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Abstract 

 

A person learns by trial and error if he occasionally tries out new strategies, 

rejecting choices that are erroneous in the sense that they do not lead to higher 

payoffs.  In a game, however, strategies can become erroneous due to a change of 

behavior by someone else.  We introduce a learning rule in which behavior is 

conditional on whether a player experiences an error of the first or second type. 

This rule, called interactive trial and error learning, implements Nash equilibrium 

behavior in any game with generic payoffs and at least one pure Nash 

equilibrium.  
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1. Introduction 

 

Consider a situation in which people interact, but they do not know how their 

interactions affect their payoffs.   In other words, they are engaged in a game, but 

they do not know what the game is or who the other players are.   For example, 

commuters in a city can choose which routes to take to work.  Their choices affect 

congestion on the roads, which determines the payoffs of other commuters.  But 

no single commuter can be expected to know the others’ commuting strategies or 

how their strategies influence his own commuting time.    Similarly, in a market 

with many competing firms, no single firm is likely to know precisely what the 

other firms’ marketing and pricing strategies are, or how these strategies affect 

its own profits (even though this assumption is routinely invoked in textbook 

models of competition).   Likewise, traders in a financial market are typically 

unable to observe the strategies of the other traders, and probably do not even 

know the full set of players participating in the market.  

 

In situations like these, one would like to have a learning procedure that does not 

require any information about the opponents’ actions or payoffs.  Such a rule is 

said to be completely uncoupled.1 This paper introduces a simple, completely 

uncoupled learning rule such that, when used by all players in a game, period-

by-period play comes close to pure Nash equilibrium play a high proportion of 

the time, provided that the game has such an equilibrium and the payoffs are 

generic.   

  

This rule, called interactive trial and error learning, has two key ingredients: i) 

players occasionally experiment with alternative strategies, keeping the new 

                                                 
1 Foster and Young (2006) use the term radically uncoupled.  A learning rule is uncoupled if it does 
not require information about the opponents’ payoffs, though it may depend on their actions 
(Hart and Mas-Colell, 2003). 
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strategy if and only if it leads to a strict increase in payoff; ii) if someone 

experiences a payoff decrease due to a strategy change by someone else, he starts a 

random search for a new strategy, eventually settling on one with a probability 

that increases monotonically with its realized payoff.    A novel feature of the 

process is that different search procedures are triggered by different 

psychological states or moods, where mood changes are induced by the 

relationship between a player’s realized payoffs and his current payoff 

expectations.    

 

2. Related literature 

 

Before defining this procedure in detail, I shall briefly outline its relationship 

with other learning rules in the literature.  Perhaps the closest is a recent 

proposal of Marden, Young, Arslan, and Shamma (2007).  In this procedure, 

hereafter abbreviated MYAS, each player experiments with a small probability in 

each period, and adopts the experimental action if and only if it results in a 

higher payoff.   It can be shown that in any potential game – in fact in any 

weakly acyclic game2 -- this rule implements Nash equilibrium behavior in the 

sense that a pure Nash equilibrium will be played a high proportion of the time 

provided that the experimentation probability is sufficiently small.   The 

principal difference between this approach and interactive trial and error 

learning is that the latter has an additional search phase that is triggered by 

decreases in payoff caused by someone else. This feature guarantees that in any 

finite game with generic payoffs and at least one pure Nash equilibrium, such an 

equilibrium will be played a high proportion of the time proved that the 

experimentation probability is sufficiently small.   

                                                 
2 A game is weakly acyclic if for every joint action-tuple there exists a sequence of best replies -- 
one player moving at a time -- that ends at a pure Nash equilibrium (Young, 1993).  Potential 
games and congestion games are special cases.   
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Another closely related learning rule is regret testing (Foster and Young, 2006).   

In this procedure a player computes his average per period payoff over a long 

sequence of plays, and compares this with the average payoff he receives from 

occasional (random) experiments with alternative strategies.  If one of these 

alternative strategies generates a sufficiently larger average payoff than the average 

payoff from his current strategy, he chooses a new strategy at random.   (In other 

words, the strategy with the higher payoff is not necessarily chosen; it merely 

signals to the player that he is not playing the right strategy.)    Foster and Young 

show that, for all finite two-person games, this rule comes close to Nash 

equilibrium behavior a large proportion of the time.  Subsequently, Germano 

and Lugosi (2007) showed that a slight variant of the procedure comes close to 

Nash equilibrium behavior in any finite n -person game with generic payoffs.   

Interactive trial and error learning differs from regret testing in that search is 

more directed and the rule requires no statistical estimation; however, it only 

leads to equilibrium behavior in games that have pure equilibria. 

 

A third learning rule that bears some resemblance to the present proposal is due 

to Karandikar et al. (1998).  In this procedure each player has an endogenously 

generated aspiration level that is based on a smoothed average of his prior 

payoffs.  He changes strategy (with positive probability) when his current payoff 

falls below his current aspirations.  This rule is simple, intuitive, and completely 

uncoupled. Unlike interactive trial and error learning there is no experimentation 

per se; rather, the aspiration levels are subjected to small random perturbations. 

These trembles occasionally cause the players to switch strategies even though 

the resulting payoffs are lower than before. The overall effect is that play transits 

among strategy-tuples in a way that depends on the rate at which aspirations are 

updated and also on the probability distribution of the trembles.  Unlike the 
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present method, however, this procedure does not necessarily lead to Nash 

equilibrium behavior even in 2 x 2 games.    

 

Another, more distantly related, family of learning rules are those based on 

regret minimization.   In general, a player has ex post regret if he could have 

realized a higher average payoff by playing some strategy s’ in all those periods 

when he in fact played s.  There exist quite simple learning procedures that 

minimize ex post regret (Foster and Vohra, 1999; Hart and Mas-Colell, 2000, 

2001); moreover they can be cast in a form that is completely uncoupled (Hart 

and Mas-Colell, 2000).  However, unlike interactive trial and error learning, there 

is no guarantee that behaviors come close to Nash equilibrium most of the time.  

What can be shown is that regret minimizing rules cause the empirical frequency 

distribution of play to converge to the set of correlated equilibria (Hart and Mas-

Colell, 2000; Foster and Vohra, 1999).  This set includes the Nash equilibria as 

extreme points but is frequently much larger.    

 

There are a number of learning rules that have a similar stochastic structure to the 

present proposal, in the sense that small trembles in behavior (or perceptions of 

others’ behavior) cause play to shift among alternative strategy combinations. 

When these trembles are small the probability is high that play is concentrated 

on particular strategy combinations. The rule of Karandikar et al. has this 

structure, as do the model-based learning rules proposed by Jehiel (1998) and 

Foster and Young (2003).   A key difference between the latter two approaches 

and the present one is that model-based learning requires observability of the 

opponents’ play, whereas interactive trial and learning does not.    

 

Before examining the properties of interactive trial and error learning in detail, a 

remark is in order about the sense in which it “implements” equilibrium 

behavior.  We have repeatedly said that interactive trial and error learning cause 
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behaviors to come close to Nash equilibrium a high proportion of the time. Why 

not just say that behaviors converge to Nash equilibrium?  Because typically they 

do not converge.   In fact, there are very severe limits to what can be achieved if 

one insists on convergence to Nash equilibrium. To be specific, suppose that a 

learning rule has the following properties: i) it is uncoupled, ii) each player’s 

choice of action depends solely on the frequency distribution of past play (as in 

fictitious play), and iii) each player’s choice of action, conditional on the state, is 

deterministic.   Hart and Mas-Colell (2003) show that for a large class of games, 

no such rule causes the players’ period-by-period behavior to converge to Nash 

equilibrium.    

 

Matters are not quite so bad when stochastic choice is allowed.  In this case there 

exist simple, uncoupled rules that converge almost surely to pure Nash equilibrium 

behavior in games that have such an equilibrium (Hart and Mas-Colell, 2006; 

Babichenko, 2007).3  The approach taken in the present paper shows that one can 

achieve something similar even when learning is completely uncoupled, provided 

that convergence is weakened to ‘close most of the time.’  

 

3. Interactive trial and error learning 

 

Interactive trial and error learning is a modification of ordinary trial and error 

learning that takes into account the interactive nature of the learning 

environment.  In ordinary trial and error learning, agents occasionally try out 

new things and accept them if and only if they lead to higher payoffs.  (This is 

the MYAS procedure.)    In an interactive situation, however, “errors” can arise 

in two different ways:  by trying something that turns out to be no better than 

what one was doing, or by continuing to do something that turns out to be worse 
                                                 
3 Hart and Mas-Colell (2006) show that the following rule suffices: if everyone played the same 
action over the last two periods, and if player i’s action is a best response to the others’ actions, i 
plays that action again; otherwise i chooses an action uniformly at random.    
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than it was before.  The former are active errors whereas the latter are passive 

errors.   We posit that the learning process is conditioned on whether an agent 

experiences an active or a passive error.  Specifically, we propose that these 

situations trigger different psychological states or moods.   

 

In the rule proposed here, an agent can have four different moods: content, 

discontent, watchful, and hopeful.  When an agent is content, he occasionally 

experiments with new strategies, and switches if the new one is better than the 

old.   When discontent he tries out new strategies frequently and at random, 

eventually becoming content with a probability that depends on how well his 

current strategy is doing.  These are the main states, and reflect the idea that 

search can be of two kinds: careful and directed (when content), or thrashing 

around (when discontent).    

 

The other two states are transitional, and are triggered by changes in the 

behavior of other agents.    Specifically, if an agent is currently content and does 

not experiment in a given period but his payoff changes anyway (because 

someone else changed strategy), then he becomes hopeful if his payoff went up 

and watchful if it went down.  If he is hopeful and his payoff stays up for one 

more period, he becomes content again with a higher expectation about what his 

payoff should be.  If he is watchful and his payoff stays down for one more 

period, he becomes discontent, but does not immediately change his payoff 

expectations. (The assumption of a one-period waiting time is purely for 

convenience; it can be any fixed number of periods.) 

 

The proposition that an agent’s behavior may be conditional on his emotional 

state has been examined in a number of experimental papers (Capra, 2004; Smith 

and Dickhaut, 2005; Kirchsteiger, Rigotti, and Rustichini, 2006).  Here I employ 

the term ‘mood’ in a more abstract sense: it is simply a state variable that 
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determines how an agent responds to recent payoff history given the agent’s 

current expectations.5  The names of these states are meant to be suggestive but 

should not be taken too literally.  In particular, I make no claim that people’s 

search behavior actually does change in the manner prescribed by the rule 

(though it is certainly possible that different payoff histories induce different 

types of search).  

 

Why does this process lead to equilibrium? The intuitive idea is that active 

search leads the players toward progressively higher payoffs and higher 

aspiration levels until one of two things happens: i) an equilibrium is reached, or 

ii) someone’s aspirations are disappointed before an equilibrium is reached. In 

the latter case the disappointed player starts searching at random, which causes 

the other players to become disappointed with positive probability, which leads 

to a full-scale random search by everyone.  This phase concludes when everyone 

calms down and they start building a new monotone-payoff path.  It can be 

shown that, when the probability of calming down is sufficiently large relative to 

the probability of experimentation, the process is in a pure Nash equilibrium 

state much more often than in a disequilibrium state (assuming the game has a 

pure Nash equilibrium).  Of course, there are many variants of the method 

proposed here that have similar properties, but it would take us too far afield to 

attempt to formulate the most general such method.   

 

Let us now consider the model in greater detail.  Let G  be an n -person game 

with players 1, 2,...,i n , finite joint action space iA A , and utility functions 

:iu A R .   A state of player i  at a given point in time is a triple ( , , )i i i iz m a u , 

where im  is i ’s current mood, ia  is i ’s current benchmark action, and iu  is i ’s 

current benchmark payoff.  The four possible moods are content ( c ), discontent 
                                                 
5 See Compte and Postelwaite (2007) for another setting in which psychological states affect 
learning behavior.  
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( d ), hopeful ( h ), and watchful ( w ).   A state z  of the process specifies a state iz  

for each player.  We shall write this in the form ( , , )z m a u , where each of the 

three components is an n -vector describing the players’ moods, action 

benchmarks, and payoff benchmarks respectively.  Let Z  be the finite set of 

states corresponding to a given game G  on A .  

 

Given any state z Z , a joint action-tuple a A  is realized next period according 

to a conditional probability distribution ( | )a z .  It will be useful to study the 

structure of these transitions without estimating the transition probabilities 

precisely (that will come later).    One way to do this is by an automaton diagram 

showing the various transitions among states, but this turns out to be somewhat 

cumbersome. Instead we shall first describe the nature of the shifts in qualitative 

terms, then give them in detail.  Let us focus on a particular player  who is 

currently content.  With small probability he can move (in two periods) to a 

content state with a higher benchmark payoff, assuming such an improvement is 

possible. Alternatively, he could move (in two periods) to a discontent state, 

which happens when someone else changes strategy and makes his payoff go 

down.  From a discontent state he eventually moves to a new content state and 

corresponding new benchmark payoffs; the key feature here is that each of the 

new content states has positive probability of occurring.   

 

Next we give the transitions in detail.  Fix a particular player i.   There are four 

cases to consider, depending on the player’s current mood. 

 

Content: ( , , )i i iz c a u .  Player i  experiments next period with probability  , and 

does not experiment with probability 1 –  .   Denote i’s choice of action next 

period by ia .  (Obviously ia  differs from ia  only if i  experimented.)  The 

possible transitions are:  
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                         ( , , )i ic a u                      ,  ( )i i i ia a u a u                    (1) 

                                                 ( , , ( ))i ic a u a                 ,  ( )i i i ia a u a u                    (2) 

( , , )i i iz c a u                            ( , , )i iw a u                     ,  ( )i i i ia a u a u                    (3) 

                                                 ( , , )i ic a u                      ,  ( )i i i ia a u a u                    (4) 

                                                 ( , , )i ih a u                      ,  ( )i i i ia a u a u                    (5) 

                                                                          

The first case says that if i  experiments and his payoff does not increase, then i  

keeps the previous benchmarks and remains content.  The second case says that 

if i  experiments and his payoff does increase, he adjusts his benchmark payoff to 

the new higher level, takes the new strategy as his benchmark strategy, and 

remains content.   

 

The next three cases deal with the situation in which i  does not experiment.   He 

becomes watchful, content, or hopeful depending on whether the realized payoff 

was lower, the same, or higher than his benchmark, where any change in i’s 

payoff must be triggered by a change of strategy by someone else.  

 

Watchful: ( , , )i i iz w a u . Agent i  plays his benchmark strategy next period 

( )i ia a .  If the realized payoff ( )iu a  is less than his payoff benchmark iu  he 

becomes discontent; if it equals iu  he becomes content with the old benchmarks; 

if it is greater than iu  he becomes hopeful with the old benchmarks.  These 

possibilities are shown below:        
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                                                  ( , , )i id a u              ,  ( )i i i ia a u a u                                 (6)                              

( , , )i i iz w a u                            ( , , )i ic a u               ,  ( )i i i ia a u a u                                  (7) 

                                                  ( , , )i ih a u               ,  ( )i i i ia a u a u                                 (8)                     

 

Hopeful: ( , , )i i iz h a u . Agent i  plays his benchmark strategy ( )i ia a : if the 

realized payoff is lower than iu  he becomes watchful with the old benchmarks; if 

the realized payoff equals iu  he becomes content with the old benchmarks; if the 

realized payoff is greater than iu , he becomes content with the realized payoff as 

the new benchmark.  

 

                                              ( , , )i iw a u                            ,  ( )i i i ia a u a u                   (9)    

 ( , , )i i iz h a u                        ( , , )i ic a u                             ,  ( )i i i ia a u a u                  (10)         

                                              ( , , ( ))i ic a u a                        ,  ( )i i i ia a u a u                  (11)       

  

Discontent: ( , , )i i iz d a u .  In this case the agent’s benchmark strategy and  

benchmark payoff do not matter:  he plays a strategy ia  drawn uniformly at 

random from iA .7   Spontaneously he becomes content with probability 

( ( ), )i iu a u , where the response function   is bounded away from 0 and 1, that is, 

( , ) 1i iu u      for some 0  .8   When agent i  becomes content, his current 

strategy ia  and payoff level ( )iu a  serve as his new benchmarks; otherwise he 

continues to be discontent with the old benchmarks. 

 

 

 
                                                 
7 The assumption of a uniform random draw is unimportant. It suffices that every action is  
chosen with a probability that is bounded away from zero over all possible states of the process.  
8 The response functions can differ among agents without changing the results; purely for 
notational convenience we shall assume that the same   applies to everyone.   
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                                                ( , , ( ))i ic a u a      with  prob  ( ( ), )i iu a u                          (12) 

( , , )i i iz d a u  

                                                ( , , )i id a u          with prob 1 ( ( ), )i iu a u                        (13) 

 

The precise form of the response function   is not important for our results, 

though from a behavioral standpoint it is natural to assume that it is monotone 

increasing in the realized payoff iu  and monotone decreasing in the benchmark iu :  

higher values of the former and lower values of the latter mean that the agent is 

more likely to become content again.  Note, however, that there is no guarantee 

that the agent will become content no matter how high iu  is relative to iu ; in 

particular he may remain discontent even if his previous benchmark is realized, 

and may become content even when it is not.  Moods are not determined by the 

absolute level of one’s payoffs, but moods can change when payoffs change.9   

 

To state our main result we shall need two further definitions. 

 

Definition.  A game G  is interdependent if any proper subset S  of players can 

influence the payoff of at least one player not in S  by some (joint) choice of 

actions.   More precisely, G  is interdependent if, for every proper subset S  and 

every action-tuple a , 

 

                           , S Si S a a     such that  ( , ) ( , )i S S i S Su a a u a a   .                        (14) 

 

For a randomly generated game G  on a finite strategy space A , interdependence 

holds generically, because it holds if there are no payoff ties.   Notice, however, 

that interdependence is a considerably weaker condition: there can be many 

                                                 
9 One is reminded of the rabbi who instructed the unhappy peasant to put a goat in his house: 
later he was delighted when the rabbi said he could take it out again.     
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payoff ties so long as there is enough variation in payoffs that each subgroup can 

affect the payoff of someone not in the group by an appropriate choice of 

strategies.   

 

Definition.  Consider a stochastic process { }tX  and suppose that each realization 

of tX  either does or does not have some property P .  Given any realization of 

the process, let tp  be the proportion of times that property P  holds in the first t  

periods.   Property P  holds at least r  of the time if and only if tlim inf  tp r  for 

almost all realizations of the process.                                      

 

Theorem 1.   Let G  be an n-person game on a finite joint action space A such that G  is 

interdependent and has at least one pure Nash equilibrium. Given  > 0, if the players 

use ITE learning with response function   and sufficiently small experimentation 

probability  , then a  pure Nash equilibrium is played at least 1 –  of the time.  .   

 

The assumption of interdependence is not needed when there are only two 

players, as we shall show later on in theorem 2, but when there are more than 

two players some form of non-genericity is needed, as we shall show by example 

in section 5. 

 

4. Proof of theorem 1: preliminaries 

 

Before formally proving theorem 1 let us briefly outline the argument.   We begin 

by observing that states in which someone is not content are inherently unstable: 

any given player will leaves a discontent, hopeful, or watchful state and enter a 

content state with a probability that is high relative to the experimentation 

probability  .  Next suppose that the process is in an all-content state but that 

the benchmark actions do not constitute a Nash equilibrium. Then it takes only 
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one person to experiment with the ‘right’ action and the experiment will succeed 

(yield a higher payoff). Hence the process transits to a state having different 

benchmarks with probability on the order of  .   If, however, the process is in an 

all-content state in which the benchmark actions do constitute a Nash 

equilibrium, then it takes at least two experiments (together or in close 

succession) to cause the benchmarks to change.  In other words, the process 

either transits temporarily to a state with the same benchmarks and quickly 

reverts to the equilibrium state, or it transits to a state with new benchmarks, 

where the latter case has probability on the order of 2  or less.   It follows that, 

when   is very small, the process stays in the equilibrium states much longer 

than in the disequilibrium states. The key point to establish is that the process 

enters an equilibrium state with reasonably high probability starting from an 

arbitrary initial state.  This requires a detailed argument and is the place where 

the interdependence property is used.   

 

The proof uses the theory of perturbed Markov chains as developed in Young 

(1993), which builds on work of Freidlin and Wentzell (1984), Foster and Young 

(1990), and Kandori, Mailath, and Rob (1993).   Suppose that all players in the 

game G  use ITE learning with experimentation probability   and a given 

response function   (which will be fixed throughout).10  Let the probability 

transition matrix of this process be denoted by P , where for every pair of states 

,z z Z , 'zzP

 is the probability of transiting in one period from z  to z .  We assert 

that if ' 0zzP  , then 'zzP  is of order k  for some non-negative integer k .  To see 

why, suppose that z  is the current state with benchmark strategies a , and 

suppose that the vector a  is realized next period, resulting in the state z .  If 

                                                 
10 Players can have different experimentation probabilities provided they go to zero at the same 
rate.  We could assume, for example, that each player i  has an experimentation probability 

0i   , where the parameter   is varied while the i  are held fixed. This complicates the 

notation unnecessarily, so in the proofs we shall assume a common rate  .  
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a a , some subset of 1k   content players experimented.  The probability of this 

event is (1 )k n kc    where c  depends on z   but not on  .   (The other n k  

players were either not content in z , or were content and did not experiment.)     

If  a a , then no one experimented but someone’s mood may have changed; the 

probability of this event is (1 )nc   where again c  depends on z  but not on  .    

Hence in all cases 'zzP

 is of order k  for some integer 0k  .  (In general we shall 

say that 'zzP

  is of order k , written '
k

zzP  , if 0 '0 lim / k
zzP

    .) 

 

Definition. If the transition z z  occurs with positive probability ( ' 0zzP  ), the 

resistance of the transition , written ( )r z z , is the unique integer 0k   such that 

'  k
zzP  . 

 

Let 1 2, ,..., hZ Z Z  be the distinct recurrence classes of the Markov chain P . 

Starting from any initial state, the probability is one that the process eventually 

enters one of these classes and stays there forever.   To characterize the long-run 

behavior of P , it therefore suffices to examine its long-run behavior when 

restricted to each of the classes jZ .  Let jP  denote the process restricted to the 

recurrence class jZ .  This process is irreducible, and the resistances of its 

transitions are defined just as for P . Hence the restricted process is a regular 

perturbed Markov chain (Young, 1993), and we can study its asymptotic behavior 

for small   using the theory of large deviations.   

 

Given a state jz Z , a tree rooted at z , or -z tree , is a set of | | 1jZ   directed edges 

that span the vertex set jZ , such that from every { }jz Z z   there is a unique 

directed path from z  to z .   Denote such a tree by zT .  The resistance of zT  is 

defined to be the sum of the resistances of its edges: 
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( , )

( ) ( )
z

z
z z

r r z z
 

 
T

T .                                  (15) 

 

The stochastic potential of  z  is defined to be  

 

                                             ( ) min{ ( ) :  is a tree rooted at }z zz r z  T T .                    (16) 

 

Let jZ    be the subset of all states jz Z  that minimize ( )z .  The following result 

follows from Young (1993, theorem 4).                                          

 

For each recurrence class jZ  and every 0  , let 
j

  be the unique stationary 

distribution of the process jP . Then for every jz Z , 
0

lim ( ) ( )
j jz z


 


  exists and the 

support of j  is contained in jZ  .                                                                                (17) 

 

The states z  such that ( ) 0j z   are said to be stochastically stable (Foster and 

Young, 1990). In effect, they are the only states that have nonvanishing 

probability when the parameter   becomes arbitrarily small.  

 

5. Proof of theorem 1.   

 

The proof of theorem 1 amounts to showing that: i) every recurrence class jZ  

contains at least one all-content state in which the action benchmarks constitute a 

pure Nash equilibrium of G ; ii) the stochastically stable states are all of this 

form.   
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Let oZ  be the subset of states ( , , )z m a u  such that ( )i iu u a for all agents i . In 

other words, oZ  is the subset of states such that the agents’ benchmark payoffs 

and benchmark actions are aligned.   Let o oC Z  be the subset of such states in 

which all agents are content.  Let oE  be the subset of oC  in which the benchmark 

actions a  form a pure Nash equilibrium of G .  The first step in the proof (claim 1 

below) will be to show that the only candidates for stochastic stability are states 

in which everyone is content and benchmarks are aligned (states in oC ).  The 

remainder of the proof will establish that, in fact, the only candidates for 

stochastic stability are states in oE . 

 

Definition. A path in Z  is a sequence of transitions 1 2 ... mz z z    such that 

all states are distinct.  

 

Claim 1.  For every oz C  there exists a zero-resistance path of length at most 

three from z  to some state in oC .  

 

Proof.  If state ( , , )z m a u oC ,  then someone is not content and/or someone’s 

benchmark payoff is not aligned with the benchmark actions, that is, ( )i iu u a  

for some player i .  I claim that the benchmark action-tuple a  is played next 

period with probability 0  , that is, with a probability that is bounded away 

from zero for all small  .   Consider the cases: i) if in state z  agent i  is content, 

he plays ia  next period with probability 1  ; ii) if agent i  is hopeful, he plays ia  

again for sure and waits to see the payoff; iii) if agent i  is watchful he plays ia  

again for sure and waits to see the payoff; iv) if agent i  is discontent, he plays ia  

with probability 1/ iA .  Therefore a  is played with probability 0  .   
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Notice that, if a  is played, each discontent agent i  spontaneously becomes content 

(and his benchmarks are  ia , ( )iu a ) with probability  .   Assume that this occurs 

for all discontent agents, and denote the resulting state by z .   Notice that if 

some player i  was hopeful or watchful in z  and becomes content in z , then i ’s 

new payoff benchmark is ( )iu a .  We have therefore shown that, with probability 

0  , z z  where z  has action benchmark vector a , and every content agent 

has a payoff benchmark that is aligned with a .   

 

We shall now show that in two more plays of  a  , the process reaches a state in 

oC .   Let us observe first that the transition z z  may have caused some players 

to become hopeful, watchful, or discontent, so we cannot assert that oz C .   In 

the next period, however, the probability is 0  that a  will again be played and 

the previously discontent players (if any) will all become content with 

benchmarks ia , ( )iu a .   Call this state z .  Since a  was played twice in 

succession on the path z z z   , every hopeful player in z  has become 

content in z , every content player in z  is still content, and by construction all 

the discontent players have become content.   Furthermore all of the content 

players in z  have benchmarks ia , ( )iu a .  There remains the possibility that 

someone who was watchful in z  has just become discontent in z . However, in 

one more transition, a  will be played again and everyone will become content with 

the benchmarks ia , ( )iu a , all with probability 0 .   We have therefore shown 

that it takes at most three transitions, each having zero resistance, to go from any 

state not in oC  to some state in oC , which establishes Claim 1.    

 

Claim 2.  If ( , , ) oe m a u E   and z  has action benchmarks that differ from a , 

then every path from e  to z  has resistance at least two.  
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Proof.  Consider any path 1 2 ... me z z z z     .   By definition of oE , 

everyone in e  is content, their actions constitute a pure equilibrium a , and their 

benchmark payoffs are aligned with their actions.  Hence  1( ) 1r e z  , because 

at least one agent must experiment for the process to exit from e .  If 1( ) 2r e z   

we are done.   Suppose therefore that 1( ) 1r e z  , that is, the transition involves 

an experiment by exactly one agent (say i ).   Since a  is an equilibrium, 'i s  

experiment does not lead to a payoff improvement for i .  Hence in state 1z  the 

benchmark actions are still a , and the benchmark payoffs are still u .  (Note, 

however, that in 1z  some agents may have become hopeful or watchful, though 

none is yet discontent.)    

 

Suppose that, in the transition 1 2z z , none of the content agents experiments.   

Then a  is played, so in 2z  all the hopeful and watchful agents (if any) have 

reverted to a contented mood with benchmarks ,a u .  But this is the original state 

e , which contradicts the assumption that a path consists of distinct states.  We 

conclude that at least one agent does experiment in the transition 1 2z z , which 

implies that 1 2( ) 1r z z  . Hence the total resistance along the path is at least 

two, as claimed.  

 

Definition. A transition from state z  to another state is easy if it has the lowest 

resistance among all transitions out of z ..  A sequence of transitions 

1 2 ... mz z z    is an easy path from 1z  to mz  if all states are distinct and all 

transitions are easy. 

 

Claim 3.   For every state not in oE , there exists an easy path to some state in oE .   

 

Proof.  Suppose that oz E .  If also oz C , then by claim 1 there exists a zero-

resistance path to some state 1 oz C , which is obviously an easy path.  If 1 oz E  
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we are done.   Otherwise it suffices to show that there exists an easy path from 1z  

to some state in oE .  The intuitive idea of the proof is as follows.   One by one the 

players experiment and find actions that yield payoff improvements and 

correspondingly higher aspirations (benchmark payoffs).  This process continues 

until a state in oE is reached, or some player’s aspirations are disappointed. This 

triggers a sequence in which one player becomes discontent and his flailing 

around causes all the others to become discontent (this is the step where the 

interdependence property is invoked).   Then with positive probability they 

simultaneously jump to a Nash equilibrium and become content again.  It can be 

shown that all of these transitions occur with least resistance, that is, they 

generate easy paths to oE . 

 

We now give the argument in detail.   Let ( , )a u  be the benchmarks in state 1z , 

which are aligned in the sense that ( )i iu u a  for all i , because 1 oz C .  Since 

1 o oz C E  , there is an agent i  and an action i ia a  such that 

( , ) ( , )i i i i i i iu a a u a a u   .   The probability that ( , )i ia a  is realized next period is 

1(1 )n  /(| | 1)iA  , which occurs when i  experiments and chooses ia , while the 

others do not experiment.  This results in a state 2z  where i  is content, 'i s  new 

action benchmark is ia , 'i s  new payoff benchmark is  ( , )i i iu a a , and the others’ 

benchmarks are as before (though their moods may have changed).   Note that 

'i s  payoff benchmark has strictly increased, while the others’ payoff benchmarks 

have stayed the same. Note also that 1(1 )n  /(| | 1)iA    , so 1 2( ) 1r z z  .   

Since all other transitions out of 1z  have resistance at least 1,  1 2z z  is an easy 

path.  As we have just seen, it is a monotone increasing path (with respect to the 

payoff benchmarks) in the sense that no one’s payoff benchmark decreased and 

someone’s strictly increased.    
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If 2 oz E  we are done.  Otherwise there are three possibilities to consider: i) 

everyone in 2z  is content; ii) some are hopeful and no one is watchful; iii) 

someone is watchful.  (No one can be discontent at this stage, because 1 0z C  

and it takes at least two periods of disappointing payoffs to become discontent.)   

 

In the first case everyone is content, so evidently 'i s  change of action did not 

change anyone else’s payoff.  Hence 2 oz C  and we can simply repeat the earlier 

argument to extend the path by one more transition, 2 3z z , having resistance 1.  

As before, this is an easy and monotone increasing continuation of the path.   In 

the second case there is a zero-resistance (hence easy) transition to a state 3 oz C  

in which everyone is content, the benchmark payoffs for everyone are at least as 

high as they were in state 2z , and they are strictly higher for those who were 

hopeful (this happens when everyone in state 2z  plays his action benchmark, an 

event that has probability 0   ).   So again there is an easy and monotone 

increasing continuation of the path. 

 

We shall consider the third case in a moment. Notice, however, that if the 

continuation of the path always involves cases i) and ii), then it will always be 

monotone increasing. Since the state space is finite, it must come to an end, 

which can only happen when it reaches some state in oE .  

 

We now consider the other case, namely, the path reaches a first transition where 

some agent becomes watchful, but no one is yet discontent.   Suppose this 

happens in the transition 1k kz z  .  Up to this point, transitions have either: i) 

involved a single content agent making an experiment that led to a better payoff 

for himself; or ii) involved one or more hopeful agents playing their benchmark 

actions and becoming content with new higher benchmark payoffs  (but not both 

i) and ii)).   It follows that there are no hopeful agents in state kz because hopeful 
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agents do not try new actions, so they cannot cause someone else to become 

watchful (which is what happened for the first time in the transition 1k kz z  ).  

Thus all agents in kz  are content, k oz C , and in the transition 1k kz z   there is 

exactly one agent, say i , who experimented and caused the payoff of some other 

agent, say j , to go down.   

 

Let ,k ka u  be the benchmark actions and payoffs in state kz ; these are aligned 

because k oz C  by construction.   Let 1 1,k ka u   be the benchmarks in state 1kz  .  

Note that only 'i s  benchmark action and payoff changed between the two states 

(due to 'i s  successful experiment); agents who became watchful or hopeful in 

1kz   have not changed their benchmarks yet (they will wait one more period).   In 

the next period the probability is at least 1(1 )n   that the current action 

benchmarks 1ka   are played again.  In this case all the watchful agents experience 

another disappointing payoff and become discontent, while all the other agents 

become (or stay) content.  Thus the process transits with zero resistance to a state 

2kz   in which there is at least one discontent agent and there are no hopeful or 

watchful agents.  In state 2kz   the benchmarks are partially aligned in the sense 

that 1 1( )k k
j ju a u   for all agents j  who are not discontent.    

 

Let D  be the subset of discontent agents in 2kz  .  To avoid notational clutter let 

us drop the superscripts on the current benchmarks and denote them by ( , )a u .   

By assumption G  is interdependent, hence there exists an agent j D  and an 

action-tuple Da  such that ( , ) ( , )j D N D j D N D ju a a u a a u    .   We claim that there is a 

sequence of four (or fewer) easy transitions that make all the agents in { }D j  

discontent.  
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Case 1. ( , ) ( , )j D N D j D N Du a a u a a   .   

 

Consider the following sequence: in the first and second period the players in D  

play Da  and in the third and fourth periods they revert to Da , all the while 

remaining discontent.   (In each of these periods the players not in D  keep playing 

N Da  .)  This initially raises 'j s  expectations, which are later quashed (the ‘goat 

effect’ in reverse).  The sequence of transitions and play realizations looks like 

this: 

 

2 3 4 5 6

 

     

         

                           

( , )         ( , )          ( , )           ( , )

payoffs 

                                          
D N D D N D D N D D N D

k k k k k

ju

a a a a a a a a

z z z z z
   

    



 

   
actions

states

                    

                                                                        

                  

    

j ju u

j hopeful j content j watchful j discontent

 

moods

         

 

I claim that each of these transitions has zero resistance, so this is an easy path.  

Indeed, in each transition the players in D   play their required actions and stay 

discontent, which has probability at least | |( / ) Dm , where max | |i im A .  

Meanwhile, each of the players i D  continues playing his benchmark ia , which 

has probability 1   if content and probability 1 if watchful or hopeful.  These 

probabilities are bounded away from zero when   is small, hence all the 

transitions have zero resistance.  Thus by state 6kz  , and possibly earlier, the set 

of discontent agents has expanded from D   to { }D j  or more .   

 

Case 2.  ( , ) ( , )j D N D j D N Du a a u a a    

 

In this case it suffices that everyone in D  play Da  and stay discontent, while the 

others play  N Da  .  This makes player j  discontent in two steps.   
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Proceeding in this way, we conclude that there is an easy path from 2kz   to a 

state dz  in which all agents are discontent.   Given any oe E , the probability is 

at least ( / )nm  that dz e  in one period; indeed this happens if all n  agents 

choose their part of the equilibrium specified by e  and spontaneously become 

content.    

 

We have therefore shown that, from any initial state oz E , there exists an easy 

path to some state in oE .  This establishes claim 3.  

 

Recall that, for any state z , ( )z  is defined to be the resistance of a least-resistant 

tree rooted at z .  To establish theorem 1, it therefore suffices to show the following 

(see the discussion at the end of section 3).   

 

Claim 4.   , oz E e E     such that ( ) ( )e z  . 

 

Proof.   Let z  be in the recurrence class jZ , and let zT  be a least-resistant tree that 

spans jZ  and is rooted at z .  Suppose that z E .  By claim 3 there exists an easy 

path from z  to some state oe E E  .   Denote this path by 1 ... kz z z e    , 

and let P  be the set of its k  directed edges.   We shall construct a new tree that is 

rooted at e  and has lower resistance than does zT .  

 

In zT , each state z z   has a unique successor state ( )s z ; in other words, 

( )z s z   is the unique edge exiting from z .  Adjoin the path P  to the tree zT ; 

this creates some states with two exiting edges -- one from P  and one from zT  . 

For each such state (except e ), remove the exiting edge that comes from zT  .  The 

resulting set of edges S  has one more edge than does zT ; in fact, every state 

(including e ) now has exactly one exiting edge, so it is not a tree.   
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Let us now compare the total resistance, ( )r S , summed over all the edges in S , 

with the total resistance, ( )zr T , summed over all the edges in zT .   Since P  is an 

easy path, each of its transitions 1j jz z   has least resistance among all transitions 

out of the state jz . Hence each edge from P  that replaced an edge from zT  led to 

a decrease (or at least no increase) in the resistance, that is,      

 

                                       1( ) ( ( ))j j j jr z z r z s z    for 1 j k  .                      (18) 

 

Furthermore, the “additional” edge 1z z  has resistance at most 1, since P  is an 

easy path.  It follows that 

                                                         ( ) ( ) 1zr r S T .                                               (19) 

 

Next let 1 2 ... je w w w      be the unique path in zT   (and S ) leading from 

e  toward z , where jw  is the first state on the path such that e  and jw  do not 

have the same benchmarks.  (There is such a state because e  corresponds to an 

equilibrium and z  does not.)   From claim 2 we know that  

                                

                                1 1 2 1( ) ( ) ... ( ) 2j jr e w r w w r w w       .                       (20) 

 

Remove each of these j  edges from S , and adjoin the 1j   edges  

 

                                              1 2 1, ,..., jw e w e w e   .                                        (21) 

 

The result of all of these edge-exchanges is now a tree eT  that is rooted at e . (See 

figure 1 for an example.)  By construction, each of the states 1 2 1, ,... jw w w   has the 
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same benchmarks as does e ; they differ from e  only in that some agents may not 

be content. Hence 

 

                                        1 2 1( ) ( ) ... ( ) 0jr w e r w e r w e        .                   (22) 

 

Combining (19)-(22) it follows that ( ) ( )e zr rT T  and hence that ( ) ( )e z  .  This 

completes the proof of claim 4 and thereby the proof of theorem 1.  

Figure 1. Construction of a tree rooted at e  from a tree rooted at z  by adding 

edges (solid) and subtracting edges (dashed).  

 

6. Non-generic payoffs 

 

The interdependence assumption is easy to state, but it is somewhat stronger 

than necessary. Consider, for example, an n -person game in which the players 

can be divided into disjoint groups such that the actions of any one group do not 

affect the payoffs of those outside the group, but the game is interdependent 

within each of these groups. (In effect the game decomposes into two disjoint 

z  1z

 
2z  3z  e  

1w

3w 2w
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interdependent games.)  If the overall game has a pure equilibrium then so does 

each of the subgames, and interactive learning will discover it even though the 

game is not interdependent as a whole.   

 

I shall not attempt to formulate the most general condition under which ITE 

learning discovers a pure Nash equilibrium; however, some form of genericity is 

needed when there are three or more players (though not when there are two 

players, as we shall see in theorem 2 below).  Consider the three-person game in 

Figure 2, where each player has two actions.  There is a unique pure equilibrium 

in the lower northeast corner, and a best response cycle on the top square. Note 

that player 3’s payoffs remain unchanged no matter what the other players do.    

 

Suppose that the process starts in a state where player 3 is content.   Since her 

payoffs are constant, no amount of experimenting will produce better results, 

and nothing the other players do will trigger a change in her mood.  Hence, once 

player 3 begins in a content state, she remains content and never changes her benchmark 

action.   If she starts by playing the action corresponding to the top square, no 

combination of actions by the other two players constitutes a Nash equilibrium, 

so they keep moving around in a best-response cycle.   It follows that there are 

initial states from which ITE learning never leads to a pure Nash equilibrium 

even though there is one.     (By contrast, if the process begins in a state where 

player 3 chooses the action corresponding to the lower square, the pure 

equilibrium will eventually be played with probability one.)   
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Figure 2.  A three-person game with non-generic payoffs in which ITE learning 
does not necessarily lead to Nash equilibrium play. Each triple represents the 
payoffs to players one, two, and three respectively.  Arrows indicate best-
response transitions. 
 

Similar examples can be constructed when there are more than three players, but 

this is not the case when there are only two players. 

 

Theorem 2.  Let G  be a two-person game on a finite joint action space A that has at 

least one pure Nash equilibrium. Given  > 0, if the players use ITE learning with 

response function   and sufficiently small experimentation probability  , then a  pure 

Nash equilibrium is played at least 1 –  of the time.   

 

 

Proof.   Consider a two-person game on a finite joint action space 1 2A A A  , 

where the game possesses at least one pure Nash equilibrium.    A best response 

path is a sequence of action-tuples 1 2 ... ma a a    such that the action-tuples 

are all distinct, and for each transition 1k ka a   there exists a unique player i   

such that 1k k
i ia a

  , 1k k
i ia a   , and 1k

ia   is a strict best response by i  to k
ia  .   The 

sequence is a best response cycle if all the states are distinct except that 1 ma a .   
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The only part of the proof of theorem 1 that relied on the interdependence 

assumption was the proof of Claim 3.   We shall show that this claim holds for 

two players without invoking interdependence, from which the theorem follows. 

The key idea is that if the players do not continue up a payoff-monotone path, 

then they fall into a cycle that causes both to become discontent. (When there are 

more than two players interdependence assures the existence of such a cycle.)  

 

As before, let oE  denote the set of states such that everyone is content, the action 

benchmarks form a pure Nash equilibrium, and the payoff benchmarks are 

aligned with the action benchmarks.  (For other definitions and notation the 

reader is referred to the proof of theorem 1.) 

 

Claim.   For every state not in oE , there exists an easy path to some state in oE .  

 

Proof.  Suppose that oz E .  If also oz C , then by claim 1 (in the proof of 

theorem 1) there exists a zero-resistance (hence easy) path to some state 1 oz C .  

If  1 oz E  we are done.   Otherwise it suffices to show that there exists an easy 

path from 1 oz C  to some state in oE .  Let 1 1( , )a u  be the benchmarks in state 1z , 

which are aligned by definition of oC .  We now distinguish two cases.  

 

Case 1.   There exists a best response path from 1a  to some pure Nash 

equilibrium, say  1 1 2 ... ma a a a    .   

 

Given such a path, let kz  be the state that has action benchmarks ka , payoff 

benchmarks ( )k
iu a , and both players are content.  (Note that the action and 

payoff benchmarks are aligned.)  We shall construct an easy path to m oz E  that 

mimics the best response path as follows.   In state 1z , suppose the relevant 

player experiments and chooses a best reply to the opponent’s current action, 
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which the opponent continues to play next period. , In other words, the action-

tuple 2a  is played next period with probability  .  With probability 0    the 

action-tuple 2a  is played in each of the next two periods and both players 

become content. Call this state 2z .  In this manner we construct an easy path to 

the path to the target state m oz E  that mimics the given best response path with 

the help of some intermediate transitions that have zero resistance.   

 

Case 2.  There exists no best response path from  1a  to a pure Nash equilibrium. 

 

Given that there is no best response path from 1a  to a pure Nash equilibrium, 

there must exist a best response path from 1a  that leads to a best response cycle.  

Denote such a cycle by 0 1 1 0... ...mb b b b     and let the path to it be 

1 1 2 0... ja a a a b     .   As in case 1 we can construct an easy path that 

mimics the best response path up to 0b ; we need to show that it can be extended 

as an easy path to a Nash equilibrium.     

 

Along the b-cycle the two players alternate in choosing best responses, say player 

1 chooses a strict best response going from 0b  to 1b , player 2 from 1b  to 2b ,  and 

so forth, all indexes being modulo m .    Since these are strict best responses and 

the process cycles, each player’s payoff must at some stage decrease.   Proceeding 

from 0b , let 1k kb b   be the first transition in the cycle such that some player’s 

payoff strictly decreases, say player 2’s.    Since this is a best response cycle, player 

1’s payoff must strictly increase in the transition 1k kb b  .  Moreover, in the 

preceding transition, 1k kb b  ,  player 2’s payoff must strictly increase because the 

players alternate in making best responses.  We therefore know that  

 

                    1 1
1 1 2 2( ) ( ),  ( ) ( ),k k k ku b u b u b u b    and 1

2 2( ) ( )k ku b u b  .                     (22) 
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We now consider two possibilities.   

 

Case 2a.  1
1 1( ) ( )k ku b u b  . 

  

By assumption 1k kb b   was the first transition (starting from 0b ) in which any 

decrease occurred, and by assumption it occurred for player 2.  Hence 0k   and 

the hypothesis of case 2a is that  0 1
1 1( ) ( )mu b u b  . 

 

As in case 1 we can construct an easy path (in the full state space) that mimics the 

transitions along the path 1 1 2 0... ja a a a b      and then mimics the cycle 

from 0b  on.    Consider the situation when this path first returns to 0b , that is, the 

players play 0b  again after having gone around the cycle once.   By construction, 

the players were all content in the previous state and their benchmarks were 

aligned.  In the transition to 0b , player 1’s payoff decreases so he becomes 

watchful, while player 2’s payoff increases so she remains content.   

 

In the next period, the probability is 0  that: player 1 plays his current action 

benchmark 0
1b  again and becomes discontent, while player 2 plays action 0

2b  again 

and remains content.  In the next period after that, the probability is  0   that 

player 1 chooses 1
1b   and remains discontent, while player 2 does not experiment, 

chooses 0 1
2 2b b   again, and remains content.   (By assumption, player 1 changed 

action in the transition 0 1b b , hence player 2 did not change action, that is, 

1 0
2 2b b .)  By (22), player 2’s payoff decreases in this transition ( 0 1b b ), so she is 

now watchful.   In the period after that, with probability 0  they play 1b  again, 

player 1 remains discontent, and player 2 becomes discontent.  At this juncture both 

players are discontent.  Hence in one more period they will jump to a pure Nash 

equilibrium and spontaneously become content (with aligned benchmarks), all 
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with probability 0  .  Thus in case 2a we have constructed an easy path to a 

state in oE , that is, to an all-content, aligned Nash equilibrium state.  

 

Case 2b.   1
1 1( ) ( )k ku b u b  . 

 

In this case let us first construct an easy path (in the full state space) that mimics 

the transitions along the path 1 1 2 0... ja a a a b     , and then mimics the 

cycle up to the point where 1kb   is first played. (Recall that this is the first 

transition on the cycle where someone’s payoff decreases.)  At this point player 2 

becomes watchful while player 1 remains content.  In the next period the 

probability is 0  that 1kb   will be played again and that player 2 becomes 

discontent while player 1 remains content.   In the next period after that, the 

probability is 0   that player 2 plays 1
2
kb   and remains discontent, while player 

1 plays 1
1
kb   .  Denote the resulting pair of actions by 1 1

1 2( , )k kb b b  .   Again we 

may distinguish two cases. 

 

Case 2b’.  1
1 1( ) ( )k ku b u b  and 1

1 1( ) ( )ku b u b  . 

 

In this case player 1 has become watchful in the transition to b  while player 2 is 

still discontent.  Hence in one more period the probability is 0  that b  will be 

played again and that both players will be discontent.   As we have already 

shown, this leads in one more easy step to an all-content Nash equilibrium, and 

we are done.  It therefore only remains to consider the following. 
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Case 2b”.  1
1 1( ) ( )k ku b u b   and 1

1 1( ) ( ) ku b u b  . 

 

We claim that this case cannot occur.  Recall that the players alternate in making 

best replies around the cycle.  Since player 2 best responded in going from 1kb    

to kb , player 1 best responded in the previous move.  It follows that 1
1
kb   is 1’s 

best response to 1
2
kb  , from which we deduce that 1

1 1( ) ( )ku b u b   .   Putting this 

together with the case 2b” assumption we obtain  

 

                                               1 1
1 1 1 1( ) ( ) ( ) ( )k k ku b u b u b u b    ,                               (23) 

 

which implies that 1
1 1( ) ( )k ku b u b  , contrary to (22).   This concludes the proof of 

theorem 2.  

 

7. Extensions 

 

Interactive trial and error learning can be generalized in several ways.  One is to 

assume that players react only to “sizable” changes in payoffs.   Given a real 

number 0  , define  ITE learning with payoff tolerance    to be the same as before 

except that: i) a player becomes hopeful only if the gain in payoff relative to the 

previous benchmark is strictly greater than   ; ii) a player becomes watchful only 

if the loss in payoff relative to the previous benchmark is strictly greater than  .    

 

Say that a game is  -interdependent if any proper subset S  of players can -- by an 

appropriate choice of joint actions -- change the payoff of some player not in S  

by more than  .   An argument very similar to that of theorem 1 shows the 

following: if a game has a  -equilibrium and is  -interdependent,  ITE learning with 

tolerance   and experimentation rate   leads to  -equilibrium play an arbitrarily high 

proportion of the time when   is sufficiently small. 
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Extensions of the approach to learning mixed equilibria are not quite as 

straightforward.  The obvious modification to make in this case is to assume that 

each player computes the average payoff over a large sample of plays before changing 

mood or strategy.   If the players are using mixed strategies, however, there is 

always a risk -- due to sample outcome variability -- that the realized average 

payoffs will differ substantially from their expected values, and hence that one or 

more players changes mood and strategy due to “measurement error” rather 

than fundamentals.   Thus one needs to assume that players only react to sizable 

changes in payoff and that the sample size is sufficiently large that sizable changes 

(due to sample variability) occur with very low probability.  Moreover, for our 

method of proof to work, one would need to know that the game is  -

interdependent for a suitable value of  , but this does not necessarily hold for 

the mixed strategy version of the game when the underlying game is  -

interdependent.  (Consider for example a 2 x 2 game in which every two payoffs 

differ by more than  .   Each player may nevertheless have a mixed strategy that 

equalizes his own payoffs for all strategies of the opponent, in which case the 

mixed-strategy version is certainly not  -interdependent).  Thus, while it may be 

possible to extend the approach to handle mixed equilibria, the result would be 

more complex and perhaps not as intuitively appealing as the version described 

here.    

 

One of the issues that we have not dealt with is how long it takes (in expectation) 

for the learning process to reach an equilibrium from an arbitrary initial state.  

The proof of theorems 1 and 2, which relies on the theory of large deviations in 

Markov chains, is not very informative on this point.   One can compute a rough 

upper bound on the waiting time by observing that from any state there exists a 

sequence of transitions, each having probability at most , such that the sequence 

either ends at an equilibrium, or in an all-discontent state from which the process 
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jumps to an equilibrium with probability at most n,  n being the number of 

players.  To estimate the expected waiting time more precisely requires knowing 

how long these sequences are, which depends on the payoff structure of the 

game.  This poses an interesting open problem that we shall not pursue here.    

 

To sum up, interactive trial and error learning is a simple and intuitive heuristic 

for learning pure equilibria that does not rely on statistical estimation (like regret 

testing) and does not require observability of the opponents’ actions (like the 

procedure of Hart and Mas-Colell).  Even simpler procedures -- such as the 

MYAS experimentation rule -- work for weakly acyclic games, although these 

have a fairly special structure.  We conclude that there exist simple methods for 

learning equilibrium even when players know nothing about the structure of the 

game, who the other players are, or what strategies they are pursuing.  
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