Gaming Performance Fees by Portfolio Managers

Dean P. Foster* and H. Peyton Young**

This version: August 13, 2009

*Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia PA 19104-6302. dean.foster@gmail.com

**Department of Economics, University of Oxford, Manor Road, Oxford OX1 3UQ. peyton.young@economics.ox.ac.uk

Keywords: performance bonus, incentives, excess returns, manipulation

Abstract

This paper shows that it is difficult to devise performance-based compensation contracts that reward portfolio managers who generate excess returns while screening out managers who cannot generate such returns. Theoretical bounds are derived on the amount of fee manipulation that is possible under a wide range of performance contracts. We examine the implications for recent proposals to reform compensation practices, such as postponing bonus payments, clawing back bonuses with subsequent ‘maluses’, and requiring managers to hold an equity stake. None of these reforms will eliminate opportunities to game the system; indeed we demonstrate that there exists no compensation mechanism that separates skilled from unskilled managers solely on the basis of their returns histories.
1. Background

Incentives for financial managers are coming under increased scrutiny because of their tendency to encourage excessive risk-taking. In particular, the asymmetric treatment of gains and losses gives managers an incentive to increase leverage and take on other forms of risk without necessarily increasing expected returns (see among others Starks, 1987; Ackermann, MacEnally, and Ravenscraft, 1999; Carpenter, 2000; Lo, 2001; Hodder and Jackwerth, 2007). Various changes to the incentive structure have been proposed to deal with this problem, including postponing bonus payments, clawing back bonus payments if later performance is poor, requiring managers to hold an equity stake in the funds that they manage, and so forth.

The purpose of this paper is to show that, while these and related reforms may *moderate* the incentives to game the system, gaming cannot be eliminated. The problem arises in part from the flexibility of the derivatives market, which allows managers great scope for manipulating the shape of the returns distribution. We establish two principal results. First, if a performance-based compensation contract does not levy out-of-pocket penalties for underperformance, then managers with no superior investment skill can capture a sizable amount of the fees that are intended to reward superior managers by mimicking the latter’s performance. Moreover the potential amount of fee capture has a concise analytical expression. Second, if a compensation contract imposes penalties that are sufficiently harsh to deter risk-neutral mimics, then it will also deter managers of arbitrarily high skill levels. In other words, there exist no performance-based compensation schemes that screen out risk-neutral mimics while rewarding managers who generate excess returns. This contrasts with
statistical measures of performance, some of which can discriminate in the long run between “expert” and “non-expert” managers.¹

Our results are proved using a combination of game theory, probability theory, and elementary principles of mechanism design. One of the novel theoretical elements is the concept of performance mimicry, which is a variant of an idea in the game theory literature known as strategy-stealing (Gale, 1974). This is a tool for analyzing games that are so complex that the explicit construction of equilibrium strategies is difficult or impossible; nevertheless it allows one to compare how well one player can do relative to another, and hence to evaluate whether a given state of affairs is stable or is vulnerable to changes of strategy by existing players and/or invasion by new players.

The general idea runs as follows: suppose that one player in a game (say i) has a certain strategy s_i that results in payoff α_i. Then another player (say j) can copy i’s strategy and get a payoff at least as high as α_i. Gale originally applied this idea to a board game called Chomp, which is similar to Nim. In particular, he showed that the first mover must have a winning strategy even though he (Gale) could not construct it: for if the second mover had a winning strategy, the first mover could ‘steal’ it and win instead.

¹ There is a substantial literature on statistical tests that discriminate between true experts and those who merely pretend to be experts. Goetzmann, Ingersoll, Spiegel, and Welch (2007) propose a class of non-manipulable measures of investment performance that we discuss in greater detail in section 6. Somewhat more distantly related is the literature on how to distinguish between experts who can predict the probability of future events and imposters who manipulate their predictions in order to look good (Lehrer, 2001; Sandroni, Smorodinsky, and Vohra, 2003; Sandroni, 2003; Olszewski and Sandroni, 2008, 2009). Another paper that is thematically related is Spiegler (2006), who shows how ‘quacks’ can survive in a market due to the difficulty that customers have in distinguishing them from the real thing.
We show that a version of this argument holds in financial markets with derivatives trading. Namely, we show how a manager with no private information or special skills can *mimic* the returns being generated by another (more skilled) manager for an extended period of time without knowing how the skilled manager is actually producing these returns.² Unlike strategy-stealing, however, the mimic cannot *copy* the skilled-manager’s strategy because he does not know it (if he did know it he would be skilled too). Instead, he copies the skilled manager’s *performance*, that is, the pattern of returns that the skilled manager generates over time. This is all he needs to do in order to earn high fees and pull in new money, because by assumption the realized returns are what the investors are paying for. Of course, the mimic cannot reproduce the skilled manager’s record forever; instead he reproduces it with a certain probability and pays for it by taking on a small probability of a large loss (which typically the investors cannot see). This framework allows us to derive precise analytical expressions for: i) the probability with which an unskilled manager can mimic a skilled one over any specified length of time; and ii) the minimum amount the mimic can expect to earn in fees as a function of the compensation structure.

The paper is structured as follows. In the next section we review the prior theoretical and empirical literature on performance manipulation. In section 3 we introduce the model, which allows us to evaluate a very wide range of compensation contracts and different ways of manipulating them. Section 4 shows how much fee capture is possible under any compensation arrangement

² It should be emphasized that mimicry is not the same as *cloning* or *replication* (Kat and Palaro, 2005; Hasanhodzic and Lo, 2007). These strategies seek to reproduce the statistical properties of a given fund or class of funds, whereas mimicry seeks to fool investors into thinking that returns are being generated by one type of distribution when in fact they are being generated by a different (and less desirable) distribution.
that does not assess personal financial penalties on the manager. In section 5 we explore the implications of this result through a series of concrete examples. Section 6 discusses manipulation-proof performance measures and why they do not solve the problem of designing manipulation-proof compensation schemes. In section 7 we derive an impossibility theorem, which shows that there is essentially no compensation scheme that is able to reward skilled managers and screen out unskilled managers based solely on their ‘track records’. Section 8 shows how to extend these results to allow for the inflow and outflow of money based on prior performance. Section 9 concludes.

2. Related literature

The fact that standard compensation contracts give managers an incentive to manipulate returns is not a new observation; indeed there is a substantial prior literature on this issue. In particular, the two-part fee structure that is common in the hedge fund industry has two perverse features: the fees are convex in the level of performance, and gains and losses are treated asymmetrically. These features create incentives to take on increased risk, a point that has been discussed in both the empirical and theoretical finance literature (Starks, 1987; Ackermann, MacEnally, and Ravenscraft, 1999; Carpenter, 2000; Lo, 2001; Hodder and Jackwerth, 2007).

The approach taken here builds on this work by considering a much more general class of compensation contracts and by deriving theoretical bounds on how much manipulation is possible. Of the prior work on this topic, Lo (2001) is the closest to ours because he focuses explicitly on the question of how much money a strategic actor can make by deliberately manipulating the returns
distribution using options trading strategies. Lo examines a hypothetical situation in which a manager takes short positions in S&P 500 put options that mature in 1-3 months, and showed that such an approach would have generated very sizable excess returns relative to the market in the 1990s. (Of course this strategy could have lost a large amount of money if the market had gone down sufficiently.) The present paper builds on Lo’s approach by examining how far this type of manipulation can be taken and how much fee capture is theoretically possible. We do this by explicitly defining the strategy space that is available to potential entrants, and how they can use it to mimic high-performance managers.

A related strand of the literature is concerned with the potential manipulation of standard performance measures, such as the Sharpe ratio, the appraisal ratio, and Jensen’s alpha. It is well-known that these and other measures can be ‘gamed’ by manipulating the returns distribution without generating excess returns in expectation (see among others Ferson and Siegel, 2001; Lhabitant, 2000). It is also known, however, that one can design performance measures that are immune to many forms of manipulation. These take the form of a constant relative risk aversion utility function averaged over the returns history (Goetzmann, Ingersoll, Spiegel, and Welch, 2007; Morningstar, 2006). We shall discuss these connections further in section 6. Our main conclusion, however, is that a similar possibility theorem does not hold for compensation mechanisms. At first this may seem surprising: for example, why would it not suffice to pay fund managers according to a linear increasing function of one of the manipulation-proof measures mentioned above? The difficulty is that a compensation mechanism must not only reward managers according to their actual ability, it must also screen out managers who have no ability. In other
words, the mechanism must create incentives for skilled managers to participate and for unskilled managers not to participate. This turns out to be considerably more demanding because managers of different skill levels have different opportunity costs and therefore different incentive-compatibility constraints.

3. The model

Performance-based compensation contracts rely on two types of inputs: the returns generated by the fund manager and the returns generated by a benchmark portfolio that serves as a comparator. Consider first a benchmark portfolio that generates a sequence of returns in each of T periods. Throughout we shall assume that returns are reported at discrete intervals, say at the end of each month or each quarter (though the value of the asset may evolve in continuous time). Let $r_{eta}$ be the risk-free rate in period t and let X_t be the total return of the benchmark portfolio in period t, where X_t is a nonnegative random variable whose distribution may depend on the prior realizations $x_1, x_2, \ldots, x_{t-1}$. A fund that has initial value $s_0 > 0$ and is passively invested in the benchmark will therefore have value $s_0 \prod_{t=1}^{T} X_t$ by the end of the T^{th} period. If the benchmark asset is risk-free then $X_t = 1 + r_{eta}$. Alternatively, X_t may represent the return on a broad market index such as the S&P 500, in which case it is stochastic, though we do not assume stationarity.

Let the random variables $Y_t \geq 0$ denote the period-by-period returns generated by a particular managed portfolio, $1 \leq t \leq T$. A compensation contract is typically based on a comparison between the returns Y_t and the returns X_t generated by a
suitably chosen benchmark portfolio (possibly the risk-free rate). It will be mathematically convenient to express the returns of the managed portfolio as a multiple of the returns generated by the benchmark portfolio. Specifically, let us assume that \(X_t > 0 \) in each period \(t \), and consider the random variable \(M_t \geq 0 \) such that

\[
Y_t = M_t X_t. \tag{1}
\]

A compensation contract over \(T \) periods is a vector-valued function \(\phi : R^{2T} \rightarrow R^{T+1} \) that specifies the payment to the manager in each period \(t = 0,1,2,\ldots,T \) as a function of the amount of money invested and the realized sequences \(\bar{x} = (x_1, x_2, \ldots, x_T) \) and \(\bar{m} = (m_1, m_2, \ldots, m_T) \). We shall assume that the payment in period \(t \) depends only on the realizations in prior periods: \(x_1, \ldots, x_{t-1} \) and \(m_1, \ldots, m_{t-1} \). We shall also assume that the payment is made at the end of the period, and cannot exceed the funds available at that point in time. (Payments due at the start of a period can always be taken out at the end of the preceding period, so this involves no real loss of generality. The payment is period zero, if any, corresponds to an upfront management fee.)

This formulation is very general, and includes standard incentive schemes as well as commonly-proposed reforms such as ‘postponement’ and ‘clawback’ arrangements, in which bonuses earned in prior periods can be offset by maluses in later periods. These and a host of other variations are embedded in the assumption that the payment in period \(t \), \(\phi_t(\bar{m}, \bar{x}) \), can depend on the entire sequence of returns through period \(t \).
Let us consider a concrete example. Suppose that the contract calls for a 2% management fee that is taken out at the end of each year plus a 20% performance bonus on the return generated during the year (in excess of the risk-free rate). Let the initial size of the fund be \(s_0 \). Given a pair of realizations \((\bar{m}, \bar{x})\), let \(s_t = s_t(\bar{m}, \bar{x}) \) be the size of the fund at the start of year \(t \) after any upfront fees have been deducted. In this example we assume that management fees are collected at the end of the period, hence \(s_t = s_0 \). The management fee at the end of the first year will be \(0.02m_1x_1s_1 \) and the bonus will be \(0.2(m_1x_1 - 1 - r_{f_i})s_1 \). Therefore

\[
\phi_1 = [0.02m_1x_1 + 0.2(m_1x_1 - 1 - r_{f_i})]s_1.
\] (2)

Letting \(s_2 = s_1 - \phi_1 \) and continuing recursively we find that in each year \(t \),

\[
\phi_t = [0.02m_tx_t + 0.2(m_tx_t - 1 - r_{f_i})]s_t.
\] (3)

Alternatively, suppose that the contract specifies a 2% management fee at the end of each year plus a one-time 20% performance bonus that is paid only at the end of \(T \) years. In this case the size of the fund at the start of year \(t \) is

\[
s_t(\bar{m}, \bar{x}) = s_0(0.98)^{t-1} \prod_{l<s<t-1} m_lx_l.
\]

The management fee in the \(t^{th} \) year equals

\[
\phi_t(\bar{m}, \bar{x}) = 0.02s_t(\bar{m}, \bar{x})m_tx_t = [0.02(0.98)^{t-1} \prod_{l<s<t} m_lx_l]s_0.
\] (4)

The final performance bonus equals 20% of the cumulative excess return relative to the risk-free rate, which comes to

\[
0.2[\prod_{1<s<T} m_sx_s - \prod_{1<s<T}(1+r_{f_i})]s_0.
\]
4. Performance mimicry

We shall say that a manager has *superior skill* if, in expectation, he delivers excess returns relative to a benchmark portfolio (such as a broad-based market index), either through private information, superior predictive powers, or access to payoffs outside the benchmark payoff space. A manager has *no skill* if he cannot deliver excess returns relative to the benchmark portfolio. Investors should not be willing to pay managers with no skill, because the investors can obtain the same expected returns by investing passively in the benchmark. We claim, however, that under any performance-based compensation contract, either the unskilled managers can capture some of the fees intended for the skilled managers, or else the contract is sufficiently unattractive that both the skilled and unskilled managers will not wish to participate.

We begin by examining the case where the contract calls only for nonnegative payments, that is, \(\phi(t, \bar{m}, \bar{x}) \geq 0 \) for all \(t, \bar{m}, \bar{x} \). (In section 7 we shall consider the situation where \(\phi(t, \bar{m}, \bar{x}) < 0 \) for some realizations \(\bar{m} \) and \(\bar{x} \).) Note that nonnegative payments are perfectly consistent with clawback provisions, which reduce prior bonuses but do not normally lead to net assessments against the manager’s personal assets.

Given realized sequences \(\bar{m} \) and \(\bar{x} \), define the manager’s *cut* in period \(t \) to be the fraction of the available funds at the end of the period that the manager takes in fees, namely,
\[c_t(\bar{m}, \bar{x}) = \phi_t(\bar{m}, \bar{x}) / m_x s_t(\bar{m}, \bar{x}). \quad (5) \]

By assumption the fees are nonnegative and cannot exceed the funds available, hence 0 ≤ \(c_t(\bar{m}, \bar{x}) ≤ 1 \) for all \(\bar{m}, \bar{x} \). (If \(m_x s_t(\bar{m}, \bar{x}) = 0 \) we let \(c_t(\bar{m}, \bar{x}) = 1 \) and assume that the fund closes down.) The cut function is the vector-valued function \(c: R_{\geq}^2 \rightarrow [0, 1]^{T+1} \) such that \(c(\bar{m}, \bar{x}) = (c_0(\bar{m}, \bar{x}), c_1(\bar{m}, \bar{x}), \ldots, c_T(\bar{m}, \bar{x})) \) for each pair \((\bar{m}, \bar{x}) \).

In our earlier example with a 2% end-of-period management fee and a 20% annual bonus, the cut function is

\[c_0(\bar{m}, \bar{x}) = 0 \text{ and } c_t(\bar{m}, \bar{x}) = .02 + .2[1 - \frac{1 + r_t}{m_x}] \text{ for } 1 \leq t \leq T. \quad (6) \]

Proposition 1. Let \(\phi \) be a nonnegative compensation contract over \(T \) periods that is benchmarked against a portfolio generating returns \(\bar{X} = (X_1, X_2, \ldots, X_T) > \bar{0} \), and let \(c \) be the associated cut function. Given any target sequence of excess returns \(\bar{m} \geq 1 \), there exists a mimicking strategy \(\bar{M}^0(\bar{m}) \) that delivers zero expected excess returns in every period \(E[M_{t}^0] = 1 \), and the mimic’s expected fees in each period \(t \) are at least

\[E_{\bar{x}} \left[c_0(\bar{m}, \bar{x})[1 - c_0(\bar{m}, \bar{x})] \cdots [1 - c_{t-1}(\bar{m}, \bar{x})]][X_1 \cdots X_t s_0] \right]. \quad (7) \]

Expression (7) says that, in expectation, a mimic can earn the same cut in every period as a skilled manager would earn who generates the excess return sequence \(\bar{m} \) with certainty. Note that the mimic’s cut is assessed on a fund growing at the rate of the benchmark portfolio net of fees, whereas the skilled manager’s cut is based
on a portfolio growing at the higher rate $\prod_{t=0}^{\infty} m_t x_t$ net of fees. Hence the skilled manager earns more than the mimic, but the latter can still capture a sizable amount of the fees that were intended to reward the former.

To understand the implications of this result, consider the following simple example. Let the benchmark asset consist of risk-free bonds growing at a fixed rate of 4% per year. Suppose that a skilled manager delivers excess returns of 10% each year and is paid a bonus equal to 20% of the excess return plus a management fee of 2%. The excess return equals $(1.10)(1.04) - 1.04 = 0.104$, so the performance bonus is $0.20(0.104) = 0.0208$ per dollar in the fund at the start of the period, which comes to about $0.0208/[(1.10)(1.04)] = 0.0182$ per dollar at the end of the period. By assumption the management fee is 0.02 per dollar at the end of the period. The cut is the total fee per dollar at the end of the period, which comes to about 0.0382, that is, 3.82%.

Proposition 1 says that a manager with no skill has a mimicking strategy that in expectation earns at least 3.82% per year of a fund that is compounding at 4% per year less 3.82% per year in fees, i.e., a fund that is growing at a net rate of $1.04(1-0.0382)=1.00027$ or 0.027% per year. Of course, as t becomes large the probability goes to one that the fund will go bankrupt before then. The proposition shows, however, that the expected earnings in any given period t are increasing with t, because in expectation the fund is compounding at a higher rate (4%) than the manager is taking out in fees (3.82%).

3 Of course it is unlikely that anyone would generate the same return year after year but this assumption keeps the computations simple. Similar results hold when the excess returns vary.
The key to proving proposition 1 is the following result.

Lemma. Consider any target sequence of excess returns \(\bar{m} = (m_1, \ldots, m_T) \geq (1,1,\ldots,1) \). A mimic has a strategy \(\tilde{M}^0(\bar{m}) \) that, for every realized sequence of returns \(\bar{x} \) of the benchmark portfolio, generates the returns sequence \((m_1x_1, \ldots, m_Tx_T) \) with probability at least \(1/\prod_{t \in [T]} m_t \).

We will sketch the essential idea here; in the Appendix we show how to execute the strategy using puts and calls on standard market indexes. Choose a target sequence \(m_1, m_2, \ldots, m_T \geq 1 \). At the start of period 1 the mimic has capital equal to \(s_0 \). Assume that he invests it entirely in the benchmark asset. Just before the end of the period his capital will be approximately \(x_is_0 \). He uses this capital as collateral to buy a lottery in the options market that is realized at the end of the period. The lottery is constructed to pay \(m_ix_is_0 \) with probability \(1/m_i \) and to pay nothing with probability \(1-1/m_i \). Since the lottery is realized almost immediately, we can sidestep certain details (which we address in the Appendix). The essential point is that the lottery’s expected present value is equal to the available capital, namely, \((1/m_i)(m_ix_is_0) + (1-1/m_i)0 = x_is_0 \). If the positive outcome occurs, the mimic has end-of-period capital equal to \(m_ix_is_0 \), while if the negative outcome occurs the fund goes bankrupt.

This construction is repeated in each successive period \(t \) using the corresponding value \(m_t \). Therefore the strategy generates the returns sequence \((m_1x_1, \ldots, m_Tx_T) \) with probability \(1/\prod_{t \in [T]} m_t \), and this holds uniformly for all realizations \(\bar{x} \) of the
benchmark portfolio. This concludes the outline of the proof of Lemma 1.

Proposition 1 is now proved as follows. Choose a particular sequence of excess returns \(\tilde{m} \geq \tilde{1} \). Under the mimicking strategy defined in the Lemma, for every realization \(\tilde{x} \) and every period \(t \), the mimic generates excess returns \(m_1, m_2, \ldots, m_t \geq 1 \) with probability at least \(1/m_1m_2\cdots m_t \). With this same probability he earns

\[
c_t(\tilde{m}, \tilde{x})[(1-c_0(\tilde{m}, \tilde{x}))\cdots(1-c_{t-1}(\tilde{m}, \tilde{x}))][x_1 \cdots x_t][m_1 \cdots m_t]s_0.
\]

Thus, since his earnings are always nonnegative, his expected earnings in period \(t \) must be at least \(c_t(\tilde{m}, \tilde{x})[(1-c_0(\tilde{m}, \tilde{x}))\cdots(1-c_{t-1}(\tilde{m}, \tilde{x}))][x_1 \cdots x_t]s_0 \). Since this holds for every \(\tilde{x} \), it holds in expectation with respect to \(\tilde{X} \). This concludes the proof of proposition 1.

5. Discussion

Mimicking strategies are easy to implement using standard derivatives, and they generate returns that look good for extended periods while providing no value-added to investors. (Recall that the investors can earn the same expected returns with possibly much lower variance by investing passively in the benchmark portfolio.) Furthermore these strategies can be used to mimic distributions of returns as well as particular sequences of returns. However there is no need to mimic a distribution because managers are paid on the basis of realized returns: all the mimic needs to do is target some particular sequence of returns \(\tilde{m}^* \geq 1 \) that leads to high payments in expectation. The point of proposition 1 is that the mimic can target any sequence he likes, and he will necessarily be paid as high a
cut in expectation as a skilled manager would be paid if he had generated the same sequence.

Of course, the fund’s investors would not necessarily approve if they could see what the mimic was doing. The point of the analysis, however, is to show what can happen when investors cannot observe the managers’ underlying strategies - - a situation that is quite common in the hedge fund industry. Performance contracts that are based purely on reported returns, and that place no restrictions on managers’ strategies, are highly vulnerable to manipulation.

Expression (7) in proposition 1 shows how much fee capture is possible, and why it is very difficult to eliminate this problem by restructuring the compensation contract. One common proposal, for example, is to delay paying a performance bonus for a substantial period of time. To be concrete, let us suppose that a manager can only be paid a performance bonus after five years, at which point he will earn 20% of the total return from the fund in excess of the risk-free rate compounded over five years. For example with a risk-free rate of 4% he will earn a performance bonus equal to .20[s₅ - (1.04)⁵], where s₅ is the value of the fund at the end of year 5.

Consider a hypothetical manager who earns multiplicative excess returns equal to 1.10 each year. Under the above contract his bonus in year 5 would be .20[(1.10)⁵(1.04)⁵s₀ - (1.04)⁵s₀] ≈ .149s₀, that is, about 15% of the amount initially invested. Let us compare this to the expected earnings of someone who generates apparent 10% excess returns using the mimicking strategy. The mimic’s strategy runs for five years with probability (1.10)⁻⁵ = .621, hence his
expected bonus is about \((.621)(.149)s_0 = .0925s_0\). Thus, with a five-year postponement, the mimic earns an expected bonus equal to more than 9% of the amount initially invested.

Now consider a longer postponement, say ten years. The probability that the mimic’s strategy will run this long is \((1.10)^{-10} \approx .386\). However, the bonus will be calculated on a larger base. Namely, if the mimic’s fund does keep running for ten years, the bonus will be \(.20[(1.10)^{10}(1.04)^{10} - (1.04)^{10}]s_0 \approx .472s_0\). Therefore the expected bonus will be approximately \((.386)(.472)s_0 = .182s_0\) or about 18% of the amount initially invested. Indeed, it is straightforward to show that under this particular bonus scheme, the expected payment to the mimic increases the longer the postponement is.\(^4\)

It is, of course, true that the longer the postponement, the greater the risk that the fund will go bankrupt before the mimic can collect his bonus. Thus postponement may act as a deterrent for mimics who are sufficiently risk averse. However this does not offer much comfort for several reasons. First, as we have just seen, the postponement must be quite long to have much of an impact. Second, not all mimics need be risk-neutral; it suffices that some of them are. Third, there is a simple way for a risk-averse mimic to diversify away his risk: run several funds in parallel (under different names) using independent mimicking strategies.

\(^4\) The bonus in the final period \(T\) is \(.20[(1.10)^T(1.04)^T - (1.04)^T]\) and the probability of earning it is \((1.10)^{-T}\). Hence the expected bonus is \(.20[(1.10)^T(1.04)^T - (1.04)^T]/(1.10)^{-T} = .20[1 - (1.1)^{-T}][1.04]^T\), which is increasing in \(T\).
6. Manipulation-proof performance measures

The preceding analysis leaves open the possibility that performance contracts with negative payments may solve the problem. Before turning to this case, however, it will be useful to consider the relationship between statistical measures of performance and performance-based compensation contracts. It is well-known that statistical measures can be devised that distinguish between managers who can deliver excess returns in expectation from those who cannot, and that are impervious to various ways of manipulating the returns distribution. For example, Goetzmann et al. (2007) propose measures of the following form. Let \(u(x) = (1 - \rho)^{-1} x^{1 - \rho} \) be a constant relative risk aversion (CRR) utility function with \(\rho > 1 \). Suppose that a fund delivers the sequence of returns \(M, (1 + R) \), \(1 \leq t \leq T \). Goetzmann et al. (2007) consider the family of performance measures

\[
G(\tilde{m}) = (1 - \rho)^{-1} \ln\left[\frac{1}{T} \sum_{1 \leq s \leq T} m_s^{1 - \rho} \right], \quad \rho > 1. \tag{8}
\]

A variant of this approach that is used by the rating firm Morningstar (2006) is

\[
G^*(\tilde{m}) = \left[\frac{1}{T} \sum_{1 \leq s \leq T} 1/m_s^2 \right]^{-1/2} - 1. \tag{9}
\]

These and related measures rank managers according to their ability to generate high excess returns in expectation. It turns out, however, that translating statistical measures of performance into monetary payments for performance leads to trouble: if the payments are invariably positive the mimic can capture
some of them, as proposition 1 shows; while if the payments are negative, they are constrained by the managers’ ability to pay them.5 In the next section we show that this leads to an impossibility theorem: if the penalties are sufficient to screen out the mimics, then they also screen out skilled managers of arbitrarily high ability.

7. Penalties

Consider a general compensation mechanism ϕ that sometimes imposes penalties, that is, $\phi(t, x) < 0$ for some values of t, x and ϕ. To simplify the exposition we shall assume throughout this section that the benchmark asset is risk-free, that is, $x_t = 1 + r_t$ for all t. Suppose that a fund starts with an initial amount s_0, which we can assume with loss of generality is $s_0 = 1$. To illustrate the issues that arise when penalties are imposed, let us begin by considering the one-period case. Let $(1 + r_{11})m \geq 0$ be the fund’s total return in period 1, and let $\phi(m)$ be the manager’s fee as a function of m. The worst-case scenario (for the investors) is that $m = 0$. Assume that in this case the manager suffers a penalty $\phi(0) < 0$. There are two cases to consider: i) the penalty arises because the manager holds an equity stake of size $|\phi(0)|$ in the fund, which he loses when the fund goes bankrupt; or ii) the penalty is held in escrow in a safe asset earning the risk-free rate, and is paid out to the investors if the fund goes bankrupt.

The first case -- the equity stake -- would be an effective deterrent provided the mimic were sufficiently risk-averse and were prevented from diversifying his

5 Note that the performance measures in (8) impose arbitrarily large penalties when m_i is close to zero.
risk across different funds. But an equity stake will not deter a risk-neutral mimic, because the expected return from the mimic’s strategy is precisely the risk-free rate, so his stake actually earns a positive amount in expectation, namely $(1+r_{f_1})|\phi(0)|$, and in addition he earns positive fees from managing the portion of the fund that he does not own.

Now consider the second case, in which future penalties are held in an escrow account earning the risk-free rate of return. For our purposes it suffices to consider the penalty when the fund goes bankrupt. To cover this event the amount placed in escrow must be at least $b = -\phi(0)/(1+r_{f_1}) > 0$. Fix some $m^* \geq 1$ and consider a risk-neutral mimic who generates the return $m^*(1+r_{f_1})$ with probability $1/m^*$ and goes bankrupt with probability $1-1/m^*$. To deter such a mimic, the fees earned during the period must be nonpositive in expectation, that is,

$$\phi(m^*)/m^* + \phi(0)(1-1/m^*) \leq 0 .$$ \hspace{1cm} (10)

Since a mimic can target any such m^*, (10) must hold for all $m^* \geq 1$.

Now consider a skilled manager who can generate the return m^* with certainty. This manager must also put the amount b in escrow, because ex ante all managers are treated alike and the investors cannot distinguish between them. However, this involves an opportunity cost for the skilled manager, because by investing b in her own private fund she could have generated the return $m^*(1+r_{f_1})b$. The resulting opportunity cost for the skilled manager is $m^*(1+r_{f_1})b + (1+r_{f_1})b = -(m^*-1)\phi(0)$. Assuming that utility is linear in money
(i.e., the manager is risk-neutral), she will not participate if the opportunity cost exceeds the fee, that is, if

\[\phi(m^*) + (m^* - 1)\phi(0) \leq 0. \] \hspace{1cm} (10')

Dividing (10') by \(m^* \), we see that it follows immediately from (10), which holds for all \(m^* \geq 1 \). We have therefore shown that, if a one-period contract deters all risk-neutral mimics, it also deters any risk-neutral manager who generates excess returns. The following generalizes this result to the case of multiple periods and randomly generated return sequences.

Proposition 2. There is no compensation mechanism that separates skilled from unskilled managers solely on the basis of their returns histories. In particular, any compensation mechanism that deters unskilled risk-neutral mimics also deters all skilled risk-neutral managers who consistently generate returns in excess of the risk-free rate.

Proof. Let \(x_t = 1 + r_t \) be the risk-free rate of return in period \(t \). To simplify the notation we shall drop the \(x_t \)'s and let \(\phi(\tilde{m}) \) denote the payment (possibly negative) in period \(t \) when the manager delivers the excess return sequence \(\tilde{m} \). The previous argument shows why holding an equity stake in the fund itself does not act as a deterrent for a risk-neutral mimic. We shall therefore restrict ourselves to the situation where future penalties must be held in escrow.

Consider an arbitrary excess returns sequence \(\tilde{m} \geq \overline{1} \). Let the mimic's strategy \(\tilde{M}^0(\tilde{m}) \) be constructed so that it goes bankrupt in each period \(t \) with probability exactly \(1/(m_1 \cdots m_t) \). (This is done by taking options positions of short duration, as
we show in the Appendix.) Consider some period \(t \leq T \). The probability that the fund survives to the start of period \(t \) without going bankrupt is \(1/(m_1 \cdots m_{t-1}) \). At the end of period \(t \), the mimic earns \(\phi_t(\bar{m}) \) with probability \(1/m_t \) and \(\phi_t(m_1,\ldots,m_{t-1},0,\ldots,0) \) with probability \((m_t-1)/m_t\). Hence the net present value of the period-\(t \) payments is

\[
\frac{\phi_t(\bar{m})}{(m_1 \cdots m_t)(1+r_{f_1})\cdots(1+r_{f_t})} + \frac{(m_t-1)\phi_t(m_1,\ldots,m_{t-1},0,\ldots,0)}{(m_1 \cdots m_t)(1+r_{f_1})\cdots(1+r_{f_t})}. \tag{11}
\]

To deter a risk-neutral mimic, the net present value \(V^0(\bar{m}) \) of all payments must be nonpositive:

\[
V^0(\bar{m}) = \sum_{t \in B(\bar{m})} \left[\frac{\phi_t(\bar{m})}{(m_1 \cdots m_t)(1+r_{f_1})\cdots(1+r_{f_t})} + \frac{(m_t-1)\phi_t(m_1,\ldots,m_{t-1},0,\ldots,0)}{(m_1 \cdots m_t)(1+r_{f_1})\cdots(1+r_{f_t})} \right] \leq 0. \tag{12}
\]

(Although some of these payments may have to be held in escrow, this does not affect their net present value to the mimic because they earn the risk-free rate until they are paid out.)

Now consider a skilled manager who can deliver the sequence \(\bar{m} \geq \bar{1} \) with certainty. (We shall consider distributions over such sequences in a moment.) Let \(B(\bar{m}) \) be the set of periods \(t \) in which a penalty must be paid if the fund goes bankrupt during that period and not before:

\[
B(\bar{m}) = \{ t : \phi_t(m_1,\ldots,m_{t-1},0,\ldots,0) < 0 \}. \tag{13}
\]
For each $t \in B(\bar{m})$ let
\[
b_t(\bar{m}) = -\phi_t(m_1, \ldots, m_{t-1}, 0, \ldots, 0)/(1 + r_f) > 0.
\] (14)

This is amount that must be escrowed during the t^{th} period to ensure that the investors can be paid if the fund goes bankrupt by the end of the period. The skilled manager evaluates the present value of all future fees, penalties, and escrow payments using his personal discount factor, which for period-t payments is $\delta_t = \delta_t(\bar{m}) = 1/\prod_{s \leq t} m_s (1 + r_{f_s})$.

Consider any period $t \in B(\bar{m})$. To earn the fee $\phi_t(\bar{m})$ at the end of period t, the manager must put $b_t(\bar{m})$ in escrow at the start of the period (if not before).\(^6\) Conditional on delivering the sequence \bar{m}, he knows he will get this back with interest at the end of period t, that is, he will get back the amount $(1 + r_f) b_t(\bar{m})$.

For the skilled manager, the present value of this period-t scenario is
\[
\delta_t \phi_t(\bar{m}) + \delta_t (1 + r_f) b_t(\bar{m}) - \delta_{t-1} b_t(\bar{m})
= \delta_t \phi_t(\bar{m}) + \delta_t [(m_t - 1) \phi_t(m_1, \ldots, m_{t-1}, 0, \ldots, 0)]
= \frac{\phi_t(\bar{m})}{(m_1 \cdots m_t)(1 + r_f) \cdots (1 + r_{f_t})} + \frac{(m_t - 1) \phi_t(m_1, \ldots, m_{t-1}, 0, \ldots, 0)}{(m_1 \cdots m_t)(1 + r_f) \cdots (1 + r_{f_t})}.
\] (15)

Now consider a period $t \not\in B(\bar{m})$. This is a period in which the manager earns a nonnegative fee even though the fund goes bankrupt, hence nothing must be held in escrow. The net present value of the fees in any such period is

\(^6\) If penalties must be escrowed more than one period in advance, the opportunity cost to the skilled manager will be even greater and the contract even more unattractive, hence our conclusions still hold.
\[V(\bar{m}) = \sum_{t \in B(\bar{m})} \left[\frac{\phi_t(\bar{m})}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})} + \frac{(m_t - 1)\phi_t(m_t, \ldots, m_{t-1}, 0, \ldots, 0)}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})} \right] + \sum_{t \in B(\bar{m})} \frac{\phi_t(\bar{m})}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})}. \]

(16)

Since \(m_t \geq 1 \) and \(\phi_t(\bar{m}) \geq 0 \) for all \(t \notin B(\bar{m}) \), we know that

\[
\sum_{t \in B(\bar{m})} \frac{(m_t - 1)\phi_t(\bar{m})}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})} \geq 0. \]

(17)

From (16) and (17) it follows that

\[
V(\bar{m}) \leq \sum_{t \leq T} \left[\frac{\phi_t(\bar{m})}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})} + \frac{(m_t - 1)\phi_t(m_t, \ldots, m_{t-1}, 0, \ldots, 0)}{(m_t \cdots m_1)(1 + r_{f_1}) \cdots (1 + r_{f_T})} \right]. \]

(18)

But the right-hand side of this expression must be nonpositive in order to deter the risk-neutral mimics (see expression (12)). It follows that any contract that is unattractive for the risk-neutral mimics is also unattractive for any risk-neutral skilled manager no matter what excess returns sequence \(\bar{m} \geq \bar{1} \) he generates. Since this statement holds for every excess returns sequence, it also holds for any distribution over excess return sequences. This concludes the proof of proposition 2.
8. Attracting new money

The preceding analysis shows that any compensation mechanism that rewards highly skilled portfolio managers can be gamed by mimics without delivering any value-added to investors. To achieve this, however, the mimic takes a calculated risk in each period that his fund will suffer a total loss. A manager who is concerned about building a long-term reputation may not want to take such risks; indeed he may make more money in the long run if his returns are lower and he stays in business longer, because this strategy will attract a steady inflow of new money. However, while there is empirical evidence that past performance does affect the inflow of new money to some extent, the precise relationship between performance and flow is a matter of debate. Fortunately we can incorporate flow-performance relationships into our framework without committing ourselves to a specific model of how it works and the previous results remain essentially unchanged.

To see why, consider a benchmark asset generating returns series \tilde{X} and a manager who delivers excess returns \tilde{M} relative to \tilde{X}. Let $Z_t = Z_t(m_1, ..., m_{t-1}; x_1, ..., x_{t-1})$ be a random variable that describes how much net new money flows into the fund at the start of period t as a function of the returns in prior periods. In keeping with our general set-up we shall assume that Z_t is a multiplicative random variable, that is, its realization z_t represents the proportion by which the fund grows (or shrinks) at the start of period t compared to the

7 See for example Gruber, 1996; Massa, Goetzman, and Rouwenhorst, 1999; Chevalier and Ellison, 1997; Sirri and Tufano, 1998; and Berk and Green, 2004.
amount that was in the fund at the end of period \(t - 1 \). Thus, if a fund starts at size 1, its total value at the start of period \(t \) is

\[
Z_t \prod_{1 \leq s \leq t - 1} M_s X_s Z_s .
\]

(16)

Given any excess returns sequence \(\bar{m} \geq 1 \) over \(T \) years, a mimic can reproduce it with probability \(1 / \prod_{1 \leq s \leq T} m_s \) for all realizations of the benchmark returns. Since by hypothesis the flow of new money depends only on \(\bar{m} \) and \(\bar{x} \), it follows that the probability is at least \(1 / \prod_{1 \leq s \leq T} m_s \) that the mimic will attract the same amount of new money into the fund as the skilled manager.

The question of what patterns of returns attract the largest inflow of new money is an open problem that we shall not attempt to address here. However, there is some evidence to suggest that investors are attracted to returns that are steady even though they are not spectacular. Consider, for example, a fund that grows at 1% per month year in and year out. (The recent Ponzi scheme of Bernard Madoff grew to some $50 billion by offering returns of about this magnitude.) This can be generated by a mimic who generates a monthly return of 0.66% on top of a risk-free rate of 0.33%. The probability that such a fund will go under in any given year is \(1 - (1.0066)^{-12} = 0.076 \) or about 7.6%. In expectation, such a fund will stay in business and continue to attract new money for about 13 years.
9. Conclusion

In this paper we have shown how *mimicry* can be used to game performance fees by portfolio managers. The framework allows us to estimate how much a mimic can earn under different incentive structures; it also shows that commonly advocated reforms of the incentive structure cannot be relied upon to screen out unskilled risk-neutral managers who do not deliver excess returns to investors.

The analysis is somewhat unconventional from a game-theoretic standpoint, because we did not identify the set of players, their utility functions, or their strategy spaces. The reason is that we do not know how to specify any of these components with precision. To write down the players’ utility functions, for example, we would need to know their discount factors and degrees of risk aversion, and we would also need to know how their track records generate inflows of new money. All of these elements are quite uncertain, and to try to model them explicitly would force us into making assumptions that we do not wish to make. The advantage of the mimicry argument is that we can draw inferences about the *relationship* between different players’ earnings without knowing the details of their payoff functions or how their track records attract new money. The argument is that, if someone is producing returns that earn large fees in expectation, then someone else (with no skill) can mimic the first type and also earn large fees in expectation without knowing anything about how the first type is actually doing it. In this paper we have shown how to apply this idea to financial markets. We conjecture that it may prove useful in other situations where there are many players, the game is complex, and the equilibria are difficult to pin down precisely.
Appendix: Proof of Lemma

Lemma. Consider any target sequence of excess returns \(\tilde{m} = (m_1, \ldots, m_T) \geq (1, 1, \ldots, 1) \). A mimic has a strategy \(\tilde{M}^0(\tilde{m}) \) that, for every realized sequence of returns \(\tilde{x} \) of the benchmark portfolio, generates the returns sequence \((m_1 x_1, \ldots, m_T x_T) \) with probability at least \(1/ \prod_{t \in [T]} m_t \).

Proof. We will first treat the case where the benchmark portfolio consists of a risk-free asset such as Treasury bills yielding the risk-free rate \(r_f \) in period \(t \). In this case \(x_t = 1 \) for all \(t \). Fix a target sequence of excess returns \(\tilde{m} = (m_1, \ldots, m_T) \geq (1, 1, \ldots, 1) \). We need to show that the mimic has a strategy that delivers a total return \(m_t (1 + r_f) \) with probability at least \(1/m_t \).

The first step is to choose a commonly traded stochastic asset, such as the S&P 500, on which binary cash-or-nothing options can be written. We shall make the customary assumption that in continuous time \(\tau \) the price of the index, \(P_\tau \), follows a geometric Brownian motion of form

\[
dP_\tau = \mu P_\tau d\tau + \sigma P_\tau dW_\tau.
\]

(A1)

Assume that prices are observed only at discrete intervals \(t = 1, 2, 3, \ldots \), each of length one. Denote the continuous-time risk-free rate in period \(t \) by \(\tilde{r}_f \), which we shall assume is constant during the period. Since each period has unit length, the total risk-free return over the \(t^{th} \) period is \(1 + r_f = e^{\tilde{r}_f} \). We shall assume that...
\(\tilde{r}_t \leq \mu \), that is, the mean rate of return from the benchmark asset is at least as high as the continuous risk-free rate in each period.

Consider a given period \(t \). At the start of the period the mimic invests everything in the risk-free asset. At some randomly chosen time during the period, he writes (or shorts) a certain quantity \(q \) of cash-or-nothing puts that expire before the end of the period. Assume that each option pays one dollar if exercised; otherwise it pays nothing. Let \(\Delta \) be the time to expiration and let \(s \) be the strike price divided by the current price; without loss of generality we may assume that the current price is 1. Let \(\Phi \) denote the cumulative normal distribution function. Then the option’s present value is \(e^{\tilde{r}_t \Delta} v \), where

\[
v = \Phi[(\ln s - \tilde{r}_t \Delta + \sigma^2 \Delta / 2) / \sigma \sqrt{\Delta}]. \tag{A2}
\]

The probability that the put will be exercised is

\[
p = \Phi[(\ln s - \mu \Delta + \sigma^2 \Delta / 2) / \sigma \sqrt{\Delta}]. \tag{A3}
\]

Assume that the fund currently has \(w \) dollars. By selling \(q \) options he collects an additional \(e^{\tilde{r}_t \Delta} v q \) dollars. By investing them all in the risk-free asset, he can cover up to \(q \) options when they are exercised provided that \(e^{\tilde{r}_t \Delta} w + vq \geq q \). Thus the maximum number of covered options the mimic can write is \(q = we^{\tilde{r}_t \Delta} / (1 - v) \).

Next he chooses the time to expiration \(\Delta \) and the strike price \(s \) so that \(v \) satisfies \(v = 1 - 1/m \). With probability \(p \) the options are exercised and the fund is entirely

\(^8 \) See for example Hull (2009, section 24.7).
cleaned out (i.e., paid to the option-holders). With probability $1 - p$ the options expire without being exercised, in which case the fund has grown by the factor $m_t e^{r_t \Delta}$ over the time interval Δ. The manager enters into this gamble only once per period, and the funds are invested in the risk-free asset during the remaining time. Hence the total return during the period is $m_t (1 + r_t)$ with probability $1 - p$ and zero with probability p.

We claim that $p \leq v$; indeed this follows immediately from (A2) and (A3) and the assumption that $\tilde{r}_t \leq \mu$. Therefore, if the mimic had $w_{t-1} > 0$ dollars in the fund at the start of period t, then by the end of the period he will have $m_t (1 + r_t) w_{t-1}$ dollars with probability at least $1/m_t = 1 - v$ and zero dollars with probability at most $1 - 1/m_t$. Therefore after T periods, he will have generated the target sequence of excess returns (m_1, \ldots, m_T) with probability at least $1/\prod_{t \in [T]} m_t$, as asserted in the lemma.

Next let us consider the case where the benchmark sequence \tilde{X} is generated by a market index (or more generally any stochastic asset on which options are traded). As before, we assume that the price per share of the asset is described by the stochastic process (A1). In this case the mimic shorts a number of asset-or-nothing options that pay out one share if and only if the strike price is exceeded. (Asset-or-nothing options can be created from plain-vanilla European options and cash-or-nothing options.) As before, let Δ be the time to expiration and \tilde{r}_t the continuous-time risk-free rate in period t. For simplicity we shall assume there no dividend. Let s be the strike price divided by the current price. The
The present value of one asset-or-nothing put is (see for example Hull, 2009, section 24.7)

\[v = \Phi[(\ln s - \tilde{r}_f \Delta - \sigma^2 \Delta / 2) / \sigma \sqrt{\Delta}] . \]

(A4)

The probability that the put is exercised is

\[p = \Phi[(\ln s - \mu \Delta + \sigma^2 \Delta / 2) / \sigma \sqrt{\Delta}] . \]

(A5)

As before we want to conclude that \(p \leq v \). This will be the case if \(\mu - \tilde{r}_f \geq \sigma^2 \); if \(\mu - \tilde{r}_f < \sigma^2 \), the mimic shorts asset-or-nothing calls instead of asset-or-nothing puts.

The construction now parallels the previous case. At the start of the \(t^{th} \) period the mimic invests everything in the benchmark asset. At some randomly chosen time during the period, he writes the maximum number of asset-or-nothing options that he can cover, where the strike price and time to expiration are chosen so that the probability they are exercised is at most \(1 - 1/m_t \). Thus, with probability at least \(1/m_t \), this strategy increases the number of shares in the fund by the factor \(m_t \). Hence, with probability at least \(1/m_t \), it delivers a total return equal to \(m_t (P_t / P_{t-1}) = m_t X_t \).

Over the \(T \) periods, the strategy therefore generates the return sequence \((m_t x_t, ..., m_T x_T)\) with probability at least \(1 \prod_{1 \leq t \leq T} m_t \) for every realization \(\bar{x} \) of the benchmark portfolio. This concludes the proof of the lemma.
We remark that the probability bound $1/\prod_{i \in S \cap T} m_i$ is somewhat conservative; indeed slightly better results can be achieved by shorting puts that are far out-of-the-money (due to the smile effect). While the bound may not be best possible, however, it is easy to work with analytically and suffices to show how well mimics can do. To the extent that they can do better using refinements of this approach, our conclusions hold with even greater force.
References

