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Social and technological innovations often spread through social
networks as people respond to what their neighbors are doing.
Previous research has identified specific network structures, such as
local clustering, that promote rapid diffusion. Here we derive bounds
that are independent of network structure and size, such that
diffusion is fast whenever the payoff gain from the innovation is
sufficiently high and the agents’ responses are sufficiently noisy. We
also provide a simple method for computing an upper bound on the
expected time it takes for the innovation to become established in
any finite network. For example, if agents choose log-linear responses
to what their neighbors are doing, it takes on average less than 80
revision periods for the innovation to diffuse widely in any network,
provided that the error rate is at least 5% and the payoff gain (rela-
tive to the status quo) is at least 150%. Qualitatively similar results
hold for other smoothed best-response functions and populations
that experience heterogeneous payoff shocks.

convergence time | local interaction model | noisy best response | logit |
coordination game

Local Interaction Topology and Fast Diffusion
New ideas and ways of doing things often spread through social
networks. People tend to adopt an innovation with increasing
likelihood, depending on the proportion of their friends and
neighbors who have adopted it. The innovation in question might
be a technological advance such as a new piece of software,
a medical drug (1), or a new hybrid seed (2). Or it might rep-
resent a social practice, such as contraception (3), a novel form
of employment contract (4), or a group behavior such as binge
drinking (5).
In recent years such diffusion models have been extensively

studied from both a theoretical and an empirical standpoint.
Some authors have highlighted the importance of the payoff
gains from the innovation: Larger gains lead to faster adoption
(2, 6). Others have pointed to the role that the network topology
plays in the rate at which an innovation spreads (6–19).
A key finding of this literature is that the amount of local

clustering has a significant effect on the speed with which the
innovation spreads. Fig. 1 presents three examples of simple
networks that differ in the amount of local clustering. Fig. 1A
shows a randomly generated network in which the neighbor-
hoods of nearby agents have relatively little overlap. In such
a network the expected waiting time until the innovation spreads
grows exponentially in the network size unless the payoff gains
from the innovation are very large (11, 18). Fig. 1B is a ring in
which agents are connected to nearby agents. In this case the
expected waiting time until the innovation becomes widely
adopted is bounded independently of the network size (20). The
intuition for this result is that the innovation gains an initial
foothold relatively quickly within small groups of adjacent agents
on the ring, and it then maintains its hold even when those
outside the group have not yet adopted. Thus, the innovation
tends to diffuse quite rapidly as it gains independent footholds
among many groups scattered across the network. A similar logic
applies to the lattice in Fig. 1C; in this case the local footholds
consist of squares or rectangles of agents.
The contribution of this paper is to show that innovations can

in fact spread quite rapidly in any finite network (as long as it
does not have isolated vertices). The methods we use to establish

our results are quite different from those in the prior networks
literature, many of which rely on the “independent footholds”
argument outlined above. Instead we take our inspiration from
another branch of the learning literature, namely the analysis of
dynamics when agents choose noisy best responses to samples
drawn at random from the whole population. If the population is
large, such a process can be well approximated by a deterministic
(mean-field) dynamical system (14, 21–25).
This setup is different from network models, in which agents

choose noisy best responses to a fixed set of neighbors. To see
the distinction, consider the situation where agents can co-
ordinate on one of two actions: A (the innovation) or B (the
status quo). Assume for the moment that they choose pure (in-
stead of noisy) best responses to the actions of their neighbors.
Such a game will typically have a vast number of heterogeneous
equilibria whose structure depends on the fine details of the
network topology. By contrast, in a global interaction model with
sampling there will typically be just three equilibria, two of which
are homogeneous and stable and the other one heterogeneous
and unstable.
Now consider a (possibly noisy) best-response process and an

unboundedly large number of agents who interact globally. The
expected motion can be represented by a deterministic, contin-
uous-time dynamic of the form _xt = f ðxtÞ− xt, where xt is the pro-
portion of agents playing action A at time t, and _xt is the rate of
change of this variable. Under fairly general assumptions f ðxÞ has
a convex–concave shape as shown in Fig. 2. Depending on the
choice of parameters, such a curve will typically have either one or
three rest points. In the latter case the middle one (the up-crossing)
is unstable and the other two are stable. One can use a mean-field
approach to study the effects of varying the payoffs and the distri-
bution of sample sizes on the location of these rest points. The
lower the unstable rest point is, the smaller the basin on attraction
of the status quo equilibrium and hence the easier it is to escape
that equilibrium (14, 23).
Of particular interest is the case where there is a single rest

point and it lies above the halfway mark (0.5, 0.5) (red dashed
curve in Fig. 2). [In almost any normal form game with the logit
response function, for sufficiently large noise levels there is
a unique rest point (a quantile equilibrium) (26). In the case
when agents best respond to random samples, if there exists
a 1=k-dominant equilibrium (where k is a suitably chosen sample
size), then the dynamics have a unique stable rest point (21,
24).] In this case the process moves from the initial state (all B)
to a majority playing A in a bounded length of time. In an
earlier paper we examined the implications of this observation
for the logit best-response function (25). The main result in
that paper is that, if the payoff gain from the innovation and/or
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the noise level is sufficiently large, then there is a unique rest
point lying above (0.5, 0.5) and the expected waiting time until
a majority of the agents choose A is bounded above inde-
pendently of the population size; moreover, we give an explicit
estimate of the expected waiting time. However, this argument
depends crucially on the assumption that the agents interact
globally, which ensures that the expected dynamics have the
simple form shown in Fig. 2. This allows one to use standard
stochastic approximation techniques to estimate the waiting time
as a function of the payoffs, noise level, and sample size. In a
network setting, by contrast, the underlying state space is vastly
more complex and generally the unperturbed process will possess
a large number of rest points, each with a different stochastic
potential. Thus, the approximation techniques from our earlier
paper do not apply to this case.
The contribution of the present paper is to show that, despite

the complications introduced by the network setting, we can
derive an upper bound on the rate of diffusion that holds uni-
formly for all networks provided that payoff gain from the in-
novation is sufficiently high and the noise level is not too low.
These results are established using martingale arguments rather
than the stochastic approximation methods that are common in
the prior literature. The bound we establish is easy to compute,
given the shape of the stochastic response function. Thus, our
approach provides a practical estimation method that can in
principle be applied to empirical data.
We emphasize that our results do not imply that network to-

pology does not matter at all. Indeed, the diffusion rate will be
faster than the upper bound that we establish, for classes of
networks identified by previous research (14, 27). Thus, our
results are particularly useful in situations where the exact to-
pology of the network is not known or is changing over time.
The remainder of the paper is organized as follows. The Local

Interaction Model introduces the adoption model with local
interactions. In Topology-Free Fast Diffusion in Regular Networks
we establish the main results for regular networks, and inGeneral
Networks we extend the arguments. In Smooth Stochastic Best-
Response Functions we show that the results are robust for a
large family of stochastic best-response functions other than the
logit. We also show that the results can be interpreted in terms of
payoff heterogeneity instead of noisy best responses.

The Local Interaction Model
The model is expressed in terms of a stochastic process denoted
Γðα; β;GÞ that depends on three parameters: the potential gain
α, the noise level β, and the interaction graph (or network) G.
Consider a population of N agents numbered from 1 to N linked
by an undirected graphG. We assume throughout this paper that
each agent is connected to at least one other agent; i.e., the
graph G does not have isolated nodes. Each agent chooses one
of two available actions, A and B. Interaction is given by a sym-
metric 2 × 2 coordination game with payoff matrix

A B
A a; a c; d
B d; c b; b;

where a> d and b> c. This game has potential function

A B
A a− d 0
B 0 b− c:

Define the normalized potential gain of passing from equilibrium
ðB;BÞ to ðA;AÞ as

α=
ða− dÞ− ðb− cÞ

b− c
:

Assume without loss of generality that the potential function
achieves its strict maximum at the equilibrium ðA;AÞ or equiva-
lently α> 0. Hence ðA;AÞ is the risk-dominant equilibrium of the
game; note that ðA;AÞ may or may not also be the Pareto-dom-
inant equilibrium. Standard results in evolutionary game theory
imply that ðA;AÞ will be selected in the long run (28–30).
An important special case is when interaction is given by

a pure coordination game with payoff matrix

A B
A 1+ α; 1+ α 0; 0
B 0; 0 1; 1:

[1]

In this case we can think of B as the “status quo” and of A as the
“innovation.” The term α> 0 is now the payoff gain of adopting
the innovation relative to the status quo. Note that the potential
function of the pure coordination game is proportional to the
potential function in the general case. It follows that for the logit
model and under a suitable rescaling of the noise level, the two
settings are in fact equivalent.
Payoffs are as follows. At the start of each time period every

pair of agents linked by an edge interact once and they receive
the one-shot payoffs from the game defined in [1]. Thus, each
agent’s payoff in a given period is the sum of the payoffs from his
pairwise interactions in that period. Note that players with a high
number of connections will, ceteris paribus, have higher payoffs
per period. Formally, let πðxi; xjÞ be i’s payoff from interacting

Fig. 1. Four-regular networks with different topol-
ogies: random network (Left), ring network (Center),
and lattice network on a torus (Right).
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Fig. 2. The logit response function.
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with j, when i plays xi and j plays xj. Letting Ni denote the set of i’s
neighbors, the total payoff for i from playing xi is

P
j∈Ni

πðxi; xjÞ.
We posit the following revision process. At times t= k=N with

k∈N, and only at these times, one agent is randomly (indepen-
dently over time) chosen to revise his action. (The results in this
paper also hold under the following alternative revision protocol.
Time is continuous, each agent has a Poisson clock that rings once
per period in expectation, and an agent revises his action when his
clock rings.) When revising, an agent observes the actions cur-
rently used by his neighbors in the graphG. Assume that a fraction
x of agent i’s neighbors are playing A; then i chooses a noisy best
response given by the logit model,

Prði chooses AjxÞ= f ðx; α; βÞ≡ eβð1+αÞx

eβð1+αÞx + eβð1−xÞ
;

where 1=β is a measure of the noise in the revision process. For
convenience we sometimes drop the dependence of f on β in the
notation and simply write f ðx; αÞ and in some cases we drop both α
and β and write f ðxÞ. Let «≡ f ð0; α; βÞ= 1=ð1+ eβÞ denote the
error rate at the start of the process when nobody has yet adopted
the innovation A. This is called the initial error rate. Both 1=β and «
measure the noise level of the process. Because « is easier to in-
terpret as the rate at which agents depart from best response at the
outset, we sometimes express our results in terms of both β and «.
Embedded in the above formulation is the assumption that the

error rate depends only on the proportion of an agent’s neigh-
bors playing A or B and it does not depend on the number of
neighbors, that is, on the agent’s degree. In Smooth Stochastic
Best-Response Functions we show that this follows naturally if we
assume that in each period each agent experiences an idiosyn-
cratic shock that affects his realized payoffs from all interactions
during that period. The logit is one of the most commonly used
models of this type (7, 8, 31–33). The key feature of logit for our
results is that the probability of not choosing the best response
action decreases smoothly as a function of the payoff difference
between the two choices. In Smooth Stochastic Best-Response
Functions we show that the main result in this paper remains true
for a large family of smooth stochastic response functions that
are qualitatively similar to the logit. The stochastic response
functions we consider emerge in a setting where agents myopically
best respond to the actions of their neighbors, and payoffs from
playing each action are subject to random shocks. (The response
functions can also be viewed as a primitive element of the model
that can be estimated directly from empirical data.)
The above revision process fully describes the stochastic pro-

cess Γðα; β;GÞ. The states of the process are the adoption vectors
xðtÞ= ðxiðtÞÞ1≤i≤N , where xiðtÞ= 1 if agent i plays A at time t, and
xiðtÞ= 0 otherwise. The adoption rate is defined as xðtÞ= ð1=NÞPN

i=1xiðtÞ. By assumption, the process starts in the all-B state,
namely xð0Þ= ð0; . . . ; 0Þ.
We now turn to the issue of speed of diffusion, measured in

terms of the expected time until a majority of the population
adopts action A. Formally, define the random hitting time

Tðα; β;GÞ=min
�
t : xðtÞ≥ 1

2

�
:

This measure is appropriate because it captures the time it takes
for the system to escape the status quo equilibrium ðB;BÞ. More
generally, given p< 1 one can consider the waiting time Tðα; β;G; pÞ
until xðtÞ is at least p for the first time. The method of analysis in this
paper can be extended in a straightforward way to treat this case.
Fast diffusion is defined as follows.
Definition 1: Given a family G of graphs, we say that the family of

processes fΓðα; β;GÞ : G∈Gg displays fast diffusion if there exists
a constant S= Sðα; β;GÞ such that for any G∈G the expected
waiting time until a majority of agents play A under process
Γðα; β;GÞ is at most S independently of G; that is, ETðα; β;GÞ< S.

When the above conditions are satisfied, we say that Γðα; β;GÞ
displays fast diffusion.

Topology-Free Fast Diffusion in Regular Networks
In this section we establish our first result on sufficient con-
ditions for fast diffusion in d-regular networks, and we provide
an upper bound on the expected waiting time for a majority of
the population to adopt. In the next section we show how to ex-
tend these arguments to general networks.

FastDiffusion in Regular Networks.To find sufficient conditions for fast
diffusion, we begin by lower bounding the expected change in the
adoption rate in any state where adopters constitute a weak minority.
A graphG is d regular if every node inG has exactly d neighbors.

Throughout this section, d≥ 1. Denote by GðdÞ the family of all
d-regular graphs. Fix a payoff gain α, a noise level β, and a graph
G∈GðdÞ. Consider a state xðtÞ of the process Γðα; β;GÞ such that
xðtÞ≤ 1=2. For any k∈ f0; 1; . . . ; dg, denote by qkðtÞ the fraction of
players who have exactly k neighbors currently playing A.
The expected next period adoption of an agent i who has k

neighbors currently playing A is

Exi

�
t+

1
N

�
=
1
N
f
�
k
d

�
+
N − 1
N

xiðtÞ

⇒Exi

�
t+

1
N

�
− xiðtÞ= 1

N

�
f
�
k
d

�
− xiðtÞ

�
:

Note that each agent is chosen to revise with equal probability;
hence the expected change in the population adoption rate is

Ex
�
t+

1
N

�
− xðtÞ= 1

N

 Xd
k=0

qkðtÞf
�
k
d

�
− xðtÞ

!
: [2]

We wish to bound expression [2] from below, because this pro-
vides a lower bound on the expected change in the adoption rate
for all configurations that have a minority of adopters. We begin
by expressing xðtÞ as the population average of the fraction of i’s
neighbors who have adopted the innovation. Let Ni denote the
set of neighbors of i. We can then write

xðtÞ= 1
N

XN
j=1

xjðtÞ= 1
N

XN
i=1

1
d

X
j∈Ni

xjðtÞ

=
Xd
k=0

qkðtÞ kd:

Note that the weights qkðtÞ “convexify” the set of points Fd ≡
fðk=d; f ðk=dÞÞ : 0≤ k≤ dg. Denote by fdðxÞ the lower envelope of
the convex hull of Fd. Fig. 3 illustrates the construction.
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Fig. 3. The function fd (red dashed line) is the lower envelope of the convex
hull of the set Fd (solid circles).
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We now apply Jensen’s inequality for the convex function
fd   and use  f ðk=dÞ≥ fdðk=dÞ  for any  k;  0≤ k≤ d, to obtain

Xd
k=0

qkðtÞf
�
k
d

�
≥ fd

 Xd
k=0

qkðtÞ kd

!
= fdðxðtÞÞ:

Using identity [2], we obtain

Ex
�
t+

1
N

�
− xðtÞ≥ 1

N
ðfdðxðtÞÞ− xðtÞÞ: [3]

Given α; β, and d≥ 1, define the quantities

μðα; β; dÞ≡ fd

�
1
2

�
−
1
2

and

hðβ; dÞ≡minfα : μðα; β; dÞ≥ 0g:

If the function fd lies strictly above the identity function (the 45°
line) on the interval ½0; 1=2� or, equivalently, if μðα; β; dÞ> 0, then
the expected change in the adoption rate is positive for any state
xðtÞ with a weak minority of adopters. This implies diffusion is fast
for the family of d-regular graphs, as the following result shows.
(The entire argument can be adapted to estimate the waiting time
until a proportion p< 1 of players have adopted; here we have
stated the results in terms of the target p= 1=2 for simplicity.)

Theorem 1. There exist uniform lower bounds on the payoff gain and
the noise level such that the expected waiting time until a majority of
agents play A is bounded for all regular graphs of degree at least one,
irrespective of the number of agents. Concretely, Γðα; β;GðdÞÞ dis-
plays fast diffusion whenever α> 0:83 and «≥ 5%. Furthermore, given
any d≥ 1, Γðα; β;GðdÞÞ displays fast diffusion whenever α> hðβ; dÞ.
Prior work in the literature on fast diffusion in evolutionary

models has focused mainly on the topological properties of the
graphs in the family G that guarantee fast diffusion (18, 20, 27).
In contrast, Theorem 1 establishes topology-free bounds that
guarantee fast diffusion for the entire family of d-regular graphs.

Proof: The proof proceeds in two steps. First, we show that the
expected change in the adoption rate is strictly positive whenever
the adoption rate is at most 1=2. Second, we show that the
expected waiting time until a majority adopts is bounded for all
graphs in GðdÞ.
Fix some α> hðβ; dÞ. By construction, μðα; β; dÞ= fdð1=2Þ−

1=2> 0. In addition, Lemma 1 provides a positive lower bound
for fdðxÞ− x for all x≤ 1=2. It follows from [3] that the expected
change in the adoption rate is strictly positive for any state
such that xðtÞ≤ 1=2.

Lemma 1. Let μd ≡ μðα; β; dÞ; then fdðxÞ− x≥ 2μdð1− xÞ for all
x∈ ½0; 1=2�.

Proof: Because f is first convex and then concave, there exists
kp < d=2 such that for any k≤ kp we have fdðk=dÞ= f ðk=dÞ and for
any x> kp=d we have

fdðxÞ= f
�
kp

d

�
1− x

1− kp=d
+ f ð1Þ x− kp=d

1− kp=d
:

The right-hand side is the equation of the line LðxÞ passing through
the points ðkp=d; f ðkp=dÞÞ and ð1; f ð1ÞÞ. In particular, we have that
fdðxÞ≥LðxÞ for all x∈ ½0; 1�. We claim that LðxÞ− x≥ 2μdð1− xÞ for
all x∈ ½0; 1=2�. Note that by definition this holds with equality for
x= 1=2. Moreover, Lð1Þ− 1= f ð1Þ− 1< 0= 2μdð1− 1Þ so the op-
posite inequality must hold for x< 1=2. This completes the proof
of Lemma 1.

■

The following claim provides explicit conditions that ensure
that α> hðβ; dÞ.
Claim 1. If «= 1=ð1+ eβÞ> 5%, then hðβ; dÞ< 0:83. It follows that
when α> 0:83, the expected change in the adoption rate is positive
in any state with xðtÞ≤ 1=2.
The Proof of Claim 1 relies on elementary calculus, using the

logit formula, and can be found in SI Text.
We now turn to the second step in the Proof, namely that the

expected waiting time to reach a majority of adopters is bounded
for the family GðdÞ of d-regular graphs whenever α> hðβ; dÞ.
We already know that for any β and for any α> hðβ; dÞ, for any

graph G∈GðdÞ and any state xðtÞ of the process Γðα; β; δÞ such
that the adoption rate is at most one-half, the expected change in
the adoption rate is positive. By Lemma 1 we know that

Ex
�
t+

1
N

�
− xðtÞ≥ 2

N
μdð1− xðtÞÞ> 0: [4]

We now establish a uniform upper bound on the expected waiting
time for all d-regular graphs (of any size), expressed in terms of
μd = μðα; β; dÞ.
Lemma 2. Assume that μd = fdð1=2Þ− 1=2 is positive. Then for any
N ≥ 3 the expected waiting time until a majority of the population
adopts the innovation satisfies

ETðα; β;GÞ< 0:42
μd

:

The proof of Lemma 2 can be found in SI Text. It is based on
inequality [4] and a careful accounting of the worst-case expected
waiting time to go from a state with adoption rate m=N to any
state with adoption rate ðm+ 1Þ=N, where m∈ f0; 1; . . . ; bN=2cg.
Upper Bound on the Expected Waiting Time. We now show how to
obtain a bound on the absolute magnitude of the waiting time for
any regular graph, irrespective of size or degree, using a tech-
nique similar to one contained in the Proof of Theorem 1.
Fix the payoff gain α and the noise level β and let G be a

d-regular graph on N vertices. Given an adoption level xðtÞ≤ 1=2,
the expected change in the adoption rate is given by [2]. We want
to lower-bound this quantity independently of d. To this effect,
let fminðxÞ denote the lower envelope of the convex hull of the
graph fðx; f ðxÞÞ : x∈ ½0; 1�g. The function fminðxÞ− x is convex, so
it follows that for any d

Ex
�
t+

1
N

�
− xðtÞ≥ 1

N
ðfminðxðtÞÞ− xðtÞÞ:

It is easy to show that fminðxÞ− x≥ 2μð1− xÞ, where μ= μðα; βÞ≡
fminð1=2Þ− 1=2. (The proof is similar to that of Lemma 1.)
We can now apply Lemma 2 to establish a uniform upper

bound on the expected waiting time, for any d and any d-regular
graph (of any size), in terms of the shape of the function fmin.
Specifically, for any α and β such that μ= μðα; βÞ> 0 and for any
regular graph G we have

ETðα; β;GÞ< 0:42
μ

:

Fig. 4 shows the expected waiting time to reach a majority of
adopters, based on the above upper bound and on numerical
simulations of the term μ= fminð1=2Þ− 1=2. The expected waiting
time is at most 100, 60, and 40 revisions per capita for payoff
gains α lying above the blue (solid), red (dashed), and green
(dash–dot) lines, respectively. Fig. 4 shows, for example, that
for «= 5% and α= 1:10, the expected waiting time is at most
60 revisions per capita, for regular graphs of arbitrary size.
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General Networks
In this section we show how our framework can be applied to
more general families of graphs. We derive a similar result to
Theorem 1, but the proof is more complex and relies on stopping
time results in the theory of martingales. Consider a finite graph
G and let di denote the degree of agent i. We assume that di ≥ 1
for all i; i.e., there are no isolated nodes. Denote the average
degree in the graph by d= ð1=NÞPN

i=1di. We use the following
measure of adoption. For a state xðtÞ, define

~xðtÞ= 1
Nd

XN
i=1

dixiðtÞ:

This is the probability of interacting with an adopter when placed
at the end of a randomly chosen link in the graph G (14, 23). In
particular, adopters with higher degrees are weighted more
heavily because they are more “visible” to other players. Note
that the adoption rate ~xðtÞ always lies in the interval ½0; 1�, and it
reduces to the usual definition when G is regular.
The definitions of the expected waiting time ETðα; β;GÞ and of

fast diffusion introduced in The Local Interaction Model extend
naturally to the adoption rate measure ~xðtÞ. Concretely, a family
G of graphs displays fast diffusion if for any graph G∈G the
expected waiting time until ~xðtÞ≥ 1=2 is bounded independently
of the size of G. Note that the analysis that follows carries through
if we define fast diffusion relative to a threshold p∈ ð0; 1Þ other
than 1=2.
We begin by considering graphs with degrees bounded above by

some integer D≥ 1. Denote by G+ðDÞ the family of all such graphs.
Fix a state xðtÞ such that ~xðtÞ≤1=2. We propose to study the ex-
pected change in the adoption rate, namely E~xðt+ 1=NÞ−~xðtÞ.
Choose some individual i and let niðtÞ≡

P
j∈Ni

xjðtÞ be the num-
ber of adopters among i’s neighbors at time t. The expected change
in i’s adoption rate is

Exi

�
t+

1
N

�
− xiðtÞ= 1

N
f
�
niðtÞ
di

�
+
N − 1
N

xiðtÞ− xiðtÞ

=
1
N

�
f
�
niðtÞ
di

�
− xiðtÞ

�
:

Taking the (weighted) average across all agents, we obtain

E~x
�
t+

1
N

�
−~xðtÞ= 1

Nd

XN
i=1

1
N

�
dif
�
niðtÞ
di

�
− dixiðtÞ

�
:

We can rewrite the adoption rate as

~xðtÞ= 1
Nd

XN
j=1

djxjðtÞ= 1
Nd

XN
i=1

X
j∈Ni

xjðtÞ

=
1
Nd

XN
i=1

di
niðtÞ
di

:

[5]

Hence the expected change in the state variable can be written

E~x
�
t+

1
N

�
−~xðtÞ= 1

Nd

XN
i=1

�
dif
�
niðtÞ
di

�
− di

niðtÞ
di

�
: [6]

Let XD =
�
k
d : 0≤ k≤ d≤D and d≠ 0

�
and consider the set FD =

fðx; f ðxÞÞ : x∈XDg. Let ~f D denote the lower envelope of the convex
hull of the set FD. Note that f ðxÞ≥~f DðxÞ for all x∈XD so [6] im-
plies that

E~x
�
t+

1
N

�
−~xðtÞ≥ 1

Nd

XN
i=1

1
N

�
di~f D

�
niðtÞ
di

�
− di

niðtÞ
di

�
:

By definition ~f D is convex, and a fortiori so is ~fDðxÞ− x. By ap-
plying Jensen’s inequality and using [5], we obtain

E~x
�
t+

1
N

�
−~xðtÞ≥ 1

N

�
~f D
�
~xðtÞ
�
−~xðtÞ

�
: [7]

Thus, a sufficient condition for the expected motion to be positive
is that ~f D lies strictly above the identity function on the interval
½0; 1=2�. The function ~fDðxÞ− x is decreasing on this interval; hence
this condition is equivalent to

~μðα; β;DÞ≡~f D

�
1
2

�
−
1
2
> 0:

Define the function

~hðβ;DÞ≡min
n
α : ~μðα; β;DÞ≥ 0

o
:

Several key properties of the function ~hðβ;DÞ are summarized in
the following result.

Proposition 1. ~hðβ;DÞ≤maxðD− 2; 0Þ, and ~hðβ;DÞ< 0:83 for «≥ 5%
ðβ< logð19ÞÞ.

Proof: The intuition for the first statement is that when α>
maxðD− 2; 0Þ, it is a best response to play A whenever at least
one neighbor plays A. Formally, for α≥maxðD− 2; 0Þ we have
f ðk=dÞ≥ 1=2 for all 0< k≤ d≤D. It follows that the lower envelope
of the convex hull of the set Fd ≡ fðk=d; f ðk=dÞÞ : 0≤ k≤ dg is given
by the line that joins ð0; f ð0ÞÞ and ð1; f ð1ÞÞ. This implies that
~μðα; β;DÞ= ðf ð0Þ+ f ð1ÞÞ=2− 1=2, which is strictly positive. The last
two statements of Proposition 1 follow from Claim 1 in the Proof of
Theorem 1.

■
To study the family of all graphs, we can consider the limit as

D tends to infinity. We claim that supD ~hðβ;DÞ is finite for all β.
Indeed, let fmin denote the lower envelope of the convex hull of
the set fðx; f ðxÞÞ : x∈ ½0; 1�g, and let

~μðα; βÞ≡ fmin

�
1
2

�
−
1
2
:

If we define ~hðβÞ≡minfα : ~μðα; βÞ≥ 0g, then for all α> ~hðβÞ the
expected change in the adoption rate is positive for any graph as
long as ~xðtÞ≤ 1=2.

0 2% 4% 6% 8% 10%
0
1

5

10

13

ε = 1/(1+eβ)

α

Fig. 4. Expected waiting times to reach a majority of adopters. The
expected waiting time is at most 100, 60, and 40 revisions per capita for
payoff gains above the blue (solid), red (dashed), and green (dash–dot) lines,
respectively.
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The next result extends Theorem 1 to the family of all graphs. It
establishes the existence of a payoff threshold for fast diffusion, as
well as an absolute bound on the expected waiting time.

Theorem 2.Given a noise level β> 0, if the payoff gain α exceeds the
threshold ~hðβÞ, then diffusion is fast for all graphs. Moreover, when
~μ≡ ~μðα; βÞ> 0, for any graph the expected waiting time until the
adoption rate is at least 1=2 satisfies

ETðα; β;GÞ< 1
~μ
:

Theorem 2 shows that for any graph the expected time until the
adoption rate ~xðtÞ reaches 1=2 is uniformly bounded above as long
as the payoff gain is greater than a threshold value that depends on
the noise level. Moreover, Theorem 2 provides an explicit bound on
the expected waiting time that is easily computed and has a simple
geometric interpretation.
We can improve on the threshold ~hðβÞ in Theorem 2 if we re-

strict ourselves to graphs with degrees bounded by some number
D. Specifically, for any integer D≥ 1, if the payoff gain exceeds
~hðβ;DÞ, then diffusion is fast for all graphs with degrees bounded
by D. Moreover, if ~μD = ~μðα; β;DÞ> 0, the expected waiting time
satisfies ETðα; β;GÞ< 1=~μD for every graph G∈G+ðDÞ.
A notable feature of these results is that the bounds are topology-

free: They do not depend on any of the network details. The only
other result in the literature of this nature is proposition 4 in (34),
which shows that α>D− 2 guarantees fast diffusion for all graphs
in G+ðDÞ. (The same bound arises in a number of other evolu-
tionary models that are based on deterministic best-response pro-
cesses, in particular refs. 11, 21, 24, and 35.) Proposition 1 shows that
the bound ~hðβ;DÞ is better than this; indeed for many families of
graphs it is much better.
Fig. 5 plots the threshold ~hðβ;DÞ for several values of D. Fig. 5

also includes the threshold ~hðβÞ; combinations of α and β above
this line have the property that diffusion is fast for the family of
all finite graphs.
For each pair ðα; «Þ and for any value of D, the term ~μD =

~μðα; β;DÞ is uniquely determined by the shape of the function
f ð · ; α; βÞ and can be easily calculated. Table 1 presents the bounds
on the expected waiting time established in Theorem 2. The bounds
apply to all finite graphs, irrespective of maximum degree or size.
For example, when «= 5% and α= 2, it takes at most 55 revisions
per capita in expectation until the adoption rate ~xðtÞ exceeds 1=2.

Remark: Note that the waiting time upper bound in Theorem 2
cannot be lower than 2=«. Indeed, the points ð0; «Þ and ð1; f ð1ÞÞ
are always part of the graph of f, which implies that ~μ is at
most «=2.
The numbers in Table 1 are expressed in terms of revisions per

capita. The actual rate at which individuals revise will depend on
the particular situation that is being modeled. For example,
consider a new communication technology that is twice as good
as the old technology when used by two agents who communicate
with each other. Suppose that people review their decision about

which technology to use once a week and that they choose a best
response 9 times out of 10 initially (when there are no adopters).
The model predicts that the new technology will be widely
adopted in less than 7 mo irrespective of the network topology.

Proof of Theorem 2: Inequality [7] implies that for any ~xðtÞ≤ 1=2
we have

E~x
�
t+

1
N

�
− ~xðtÞ≥ ~μ

N
: [8]

We want to estimate the stopping time T =minft : ~xðtÞ≥ 1=2g.
Note that the process ~xðtÞ stopped at T is a submartingale. Define
the process XðtÞ≡~xðtÞ− ðt ·NÞ~μ=N and note that by [8] we know
that XðtÞ stopped at T is still a submartingale.
Doob’s optional stopping theorem says that if XðtÞ is a sub-

martingale and if the stopping time T satisfies PðT <∞Þ= 1,
EjXðTÞj<∞, and EðXðTÞjT > nÞPrðT > nÞ→ 0 as n→∞, then
EXðTÞ≥EXð0Þ (36). In our case, note that there exists p> 0
such that with probability at least p we have ~xðt+ 1=NÞ−~xðtÞ≥ p,
which implies that EðTÞ<∞. This implies the three conditions
of Theorem 2. Rewriting this result, we obtain

E~xðTÞ≥ ~μ ·EðTÞ:

Noting that ~xðTÞ≤ 1, we obtain EðTÞ≤ 1=~μ, as was to be
proved. (In the Proof of Theorem 1 we use a different method to
establish the stronger bound 0:42=μ instead of 1=μ.)

■
Remark:The analysis so far corresponds to a worst-case analysis

over all graphs with degrees below a certain D. When the degree
distribution is known, this information can be used in conjunc-
tion with identity [6] to derive a more precise payoff threshold
for fast diffusion. To illustrate, suppose we are given a degree
distribution P= ðpdÞd, where pd denotes the fraction of agents in
the network that have degree d. To be specific let us consider the
case where P is described by the truncated power law pd ∝ d−γ for
some γ > 2. (Such a network is said to be scale-free). Empirical
studies of real networks show that they often resemble scale-free
networks; examples include author citation networks, the World
Wide Web, and the networks of sexual partners (37). A network
formation process that generates scale-free networks is the
preferential attachment model, where a new agent added to the
network is more likely to link with existing nodes that have a high
degree (38). However, we want to stress that apart from the
degree distribution, our results do not impose any constraints on
the realized topology of the network.
Fig. 6 plots a numerically simulated upper bound on the threshold

for fast diffusion for the truncated distribution pd = ηd−2:5 on the
interval 5≤ d≤ 5;000, where η is a normalizing constant. These
simulations show that for small noise levels the threshold for the
truncated power law is significantly lower compared with the
threshold for all graphs.
The estimated curve in Fig. 6 has a very similar shape to the

curves in Fig. 5. In particular, fast diffusion is achieved when the
noise level is 5% and the payoff gain is at least α= 0:81. Changing
the exponent and the parameters of the degree distribution yields
qualitatively and quantitatively similar threshold functions.

0 2% 4% 6% 8% 10%
0

5

10

14

ε = 1/(1+eβ)

α

Fig. 5. Threshold ~hðβ,DÞ for D=10 (blue solid line), D= 25 (red dashed line),
D= 50 (green dash–dot line) and ~hðβÞ (black solid line).

Table 1. Upper bounds on the expected waiting time for
any graph

«

Payoff gain 1% 2.5% 5% 10%

α= 1 — — 205 30
α= 2 — — 55 21
α= 4 — 116 41 20
α= 8 437 81 40 20
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Smooth Stochastic Best-Response Functions
In this paper we have established the existence of a payoff gain
threshold that ensures fast diffusion in networks. The bound is
“topology-free” in the sense that it holds for all networks. In this
section we show that our method for proving these results does
not depend in any crucial way on the logit response function:
Results similar to those of Theorems 1 and 2 hold for a large
family of response functions that are qualitatively similar to the
logit and that arise from idiosyncratic payoff shocks.
Assume that at the start of each period each agent’s payoffs

from playing A and B are perturbed by independent payoff shocks
eA and eB. These shocks alter the player’s payoffs from all inter-
actions during the period. In particular, agent i’s payoff from an
interaction with j when playing xi is πðxi; xjÞ+ exi . His total payoff
over the period is X

j∈Ni

π
�
xi; xj

	
+ diexi;

where Ni is the set of i’s neighbors, which has di elements.
We stress that the shocks eA and eB are assumed to be constant

for all of the agent’s interactions in a given period; they are also
independent across agents and across periods. Let us assume
that the shocks are identically distributed with cumulative dis-
tribution function Θðe; βÞ and density θðe; βÞ. The variance of the
shocks is captured by the noise parameter β; as β tends to infinity
the variance goes to zero. Let Θ2ðΔ; βÞ denote the cumulative
distribution function of the random variable eA − eB.
Suppose that x is the proportion of adopters (i.e., A players) in

the neighborhood of a given agent i in a given period. Let Δðx; αÞ
denote the expected difference (excluding payoff shocks) from
a single interaction:

Δðx; αÞ= ð1+ αÞx− ð1− xÞ:

Assume that whenever an agent revises his action, he chooses a
(myopic) best response givenhis realized payoffs in that period. Thus,
from an observer’s standpoint the probability that i chooses A is

fθðx; α; βÞ=Prðð1+ αÞdix+ dieA > dið1− xÞ+ dieBÞ
=PrðdiðeA − eBÞ> − diΔðx; αÞÞ
=PrðeA − eB > −Δðx; αÞÞ
= 1−Θ2ð−Δðx; αÞ; βÞ:

Note that this probability does not depend on the agent’s degree.
If the shocks are drawn from an extreme-value distribution of

the form Θðe; βÞ= 1− expð−expðβeÞÞ, then eA − eB is distributed
according to a logistic distribution, and the resulting response
function is the logit.
Another natural example is given by normally distributed payoff

shocks. If the shocks are normally distributed with mean zero and

SE β−1, the resulting response function is the probit choice rule
(39), given by

PrðAjx; α; βÞ=Φ
�
βΔðx; αÞffiffiffi

2
p

�
;

where Φ is the cumulative distribution function of the standard
normal distribution. It will be seen that this response function,
plotted in Fig. 7, is very similar in shape to the logit. Moreover,
the bound between slow and fast diffusion is qualitatively very
similar to that in the other models.
In general, consider a family of densities θðe; βÞ with parameter

β> 0. Assume that θ satisfies the following conditions: (i) θðe; βÞ is
continuous; for every β> 0 it is quasi-concave in e and symmetric
around 0; (ii) for any β′> β the distribution given by θð · ; β′Þ
second-order stochastically dominates the distribution given by
θð · ; βÞ; and (iii) θðe; βÞ tends to zero as β tends to zero, and it
tends to the Dirac delta function δðeÞ as β tends to infinity.
The first condition implies that eA − eB is also quasi-concave

and symmetric around zero. This implies that the function
Θ2ðΔ; βÞ is convex for Δ< 0 and concave for Δ> 0. Hence the
response function fθ has a convex–concave shape. The second
and third conditions say that the amount of payoff disturbances
is arbitrarily large for small β, decreases in β, and tends to zero as
β tends to infinity. It follows that fθ converges to random choice
for β close to 0 and to the best-response function for β large.
We are now in a position to extend Theorem 2 to general

families of response functions. Let ~f θ;min denote the lower en-
velope of the convex hull of the set fðx; fθðxÞÞ : x∈ ½0; 1�g, and let

~μðα; β; θÞ≡~f θ;min

�
1
2

�
−
1
2
:

The next result extends Theorem 2 to families of payoff shocks
that satisfy conditions i and ii.

Theorem 3. Assume that agents experience independent and identi-
cally distributed payoff shocks drawn from a density θðe; βÞ that
satisfies conditions i–iii. For any noise level β> 0, there exists

0 2% 4% 6% 8% 10%
0

5

10

14

ε = 1/(1+eβ)

α

Fig. 6. The estimated bound (blue solid line) for topology-free fast diffu-
sion for a power-law degree distribution (pd ∝d−2:5 for 5≤d ≤ 5,000). [Em-
pirical studies of scale-free networks typically find exponents between 2.1
and 4 (38).] Also shown is the threshold ~hðβÞ (red dashed line).

Fig. 7. (Upper) Logit response function (blue solid line) and normally dis-
tributed payoff shocks (red dashed line) (α= 1, «= 5%). (Lower) Thresholds
for topology-free fast diffusion: logit (blue solid line) and normally distrib-
uted payoff shocks (red dashed line) ðd = 15Þ.
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a payoff threshold ~hðβ; θÞ such that whenever α> ~hðβ; θÞ, diffusion
is fast for all graphs. Moreover, if ~μ≡ ~μðα; β; θÞ> 0, then for every
graph G the expected waiting time until the adoption rate is at least
1=2 is at most 1=~μ.
In SI Text we present a different characterization of response

functions that are similar to the logit, in terms of error functions. A
salient characteristic of the logit is that the probability of an error
can be expressed as a decreasing function of the payoff difference
between the two alternatives. The risk-dominant equilibrium re-
mains stochastically stable for a large class of such response func-
tions (30). We show that there is a one-to-one correspondence
between decreasing, convex error functions and families of payoff
disturbances. It follows that the main message of Theorems 1 and
2 carries through for a general class of error functions.

Conclusion
In this paper we have studied some of the factors that affect the
speed of diffusion of innovations on social networks. The two
main factors that we identify are the payoff gain of the inno-
vation relative to the status quo and the amount of noise in the
players’ response functions.
As has been noted by a number of authors, including Griliches

in his classic study of hybrid corn (2), larger payoff gains tend to
increase the speed with which an innovation spreads. This makes
intuitive sense. A less obvious but equally important factor is the
amount of noise or variability in the players’ behavior. This
variability can be variously interpreted as errors, experimenta-
tion, or unobserved payoff shocks. Under all of these interpre-
tations, greater variability tends to increase the speed at which an
innovation spreads. The reason is that higher variability makes it

easier to escape from the initial low equilibrium. A particularly
interesting finding is that different combinations of variability
and payoff gain determine a threshold above which diffusion is
fast in a “strong” sense; namely, the expected diffusion time is
uniformly bounded irrespective of population size and interac-
tion structure. These results are robust to quite general param-
eterizations of the variability in the system. For the logit, which is
commonly used in empirical work, the waiting time is bounded
(and quite small absolutely) if the initial error rate is at least 5%
and the payoff gain from the innovation is at least 83% relative
to the status quo.
Unlike previous results, a central feature of our analysis is that

the bounds on waiting time are topology-free. The results apply
to all networks irrespective of size and structure. In addition, our
method of analysis extends to families of graphs with restrictions
on the degree distribution. The virtue of this approach is that it
yields concrete predictions that are straightforward to compute even
when the fine details of the network structure are unknown, which is
arguably the case in many real-world applications. Moreover, in
practice social networks are constantly in flux, which makes pre-
dictions that depend on the specific network topology quite prob-
lematic. We conjecture that our framework can be extended to
settings where the network coevolves with players’ choices, as in refs.
40 and 41 for example, but this issue will be left for future work.
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