  

1 oz E∉

oE

 

Recall that ( )zρ  is defined to be the resistance of the least resistant tree(s) rooted 

at .  To establish theorem 1, it therefore suffices to show the following (see 

statement (17) in the preceding section).   

z

 

Claim 4.   ,     ,z E e E∀ ∉ ∃ ∈ ( ) ( )e zρ ρ<  

 

Proof.   Let  be in the recurrence class z jZ , and let  be a least-resistant tree that 

spans 

zT

jZ  and is rooted at .  Suppose that z z E∉ .  By claim 3 there exists an easy 

path from  to some state e .   Denote this path by z E∈ 0 ... kz z z e= → → = , and 

let  be the set of its k  directed edges.   We shall construct a new tree that is 

rooted at  and has lower resistance than does .  

P

e zT

 

In , each state  has a unique successor state zT z′ ≠ z ( )s z′ ; in other words, 

 is the unique edge exiting from ( )z s z′ → ′ z′ .  Adjoin the path  to , and 

remove each edge  that is not in  (i.e., such that ) .  Call 

the resulting set of edges .  Since  is an easy path, each of its transitions 

P zT

( )jz s z→ j P 1( )j js z z +≠

S P
1j jz z +→  has least resistance among all transitions out of the state , hence  jz

 

                                       r z  for 11( ) ( ( )j j j jz r z s z+→ ≤ → j k) <

1

.                      (18) ≤

 

Furthermore, is an easy transition out of state , so .   Hence 1z z→ z 1( )r z z→ ≤

 

                                                         ( ) ( ) 1zr r≤ +S T .                                               (19) 

23 
 



 

Next let 1 2 ... je w w w→ → → →   be the unique path in   (and ) leading from 

 toward , where 

zT S

e z jw  is the first state on the path such that  and e jw  do not 

have the same benchmarks.  From claim 2 we know that  

                                

                                r e .                       (20) 1 1 2 1( ) ( ) ... ( )j j 2w r w w r w w−→ + → + + → ≥

 

Remove each of these j  edges from , and adjoin the S 1j −  edges  

 

                                              w e .                                        (21) 1 2 1, ,..., jw e w e−→ → →

 

The result of all of these edge-exchanges is now a tree  rooted at . (See figure 

1 for an example.)   

eT e

z  1z  2z  3z  e  

2w

1w

3w

 
Figure 1. Construction of a tree rooted at e  from a tree rooted at  by adding 

edges (solid) and subtracting edges (dashed).  

z
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By claim 1, each of the transitions in (21) has zero resistance, hence 

. Combined with the previous result that , we 

deduce that .   Hence 

( ) ( ) 2er r≤ −T S ( ) ( ) 1zr r≤S T +

z z( ) ( )er r<T T ( ) ( )eρ ρ< , because for any state , w ( )wρ  is 

the resistance of the least-resistant tree rooted at .   This completes the proof of 

theorem 1.   

w

 

6. Non-generic payoffs 

 

It is straightforward to construct games with non-generic payoffs such that ITE 

learning does not come close to Nash equilibrium behavior at any time, let alone 

most of the time.   These examples require that the game have three or more 

players; ITE learning does come close to Nash equilibrium for all finite two-

player games, as will be shown in Theorem 2.  

  

First we demonstrate that some form of genericity is required when there are 

three or more players.   Consider the three-person game in Figure 2, where each    

player has two actions.   There is a unique pure equilibrium in the lower 

northeast corner, and a best response cycle on the top square.   Suppose that the 

process starts in a state where player 3 is content.   Since her payoffs are constant, 

no amount of experimenting will produce better results, and nothing the other 

players do will trigger a change in her mood.  In short, once player 3 begins in a 

content state she remains content and never changes action.   If she starts by 

playing the action corresponding to the top square, no combination of actions by 

the other two players constitutes a Nash equilibrium.   Hence there exist initial 

states from which ITE learning never leads to a pure Nash equilibrium even 

though there is one.     (By contrast, if the process begins in a state where player 3 

chooses the action corresponding to the lower square, the pure equilibrium will 

eventually be played with probability one.)   
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 Figure 2.  A three-person game with non-generic payoffs in which ITE learning 

does not necessarily lead to Nash equilibrium play. Arrows indicate best-

response transitions. 

 

Similar examples can be constructed when there are more than three players. 

This is not the case when there are only two players, as the next result shows. 

 

Theorem 2.  Let *
AG  be the set of all two-person games G  on a finite joint action space 

 such that G  possesses at least one pure Nash equilibrium.  Suppose the 

players use ITE learning with experimentation probability 

1A A A= × 2

ε .  If ε  is sufficiently small, 

then for all *
AG∈G   a pure Nash equilibrium is played at least 1 ε−  of the time.   

 

Proof.   Consider a two-person game on a finite joint action space , 

where the game possesses at least one pure Nash equilibrium.    A best response 

path is a sequence of action-tuples  such that the action-tuples 

1 2A A A= ×

1 2 ... ma a a→ → →
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are all distinct, and for each transition 1k ka a +→  there exists a unique player i   

such that and  is a strict best response by  to 1k k
ia a +

− −= i
1k

ia + i k
ia−  .   The sequence is a 

best response cycle if all of these conditions hold except that 1 ma a= .   

 

The only part of the proof of theorem 1 that relied on the interdependence 

assumption was the proof of Claim 3.   We shall show that this claim holds for 

two players without invoking interdependence, from which the theorem follows 

immediately. 

 

Recall that  denotes the set of states such that everyone is content and the 

benchmarks correspond to  a pure Nash equilibrium.  (For other definitions and 

notation the reader is referred to the proof of theorem 1.) 

oE

 

Claim.   For every state not in , there exists an easy path to some state in .  oE oE

 

Proof.  Suppose that .  If also , then by claim 1 (in the proof of 

theorem 1) there exists a zero-resistance path to some state , which is 

obviously an easy path.  If  

oz E∉ oz C∉

1 oz C∈

1 oz E∈  we are done.   Otherwise it suffices to show 

that there exists an easy path from  to some state in .  Let 1z oE 1 1( , )a u  be the 

benchmarks in state , which are aligned by definition of .  We now 

distinguish two cases.  

1z oC

 

Case 1.   There exists a best response path from  1a  to a pure Nash equilibrium, 

say  1 2 ... ma a a a= → → →  .    

 

For , let  be the state that has action benchmarks , payoff 

benchmarks , and everyone is content.   We can construct an easy path to 

 by tracking the best response path as follows.   In state , let the relevant 

1 k m≤ ≤ kz k
ia

( )k
iu a

mz E∈ o 1z
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player experiment and choose a best reply to the others’ current actions, while 

the others play these actions.   Thus they play , and the probability of this 

event is 

2a

( )O ε .  Of course this may cause some players to undergo a change of 

mood.  In the next period, however,  will be played again and everyone will 

become  content, all with probability 

2a
0( )O ε . At this point the process has reached 

the state  via easy transitions.  Repeating the argument we conclude that there 

is an easy path to the target state 

2z
mz Eo∈ , as claimed. 

 

Case 2.  There exists no best response path from  1a  to a pure Nash equilibrium. 

 

Given that there is no best response path from 1a  to a pure Nash equilibrium, 

there must exist a best response path from 1a  that leads to a best response cycle.  

Denote such a cycle by 1 ...j j ma a a a+→ → → = j  and the path to it by 
1 1 2 ... ja a a a= → → → .   As in case 1 we can construct an easy path that mimics 

the best response path up to ja ; we need to show that it can be extended as an 

easy path to a Nash equilibrium.     

 

Along the cycle the two players alternate in choosing best responses, say player 1 

chooses a strict best response going from ja  to 1ja + , player 2 from 1ja +  to 2ja + ,  

and so forth. Since these are strict best responses and the process cycles, each 

player’s payoff must at some stage decrease.   Proceeding from ja , let 1k ka a +→  

be the first transition on the cycle such that some player’s payoff strictly 

decreases, say player 2’s.    Since this is a best response cycle, player 1’s payoff 

must strictly increase in the transition 1k ka a +→ .  Moreover in the previous 

transition on the cycle, ,  player 2’s payoff must strictly increase because 

the players alternate in making best responses.  We therefore know that  

1ka − → ka

) k

 

                                       and .                           (22) 1
1 1( ) (k ku a u a+ > 1

2 2( ) ( )ku a u a −>
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We now consider two possibilities.   

 

Case 2a.  . 1
1 1( ) ( )k ku a u a −<

  

By assumption  was the first transition after 1k ka a +→ ja  such that any decrease 

occurred, so .   As in case 1 we can construct an easy path (in the full state 

space) that mimics the transitions along the path 

j k=

1 1 2 ... ka a a a= → → →  and then 

mimics the cycle beginning at .    Consider the situation when this path first 

returns to , that is, the players are content with benchmarks and in the next 

period they play .   This causes player 1’s payoff to decrease, so player 1 

becomes watchful, while player 2 remains content.   In the next period the 

probability is 

ka
ka 1ka −

ka

0( )O ε  that player 1 plays action  again and becomes discontent, 

while player 2 plays action  again and remains content.  In the next period 

after that, the probability is 

1
ka

2
ka

0( )O ε  that player 1 chooses action  and remains 

discontent, while player 2 does not experiment, chooses  again, and 

remains content.   By assumption, player 2’s payoff decreases in this transition 

( ).   In the period after that, with probability 

1
1
ka +

1
2 2
k ka a +=

1k ka a +→ 0( )O ε  they play  again, 

player 1 remains discontent, and player 2 becomes discontent.  At this juncture 

both players are discontent.  Hence in one more period they will jump to a pure 

Nash equilibrium, and in one period after that both will become content playing 

the Nash equilibrium, all with probability 

1ka +

0( )O ε .  Thus in case 2a we have 

constructed an easy path to a state in , that is, to an all-content Nash 

equilibrium.  

oE
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Case 2b.   . 1
1 1( ) ( )k ku a u a −≥

 

In this case we construct an easy path (in the full state space) that mimics the 

transitions along the path 1 1 2 ... ja a a a= → → →  and then mimics the cycle up to 

the point where  is first played.  At this point player 2 becomes watchful 

while player 1 is content.  In the next period 

1ka +

1ka +  is played again with probability 
0( )O ε , and player 2 becomes discontent while player 1 remains content.   In the 

next period after that, player 2 plays 1
2
ka −  and remains discontent, while player 1 

sticks with his current action 1
1
ka + , all with probability 0( )O ε .  Denote the 

resulting pair of actions by .   Again we may distinguish two cases. 1 1
1 2( ,k ka a a+ −= )

k

 

Case 2b’.   and . 1
1 1( ) ( )ku a u a −≥ 1

1 1( ) ( )ku a u a +<

 

In this case player 1 has become watchful while player 2 is discontent, so in one 

more period they will both be discontent with probability 0( )O ε .   As we have 

already shown, this leads in two more easy steps to a Nash equilibrium, and we 

are done.  It therefore only remains to consider the following. 

 

Case 2b”.   and . 1
1 1( ) ( )k ku a u a −≥ 1

1 1( ) ( )ku a u a +≥

 

We claim that this case cannot occur.  Recall that the players alternate in making 

best replies around the cycle.  Since player 2 best responded in going from 1ka −  to 

,  player 1 best responded in the previous move.  It follows that  is 1’s best 

response to , from which we deduce that .   Putting this 

together with the case 2b” assumption we obtain 

ka 1
1
ka −

1
2
ka − 1

1 1( ) (ku a u a− ≥ )

1 1
1 1 1 1( ) ( ) ( ) ( )k k ku a u a u a u a− +≥ ≥ ≥ , 

30 
 



which implies that 1
1 1( ) ( )ku a u ak+≥ , contrary to (22).   This concludes the proof of 

theorem 2.  

 

7. Extensions 

 

Interactive trial and error learning can be generalized in several ways.  One is to 

assume that players react only to “sizable” changes in payoffs.   Given a real 

number 0τ > , define  ITE learning with payoff tolerance τ   to be the same as before 

except that: i) a player becomes hopeful only if the gain in payoff relative to the 

previous benchmark is strictly greater than τ  ; ii) a player becomes watchful only 

if the loss in payoff relative to the previous benchmark is strictly greater than τ .    

 

Say that a game is τ -interdependent if any proper subset  of players can -- by an 

appropriate choice of joint actions -- change the payoff of some player not in  

by more than 

S

S

τ .   An argument very similar to that of theorem 1 shows the 

following: if a game has a τ -equilibrium and is τ -interdependent,  ITE learning with 

tolerance τ  and experimentation rate ε  leads to τ -equilibrium play in at least 1 – ε  of 

all time periods provided that ε  is sufficiently small. 

 

Extensions of the approach to learning mixed equilibria are not quite as 

straightforward.  The obvious modification to make in this case is to assume that 

each player computes the average payoff over a large sample of plays before changing 

mood or strategy.   If the players are using mixed strategies, however, there is 

always a risk -- due to sample outcome variability -- that the realized average 

payoffs will differ substantially from their expected values, and hence that one or 

more players changes mood and strategy due to “measurement error” rather 

than fundamentals.   Thus one needs to assume that players only react to sizable 

changes in payoff and that the sample size is sufficiently large that sizable changes 

occur with very low probability.  Moreover, for our method of proof to work, one 
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would need to know that the game is τ -interdependent for a suitable value of τ , 

but this does not necessarily hold for the mixed strategy version of the game 

when the underlying game is τ -interdependent.  (Consider for example a 2 x 2 

game in which every two payoffs differ by more than τ .   Each player may 

nevertheless have a mixed strategy that equalizes his own payoffs for all 

strategies of the opponent, in which case the mixed-strategy version is certainly 

not τ -interdependent).  Thus, while it may be possible to extend the approach to 

handle mixed equilibria, the result would be more complex and perhaps not as 

intuitively appealing as the version described here.    

 

To sum up, interactive trial and error learning is a simple procedure for learning 

pure equilibria that does not rely on statistical estimation (like regret testing) and 

does not require observability of the opponents’ actions (like the procedure of 

Hart and Mas-Colell).   Even simpler procedures -- such as the MYAS 

experimentation rule -- work for weakly acyclic games, of which potential games 

are a special case.  We conclude that there exist simple heuristics that allow 

players to learn equilibrium in a wide variety of strategic situations even when 

they know nothing about the structure of the game, who the other players are, or 

what strategies they are pursuing.    
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