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1 Overview 

Central counterparties have assumed a key role in clearing over-the-counter derivatives as a 

result of regulatory reforms since the financial crisis (BCBS and IOSCO (2015)). In a centrally 

cleared market, parties to a derivatives contract enter into two back-to-back contracts with the 

central counterparty (CCP) that offset one another. There are several important advantages to 

this arrangement: it creates greater transparency and standardization of contracts, it offers greater 

potential for the netting of positions, and it shortens the length of intermediation chains, which in 

principle can reduce contagion (Evanoff et al. (2006); Cont and Kokholm (2014)). It can also reduce 

the cost of allowing a primary dealer to default (Calomiris (2009)). A significant disadvantage is 

that the CCP increases systemic vulnerability by creating a critical counterparty whose default 

would have widespread consequences (Yellen (2013)). It is therefore crucial to understand whether 

CCPs can withstand large and sudden shocks to asset values, such as occurred in the crisis of 

2007-09 and in the European debt crisis of 2011-12.1 

The conventional approach to stress testing CCPs is to examine whether they have sufficient 

funds on hand – in the form of initial margins and default fund contributions – to cover payment 

delinquencies if their two largest counterparties should fail to meet their clearing obligations (CFTC 

(2016)). Several recent papers have argued that this standard is inadequate, because it considers 

only the direct impact of the two members’ failure to pay, and does not take into account network 

spillover and contagion effects that can amplify the initial payment shortfalls, or the possibility 

that more than two members could default (Nahai-Williamson et al. (2013), Cumming and Noss 

(2013), Poce et al. (2016), Campbell and Ivanov (2016)). 

We examine this issue for the U.S. market in credit default swaps (CDS) and its principal 

central counterparty. Our approach differs from the prior literature in several key respects. First, 

our access to Depository Trust & Clearing Corporation (DTCC) data2 means that we have a 

large representation of the network of CDS exposures at different points in time. The trade-level 

details provided by DTCC include all contractual positions in which the reference entity and/or 

one of the counterparties is U.S.-based. However we do not have data on the interconnectedness 

1For a further discussion of the effects of central clearing on systemic risk see Zigrand (2010), Pirrong (2014), 
Garratt and Zimmerman (2015), Domanski et al. (2015), Powell (2016). 

2The DTCC data used in this paper are confidential in nature and are provided to the OFR by agreement. 
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of different CCPs through their common members and cross-margin agreements, which create 

additional channels of contagion (Cont (2010), Barker et al. (2016)). 

Second, we model contagion using a variant of the Eisenberg-Noe model (2001) that incorporates 

behavioral responses to balance sheet stress that can be institution-specific. We then estimate 

the total payment deficiencies that would result from a given financial shock to the system. In 

particular we consider the impact of shocks that are similar in magnitude to the Federal Reserve’s 

2015 Comprehensive Capital Analysis and Review (CCAR) shock, which was specifically designed 

to subject the financial markets to a severe but plausible market stress. Such a shock triggers a 

sudden drop in the value of credit instruments, which translates into large and sudden variation 

margin payments on CDS contracts. Firms that are large net sellers of protection may not be able 

to meet these variation margin payments, which puts increased stress on their counterparties and 

can lead to a systemwide cascade of payment delinquencies.3 

The plan of the paper is as follows. In the next section we summarize the protections that the 

CCP has in place to deal with defaults by its members (the default waterfall). Section 3 discusses 

the nature of the DTCC data and how we use it to derive variation margin payment demands and 

default probabilities under the CCAR shock. Section 4 contrasts our approach with the conventional 

Cover-2 standard. In Section 5 and Section 6 we introduce the contagion model, which traces how 

payment delinquencies by some firms can escalate as they cascade through the network of CDS 

exposures. A novel feature of the model is the treatment of stress transmission, which depends on 

firms’ liquidity buffers and their risk management policies. We discuss two ways of estimating the 

rate of stress transmission, and show that empirically they lead to similar estimates. 

In Section 7 we analyze the joint effects of shock size and stress transmission on the overall 

amount of contagion in the network, as well as the CCP’s ability to withstand variation margin 

payment delinquencies by its members. The analysis highlights the extent to which the Cover-2 

standard underestimates the impact on the CCP due to the omission of network spillovers effects. 

Section 8 examines the possibility that member firms may default due to stress on other (non-

3Poce et al. (2016) study the Italian fixed income market instead of the derivatives market. They apply an 
exogenous shock to firms’ equity, estimate the impact on the assets of their counterparties using a Merton model, 
and then examine the impact on the CCP for the market in Italian government bonds (Cassa di Compensazione e 
Garanzia). Unlike the present study they do not have direct knowledge of firms’ network exposures, but must impute 
them. As in our study, however, they find that network contagion effects are substantial and imply a greater risk of 
CCP default than does the conventional Cover-2 standard. 
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CDS) parts of their balance sheets. We develop a probabilistic model of firm default rates that 

takes into account a positive correlation in their default probabilities. The model allows us to 

estimate the probability that the CCP defaults relative to the probability that the average member 

defaults, while making minimal assumptions about the degree of correlation among member default 

rates. This estimate takes account of two distinct effects. First, a sudden and severe credit shock 

can lead to variation margin payment delinquencies due to liquidity constraints. Second, the shock 

to asset values may cause one or more parent firms to default on their variation margin payments 

due to insolvency. We estimate the impact on the CCP of these two effects in combination. We 

find that, under a shock of similar magnitude to the 2015 CCAR shock the CCP would be able to 

withstand defaults due to insolvency by as many as four of its members (though its guarantee fund 

might be nearly depleted). Under shocks of slightly greater magnitude, however, the CCP could 

be significantly more likely to default than the average member. 

2 The central counterparty waterfall 

A CCP represents a nexus of contracts in which its clearing members net and mutualize their 

counterparty default risk (Duffie et al. (2015)). Beyond the fees the CCP collects per transaction, 

the incoming and outgoing payment obligations offset each other due to its matched book. In the 

event that some payments are not received, the CCP has a series of risk mitigation mechanisms 

that it can draw on, known as the default waterfall. In this paper we shall focus on the major CCP 

for the CDS market in the United States, ICE Clear Credit. This is a privately held, for-profit 

company that cleared more than 97 percent of the notional value of CDS contracts on the date of 

our study in October of 2014.4 

At the time of our study, 30 member firms were empowered (though not required) to clear their 

CDS contracts through the CCP. Contracts by nonmembers are permitted to cleared, but in such 

cases there must be a member who acts as intermediary and fully guarantees all payments due from 

the nonmember client to the CCP. Members’ balance sheets are subject to scrutiny by the CCP, 

they must post initial margin against their contracts according to rigorous criteria established by 

the CCP, and they must contribute to a common guarantee fund that can be drawn on if some 

4The only other CCP in this market is CME Clearing, which in 2014 cleared less than 3 percent of the contracts 
and has since announced its exit from the market. 
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members default on their payments. Indeed, there is a whole series of procedures and safeguards 

designed to protect the CCP in case one or more members default. The principal elements of the 

waterfall structure are shown in Table 1. 

Table 1: Principal Elements of the Waterfall Structure of ICE Clear Credit as of December 2014. 

Tranche Total Amount 
Initial Margins $14.1 billion 
Guarantee Fund $2.4 billion 
CCP Capital $50 million 

Up to 3 times 
Member Assessments nondefaulting members’ 

guarantee fund contributions 

Note: Initial margins and the guarantee fund are made up of U.S. Treasuries and cash (USD, CAD, EUR, GBP, 
JPY). 
Source: SEC EDGAR 10-K Filing. 

Each member’s initial margin is held in a segregated account at the CCP and can only be used 

to cover losses generated by that member should it default. Clients also post initial margin with 

the CCP, and any losses they generate (including those in excess of the initial margin) are supposed 

to be fully covered by the member who acts as guarantor. The guarantee fund is funded solely by 

the members and is held in a common account to cover losses that exceed initial margins in the 

segregated accounts. 

If a member defaults, the CCP auctions the member’s portfolio of contracts, or it may transfer 

the contracts to non-defaulting members at mutually agreed prices. The initial margin (IM) posted 

by the defaulting member is applied to any losses that result from this process. In particular the 

IM is applied to the delinquent variation margin (VM) payments plus any further losses that may 

result from the auction or transfer process. (The latter may take several days to complete and 

will typically occur in highly stressed market conditions, hence the losses incurred in this novation 

process may be substantial.) To the extent that the IM is insufficient to cover the losses, the CCP 

draws on its guarantee fund. If this also proves insufficient, it taps the shareholders’ paid-in capital, 

which as Table 1 shows is very small relative to the other parts of the waterfall. If all of these sources 

are still insufficient, the CCP is empowered to assess the non-defaulting members by up to three 

times the original amount they contributed to the guarantee fund. Although this assessment power 
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would appear to offer a substantial line of defense, in practice it is not very helpful (France and 

Kahn (2016)). The difficulty is that when the guarantee fund is exhausted, many of the members 

will already be in default and unable to pay the assessments. 

The DTCC data and the CCAR shock 

We conduct our analysis using detailed data provided to the Office of Financial Research by the 

Depository Trust & Clearing Corporation (DTCC). The data include all CDS transactions reported 

to DTCC in which at least one of the counterparties or the reference entity is a U.S. entity. We 

have a detailed picture of counterparty exposures for a large segment of the CDS market, including 

exposures between banks, dealers, hedge funds, asset managers, and insurance companies. We can 

apply a hypothetical credit shock and compute the value of the payment and premium legs of each 

CDS position as a function of spread, duration, and underlying reference entity.5 

Table 2: Members of ICE Clear Credit as of December 2014. 

ICE Members 
1.a Bank of America, N.A. 8.a HSBC Bank USA, N.A. 
.b Merrill Lynch, Pierce, Fenner & Smith Inc. .b HSBC Bank plc 
.c Merrill Lynch International .c HSBC Securities (USA) Inc. 

2.a Barclays Bank PLC 9.a JPMorgan Chase Bank, N.A. 
.b Barclays Capital Inc. .b J.P. Morgan Securities LLC 
3.a BNP Paribas 10.a Morgan Stanley Capital Services LLC 
.b BNP Paribas Securities Corp. .b Morgan Stanley & Co. LLC 
4.a Citibank N.A. 11.a Nomura International PLC 
.b Citigroup Global Markets Inc. .b Nomura Securities International, Inc. 
5.a Credit Suisse International 12.a Société Générale 
.b Credit Suisse Securities (USA) LLC .b SG Americas Securities, LLC 
6.a Deutsche Bank AG, London Branch 13.a The Bank of Nova Scotia 
.b Deutsche Bank Securities Inc. 14.a UBS AG, London Branch 
7.a Goldman, Sachs & Co. .b UBS Securities LLC 
.b Goldman Sachs International 15.a Wells Fargo Securities, LLC 

Note: Members with the same numeric value belong to the same holding company and will be treated as a single 
defaulting firm in our data set. 
Source: ICE Clear Credit 

We focus on the change in value of each contract, and the resulting VM payment owed to each 

counterparty, under of the Federal Reserve’s 2015 Comprehensive Capital Analysis and Review 
5For more detail on the methodology underpinning these computations see Paddrik et al. (2016). 
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(CCAR) global trading book shock. This shock was designed to test the robustness of the financial 

system under a large and sudden change in asset values. The date of the shock was October 6, 

2014. The shock causes a sudden decrease in the value of corporate and sovereign debt instruments, 

which results in large and sudden demands for VM on CDS contracts. The question this paper 

examines is how likely it is that the CCP could withstand a shock of approximately this magnitude 

due to defaults by its members. For this purpose we assume that subsidiaries of the same parent 

firm are likely to default if and only if the parent defaults. Hence we group the members at the 

bank holding company (BHC) level and view these 15 firms as the entities that are subject to 

default (see Table 2).6 Such a shock implies a widening of credit spreads on the BHCs from which 

we can infer the annual default probabilities using the methodology described in Luo (2005). On 

the target date of the shock the implied default probabilities among the 15 member BHCs ranged 

from 1.7 percent to 3.5 percent, with an average of 2.5 percent per annum. These numbers are 

similar to the default probabilities implied by CDS spreads during the financial crisis of 2007-09, as 

shown in Figure 1. In other words the impact of the CCAR shock on the CDS spreads is roughly 

comparable to what occurred in the recent financial crisis. 

Figure 1: Annual Default Probabilities Implied by CDS Spreads for the 15 BHCs. 

Source: Authors’ calculations, which use data provided by Markit Group Ltd. 

6This approach is consistent with CFTC Regulation 39.33(a) on the implementation of the Cover-2 standard, 
which assumes that the two largest BHCs default. 
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4 Conventional risk analysis for the CCP 

The global standard of evaluating potential risk to the CCP is to determine whether it has 

enough cash or highly liquid assets in its guarantee fund to cover its obligations when two of its 

members default simultaneously (CFTC (2016); Cont and Minca (2016); Ghamami and Glasserman 

(2017)). This ‘Cover-2’ standard is typically applied to a scenario where the two defaulting members 

are assumed to be those with the largest net VM obligations to the CCP. 

Under the CCAR shock there are eight members that have non-negligible obligations to the 

CCP. Assuming that any one of them were to default, the IM collected from that member would be 

sufficient to cover the shortfall except in one case in which the guarantee fund would be more than 

adequate to absorb the remaining shortfall. (It will be recalled that the guarantee fund as of the 

CCAR shock date was about $2.4 billion.) The same conclusion holds if the two largest members 

default simultaneously. It would therefore appear that the CCP is well-protected against defaults 

by its members even in a highly stressed environment. 

We argue that this conclusion is overly optimistic, because it does not account for the amplifica-

tion that can occur through network contagion. The left panel of Figure 2 depicts how conventional 

stress testing limits the channels of stress to the direct impact of a shock on the CCP. The right 

panel illustrates how stress can become amplified through the complete network of exposures. We 

shall show that when two members default simultaneously and network effects are taken into ac-

count, there is a non-negligible probability that the CCP’s guarantee fund will be insufficient to 

cover delinquent payments by the members. We also argue that the CCP’s ability to tap its mem-

bers for additional assessments will be severely limited for two reasons. First, the funds will be 

needed in a very short time period (typically a few hours) and the assessments may be contested. 

Second, many of the members will already be under severe stress and unable to pay the additional 

assessments. 
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Figure 2: Network Depiction of CCP Stress Testing 

(a) Limited (b) Complete 

Note: M stands for member and C stands for client in the network relationships. 
Source: Authors’ analysis. 

5 The network contagion model 

The network contagion model is a variant of Glasserman and Young (2015) that builds on the 

benchmark model of Eisenberg and Noe (2001).7 The key contribution of Eisenberg-Noe is to 

show how to define a consistent set of payments when firms have credit obligations to one another 

through interlocking balance sheets. If the assets of some firms suffer an exogenous shock, the 

Eisenberg-Noe framework allows one to compute the extent to which the initial loss in asset values 

cascades through the system, possibly leading to further defaults. 

In the present context, the set-up is somewhat different: an exogenous shock to credit instru-

ments determines the intra-day VM payment obligations between firms on their CDS contracts. 

These payments must be made within a very short time frame. If the VM owed by a given firm 

exceeds the amount it is owed, the firm experiences short-term stress. This stress can be relieved 

by drawing on cash and cash equivalents held by the parent institution, but if the stress is large, 

these funds may be inadequate. In that case, the firm may either delay payments, make some 

payments in illiquid collateral instead of in cash, or default completely. Any of these responses will 

exacerbate the stress on its counterparties, leading to systemwide contagion. 

To illustrate, consider a hypothetical situation involving three firms (i, j, k) as shown in Figure 

7A similar model is used in Paddrik, Rajan and Young (2016) to analyze the extent to which the CCP contributes 
to network contagion. 
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Figure 3: Payment Chain 

Source: Authors’ analysis. 

3. Firm i owes 100 to firm j, which owes 100 to firm k, shown above the arrows. We suppose that 

these VM payments are triggered by a sudden exogenous shock and are due within a few hours. 

Suppose that i defaults completely, meaning the realized payment, shown below the arrow, is zero. 

Then j seizes the initial margin it collected from i (50 in the square box), but this is not enough 

to cover its obligations to k, which are due immediately. Hence j dips into the firm’s treasury (50 

in the safe bag) and meets its payment of 100. It could happen, however, that the treasury only 

contains 30 in liquid assets, as shown in Figure 4. In this case, j would default in its payment to 

k, which could cause k to default to its counterparties, depending on the amount in k’s treasury. 

Figure 4: Payment Deficit Contagion 

Source: Authors’ analysis. 

This example shows that the transmission of payment shortfalls is subject to considerable 

uncertainty. It depends on the amount of cash available in a firm’s treasury not claimed by other 

sources, its non-cash assets on hand, and its relationships with its counterparties. In our network 

model, we shall treat these factors as random variables. The approach differs from models based 

on Eisenberg and Noe (2001), which treat default as a deterministic event that is triggered when 

the default boundary is breached. 
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We now describe the network model in full. Given a shock to the reference entities on which 

CDS contracts are written, we shall represent the induced VM payment obligations by a matrix 

[p̄ij ], where p̄ij is the net amount of VM owed by node i to node j in the aftermath of the shock. P 
(Thus, not both p̄ij and p̄ji are positive because they are bilaterally netted.) Let p̄i = j 6=i p̄ij 

be the total payment obligation of i to all other nodes. We shall restrict attention to the nodes 

i such that p̄i > 0; the others represent firms that are solely buyers of protection and have no 

VM obligations. Let i = 0, 1, 2, ..., n index the nodes with positive payment obligations and let ‘0’ 

represent the CCP. 

The relative liability of node i to node j is 

aij = p̄ij /p̄i. (1) 

P 
The relative liability matrix A = (aij ) is row substochastic, that is for every i, =i aij ≤ 1.j 6 

For each node i, let cki denote the amount of initial margin i collects from counterparty k. The 

purpose of the IM is to cover possible payment delinquencies. In particular, if counterparty k fails 

to pay VM to i in a timely manner, the position may be closed out and the IM will be applied to 

any losses that are incurred between the time of the counterparty’s default and the time it takes 

to close out the position. Alternatively, i may accept partial payment by k and not close out the 

position, but seize the IM as security until the balance is paid. (Of course this is risky because the 

value of the contract to i might deteriorate further in the interim.) 

Let pki ≤ p̄  ki denote the realized current payment from k to i. If pki < p̄  ki the difference will 

be made up out of the initial margin sitting in k’s account at firm i provided p̄  ki − pki ≤ cki. If 

p̄  ik − pki > cki, then the difference p̄  ik − (pki + cki) must be borne by i. We define the stress at 

i, si, to be the amount by which i’s payment obligations exceed the incoming payments from i’s 

counterparties buttressed by the initial margins, that is, 

⎡ ⎤ X X 
8 si = ⎣ p̄  ik − ((pki + cki) ∧ p̄  ki)⎦ . (2) 

k=6 i k 6=i 
+ 

Note that when all of i’s counterparties pay in full, that is pki = p̄ki for all k, then there is no 

8In general, x ∧ y denotes the minimum of two real numbers x and y. 
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stress at i (si = 0). 

6 Stress transmission 

To complete the model we need to specify how firms respond to balance sheet stress, that is, 

how much they actually pay their counterparties when they are under stress. The answer depends 

on a variety of factors, including a firm’s cash reserves, its short-term lines of credit, the non-CDS 

assets on its balance sheet and its relationships with it counterparties. For most firms we do not 

have enough information to model these factors accurately. Instead we shall adopt a reduced-form 

approach in which we estimate the expected payments to counterparties as a function of balance 

sheet stress. 

Before describing the approach, however, let us observe that for the CCP itself we do have 

enough information to model its payments to counterparties under different levels of stress. In 

particular we know how much liquidity reserves are held in its guarantee fund, which is available 

to cover residual losses when defaulting members’ initial margins are insufficient. We also know 

that the balance sheet consists entirely of CDS assets, CDS liabilities, and cash reserves; there is 

no hedging from non-CDS positions. Finally, we know that the CCP is contractually obligated 

to distribute any losses pro rata among its members (a practice known as variation margin gains 

haircutting). 

The difference between the CCP’s VM obligations and the resources it has to meet them is 

given by the expression 

⎡ ⎤ X X 
s0 = ⎣ p̄  0k − ((pk0 + ck0) ∧ p̄  k0)⎦ , (3) 

k 6 k=0=0 6 
+ 

where k ranges over the CCP’s members. Let b0 be the amount in the CCP’s guarantee fund.9 Our 

assumption is that if s0 > b0 then the CCP pro-rates the shortfall s0 − b0 according to the payment 

obligations to its members, that is, 

∀j, p0j = p̄0j − a0j (s0 − b0)+. (4) 

9As of December 2014, b0 was approximately $2.4 billion, as shown in Table 1. 
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For firms other than the CCP we shall estimate the expected payment to counterparties using 

a different approach. Specifically, we shall estimate a transmission factor, τi ≥ 0, such that firm i’s 

expected shortfall in payments p̄i − pi is proportional to the level of stress si: 

∀i, p̄i − pi = τisi (5) 

Assuming that the shortfall is apportioned among i’s counterparties, we obtain the mapping 

⎡ ⎡ ⎤ ⎤ X X 
∀i =6 0, ∀j, pij = Φ(p)ij = ⎣p̄ij − τiaij ⎣ p̄  ik − ((pki + cki) ∧ p̄  ki)⎦ ⎦ . (6) 

k=6 i k 6=i 
+ + 

The CCP’s payments are given by 

⎡ ⎡ ⎤ ⎤ X X 
∀j, p0j = Φ(p)0j = ⎣p̄0j − a0j ⎣ p̄0k − ((pk0 + ck0) ∧ p̄k0) − b0⎦ ⎦ . (7) 

k 6 k=0=0 6 
+ + 

The function Φ(p) defined by (6) and (7) is monotone and bounded, hence by Tarski’s Theorem 

it has at least one fixed point (Tarski (1955)). 

We new describe two approaches to estimating the transmission factors. The value of τi will 

depend on the level of cash that firm i can draw upon to cope with a given level of stress, and 

how much it pays its counterparties if its reserves are inadequate, so it cannot meet its payment 

obligations in full. Let bi denote the size of firm i’s liquid reserves. Then i can pay in full if bi ≥ si. 

If bi < si we consider two scenarios. 

Hard Default : bi < si ⇒ pi = 0 (8) 

Soft Default : bi < si ⇒ pi = p̄i − si + bi (9) 

Let us view the buffer bi as the realization of a random variable Bi. This reflects the fact that 

the value of bi in a crisis depends on a variety of unknown factors such as the firm’s exposure to 

other assets and its general risk management policies. In the hard default scenario, the expected 

shortfall in i’s VM payments equals 

12 



di = p̄iP (bi < si). (10) 

We can make a rough estimate of the P (bi < si) as follows. Since the net amount owed, p̄i, 

arises in a highly stressed environment, it is unlikely that the firm’s cash reserves are larger than 

p̄i. Let us therefore assume that the support of Bi is [0, p̄i]. Let us further suppose that Bi has a 

density gi(bi) that is nonincreasing, that is, smaller buffers are at least as likely as larger buffers. 

It follows that for every realized level of stress si, 

P(bi < si) ≥ si/p̄i. (11) 

Together, (10) and (11) imply 

di ≥ si, (12) 

that is, the transmission factor is at least one. 

By contrast, in the soft default scenario i’s expected shortfall in payments can be expressed as 

di = E[si − bi|bi < si]P (bi < si). (13) 

Given the preceding assumptions on g(bi) this leads to an estimated transmission factor that is 

less than one. 

An alternative approach to estimating the transmission factor is to estimate the liquidity buffers 

bi directly from the data and then to solve the model under various assumption about the size of the 

shock and how firms respond to stress. From the DTCC data we can estimate, for each firm i, the 

minimum amount of bi of cash reserves that i would have been needed to avoid suffering a shortfall 

in its CDS payments on any given day in the five years prior to the shock date. Specifically, for 

each firm i, the DTCC data allows us to infer the change in value of i’s CDS contracts on any 

given day. From this we can deduce the payments due from all of i’s counterparties, as well as the 

payments due from i to each of its counterparties and hence the net VM payment owed by i on 

that day. We choose bi to be the smallest value that exceeds the maximum net payment due over 

the five year period prior to October 6, 2014. 
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⎪
⎪

We vary the size of the shock by multiplying the VM payment obligations by a scalar α > 0, 

where α = 1 corresponds to the VM payment obligations under the actual CCAR shock. Given a 

shock of size α on the CCAR shock date, we compute the greatest payment equilibrium under two 

stress response scenarios: soft default and hard default. In the soft default scenario we find the 

maximal fixed point of the system 

⎡ ⎡ ⎤ ⎤ X X 
∀i =6 0, ∀j, pij = Φ(p)ij = ⎣p̄ij − aij ⎣ p̄  ik − ((pki + cki) ∧ p̄  ki) − bi⎦ ⎦ , (14) 

k=6 i k 6=i 
+ + ⎡ ⎡ ⎤ ⎤ X X 

∀i, p0j = Φ(p)0j = ⎣p̄0j − a0j ⎣ p̄  0k − ((pk0 + ck0) ∧ p̄  k0) − b0⎦ ⎦ . (15) 
k 6 k=0=0 6 

+ + 

∗Let p denote this greatest equilibrium. We then compute the total payment deficiency d∗ = P P n∗ ∗ ∗(¯ ) and the total stress s = i , where0≤i,j≤n pij − pij i i=0 s 

⎡ ⎤ X X 
∗ ∗ ∀i, si = ⎣ p̄  ik − ((pki + cki) ∧ p̄  ki)⎦ . (16) 

k=6 i k 6=i 
+ 

The ratio 

τ ∗ = d ∗ /s ∗ (17) 

is an estimate of the average rate of stress transmission over all nodes in the system in the soft 

default scenario.10 

Similarly, in the hard default scenario, we compute a maximal fixed point of the system 

⎧ P P⎪⎨p̄ij if p̄ik ≤ ((pki + cki) ∧ p̄ki) + bik=6 i k 6=i˜∀i =6 0, ∀j, pij = Φ(p)ij = (18)⎪⎩0 otherwise, 

⎡ ⎡ ⎤ ⎤ X X 
11˜ ⎣ ⎦ ⎦∀j, p0j = Φ(p)0j = ⎣p̄0j − a0j p̄  0k − ((pk0 + ck0) ∧ p̄  k0) − b0 . (19) 

k 6 k=0=0 6 
+ + 

P10Alternatively we could estimate the average transmission factor by the expression (1/n) n
i=0(p̄i − p ∗ 

i )/si 
∗ . It 

can be shown that this yields a value at least as large as τ ∗ in (17). 
11We always assume that the CCP engages in variation margin gains haircutting (i.e., soft default) even when all 
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∗∗Let p denote the greatest equilibrium of this system. As before we compute the total payment P P n∗∗ ∗∗ ∗∗deficiency d∗∗ = 0≤i,j≤n(p̄ij − pij ) and the total stress si = i=0 si , where 

⎡ ⎤ X X 
∗∗ ∗∗ ∀i, si = ⎣ p̄  ik − ((pki + cki) ∧ p̄  ki)⎦ . (20) 

k=6 i k 6=i 
+ 

The estimate of τ in this case is 

τ ∗∗ = d ∗∗ /s ∗∗ . (21) 

Table 3 shows the resulting estimates for τ under a range of α-values and hard vs. soft default. 

In the hard default scenario, the value is somewhat in excess of one, which is consistent with the 

estimate in (12). As one would expect, the average value of τ under soft default is smaller (on 

the order of 0.5-0.7) than it is under hard default. Note that the estimates of τ are stable over 

a wide range of shock values. In our view the hard default scenario is more plausible than soft 

default as a model of short-run response to stress, hence we shall focus on values of τ that are in a 

neighborhood of 1 in the empirical sections to follow. 

Table 3: Average value of τ over all firms when liquidity buffers are estimated from the DTCC 
data. 

α 
0.75 1.00 1.25 

Hard Default: 1.11 1.11 1.07 
Soft Default: 0.54 0.62 0.69 

Source: Authors’ calculations which use data provided to the OFR by The Depository Trust & Clearing 
Corporation and Markit Group Ltd. 

Network contagion and its impact on the CCP 

We now apply this framework to evaluate the potential amount of contagion in the CDS market 

as a function of the shock size α and the average transmission factor τ . We define the total impact 

of the shock to be the deficiency in VM payments summed over all directed edges in the network. 

In our notation the total payment deficiency can be expressed as follows 

other firms engage in hard default, due to the CCP’s contractual obligations to its members. 

15 
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X 
D = D(τ, α) = di, (22) 

i 

where di = p̄i − pi and (p0, ..., pn) is the greatest fixed point of the mapping Φ(p). Figure 5 shows P 
the total deficiency as a fraction of total VM payments owed, D(τ, α)/ i p̄i(α), as a function of 

α and τ . Note that for each value of τ this ratio is remarkably stable over a wide range of shock 

values. 

Figure 5: Payment deficiency relative to total amount owed. 

Source: Authors’ calculations which use data provided to the OFR by The Depository Trust & Clearing 
Corporation and Markit Group Ltd. 

The impact of network contagion on the CCP can be measured by the percentage of the guar-

antee fund that is used to cover members’ payment deficiencies. Figure 6 shows the results for τ = 

1.0 and τ = 0.75 over a range of shock sizes centered around the CCAR shock (α = 1.0). Note that 

the impact on the CCP is convex and increases sharply for shock sizes slightly greater than 1.0. 

The figure also highlights the extent to which a conventional Cover-2 analysis underestimates 

the impact of a shock on the CCP. This curve (the solid line) shows the percentage of the guarantee 

fund that is drawn down when the two members with the largest VM obligations fail to pay and 

no networks effects are considered. 
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Figure 6: Impact on CCP for different values of τ and α, compared with Cover-2. 

Source: Authors’ calculations, which use data provided to the OFR by The Depository Trust & Clearing 
Corporation and Markit Group Ltd. 

Evaluating the effect of member defaults from other causes 

Our analysis thus far is based solely on payment obligations arising from CDS contracts, and 

neglects the possibility that, in a severe financial crisis, member firms might default due to stresses 

on other parts of their balance sheets. In this section we consider the effects of such exogenous 

failures without attempting to model their causes explicitly. Instead we shall ask how many defaults 

of member firms would cause the CCP to default given that it is already under stress due to CDS 

payment demands. 

Figure 7 shows the impact on the CCP when one, two, three, and four member firms are drawn 

at random and assumed to default completely on their VM payments. We assume here that the 

transmission factor τ = 1 for all firms, but the same approach can be applied for other values of 

τ including values that vary among firms. Let us fix the value of α. For each integer k = 0, 1, 

2, 3, or 4, draw k firms at random from the 15 BHC member firms, and assume that these firms 

fail due to unmodelled exogenous causes. For each such draw we compute the greatest payment 

equilibrium under the assumption that these k firms default completely on their VM payments, 

while all other firms have a transmission factor τ = 1. If the CCP guarantee fund is used up we �15� 
say that it ‘defaults’ for this random draw. We then count the proportion of k draws in which 
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the CCP defaults, which yields the curve hk(α). 

Figure 7 shows that when the scale of the shock is less than 1.1, the CCP does not default even 

when four of its members fail exogenously. This finding is reassuring. For larger shocks, however, 

exogenous member failures can push the CCP into default. A priori we do not know how likely such 

exogenous failures might be; nevertheless we can estimate the probability that the CCP defaults 

relative to the exogenous failure probability of an average member using the following argument. 

Figure 7: Conditional Probability of CCP Default when τ = 1. 

Note: Conditional probability of the CCP suffering a default given the default of one, two, three, or four BHC 
members, assuming the transmission factor τ = 1. 
Source: Authors’ calculations, which use data provided to the OFR by The Depository Trust & Clearing 
Corporation and Markit Group Ltd. 

Fix a value of α (the scale of the shock), and let qk(α) be the probability that exactly k out 

of the 15 member fail under a shock of this magnitude. As above let hk(α) be the conditional 

probability that the CCP defaults given the default of k of its member drawn at random. The 

average probability that a given member defaults can be expressed as follows: 

15X 
p(α) = kqk(α)/15. (23) 

k=0 

The probability that the CCP defaults is 

15X 
q(α) = hk(α)qk(α)/15. (24) 

k=0 
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We wish to estimate the ratio q(α)/p(α); in particular we shall bound it from above and 

below under mild restrictions on the probabilities qk(α). Let us assume that the values qk(α) are 

nonincreasing in k (q0(α) ≥ q1(α) ≥ ... ≥ q15(α)), and for all sufficiently large k (k ≥ k̄) the qk(α)’s 

are close to zero. 

To bound q(α)/p(α) from below we solve the optimization problem 

P15 hk(α)qk(α)
min q(α)/p(α) = k=0 , (25)P15(1/15) k=0 kqk(α) 

subject to 

1 ≥ q0(α) ≥ ... ≥ q15(α) ≥ 0 
(26) 

∀k ≥ k,¯ qk = 0 

An upper bound on q(α)/p(α) is found by solving the corresponding maximum problem. To 

illustrate the approach in a concrete case, let α = 1.25 (which we omit from the notation below). 

The conditional default probabilities are 

h0 = 0.00, h1 = 0.07, h2 = 0.26, h3 = 0.39, h4 = 0.54. 

¯ 4.12Let us further assume that qk(α) = 0 for all k ≥ k = By solving the corresponding 

optimization problem in (25) - (26) we find that q/p satisfies the bounds 

1.05 ≤ q/p ≤ 1.89. (27) 

These bounds are not particularly sensitive to the cut-off value k̄. For example, suppose that 

qk(α) = 0 for all k ≥ 5. It can be shown that in this case q(α)/p(α) satisfies precisely the 

same bounds as in (27). If we assume that qk(α) = 0 for all k ≥ 6, we obtain the bounds 

1.05 ≤ q/p ≤ 2.11. 

Table 4 shows the estimated bounds for q/p under different combinations of τ and α, assuming 

that qk(α) = 0 for all k ≥ 4. When τ ≤ 1 and α ≤ 1, the CCP is unlikely to default although 

12In fact the U.S. authorities did not allow more than two large institutions (Lehman and Bear Stearns) to 
default during the recent financial crisis. The market implied default rates during the crisis also assigned a very low 
probability to four or more defaults (Giglio (2011)). 
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it may have to access a major part of its guarantee fund to cover its obligations. If the shock is 

somewhat larger than the CCAR shock (α ≥ 1.25) and if τ ≥ 1.25, the CCP would be at greater 

risk of defaulting than the average member firm. 

Table 4: Estimated Bounds of q(α)/p(α) 

α 
0.75 1.00 1.25 

0.75 0.0 0.0 0.0-0.3 
τ 1.00 0.0 0.0 1.1-1.9 

1.25 0.0-0.3 7.5-15 7.5-15 
Source: Authors’ calculations, which use data provided to the OFR by The Depository Trust & Clearing 
Corporation and Markit Group Ltd. 

Conclusion 

In this paper we have proposed a general framework for assessing the ability of a central coun-

terparty (CCP) to withstand a severe credit shock. The framework differs from conventional stress 

testing of CCPs in several key respects. First, we track the direct and indirect effects of default 

by one or more firms, not just the default of the two members with the largest obligations to the 

CCP. This is crucial because payment deficiencies by defaulting firms are transmitted and amplified 

through the network of exposures, increasing the ultimate impact on the CCP. Secondly, we propose 

a novel estimation methodology that allows us to place a lower bound on the amount of network 

contagion in the absence of detailed information about the liquid reserves of individual firms. In 

this respect the model differs markedly from conventional contagion models such as Eisenberg and 

Noe, which require detailed knowledge of the firms’ balance sheets to determine the ultimate impact 

of a shock. Thirdly, we show how to estimate bounds on the probability that the CCP will default 

relative to the probability that members will default, with minimal information about the degree 

of correlation among member defaults, which in practice is difficult to estimate empirically. 

Overall, our results suggest that conventional stress testing approaches may significantly under-

estimate the vulnerability of the main CCP for this market. Moreover, our results do not include 

several channels that could further increase the amount of contagion and the concomitant risk of 

CCP default. One such channel is increased demand for initial margin in times of financial stress, 

when firms call on their counterparties to increase the amount of initial margin they post. These 
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demands have the effect of placing the counterparties under even greater stress. A second channel 

consists of single-name CDS contracts in which the reference entity is a bank holding company 

(BHC). The stress induced by demands for large variation margin payments may push some of 

these BHCs closer to (or into) default, which will trigger large variation margin payments by the 

sellers of CDS on these companies. A third channel is fire sales: when a seller of protection defaults 

on its variation margin payments, the counterparty will try to find another (solvent) firm that is 

willing to assume the position of protection seller. This pressure to find replacements will tend to 

increase the cost of novating the contracts, and may lead to potential losses that are not covered 

by the defaulting party’s initial margin. All of these effects can, in principle, be incorporated into 

the model, and will tend to exacerbate the amount of contagion in the system. 
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