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Game Theory: Some Personal Reflections

H. Peyton Young

I. Why were you initially drawn to game theory?

It would be more accurate to say that I stumbled into game theory because I
needed it to solve other problems I was working on. My first brush with the
subject occurred in the early 1970s when I was teaching a new course called
Mathematics in the Social Sciences at the Graduate School of the City University of
New York. The topics included voting rules, Arrow’s theorem, the Gale-Shapley
matching algorithm, the Banzhaf voting power index, the Shapley value, and
legislative apportionment, which I was then developing with my colleague
Michel Balinski. The course had an applied flavor and involved studying
practical methods used for election, apportionment, and college admissions, as

well as theories about what methods might be best in principle.

It occurred to me that the strategic aspects of voting rules needed to be
considered in addition to the usual axiomatic treatments, which had been the
dominant paradigm since Arrow’s work (Arrow, 1963). This led me to surmise
that virtually all voting schemes on three or more alternatives must be
manipulable, in the sense that the truthful reporting of preferences may
sometimes fail to be a Nash equilibrium. However, I knew virtually nothing
about game theory, so I quickly boned up on the subject using Luce and Raiffa’s
1957 classic (which is still well worth reading today). I was on my way to

proving the result when it occurred to me that someone else might have thought



of the idea already. This led me to phone up Kenneth Arrow, who put me on to
the papers of Gibbard and Satterthwaite that were just then starting to circulate

(Gibbard, 1973; Satterthwaite, 1975).

While this discovery was rather discouraging, and led me to set aside game
theory for awhile, it also suggested that it might be profitable to shift attention
from negative results in voting theory to positive ones. Impossibility theorems
notwithstanding, societies will go on voting by one means or another; the
operational question is how to put practical voting methods on a sound
theoretical footing. This led me to characterize the classical methods of Borda
and Condorcet from first principles, and to show that they can be interpreted as
statistical procedures for estimating the choice or ranking that is most likely to be
“correct” when voters’ judgments are subject to error (Young, 1974, 1975, 1986,

1988).

My next encounter with game theory arose quite by chance in the context of a
consulting project. In the early 1980s I was working with two Japanese civil
engineers for the municipal water authority of Malmo, Sweden, which wanted to
know how to fairly allocate the costs of expansion among its customers. In the
course of working on this project, I realized that some of the fairness criteria that
I had developed for legislative apportionment could be adapted to this context.
A particular example is monotonicity: when the size of the pie to be allocated
increases, nobody should get a smaller portion than before. This led to one of the
first applied papers in cooperative game theory, showing how ideas like the
Shapley value and nucleolus played out in an actual situation with numbers
estimated from data (Young, Okada, and Hashimoto, 1982). It also led to my

first foray into theory, in which I showed that a simple marginal contributions



principle could be used to axiomatize both the Shapley value for finite
cooperative games and the Aumann-Shapley value for nonatomic games without
invoking the additivity axiom (Shapley, 1953; Aumann and Shapley, 1974;
Young, 1985a, 1985b).

To sum up, I was initially drawn to game theory not for abstract or philosophical
reasons, but because it provided useful tools for solving concrete problems.
Moreover, it was cooperative game theory and its implications for practical

matters of fair division that inspired my earliest theoretical work.

II. What examples from your work or the work of others illustrates the use of
game theory for foundational studies and/or applications?

Equilibrium behavior often requires players to use probabilistic strategies in
order to create uncertainty in the minds of their opponents. Choice under
uncertainty is therefore a central aspect of game theoretic reasoning. But the
issue of uncertainty in games goes much deeper than this; indeed, it arises
whenever the game has multiple equilibria, for then it is uncertain what
equilibrium (if any) will be played. Uncertainty also arises when the players do
not know their opponents” utility functions, or even whether their opponents are
rational. The issue of what players need to know about a game in order to ‘solve’
it touches on deep problems in epistemology (Lewis, 1969; Aumann, 1976;
Aumann and Brandenburger, 1995). This is one of many instances in which
game theory has turned out to have important implications for academic

disciplines that at first glance seem far removed from the subject.



In spite of the large demands it places on knowledge and common knowledge,
however, many game theorists persist in using Bayesian Nash equilibrium, and
refinements thereof, as a central solution concept. I suspect that this is largely
because Bayesian rationality offers such a rich playground for clever
argumentation. My own feeling is that Bayesian rationality is more of a
minefield than a playground. This is not only because it places extraordinary
demands on players’ reasoning abilities, but also because the conditions under
which Bayesian learning actually leads to equilibrium behavior turn out to be

very demanding as well.

A number of authors, including Binmore (1987), Jordan (1993), Kalai and Lehrer
(1993), and Nachbar (1997, 2005), have examined this issue from different
perspectives. Dean Foster and I illustrate the problems with Bayesian learning as
follows (Foster and Young, 2001). Suppose that two players are engaged in an
infinitely repeated game of matching pennies. Assume that the payoffs are
approximately what they would be in a textbook version of matching pennies,
but that each of the payoff values is perturbed (once only) by a small random
shock. The distribution of the payoff shocks can be common knowledge, but the
players do not know their opponents’ realized payoff values. Suppose that
everyone is Bayesian, perfectly rational, and forward-looking. As the game
proceeds, can they learn to predict the repeated-game strategy of the opponent,
and will play converge to equilibrium play? The answer is: frequently not. It
can be shown that, when the shocks are sufficiently small, one or both of the
players will almost surely fail to learn to predict their opponent’s next-period
behavior with even approximate accuracy, and period-by-period play will be far

from Nash equilibrium play most of the time.



The root of the difficulty is the assumption of exact optimization. An optimizing
player who thinks his opponent is playing a mixed strategy can change his
behavior very abruptly even though his beliefs about the opponent’s behavior
change only slightly. In a game that has only mixed strategy equilibria, the
upshot is that, as each player tries to learn the behavior of his opponent, his own
behavior becomes so erratic that it is unlearnable. In other words, the interactive
nature of the learning process leads to the conclusion that not both players can be
rational and learn to predict the behavior of the other. This, and related results
of Nachbar and Jordan, mean that the use of Bayesian reasoning in games needs

to be approached with considerable caution.

III. What is the proper role of game theory in relation to other disciplines?

Over the past fifty years game theory invaded first economics, then the rest of
social science, and is now colonizing new territory in biology, computer science,
and philosophy. One could say without much exaggeration that this is the
imperial age of game theory. As in other empires, however, the act of conquest
may change the conqueror in unintended ways. Let me venture a couple of
predictions along these lines. Up through the 1980s the principal conquests were
in economics, specifically the theory of industrial organization and mechanism
design. In these settings it seemed reasonable to assume that players are highly
rational, interact over long periods of time, and can employ complex forward-
looking strategies. This led theorists to focus on the properties of equilibrium in

repeated games, which was a major advance over the preceding literature.



I believe that this era is now coming to a close. The fields where game theory is
currently having the greatest current impact are computer science, artificial
intelligence, and biology, and this will lead to a change of emphasis in the
development of theory. In particular, both biology and computer science call for
versions of game theory in which ‘rationality” plays a less prominent role than in
economics. Computer scientists, for example, are concerned with distributed
systems of information-processors and how to design protocols that govern their
interaction. Game theory is highly relevant to this problem even though the

“agents” may not be rational in the sense customarily assumed by economists.

Biology is another subject where game theory is having an important impact, and
here too the demands of the application are rebounding on the questions that
theorists are asking. The focus of analysis is on the long-run dynamics of large
populations of players, whose relative fitness depends on how they are
programmed to play. This approach originated in the work of the biologist John
Maynard Smith (1982), and has had a substantial impact on the directions that
game theory is taking and the ways in which it is being applied in the social
sciences.! There is no reason why rationality cannot be accommodated in these
models; indeed, an interesting open problem is to identify situations where the
most highly rational agents in a heterogeneous population actually do have a

long-run selective advantage.

My larger point is that game theory’s colonization of biology, computer science,

and other subjects is having a profound impact on the way that rationality is

' See among others Axelrod, 1984; Foster and Young, 1990; Young, 1993a; Kandori, Mailath, and
Rob, 1993; Weibull, 1995; Epstein and Axtell, 1996; Vega-Redondo, 1996; Samuelson, 1997;
Fudenberg and Levine, 1998; Young, 1998; Epstein, 2006.



treated in game theory, on the modeling of out-of-equilibrium dynamics, and a

host of other issues in game theory itself.

4 & 5. What do you consider the most neglected topics and/or contributions in
late 20' century game theory? What are the most important open problems in

game theory and what are the prospects for progress?

I will address these last two questions in tandem. As I mentioned earlier,
cooperative game theory is an unjustly neglected topic of research . This was not
always the case: von Neumann and Morgenstern put a great deal of emphasis
on the cooperative form, and many of the pioneers in game theory made major
contributions to the topic (Shapley, 1953; Aumann and Maschler, 1964;
Schmeidler, 1969; Aumann and Shapley, 1974). In recent decades, however, the
noncooperative approach has increasingly gained the upper hand. Indeed, this
trend has gone so far that many textbooks on game theory scarcely give
cooperative theory a mention. One reason for this development, as I have
already suggested, is that the topics in economics where game theory made its
earliest inroads -- mechanism design and industrial organization — seem

particularly well-suited to the noncooperative approach.

Another reason why cooperative game theory has languished is that its practical
applications have not been widely recognized. Earlier I mentioned the problem
of sharing costs among the beneficiaries of a public facility. Similar problems
arise in setting rates for public utilities (Zajac, 1978). More generally, cooperative
game theory is relevant to any situation where scarce resources are to be

allocated fairly among a group of claimants. How, for example, should slots at



busy airports be allocated among airlines? Which transplant patient should be
first in line for the next kidney? ~How should political representation in a
national legislature be fairly divided among parties and geographical regions?
Some economists insist that such problems would be solved if they were simply
left to the workings of the market. Unfortunately, this overlooks the point that
markets are moot unless property rights have been defined and vested in

individuals, which is precisely what methods of fair allocation are about.

In my book, Equity In Theory and Practice (1994), 1 examined various fairness
concepts from both a foundational and practical standpoint. Cooperative
solution concepts like the core and the Shapley value, as well as semi-cooperative
notions like the Nash bargaining solution and the Kalai-Smorodinsky solution,
provide the entry point for thinking about the meaning of allocative fairness. A
close examination of practice, however, suggests that one must go substantially

beyond these approaches to formulate a theory that has descriptive validity.

Three central points emerge from the analysis. First, fairness must be judged in
the context of the problem at hand. Criteria for allotting transplant organs may
be quite different from criteria that pertain to the allocation of legislative seats,
and neither may be relevant to the allocation of offices in the workplace or
dormitory rooms at college. In other words, notions of justice tend to be
compartmentalized and context-specific, a view that has its roots in Aristotelian
philosophy, and has been advanced by political philosophers such as Walzer
(1983) and Elster (1992).

A second key point is that, in practice, solutions to fairness problems tend to be

decentralized in the following sense: an allocation is deemed to be fair for a group



of claimants only when every subgroup deems that they fairly divide the
resources allotted to them. This subgroup consistency principle is very ancient. It is
implicit, for example, in certain Talmudic doctrines concerning the division of
inheritances (Aumann and Maschler, 1985). It also features in many modern
solution concepts, such as the core, the nucleolus, and the Nash bargaining
solution (Sobolev, 1975; Lensberg, 1988), and in real-world allocation methods
such as rules for apportioning seats in legislatures (Balinski and Young, 1982;

Young, 1994).

The cooperative game approach to fair division proceeds from an axiomatic
standpoint. There is, however, another way of thinking about fairness norms
that builds on noncooperative game theory. Norms of fair division —indeed norms
in general — are often the unpremeditated outcome of historical chance and
precedent. What is fair in one society may not be deemed fair in another,
because people’s expectations are conditioned by precedent, and precedents

accumulate through the vagaries of history.

Such processes can be modeled noncooperatively using the framework of
evolutionary game theory. As I mentioned earlier, this approach was originally
inspired by biological applications, and typically has three key features: i) there
is a large population of interacting players; ii) the players have heterogeneous
characteristics, including different payoffs, information, and behavioral
repertoires, iii) they adapt their behavior based on local conditions and
experience, and are purposeful but not always perfectly rational. The focus is on
the dynamics of such a process, not merely on its equilibrium states. One of the
main contributions of the theory is to show that some equilibria have a much

higher probability of arising than do others (Foster and Young, 1990; Kandori,



Mailath, and Rob, 1993; Young, 1993a). It therefore delivers a theory of
equilibrium selection that is based on evolutionary principles rather than on a
priori principles of ‘reasonableness’, as in the earlier theory developed by

Harsanyi and Selten (1988).

To illustrate how the evolutionary approach can be applied to the study of
fairness norms, consider the classical problem of how two individuals would
divide a pie. = The simplest noncooperative formulation is due to John Nash
(1950): each player names a fraction of the pie, and they get their demands
provided that both can be satisfied; otherwise they get nothing. Any pair of
demands that sums to unity constitutes a noncooperative equilibrium of the one-
shot game. If the players are allowed to bargain over time, much tighter
predictions are possible. In the standard model, players alternate in making
demands, which are either accepted or rejected (Stahl, 1972; Rubinstein, 1982).
When the players are perfectly rational and discount future payoffs at the same
rate, the outcome of the unique subgame perfect equilibrium is the Nash

bargaining solution.

Neither the one-shot demand game nor the alternating offers game is
evolutionary in spirit, because they are concerned with what two particular
bargainers would do in equilibrium, not what a population of bargainers would do.
To recast the problem in an evolutionary framework, consider a large population
of agents who engage in pairwise bargains from time to time. Suppose that the
outcomes of previous bargains affect how people bargain in the future, due to
the salience of precedent. Once a particular way of dividing the pie becomes
entrenched due to custom, people start to think that this is the only fair and

proper way to divide the pie, and it therefore continues in force.
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To allow for asymmetric interactions, suppose that there are two distinct
populations of potential bargainers who are randomly matched each period (e.g.,
employers and employees). Each matched pair plays the Nash demand game
described earlier. Assume for simplicity that all agents in a given population
have the same utility function, but that the utility functions differ between
populations. To capture the idea that current expectations are shaped by
precedent, suppose that each current player looks at a random sample of earlier
demands by the opposing side, and chooses a trembled best reply given the
sample frequency distribution. (The ‘tremble’ captures the idea that the process
is jostled by small unobserved utility shocks, so that players usually choose a
best reply but not always.) It can be shown that, starting from arbitrary initial
conditions, players’ expectations eventually coalesce around a specific division of
the pie, and this endogenously generated norm of division is, with high
probability, the Nash bargaining solution. Furthermore, when players are
heterogeneous with respect to their degree of risk aversion, a natural

generalization of the Nash bargaining solution results (Young, 1993b).

This example shows that there is no need to make extreme assumptions about
players” rationality in order for game theory to yield interesting results. Unlike
the alternating offers model, where perfect rationality and common knowledge
of perfect rationality are assumed, neither is needed in the evolutionary model.
Players choose myopic best replies based on fragmentary information, they
occasionally make mistakes, and they have no a priori knowledge of their
opponents’ payoffs, behaviors, or degree of rationality. Nevertheless the two

models yield essentially the same outcome.
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More generally, the evolutionary model of bargaining illustrates how game
theory can be used to study the emergence of norms. Over time, interactions
among people build up a stock of precedents that may cause their expectations to
gravitate toward a particular equilibrium, which then becomes entrenched as a
social norm: everyone adheres to it because everyone expects everyone else to
adhere to it. When the underlying game is concerned with the division of scarce
resources, the resulting equilibrium can be interpreted as a fairness norm (Hume,

1739; Binmore, 1994; Young, 1998).

I conclude by hazarding several predictions about the future development of
game theory. The first is that rationality, and arguments over how rational the
players “really” are, will fade in importance. As I have already argued, game
theory can be applied to systems of interacting agents whether or not they are
rational in the conventional sense. This insight was initially provided by
applications of game theory to biology, and is being buttressed by current

applications to computer science, artificial intelligence, and distributed learning.

My second prediction is that game theory will continue to evolve in response to
real problems that arise in economics, politics, computing, philosophy, biology
and other subjects, a development that von Neumann and Morgenstern would
surely have welcomed. While its major successes to date have largely been in
economics, game theory is not a sub-discipline of economics; it is more like
statistics, a subject in its own right with applications across the academic

spectrum.

My third prediction is more of an admonition: game theory will continue to

thrive if it remains receptive to new ideas suggested by applications, but risks

12



degenerating if it does not. John von Neumann cautioned about this tendency in
mathematics more generally, and game theorists would do well to heed his

warning (von Neumann, 1956):

“I think that it is a relatively good approximation to truth — which
is much too complicated to allow anything but approximations —
that mathematical ideas originate in empirics... As a mathematical
discipline travels far from its empirical source, or still more, if it is a
second and third generation only indirectly inspired by ideas
coming from “reality,” it is beset with very grave dangers. It
becomes more and more purely aestheticizing, more and more
purely l'art pour I'art. ... [W]henever this stage is reached, the only
remedy seems to me to be the rejuvenating return to the source: the
reinjection of more or less directly empirical ideas. I am convinced
that this was a necessary condition to conserve the freshness and
the vitality of the subject and that this will remain equally true in

the future.”
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