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Abstract. Traditional methods for analyzing portfolio returns often rely on 

multifactor risk assessment, and tests of significance are typically based on 

variants of the t‐test. This approach has serious limitations when analyzing 

the returns from dynamically traded portfolios that include derivative 

positions, because standard tests of significance can be ‘gamed’ using options 

trading strategies. To deal with this problem we propose a test that assumes 

nothing about the structure of returns except that they form a martingale 

difference. Although the test is conservative and corrects for unrealized tail 

risk, the loss in power is small at high levels of significance. 

Acknowledgments. We thank Gabriel Kreindler for assisting with the 
simulations. 



 

 

       

 

                     

                       

                           

                         

                       

                              

                         

                         

                       

                       

                         

                         

                       

                   

          

 

                       

                         

                         

                         

                       

                        

                             

1. Gaming portfolio returns 

A fundamental problem for investors is to determine whether a given 

portfolio is making positive returns relative to a benchmark such as the risk‐

free rate or a stock market index. This is a challenging problem for traditional 

statistical tests when little or nothing is known about the composition of the 

portfolio, the trading strategies the manager is using, or the amount of 

leverage he is taking on. The difficulty is that the manager may have both the 

incentive and ability to create returns that ‘look good’ for extended periods of 

time even though in expectation they are no better than the returns obtainable 

from standard market instruments. In particular, the manager can inflate his 

returns using options trading strategies that hide large downside risks in the 

tail of the distribution [Lo, 2001; Foster and Young, 2010]. Standard measures 

of performance, such as Jensen’s alpha and the Sharpe ratio, do not take 

account of this unobserved downside risk. Nor do more recent proposals, 

such as the class of performance measures suggested by Goetzmann, 

Ingersoll, Spiegel, and Welch (2007). 

To illustrate the difficulty, consider the returns series in Figure 1, which 

shows the monthly returns from a hypothetical portfolio over a period of 30 

years. The returns appear to be i.i.d. normally distributed, and the OLS 

estimate of the mean monthly return over 360 months is 0.00324 (0.000764). 

The t‐statistic is 4.2, which implies that the returns are positive with 

probability over 99.99%. In reality, however, the expected returns are zero. 

Here is how they were generated: in each month t the manager sold a covered 
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asset‐or‐nothing put1 whose log probability of exercise, At , was determined 

by a random draw from a normal distribution with mean .00275 and standard 

deviation .0144. If the put was not exercised in a given month the manager 

earned an excess return of eAt 1 over and above the risk‐free rate. If the put 

was exercised in a given month, the fund would be completely wiped out. 

Assuming no arbitrage in the pricing of puts, the premium paid by the 

purchaser is offset by the probability that the put will be exercised and the 

expected excess return is zero. Under our assumptions the probability that 

the fund does not crash in a thirty‐year period (360 months) is approximately 

.00275 360(e )  0.37 . 

year 

Figure 1. Monthly excess returns of a hypothetical portfolio over thirty years 
(360 months). 

The particular simulation shown in Figure 1 is a series in which a crash did 

not occur. The t‐test is fooled because the returns appear to be i.i.d. normal 

1 We assume that the put is covered by the portfolio itself, which will be completely 
liquidated if the put is exercised. 
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and positive on average, but there is a large potential loss that has not yet 

shown up in the data. 

This type of manipulation is not purely hypothetical; indeed it is in the 

interest of fund managers to create return series that are “front‐loaded” in 

order to attract clients and generate large performance bonuses (Lo, 2001; 

Foster and Young, 2010). The question is whether one can design a statistical 

test that protects against type‐I errors, that is, against concluding that the 

returns exceed some given benchmark (such as the risk‐free rate or a stock 

index) when in fact they do not. 

The answer we propose is to test whether the compound excess returns form a 

nonnegative martingale. We first described this idea in its basic form in 

Foster, Stine, and Young (2008) and showed how to apply it to empirical 

returns data. The present paper is more theoretical and shows that we can 

greatly increase the statistical power of this class of tests through the use of 

leverage. The essential idea is the following: to test the returns from a given 

portfolio we construct a hypothetical family of leveraged versions of the 

portfolio. We then form a convex combination of these leveraged portfolios 

and apply the martingale maximal inequality to assess the probability that the 

returns from the original portfolio could have been produced by chance 

rather than superior expertise. This approach is similar in spirit to the 

universal portfolio framework pioneered by Cover (1991), but our 

construction is more specific and allows us to calculate the power of the test 

explicitly. The test is “strategy‐proof” in the sense that a manager whose 

strategy does not produce excess returns will fail the test with high 

probability. (We give a formal definition of this concept in the next section.) 

However, the test is asymptotically powerful in the sense that, for small p‐

values, it will pass a series of bona fide excess returns with a probability that 
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is nearly as high as the t‐test. 

2. The Compound Excess Returns Test 

Consider a portfolio whose returns A A, ,..., A are observed at regular1 2 T 

intervals (e.g., quarterly, monthly, or daily). We assume that these returns 

accurately reflect the portfolio’s change in value in each period, but that the 

process producing the returns is a ‘black box’, that is, the manager’s strategy 

is unobservable. If is the risk‐free rate in period t, the total excess return inr
ft 

 2the period is (1 A ) / (1 r ) and the net excess return is A  (1 A ) / (1 r ) 1.t ft t t ft 

We wish to test whether these returns are likely to have been produced by a 

strategy that yields positive excess returns in expectation, or whether they 

could have been produced by a strategy designed to fool us into thinking they 

are positive in expectation when in fact they are not. 

The null hypothesis is that the excess returns have zero conditional 

expectation in every period, that is, 

Null hypothesis 
    [ | , ,..., A ]  0 for all t, 1    (1)E A A A  t T .t 1 2 t1 

The alternative is that the expected net excess returns are nonnegative and in 

some periods they are strictly positive, that is, 

Alternative hypothesis 

    [ | , ,..., A ]  0 and strict inequality holds for some t, 1   . (2)E A A A  t Tt 1 2 t1 

2 One can also define the excess return relative to other benchmarks, such as the return from a 
broad‐based stock market index. 
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Conservative test. A hypothesis test is conservative at significance level p if it 

rejects the null with probability at most p when the null is true. A test is 

conservative if this property holds for all p (0,1) . 

Strategy proof test. A test for excess returns is strategy‐proof if it is conservative 

for any returns process satisfying (1), that is, whenever the excess returns 

form a martingale difference. 

We shall assume throughout that a portfolio cannot lose more than 100% of its 

3value in any period, that is, A t  1 for every t. Hence the null hypothesis 

can be reformulated as follows: 

Null: Ct   (1  A s ) is a nonnegative martingale with expected value 1. (3) 
1 s t  

The martingale maximal inequality states that, for any nonnegative martingale 

with expectation 1, and for any time T and target value x  0 , the maximum 

of the values 
1
, ,...,C

T is greater than x with probability less than 1 /  xC C
2 

(Doob, 1953). Therefore the following is a strategy‐proof test for excess 

returns: given any time T and significance level p (0,1) , reject the null 

hypothesis at time T if and only if 

max1 t T C 1 / p . (4)   t 

We shall call this the Compound Excess Returns Test (CERT). 

3 If the portfolio manager has short positions he could lose everything and still owe money to 
his creditors. However, this is a risk borne by the creditors not the investors: we assume that 
an investor cannot lose more than 100% of the amount invested, which places a lower bound 
of ‐1 on the net return in each period. 
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Note that this test assumes nothing about the parametric distribution of 

returns within a period or the serial dependence of returns among periods. It 

is also extremely simple to compute. A particularly important feature of the 

test is that it corrects for unobserved tail risk. For example, consider the 

compound returns generated by the period‐by‐period returns in Figure 1. By 

the end of year 30 the maximum compound value that the portfolio ever 

achieved was 3.42 times the size of a fund compounding at the risk‐free rate. 

Our test says that this will happen with probability 1 / 3.42  0.29 . Thus we 

cannot reject the null with reasonable confidence. (In contrast the t‐test 

incorrectly rejected the null with very high confidence.) 

year 

Figure 2. Compound value of the period‐by‐period returns shown in figure 1. 
The bar indicates the point at which the maximum value was achieved. 
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CERT is a highly conservative test but this is unavoidable if the test is to be 

strategy‐proof. The reason is that any sequence of positive excess returns (of 

any length) can be reproduced by an options‐trading strategy that has, in 

expectation, zero excess returns. The essence of the idea can be explained as 

follows (for further details see Foster and Young, 2010). Let a a , ,..., a be a1 2 T 

sequence of numbers that are the target excess returns over T periods. At the 

start of each period t,1 t T , create a binary option that expires at the end of    

the period and gives the buyer of the option the right to the entire portfolio at 

the end of the period ‐‐ including the accumulated interest over the period at 

the risk‐free rate plus the premium from the sale of the option itself. Design 

the option so that the probability of exercise is p  a / (1 a ) . Let v be the t t t t 

value of the portfolio at the start of the period (including the proceeds from 

selling the option), and let vt1 be its value at the end of the period if the 

option is not exercised. This is a fair bet if 

(1 p )v  p 0  (1 r )v , (5)t t1 t f t t 

that is, 

v / v  (1 a )(1 r ) . (6)t1 t t ft 

This is a martingale strategy that produces the excess return at with 

probability 1/ (1 a ) and a total loss with probability a / (1 a ) . Repeated t t t 

over T periods it produces the target sequence of returns a a , ,..., a with1 2 T 

 1probability [  (1 at )]  . To guard against such strategies – and a great 
1 t T  

variety of similar ones – one needs a test that is conservative with respect to 

the entire class of nonnegative martingales. CERT is such a test. 

The preceding construction shows that the CERT rejection threshold is sharp: 
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a ‘gamester’ can produce a series of excess returns whose compound value 

grows by the a factor 1/p with probability p. This has some striking 

implications. It says, for example, that to be 95% confident that a given ‘black 

box’ portfolio is producing positive excess returns, its compound value must 

grow by a factor of at least twenty‐fold compared to a portfolio compounding 

at the risk‐free rate. Although this may seem like an impossibly high 

standard to meet, it can be interpreted instead as the handicap that 

accompanies a complete lack of transparency. If the portfolio manager were 

to reveal more information about his positions and their implied tail risk, he 

might not need to meet such a high standard in order to convince investors 

that his returns are ‘for real.’ In subsequent sections we shall explore the 

effect of greater transparency in more detail, and show that the power of the 

test can be greatly increased if we have some information about extreme tail 

risk. 

3. Related literature 

There is a related literature on the testing of experts that spans both game 

theory and finance (Foster and Vohra, 1998; Lehrer, 2001; Shafer and Vovk, 

2001; Sandroni, 2003; Sandroni, Smorodinsky and Vohra, 2003; Olszewski and 

Sandroni, 2008, 2010). This literature emphasizes the difficulty of identifying 

phony experts who make probabilistic forecasts of future events without 

having any knowledge of the process that is actually governing these events. 

There are many ways of formalizing this problem and we shall not attempt to 

review them here. Broadly speaking, however, our approach differs from this 

literature in two key respects. First, we restrict ourselves to a particular class 

of stochastic processes (non‐negative martingales representing returns from a 

financial asset) and ask whether a supposed expert is producing returns from 

this class or not. Second, we adopt a classical hypothesis‐testing approach to 
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assess how likely it is that a given series of returns was produced by an expert 

(at a given level of significance). In particular, this puts the burden of proof 

on the experts, who must distinguish themselves from the non‐experts by 

producing returns that are highly unlikely to have been produced by chance. 

In much of the expert testing literature, by contrast, the null hypothesis is 

effectively reversed, and the expert is presumed to be expert unless the 

evidence is strongly against it. We would argue that, in the context of 

financial markets, it is fundamentally very difficult to consistently deliver 

excess returns because arbitrage opportunities tend to be eliminated through 

competition. Hence the natural presumption is that any given portfolio 

manager does not have such expertise until proven otherwise. 

There is also a literature in finance that draws attention to the manipulability 

of traditional measures of performance, such as the Sharpe ratio and Jensen’s 

alpha (Goetzmann, Ingersoll, Spiegel and Welsh, 2007). These authors 

propose a novel class of measures that overcome some forms of manipulation. 

This class is defined as follows: given a series of period‐by‐period returns 

(a1,..., aT ) and a parameter  1 , define the function 

1 1G a    (  ,..., a ) (1 ) ln[(1/ T )  (1 a ) ] . (7)1 T t 
1 t T  

Since 1  is negative, this measure imposes a heavy penalty on realizations 

in which any of the numbers 1 at is close to zero. The measure has the 

desirable property that it is invariant to the shifting of returns between 

periods, i.e., it makes no difference whether high returns come early or late in 

the sequence. However, it is quite different from our approach because it 

does not provide a test of significance – a metric for evaluating how likely it is 

that a given series of returns could have been produced by chance. 

Furthermore, unlike our test, it does not correct for unobserved tail risk. 
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The idea of using the martingale maximal inequality to test returns series was 

proposed in Foster, Stine and Young (2008). This paper shows how the 

martingale approach can be applied to the analysis of actual returns series 

from mutual funds and stocks. The present paper takes the analysis 

considerably further by showing how to ramp up the power of the approach 

by testing a convex combination of leveraged portfolios. The present paper is 

also related to an earlier one on the gaming of performance fees (Foster and 

Young, 2010). In that paper we showed that it is essentially impossible to 

design bonus schemes that reward expert managers who produce excess 

returns, and do not reward non‐experts who cannot produce such returns. In 

other words, there are no monetary incentive schemes that induce managers to 

self‐select into the expert and non‐expert types. By contrast, the present paper 

shows that there exist statistical criteria of performance that can in fact 

distinguish between the two types. 

4. Leveraging the compound excess returns test 

The compound excess returns test guards against several different types of 

manipulation. The one that we have emphasized so far is unrealized tail risk, 

that is, the possibility that the fund could suddenly go bankrupt due to a low 

probability event that is hidden from investors. However, even if extreme tail 

risk is negligible there are other reasons why portfolio returns may be highly 

erratic and difficult to evaluate using standard statistical methods. Some of 

these problems arise from common trading strategies, such as market timing 

or momentum based strategies. Others may result from more deliberate 

manipulation, such as engaging in high leverage early in the returns series 

and reducing the leverage later on in order to enhance a performance 

measure such as the Sharpe ratio. 
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In this section we shall propose a variant of CERT that can be applied when 

extreme tail risk is not an issue, either because the manager offers a guarantee 

against large losses, or because the investor can control the downside by 

purchasing portfolio insurance. This still leaves the possibility that the returns 

are highly nonstationary and manipulated in other ways. We shall 

demonstrate a variant of our test that can be applied in this case that is 

asymptotically as powerful as the t‐test, yet makes no assumptions about the 

serial correlation of returns or the parametric form of the returns‐generating 

process. 

The key idea is the following: when extreme tail risk is either absent or can be 

controlled through the purchase of portfolio insurance, the portfolio can be 

leveraged. We claim that the ability to leverage greatly increases the ability of 

the test to discriminate between processes that generate positive excess 

returns and those that do not. Furthermore, the level of leverage that 

optimizes the power of the test does not need to be known in advance: one 

can be completely ignorant about the optimal amount of leverage to use and 

still design a test that is very powerful at high levels of statistical significance. 

Like the unleveraged test (CERT) this approach guards against type‐I errors, 

i.e., falsely concluding that a returns series is produced by an ‘expert’ 

manager when in fact it is produced by chance. It improves on CERT in the 

sense that type‐II errors have low probability when the returns are well‐

behaved, i.e., satisfy the usual assumptions of independence and log 

normality. 

   As before, let A1, A2 ,..., At be the excess returns from a portfolio in each of t 

periods, net of the risk‐free rate. We shall assume that the portfolio can be 
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insured against large downside losses over short periods. This can be done in 

several different ways. One possibility is for the portfolio manager to 

purchase insurance under a customized policy with an insurer. To obtain 

such a policy the manager would normally have to provide the insurer with 

considerable transparency regarding his positions and trading strategies. An 

alternative is for the investor to purchase protection against downside risk in 

the derivatives market (assuming such derivatives are available). This also 

presumes a certain amount of transparency, for otherwise market participants 

would have no way of knowing how to price the tail risk. In what follows we 

shall adopt the second point of view. While this is a somewhat restrictive 

assumption, it allows us to separate the issue of unrealized tail risk from the 

extent to which returns may be manipulated in other respects. 

Let  be the length of a reporting period, e.g., a quarter, a month, or a day. 

Assume for simplicity that the price of the portfolio at the start of a given 

period t is $1 per share. Given a number 0  b  1, let  t ( ,b ) be the cost of a 

European put with strike price b(1  rft ) that expires at the end of the period. 

Suppose that we buy enough puts so that 1/ (1  t (b, ))  of the portfolio is in 

shares and  t ( ,b )  /  (1   t ( ,b ))  is in puts. Then all shares are protected and 

the value of the portfolio at the end of the period will be at least 

b(1  rft ) / (1  t (b, )) times its value at the start of the period. 

Given   1 , we can leverage this insured portfolio as follows: buy  dollars 

of the insured portfolio and borrow 1   dollars at the risk‐free rate. Per 

dollar in the portfolio at the start of the period we will then have at least the 

following amount by the end of the period 

b(1  rft ) / (1  t (b, ))  (1 )(1  rft  ) . (8) 

13 



 

 

                

 

                                                                                           

 

                                 

                               

   

                                                                                                         

 

                           

                   

                         

                         

        

 

                                                                                

 

         

 

                                                                                                        

 

                         

                       

               

 

                                                                                                        

For this to be nonnegative, it suffices that 

b / (1 ( ,  )b  )  1 1/t    . (9) 

Define bt ( ) to be the value of b that satisfies (9) as an equality. When the 

cost of puts is very small, which will be the relevant case in the results to 

follow, 

t ( )  1 1  /  . (10)b  

For each   1 , let the random variable Bt 
 ( ) denote the return (net of the 

risk‐free rate) from the insured, leveraged portfolio constructed as above. 

Note that Bt 
 ( ) is obtained by truncating the total return 1 At below 

b ( ) (1 r ) , correcting for the cost of the puts, and dividing by (1 rf ) . Thist ft t 

leads to the expression 

max{ ( ),1 A }b  t tBt ( )  1 . (11)
1 t ( ( )bt  , ) 

By construction we know that 

1 Bt 
 ( )  0  . (12) 

We shall say that options are competitively priced if the options market is 

efficient and there are no arbitrage opportunities. (This is their risk‐neutral 

valuation.) In this case we must have 

 E A[ ]  [ t ( ) , (13)t E B   ] 
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for otherwise one could make excess returns by selling portfolio insurance. It 

follows that, in a competitively priced options market, 

 (1  A s ) is a nonnegative martingale iff  (1  Bs 
 ()) is a 

1   1 s t  s t  

nonnegative martingale. (14) 

In practice, of course, we cannot assume that options will be priced at exactly 

their competitive (risk‐neutral) value. Fortunately we will not need to assume 

this for most of our subsequent results to hold: indeed our results on power 

hold even if out‐of‐the‐money options are overpriced by a very large factor 

(see theorem 2 below). 

There is, however, very little reason to think that options are under‐priced, that 

is, portfolio insurance is too cheap. In other words, it is reasonable to suppose 

that in general 

[ ] t  E B[ t 
 ()] . (15)E A  

This condition implies that  (1  Bs 
 ()) is a nonnegative supermartingale. 

1 s t  

We shall assume that this condition holds for the remainder of the paper. 

 Theorem 1. Let A A, ,..., A be the excess returns of a portfolio over T periods of 1 2 T 

length  1/  T . Let Bt 
 ( ) be the excess return in period t from an insured version 

of the portfolio that is leveraged at level , and let G( ) be any distribution 

function for  . The null hypothesis is that the returns A t are zero in expectation. 

The null can be rejected at significance level p if 

max 

[ (1 B ())]dG() 1/ p . (16)1 t T  s0 

1 s t   
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Proof. For each   0 let 

Ct 
 ( )  (1  Bs 

   ( ))  . (17) 
1 s t   

The null hypothesis is that  (1 A s ) is a nonnegative martingale. Assuming 
1 s t   

that options are not underpriced, Ct 
 ( ) constitutes a nonnegative 

supermartingale. Therefore Ct 
  (1 Bs 

 ())]dG() is a convex0 

 

1 
 

s t  

 
   

combination of nonnegative supermartingales, which implies that it too is a 

supermartingale. Given any p‐value, it follows from the martingale maximal 

inequality that max1 C 1/ p with probability less than p (Doob, 1953).  t T  t  

This concludes the proof of theorem 1. 

We shall call the test in (16) the Leveraged Compound Excess Returns Test 

(LCERT) with distribution function G( ) . 

5. Power and leverage 

We shall now show that when the distribution function G( ) is judiciously 

chosen, LCERT is nearly as powerful as the optimal test when the p‐value is small. 

Let C ( ) be the compound value of the original asset in continuous time  

starting from an initial value C0 (1) 1 with  = 1. Suppose that the asset is 

lognormally distributed, that is, for some  and  , 

logC (1) is N ((  2 / 2) , 2   ) . (18) 
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Here and in what follows we shall always assume that returns are expressed net 

of the risk‐free rate. The lognormal distribution is consistent with the standard 

representation of asset returns as a geometric Brownian motion in continuous 

time, and is the basis for Black‐Scholes options pricing (Campbell, Lo, and 

MacKinlay, 1997). 

When the asset is leveraged by a constant factor   0 in continuous time, its 

compound value at time , C ( ) , is lognormally distributed: 

2 2  2 2  log ( )  is (N (    / 2) ,   ) .C (19) 

Fix a target time * at which to test the null hypothesis at significance level p. 

There is no loss of generality in choosing the time scale so that * 1 , which 

will be assumed throughout the remainder of the analysis. The optimal test of 

the null hypothesis (   0 ) versus the alternative (  0 ) is the one‐sided t‐

test. The t‐test rejects the null (   0 ) at time  * 1 if 

logC   2 2( / )
Z 1 z where N zp  1 p) . (20)1   p  ( ) (  

 

Notice that this test is independent of the amount of leverage . Hereafter we 

shall usually omit the subscript 1 on the variables Z and C , it being 

understood that these are the values at the time (* 1 ) the test is conducted.  

We are interested in the situation where the returns are lognormal but we do 

not know this a priori. (If we did we would use the t‐test.) The question is 

how much power we lose by using LCERT, which is in principle more 

conservative than the t‐test, because it makes no assumptions about the 

normality or independence of returns among periods. 
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Maximal power loss function. Given   0 , , and p (0,1) , the maximal 

power loss function 
 ( )  is the maximum probability over all  0L p  that the t‐

test correctly rejects the null (  0)  at level p while LCERT incorrectly accepts 

the null at level p. 

We shall show that there exist ‘universal’ distributions G( ) such that L p( ) 

is small when: i) the value of p is small; ii) the time increments  are short, iii) 

put options are competitively priced. 

In fact we can weaken the last condition considerably. Say that puts are 

conservatively priced if there exists a constant K  1 such that the cost of a put is 

at most K times its risk‐neutral valuation. 

 Theorem 2. Let A A, ,..., A be the excess returns of a portfolio over T periods of 1 2 T 

length    1/  T . Let Bt 
 ( ) be the excess return in period t from an insured version 

of the portfolio that is leveraged at level . The null hypothesis is that the returns 

A t are zero in expectation. The null can be rejected at significance level p if 

 d 
max1 t T { [ (1 Bs 

 ()] 
2
}   1/ p . (21)0

1 s t  (1 )   

ii) Suppose in addition that portfolio insurance is conservatively priced and the 

returns A t come from a lognormal process. Given any   0 , if p is sufficiently small 

and  is sufficiently small given p, the maximal power loss from the test (21) is less 

than  . 

Before turning to the proof, several remarks are in order. 

Remark 1. We know from theorem 1 that the first statement (21) holds for any 

cumulative distribution function G( ) . The essential claim is that under the 
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particular c.d.f. G( )   / (1 ) plus fairly weak conditions on the cost of 

insurance, the maximal power loss goes to zero with p. Other distribution 

functions also have this property; the key is that the distribution have full 

support on the positive reals and be fairly ‘flat.’ 

Remark 2. The test in theorem 2 is “universal” in the sense that it can be 

applied with no prior knowledge of the actual distribution of returns. In 

particular, there is no presumption that the distribution is lognormal. The 

theorem states that if the returns happen to be lognormal, we do not lose much 

power by applying our test. At the same time we protect ourselves against 

type‐I errors in the event that the returns are not lognormal (this follows from 

theorem 1). This is a luxury that the t‐test does not permit. 

The universal aspect of the test is similar in spirit to Cover’s pioneering work 

on universal portfolios (Cover, 1991). Cover showed that a convex 

combination of leveraged portfolios will grow at a rate that is asymptotically 

as fast as the growth rate of an optimally leveraged portfolio. This is true in 

our set‐up as well. However our focus is on deriving an asymptotic bound on 

the maximum power loss relative to a lognormal distribution. This requires a 

more specific choice for the distribution of leverage levels; it also requires 

factoring in the cost of portfolio insurance, which is not a feature of Cover’s 

framework. 

Remark 3. The proof will show that it suffices to be able to insure the portfolio 

against large downside losses over short periods of time at a cost that is not 

unboundedly larger than the risk‐neutral value of the options. In particular, we 

do not assume that the options market is so complete or well‐priced so that 

one could simply deduce the distribution of returns from the options prices 

themselves. 
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Remark 4. The test is most powerful when the level of significance is high (the 

p‐value is small). The logic of this may be explained as follows. Suppose for 

example that p = .001. Then the compound value of the leveraged portfolio 

must grow by a factor of 1000 to pass our test. This is clearly very 

demanding, but in this case the t‐test is also very demanding. The substance 

of the argument is to show that when the returns are lognormally distributed 

and they pass the t‐test at a high level of significance, then the leveraged 

compound value is likely to pass our test as well. 

Moreover, we would argue that small p‐values are relevant in the context of 

financial markets, where there are many funds to choose from. For example, 

if there are N funds and we want to know whether the best of them is able to 

beat the market, we must correct for the fact that pN of them will pass at 

significance level p purely by chance. The Bonferroni correction for 

multiplicity implies that to be 95% confident that the best of 100 funds is run 

by an expert who can beat the market, it must pass at a level of .0005. 

Proof of theorem 2. The first statement of the theorem (21) follows 

immediately from theorem 1, expression (16). The essence of theorem 2 is the 

second statement, namely, that for this particular distribution of leverage 

levels the power loss is arbitrarily small when p and  are sufficiently small. 

This result will be established in two steps. First we shall show that the power 

loss would be small if the portfolio could be leveraged continuously (  ; 

then we shall show that the conclusion still holds when  is sufficiently small 

but not zero. (Note that, in our framework, the portfolio cannot be leveraged 

continuously because time periods are discrete. If continuous leveraging 

were possible, then we would be assuming that the price of the portfolio can 
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be represented as a continuous‐time process, which would restrict the 

distribution much more than we wish to do.) 

For each   0 , let C( )  C1( ) denote the compound value of the portfolio at 

time  *=1 when it is continuously leveraged at level  . By assumption, 

C 2 2 is ( ,1ln ( ) (    )z        / 2 , where z N 0 ) . (22) 

Define the random variable 

w z   / . (23) 

Completing the square, (22) can be rewritten as follows: 

C  2  2 . (24)ln ( )  w / 2 (   w) / 2 

Let 

C C( ) ( ) g d , (25) 
 

   
0 

where 

g( )  1  / (1 )2 . (26) 

From (24) and (25) we deduce that 

2  2w /2 ( w) /2 C e e  g d( )  .   (27)0

Making the change of variable z    w , we obtain 
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 z2 /22 w2 /2  e
C  e  g z( / w / )dz . (28)w 2 

Let N ( ) denote the cumulative normal distribution. Then we can write 

 z2 /2e z2 /2 e w g z( / w / )dz  
g z( / w / )dz   2w 2 w 

[ ( / w / ) | w  z  w  N w  N ( E g z  ][ ( ) w)] 

 N w   )]  g w( / )[  ( )  N ( w . (29) 

The last inequality follows from the convexity of g( ) and Jensen’s 

inequality. From (28)‐(29) we obtain 

2 w2 /2C  e ( / )[  ( )  N (g w  N w  w)] . (30)
 

Note that this derivation holds for any convex density g( ) on the positive 

reals. This fact allows our results to be extended to various other 

distributions, though for the sake of concreteness we shall conduct the 

remainder of the proof using the specific density g( ) 1/ (1 )2 . In this case 

(30) takes the form 

w2 /2 2C  ( 2 )e [  / (   w  N w  N (   ) ][  ( )  w)] . (31) 

We now turn to the estimation of the maximal power loss function  
0 ( )L p  

when   0 (continuous leverage). Power loss occurs whenever LCERT 

accepts the null and the t‐test rejects. On the one hand, LCERT accepts the null 

at significance level p if 
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max{C : 1} 1/ p . (32) 

This obviously implies that C C 1 1/ p . On the other hand, the t‐test rejects 

the null at level p if 

w z   /   zp , where N z( )p 1 p . (33) 

Therefore the following overestimates the probability of power loss, that is, 

0L p( )  is less than  

P z( p  w and C 1/ p) . (34) 

0From this and (30) we conclude that L p( )  is less than  

w2 /2 2P z( p  w and ( 2 )e [ / (  w)  ][N (w)  N w( )]  1/  p) . (35) 

Consider the right‐most inequality in (35), namely, 

w2 /2  2e [  / (   w)  ][N ( )  ( )]  1/  p . (36)   w  N w  

Taking logs of both sides we can rewrite this as follows: 

2 2 ln(1/ p)    4ln(  w /  )  2ln(N ( )  ( )) w  ln(2 ) w  N w . (37) 

( 2  ) 
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Define the number 

2ln(1/  )pc p . (38) 

From (34)‐(38) we deduce that the maximum power loss at significance level p is 

strictly less than P w(  I p ) , where the interval I p is defined as follows 

I  {w z:  w  c2  ln(2 )  4 ln(   w /  )  2ln(N (w)  N (w))} . (39)p p p 

Lemma 2.1. The length of the interval I p goes to zero as p goes to zero. 

Proof. Let   0 . First we shall show that 

w I p  w  cp  for all sufficiently small p . (40) 

Then we shall show that 

cp  zp   for all sufficiently small p . (41) 

To establish (40), note that w I p implies zp  w , which implies 

( )   N (w)  N (zp )  N (zp )  1 2 pN w  . (42) 

From this we conclude that 

w2  c2 
p  ln(2 )  4 ln(   w /  )  2ln(1 2 p) , (43) 
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and hence 

w cp   p 
1  (w c ) [ ln(2 )  4ln(  w /  )  2ln(1 2 p)] . (44) 

We know that zp   as p  0 . Since w zp , the right‐hand side of (44) is 

smaller than  for all sufficiently small p. This establishes (40). 

To prove the lemma, it remains to establish (41), namely, cp  zp   for all 

sufficiently small p. We can estimate the value of zp using the tail 

approximation for the normal distribution [Feller, 1957, p.193]: 

 z2 /2e p 
1 31 N z( p )  (z  zpp    p ) . (45)

2 

From (45) we deduce that 

2 2 3 2c  2ln(1/ p)  z  2ln(2 )  2 ln(z )  2ln(z 1) . (46)p p p p 

Hence 

c  z  [2 ln(2 )  2ln(z3 )] / (c  z ) . (47)p p p p p 

Clearly the right‐hand side of (47) is less than  when p is sufficiently small. 

This establishes (41). Together with (40), it follows that the length of the 

interval I p is less than 2 for all sufficiently small p. This concludes the 

proof of Lemma 2.1. 
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The preceding shows that, given any small   0 , for all sufficiently small p 

0the power loss L p( ) is less than  

 . 

P z( p  w  zp  2 ) . (48) 

By definition,   / N (0 1 0 
 ( ) is less than w z    where z is , ) , hence L p  

z2 /2zp / 2 e 
max dz . (49) z  / 2 p 

When p is sufficiently small the right‐hand side of (49) is less than 2 /  2 

We have therefore shown that, for each  , the maximum power loss (over all 

 ) is arbitrarily small provided that p is sufficiently small and the portfolio is 

leveraged continuously. 

It remains to be shown that this statement remains true when the portfolio is 

leveraged over discrete time intervals of sufficiently short duration. Recall 

that the number of discrete periods is T 1/  where   0 is the length of a 

period. Given leverage level   0 , the compound value of the leveraged 

insured portfolio at the time the test is conducted is 

C ( )   (1 Bt 
 ( ) ) . (50) 

1 t T  

The overall value of the portfolio is 

C  


 (1 Bt 
 ( ) g  d . (51) ) ( ) 

0
1 t T  
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We wish to compare the following values at the time *  1 when the test is 

conducted: 

C = the value of the continuously leveraged portfolio 

C = the value of the discrete‐time leveraged portfolio 

We claim that, when  is small,  / is close to one with high probability in the C C  

region where power loss occurs. 

To establish this claim, recall that we estimated power loss in the 

continuously leveraged case by writing (see expression (28)) 

 z2 /22 w2 /2  e
C  e  g z( /  w / )dz . (52) w 2 

The integral can be broken into two parts as follows 

w  z2 /2   z2 /2 

 
e 

 
e 

g z( /  w / )dz  g z( /  w / )dz . (53)
w w2 2 

In our previous estimation of C we dropped the second term in this 

expression (see (29)). In particular, we showed that power loss is small even 

when we underestimate C by ignoring realizations of z    w that are 

greater than w . Let us define 

 z2 /2
 2 w2 /2 w e

C  e  g z( /  w / )dz . (54)w 2 
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In effect, C results from truncating the distribution of  ’s to those satisfying 

z   w w , that is,   2w . From the earlier part of the proof we know 

that, when p is sufficiently small, w cp  , and in particular w cp 1 . Thus  

C = the value of the continuously leveraged portfolio when the 

distribution of  ’s is truncated at   2(cp 1) / . (55) 

As before, let    denote the cost of insuring one dollar’s worth of the 

portfolio for a period of length  at a strike price that allows leveraging at 

level  1 . Since the process is i.i.d. we can assume this cost is the same in all 

periods. When     is small, the required strike price is approximately 

equal to 1 1/   , as we observed earlier (see expression (10)).  

Let q() be the probability that a put option with these characteristics is 

exercised. In other words, q() is the probability that the portfolio loses at 

least 1/   of its value by the end of the period. By assumption, the logarithm 

of the portfolio returns over a period of length  have the distribution 

N (     ) for some   0 . In an efficient market, the cost of such an 

option is the probability of exercise times the conditional value if exercised, 

under the risk neutral assumption that   0 . Since the conditional value 

when exercised is less than 1, the cost q() of such an option satisfies 

q()  P(x  ln(11/  ))  where x z     / 2  and z is N (0,1) . (56)   

When  1 we have the inequality ln(11/ )  1/  , hence 

q()  P(x  1/  )  P(z    / 2   1/  ) 
(57)

 P z(  1/     / 2) 
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When  is small we have 

1/     / 2  1/ 2  . (58) 

From (57), (58), and the standard approximation of the tail of the normal we 

conclude that for all sufficiently small  , 

1/8   q( ) 2 e 
2 2  

. (59)    

In fact, we are only assuming that options are conservatively priced, that is, for 

some constant K 1 ,    is at most K times the risk neutral price.  

Therefore   q(  , and  is at most K times the probability of exercise ) 

hence 

1/8 2 2

    2K e     . (60) 

To leverage the insured portfolio at level  requires buying  puts per 

period for 1/ This reduces the compound growth of theT    periods. 

portfolio by a factor of at most 1 (1   ))1/ , which by (60) is at most    ( 

2  1/2  1/8   2K  e 
2 2  

. (61) 

Note that when  is sufficiently small, this factor is smaller than  for all 

1   . Thus the cost of the options does not reduce the compound growth 

of the portfolio by very much when the time periods are short. 

There are, however, two further “costs” to insuring the portfolio. First, there 

is a positive probability that the value of the insured portfolio will fall to zero 

at some time before the test is conducted; in fact this occurs in any period 
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where the options are exercised. (By contrast, the value of a continuously 

leveraged, lognormally distributed asset almost surely never reaches zero.) 

The second potential cost is that the value of the portfolio over each time 

period does not exactly follow a lognormal distribution with leverage level  , 

because the quantities of the portfolio and the risk‐free asset are not 

rebalanced to keep the leverage constant within each period. To complete the 

proof of theorem 2, we need to show that with high probability these factors 

have only a small effect on the cumulative value of the portfolio when the test 

is conducted. 

Let us recall that 

C = the value of the continuously leveraged portfolio when the 

distribution of  ’s is truncated at   2(cp 1) /  . 

We wish to compare this with 

C  = the value of the discrete‐time leveraged portfolio when the 

distribution of  ’s is truncated at   2(cp 1) /  . 

The preceding argument shows that when  is sufficiently small, the cost of 

the puts reduces the value of the insured portfolio C  by a factor less than  

(compared to C ). This assumes however that the puts are not exercised: if in 

any period a put is exercised, the value of the insured portfolio drops to zero. 

From (59) we know that the probability of this event is at most 

1 1/2  1/8  max { q( )} max {2 
2 2

   e }1   1       (62) 
1/2 1/8   2 e 

2 2  
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The latter can be made less than  by taking  to be sufficiently small. We 

have therefore shown that for all sufficiently small : i) the probability is less 

 than  that the discrete‐time portfolio C will go bankrupt; ii) if it does not 

go bankrupt, the cost of the puts decreases the value by a factor less than  

compared to C . 

Finally, we must consider the fact that the discrete‐time portfolio does not 

grow at exactly the same rate as the continuously leveraged portfolio within 

each period. The difference between the two rates is small in any given period 

with high probability; we claim that the cumulative difference over 1/  

periods is also small with high probability. 

To establish this claim, fix    . Let Rt ( ) be the growth rate in period t of 

the portfolio when continuously leveraged at level  throughout the period. 

Let Rt 
 ( ) be the growth rate of the discrete‐time portfolio when leveraged at 

level  at the start of period t. The following shows that the cumulative 

difference between these two rates over T periods is very small with high 

probability. 

Lemma 2.2. If  is sufficiently small,  (Rt 
 ( )  Rt ( ) )   with probability 

1 t T  

at least 1 – . 

Proof. The growth rate of the continuously‐leveraged portfolio in period t is 

Zt   2 2 /2      Rt ( )  e 1 . (63) 
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The growth rate of the discrete‐time portfolio in period t is 

 t     Rt ( )  (eZ    2 /2 1)  . (64) 

Note that the random variable Zt is N (0,1) and is the same in the two 

expressions. From the Taylor’s expansion ex 1 x x2 / 2  ...    we see that (63) 

can be written as follows 

2 2  2 2 2  3/2  R ()  Z        / 2    Z   / 2  O( ) f () . (65)      t t t 

The coefficient on the residual term, f ( ) , depends on  ,  , and  , but the 

latter two are fixed whereas  is not. Similarly we have 

 2  2 2  3/2        R ()  Z     / 2   Z   / 2  O( ) f () . (66)t t t 

Therefore we can express the difference between the growth rates as follows 

for some bounded function h( ) : 

 2 2 2  3/2  R ( )  R ( )  (Z 1)(  )  / 2  O( ) (h ) . (67)t t t 

Next we estimate the cumulative difference over T 1/  periods: 

 2 2 2 (R ()  R ())   .5(  )  (Z 1)  O(  ) (h ) . (68)t t t 
1 t T  1 t T  

The T draws of Zt are independent, Zt 
2 1 has mean zero and variance 4, 

hence 

 (Zt 
2 1) is approximately N (0,4 / ) . (69) 

1 t T  
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Therefore the overall difference in growth rates between the two portfolios is 

approximately 

 2 2 
t t )    where W is N (0,1) . (R ()  R ())  W (    ) O(  )h() (70) 

1 t T  

For a given value of  , we can make this difference less than  with 

probability at least 1 by choosing  to be sufficiently small, say 0     . 

This concludes the proof of Lemma 2.2. 

To complete the proof of theorem 2, let us recall that we are estimating the 

loss of power in the worst case, that is, for values of  that maximize the 

probability of accepting the null when the t‐test rejects. When  is 

sufficiently large, say greater than  , the probability that our test accepts the 

null is less than  , hence the power loss must also be less than  . (This is an 

immediate consequence of expression (19).) Thus in expression (70) it suffices 

to consider values of  satisfying    . The function h( ) is uniformly 

bounded above for all    , hence there is a number   0 such that (70) 

holds uniformly for all  such that 0      . 

Putting the various parts of the argument together, we have shown that there 

are numbers   0 and   0 such that: i) power loss is less than  when 

   ; ii) when    and 0     , the cumulative value of the insured 

portfolio C closely approximates the cumulative value of the continuously 

leveraged portfolio C in the sense that 

C  (1 2 )C with probability at least1 2  . (71) 
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We already know, however, that the maximum power loss goes to zero as p 

goes to zero for the continuously leveraged portfolio C . It follows from (71) 

that the same holds for the insured discrete‐time portfolio C . This completes 

the proof of Theorem 2. 

5. Targeting the leverage 

Theorem 2 demonstrates the existence of a strategy‐proof test that has good 

power even when one has no prior information about the variance of the 

underlying process. However, the maximal power loss function is difficult to 

calculate explicitly because of its dependence on the unknown  and on the 

significance level p of the test. We can obtain a clearer picture of the 

magnitude of the power loss if we assume that  is known with high 

accuracy to begin with. In this case we do not need to integrate over a 

distribution of leverage levels; we can instead choose a single level that 

optimizes the power of the test conditional on our estimate of  . This 

situation is summarized in the following result. 

 Theorem 3. Let A A, 2 ,...,  be the excess returns of a portfolio over T periods of 1 AT 

length  1/ T . Let  * be an estimate of the standard deviation of the returns, and 

B *let p be the desired level of significance. Let t ( )  be the excess return in period t 

from an insured version of the portfolio that is leveraged at level 

*  cp /  * where cp  2ln(1/  p) . (72) 

The null hypothesis is that the returns A t are zero in expectation. The null can be 

rejected at level p if 
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 * *  *( )   (1   Bt ( )) 1/  C    p . (73) 
1 t T  

If portfolio insurance is conservatively priced and  is sufficiently small, and if the 

estimate  * is correct, the maximal power loss of this test is at most 

2 (.5(zp  cp ))  (74)N 1 . 

Proof of theorem 3. 

We shall estimate the power loss in the continuous case, from which the 

conclusion in the discrete case follows by arguments similar to those in the 

proof of theorem 2. When the portfolio is continuously leveraged at level 

  0 , its value at the time when the test is conducted ( * = 1) is 

ln  C()  (  )z     (  )2 / 2  where z is N (0,1) . (75) 

Power loss occurs when ln C() 1/ p and the t‐test rejects the null, that is, 

when 

log(1/ p)   ( )2 / 2 
p    (76)z z .

 

The probability of this event is minimized when the right‐hand side is as 

small as possible, which occurs (for a given  and  ) when 

  cp / . Call this the optimal amount of leverage 

*( ,p  )  cp /  . (77) 
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Given our estimate  * , we will use the optimal amount of leverage provided 

our estimate of  is accurate, which is assumed in the statement of the 

theorem. The important point is that the optimal leverage does not depend on 

 (which is assumed to be unknown). 

Substituting the optimal * into (76) and rearranging terms, we conclude that 

power loss occurs when 

zp  z   /   cp . (78) 

For a given  and p, the probability of event (78) is maximized when  /  

lies halfway between zp and cp , that is, when 

  (zp  cp ) / 2  . (79) 

Therefore the power loss is at most 

( z (zp  c ) / 2  cp )  P(.5(z  cp ) z .5(c  zp )) P zp    p p    p 

 N (.5(c  z ))  N (.5(z  c )) (80)p p p p 

 2 (.5(zp  cp ))  N 1.  

However, we already know from (41) that (zp  cp )  0 as p   0.  This 

completes the proof of theorem 3. 

We are now in a position to compare the maximal power loss of our test when 

 is known and when  is unknown. The first case is covered by theorem 3 

and the second by theorem 2. These are admittedly somewhat extreme 
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situations: in practice one might have a preliminary estimate (or guess) about 

 that is subject to some uncertainty. In this case one could choose a 

universal distribution of leverage levels that is centered around one’s best 

guess (as we shall show explicitly below), and one would be protected if one’s 

guess turns out to be wrong. 

To fix ideas let us begin by considering the maximal power loss when  is 

known. In this case we have the upper bound 

( )  2 (N . (z  cp ) 1  f p  5 p )  . (81) 

The solid curve in figure 3 shows the behaviour of f ( )p for small values of p. 

Of course this is only a theoretical upper bound on the maximal power loss, 

and it was obtained by making a number of approximations. The most 

significant of these was that we estimated the power loss using the compound 

value of the portfolio at the time the test is conducted rather than its maximal 

value up to the time that the test is conducted. The squares in figure 3 represent 

the power loss over many simulations when this weaker test is used. The 

close correspondence between the squares and the curve show that our 

estimate, f ( )p , is quite close to the actual power loss using this weaker test. 

When we simulate the process using the stronger test (based on the maximal 

compound value), we obtain the dotted line shown in Figure 3. This shows 

that the actual power loss from the test is considerably smaller than the 

theoretical upper bound in (81). For example, when p = .001 the maximal 

power loss (based on simulations) is on the order of 15%, whereas the upper 

bound we computed is about 25%. A 15% chance of a type‐II error is a 

modest price to pay for the extra protection afforded by our test compared to 
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the t‐test, which, as we have seen, is easy to game. 

16 11 6 210 10 10 10 

p ‐ value 

Figure 3. Maximal power loss of LCERT as a function of the significance level 
p. The curve represents the theoretical upper bound. The squares represent 
the power loss as estimated from simulations when the weaker form of the 
test is used (the compound value of the portfolio at the time of the test). The 
dots represent the power loss as estimated from simulations when the 
stronger form of the test is used (the maximal compound value up to the time 
of the test). 

We should stress that all of these results involve a worst‐case analysis, that is, 

we are estimating the maximum power loss that could occur if the mean of 

the distribution happens to fall in a particular range. For most values of  

the power loss will be very small at a given level of significance. To illustrate 

this point, let us fix  and p and compute the power loss for different values 

of  . Since the loss depends only on the ratio   , we may as well assume 

that  1 . The results for p = .001 are illustrated in figure 4. Note that 

although the maximal power loss is about .15, it is less than .05 outside of the 

range 2  5 .   
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Figure 4. Power loss as a function of  when  1 and p  .001 . 

6. Comparing power loss under targeted versus distributed leverage 

When we do not have a good prior estimate of  we need to employ a 

universal test such as the one in theorem 2. In this case the power loss can be 

considerably higher. This is the price we must pay for lack of information 

about the variance of the true distribution. To estimate the magnitude of the 

difference, let us recall that under the universal test, power loss occurs in the 

interval 

p  w  c2 
p  ln(2 )  4 ln(   w /  )  2ln( ( )  N ( )) z  N w  w  , (82) 

where w z   /  and z is N (0,1) . Since w zp , the term N w  N (w) is at  ( )  

most 1 and at least 1 2 p . Hence when p  .01 the quantity 

2ln(  ( )   N w))  is negligible, and we have the nearly equivalentN w  ( 

expression 
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zp  w  c2 
p  ln(2 )  4ln(   w /  ) . (83) 

This defines a power loss interval whose lower end‐point is zp and whose 

upper end‐point is the value of w that solves 

w2  = c2 
p  ln(2 )  4ln(   w /  ) . (84) 

Call this value d ( )  . It is straightforward to show that d ( )  is strictlyp  p  

larger than cp for all  . Indeed if we define d p  min dp ( ) , then d p is the 

solution to the equation , 

2 2 2d = c  ln(d )  ln(8 /  ) , (85)p p p 

which is certainly larger than cp . 

Suppose now that we have an estimate or “guess” about the value of  , say 

 , but we want to be protected against type‐I errors if our guess turns out to 

be wrong. Let p be the desired level of significance. We can then rescale the 

universal distribution so that the smallest power loss interval occurs precisely 

when our guess is correct, that is, when   . It can be shown that this is 

achieved by choosing the density 

d p /  
g( )  

2 
. (86)

((d p /  )  ) 

It is straightforward to show that the minimum power loss interval (the 
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analog of (83)) occurs when   z d ., and this interval is precisely ( ,  ]p p 

We can now compute an upper bound on the power loss. This will depend, of 

course, on how far off our estimate ( ) is from the truth ( ) . There is no loss 

of generality in assuming that   1 , in which case we can use the density 

g( )  d p / (d p  )2 . The preceding argument shows that the following is an 

upper bound on the maximum power loss for given p and  : 

( )  2 (  N .5 d   z )) 1  L (  ( )   , (87)p p p 

where d p ( ) is the value of that solves equation (84). 

Table 1 gives values of p ( ) for various choices of  .L  Notice that they are 

very stable across radically different values of  . For example, even if the 

estimate is off by a factor of 10, the power loss is only slightly higher than if 

the estimate is on target. 

Let us compare these values with the power loss when  is known in 

advance and we choose the single level of leverage (namely,   cp / ) that 

optimizes power given this  . This is the solid curve in figure 3. For the 

range of p‐values in table 1, the power increases by about .20. But what if our 

estimate of  turns out to be wrong? In this case the loss of power can be 

much greater than if we used the universal distribution. This is shown in 

table 2 below, which gives the bound on power loss when our prior estimate 

is   1 and the true value is  . Comparing these values with the 

corresponding values in table 1, we see that the universal distribution offers 

considerably more protection (lower power loss) when the prior estimate of 

 is off by a factor of two or more. We should also remark that the numbers 
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in both tables are upper bounds on the maximal power loss function. As we 

saw in figure 3, the actual loss will be considerably less (on the order of .10 

less) for this range of values of  and p . 

-2 -3 -4 -5 -6p 10 10 10 10 10 

 

0.1 .57 .51 .47 .44 .42 

0.2 .52 .47 .44 .41 .39 

0.5 .48 .43 .40 .38 .36

 1 .46 .42 .39 .37 .35

 2 .47 .43 .40  .38 .36 

10 .56 .51 .47 .44 .42 

Table 1. Upper bound on the power loss when the true standard deviation is 

 , the estimate is   1 , and the distribution g( )   d p / (d p  )2 is used. 

-2 -3 -4 -5 -6p 10 10 10 10 10 

 

0.1 .99 1.00 1.00 1.00 1.00 

0.2 .99 1.00 1.00 1.00 1.00 

0.5 .54 .56 .59 .61 .64

 1 .28 .25 .23 .21 .20

 2 .54 .56 .59  .61 .64 

10 1.00 1.00 1.00 1.00 1.00 

Table 2. Upper bound on power loss when the true standard deviation is  , 

the estimate is   1 , and the single leverage level   cp is used. 
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7. Conclusion 

In this paper we have proposed a test of portfolio returns that is appropriate 

when an investor has no knowledge of the portfolio manager’s investment 

strategy. First, the test protects against the possibility that there is unrealized 

tail risk. This is important because managers typically have a strong 

incentive to take on such risk in order to enhance their performance bonuses. 

The level of risk can be low and still create the appearance of sizable excess 

returns before the risk is realized. For example, an annual excess return equal 

to 5% is impressive, yet it can be driven by tail risk that in expectation will 

take 20 years to show up. Second, the test is valid for returns that are serially 

dependent and not normally distributed, a situation that can easily result 

from dynamic trading strategies and market timing schemes. Third, while the 

test is inherently conservative, it can be turned into a powerful test if we have 

some information about the price of insuring against extreme tail risk. 

Contrary to what one might expect, the price of insurance need only be 

roughly correct ‐‐ say within an order of magnitude of the risk‐neutral price ‐‐

for the test to have high power. 
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