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Abstract. Traditional methods for analyzing portfolio returns often rely on
multifactor risk assessment, and tests of significance are typically based on
variants of the t-test. This approach has serious limitations when analyzing
the returns from dynamically traded portfolios that include derivative
positions, because standard tests of significance can be ‘gamed” using options
trading strategies. To deal with this problem we propose a test that assumes
nothing about the structure of returns except that they form a martingale
difference. Although the test is conservative and corrects for unrealized tail

risk, the loss in power is small at high levels of significance.
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1. Gaming portfolio returns

A fundamental problem for investors is to determine whether a given
portfolio is making positive returns relative to a benchmark such as the risk-
free rate or a stock market index. This is a challenging problem for traditional
statistical tests when little or nothing is known about the composition of the
portfolio, the trading strategies the manager is using, or the amount of
leverage he is taking on. The difficulty is that the manager may have both the
incentive and ability to create returns that ‘look good” for extended periods of
time even though in expectation they are no better than the returns obtainable
from standard market instruments. In particular, the manager can inflate his
returns using options trading strategies that hide large downside risks in the
tail of the distribution [Lo, 2001; Foster and Young, 2010]. Standard measures
of performance, such as Jensen’s alpha and the Sharpe ratio, do not take
account of this unobserved downside risk. Nor do more recent proposals,
such as the class of performance measures suggested by Goetzmann,

Ingersoll, Spiegel, and Welch (2007).

To illustrate the difficulty, consider the returns series in Figure 1, which
shows the monthly returns from a hypothetical portfolio over a period of 30
years. The returns appear to be ii.d. normally distributed, and the OLS
estimate of the mean monthly return over 360 months is 0.00324 (0.000764).
The t-statistic is 4.2, which implies that the returns are positive with
probability over 99.99%. In reality, however, the expected returns are zero.

Here is how they were generated: in each month t the manager sold a covered



asset-or-nothing put' whose log probability of exercise, A, was determined

by a random draw from a normal distribution with mean .00275 and standard
deviation .0144. If the put was not exercised in a given month the manager
earned an excess return of €* —1 over and above the risk-free rate. If the put
was exercised in a given month, the fund would be completely wiped out.
Assuming no arbitrage in the pricing of puts, the premium paid by the
purchaser is offset by the probability that the put will be exercised and the
expected excess return is zero. Under our assumptions the probability that
the fund does not crash in a thirty-year period (360 months) is approximately
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Figure 1. Monthly excess returns of a hypothetical portfolio over thirty years
(360 months).

The particular simulation shown in Figure 1 is a series in which a crash did

not occur. The t-test is fooled because the returns appear to be i.i.d. normal

1 We assume that the put is covered by the portfolio itself, which will be completely
liquidated if the put is exercised.



and positive on average, but there is a large potential loss that has not yet

shown up in the data.

This type of manipulation is not purely hypothetical; indeed it is in the
interest of fund managers to create return series that are “front-loaded” in
order to attract clients and generate large performance bonuses (Lo, 2001;
Foster and Young, 2010). The question is whether one can design a statistical
test that protects against type-I errors, that is, against concluding that the
returns exceed some given benchmark (such as the risk-free rate or a stock

index) when in fact they do not.

The answer we propose is to test whether the compound excess returns form a
nonnegative martingale. We first described this idea in its basic form in
Foster, Stine, and Young (2008) and showed how to apply it to empirical
returns data. The present paper is more theoretical and shows that we can
greatly increase the statistical power of this class of tests through the use of
leverage. The essential idea is the following: to test the returns from a given
portfolio we construct a hypothetical family of leveraged versions of the
portfolio. We then form a convex combination of these leveraged portfolios
and apply the martingale maximal inequality to assess the probability that the
returns from the original portfolio could have been produced by chance
rather than superior expertise. This approach is similar in spirit to the
universal portfolio framework pioneered by Cover (1991), but our
construction is more specific and allows us to calculate the power of the test
explicitly. The test is “strategy-proof” in the sense that a manager whose
strategy does not produce excess returns will fail the test with high
probability. (We give a formal definition of this concept in the next section.)
However, the test is asymptotically powerful in the sense that, for small p-

values, it will pass a series of bona fide excess returns with a probability that



is nearly as high as the t-test.

2. The Compound Excess Returns Test

Consider a portfolio whose returns A,A,,..,A, are observed at regular

intervals (e.g., quarterly, monthly, or daily). We assume that these returns
accurately reflect the portfolio’s change in value in each period, but that the
process producing the returns is a ‘black box’, that is, the manager’s strategy

is unobservable. If r, is the risk-free rate in period ¢, the total excess return in

the period is (1+A)/(L+r,) and the net excess return is A =(L+A)/(L+r,)—1.2

We wish to test whether these returns are likely to have been produced by a
strategy that yields positive excess returns in expectation, or whether they
could have been produced by a strategy designed to fool us into thinking they

are positive in expectation when in fact they are not.

The null hypothesis is that the excess returns have zero conditional

expectation in every period, that is,

Null hypothesis
E[A|A.A,..A ]=0forallt, 1<t<T. (1)

The alternative is that the expected net excess returns are nonnegative and in

some periods they are strictly positive, that is,

Alternative hypothesis

E[A|A.A,,... A_1>0 and strict inequality holds for somet, 1<t<T. (2)

2 One can also define the excess return relative to other benchmarks, such as the return from a
broad-based stock market index.



Conservative test. A hypothesis test is conservative at significance level p if it
rejects the null with probability at most p when the null is true. A test is

conservative if this property holds for all pe(0,1).

Strategy proof test. A test for excess returns is strategy-proof if it is conservative
for any returns process satisfying (1), that is, whenever the excess returns

form a martingale difference.

We shall assume throughout that a portfolio cannot lose more than 100% of its
value in any period, that is, A >-1 for every t> Hence the null hypothesis

can be reformulated as follows:

Null:  C, = H L+ A) is a nonnegative martingale with expected value 1. (3)

1<s<t

The martingale maximal inequality states that, for any nonnegative martingale
with expectation 1, and for any time T and target value x>0, the maximum

of the values C,,C,,..,C, is greater than x with probability less than 1/x

T
(Doob, 1953).  Therefore the following is a strategy-proof test for excess

returns: given any time T and significance level pe(0,1), reject the null
hypothesis at time T if and only if

MmaX,; G >1/p. (4)

We shall call this the Compound Excess Returns Test (CERT).

3 If the portfolio manager has short positions he could lose everything and still owe money to
his creditors. However, this is a risk borne by the creditors not the investors: we assume that
an investor cannot lose more than 100% of the amount invested, which places a lower bound
of -1 on the net return in each period.



Note that this test assumes nothing about the parametric distribution of
returns within a period or the serial dependence of returns among periods. It
is also extremely simple to compute. A particularly important feature of the
test is that it corrects for unobserved tail risk. For example, consider the
compound returns generated by the period-by-period returns in Figure 1. By
the end of year 30 the maximum compound value that the portfolio ever
achieved was 3.42 times the size of a fund compounding at the risk-free rate.
Our test says that this will happen with probability 1/3.42=0.29. Thus we
cannot reject the null with reasonable confidence. (In contrast the t-test

incorrectly rejected the null with very high confidence.)
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Figure 2. Compound value of the period-by-period returns shown in figure 1.
The bar indicates the point at which the maximum value was achieved.



CERT is a highly conservative test but this is unavoidable if the test is to be
strategy-proof. The reason is that any sequence of positive excess returns (of
any length) can be reproduced by an options-trading strategy that has, in
expectation, zero excess returns. The essence of the idea can be explained as

follows (for further details see Foster and Young, 2010). Let &,,4,,...,&; be a

sequence of numbers that are the target excess returns over T periods. At the

start of each period t,1<t<T, create a binary option that expires at the end of

the period and gives the buyer of the option the right to the entire portfolio at
the end of the period -- including the accumulated interest over the period at
the risk-free rate plus the premium from the sale of the option itself. Design

the option so that the probability of exercise is p, =48, /(1+4,). Let v, be the

value of the portfolio at the start of the period (including the proceeds from

selling the option), and let v,,, be its value at the end of the period if the

option is not exercised. This is a fair bet if

A-p IV, + P -0=(1+r,)V,, (5)
that is,

Vi /VI = (1"‘51)(1"‘ rn) . (6)

This is a martingale strategy that produces the excess return & with
probability 1/(1+4&) and a total loss with probability & /(1+4&,). Repeated
over T periods it produces the target sequence of returns &,4,,...,8; with

probability [[](@+4&)]". To guard against such strategies — and a great

1<t<T
variety of similar ones — one needs a test that is conservative with respect to

the entire class of nonnegative martingales. CERT is such a test.

The preceding construction shows that the CERT rejection threshold is sharp:



a ‘gamester’ can produce a series of excess returns whose compound value
grows by the a factor 1/p with probability p. This has some striking
implications. It says, for example, that to be 95% confident that a given ‘black
box” portfolio is producing positive excess returns, its compound value must
grow by a factor of at least twenty-fold compared to a portfolio compounding
at the risk-free rate. Although this may seem like an impossibly high
standard to meet, it can be interpreted instead as the handicap that
accompanies a complete lack of transparency. If the portfolio manager were
to reveal more information about his positions and their implied tail risk, he
might not need to meet such a high standard in order to convince investors
that his returns are ‘for real.” In subsequent sections we shall explore the
effect of greater transparency in more detail, and show that the power of the
test can be greatly increased if we have some information about extreme tail

risk.

3. Related literature

There is a related literature on the testing of experts that spans both game
theory and finance (Foster and Vohra, 1998; Lehrer, 2001; Shafer and Vovk,
2001; Sandroni, 2003; Sandroni, Smorodinsky and Vohra, 2003; Olszewski and
Sandroni, 2008, 2010). This literature emphasizes the difficulty of identifying
phony experts who make probabilistic forecasts of future events without
having any knowledge of the process that is actually governing these events.
There are many ways of formalizing this problem and we shall not attempt to
review them here. Broadly speaking, however, our approach differs from this
literature in two key respects. First, we restrict ourselves to a particular class
of stochastic processes (non-negative martingales representing returns from a
tinancial asset) and ask whether a supposed expert is producing returns from

this class or not. Second, we adopt a classical hypothesis-testing approach to



assess how likely it is that a given series of returns was produced by an expert
(at a given level of significance). In particular, this puts the burden of proof
on the experts, who must distinguish themselves from the non-experts by
producing returns that are highly unlikely to have been produced by chance.
In much of the expert testing literature, by contrast, the null hypothesis is
effectively reversed, and the expert is presumed to be expert unless the
evidence is strongly against it. We would argue that, in the context of
financial markets, it is fundamentally very difficult to consistently deliver
excess returns because arbitrage opportunities tend to be eliminated through
competition. Hence the natural presumption is that any given portfolio

manager does not have such expertise until proven otherwise.

There is also a literature in finance that draws attention to the manipulability
of traditional measures of performance, such as the Sharpe ratio and Jensen’s
alpha (Goetzmann, Ingersoll, Spiegel and Welsh, 2007). These authors
propose a novel class of measures that overcome some forms of manipulation.
This class is defined as follows: given a series of period-by-period returns

(4,...,8;) and a parameter p>1, define the function

G(&,d,) = (1—p) M IN[A/T) Y, @+8)1. 7)

1<t<T

Since 1- p is negative, this measure imposes a heavy penalty on realizations
in which any of the numbers 1+48 is close to zero. The measure has the

desirable property that it is invariant to the shifting of returns between
periods, i.e., it makes no difference whether high returns come early or late in
the sequence. However, it is quite different from our approach because it
does not provide a test of significance — a metric for evaluating how [ikely it is
that a given series of returns could have been produced by chance.

Furthermore, unlike our test, it does not correct for unobserved tail risk.

10



The idea of using the martingale maximal inequality to test returns series was
proposed in Foster, Stine and Young (2008). This paper shows how the
martingale approach can be applied to the analysis of actual returns series
from mutual funds and stocks. The present paper takes the analysis
considerably further by showing how to ramp up the power of the approach
by testing a convex combination of leveraged portfolios. The present paper is
also related to an earlier one on the gaming of performance fees (Foster and
Young, 2010). In that paper we showed that it is essentially impossible to
design bonus schemes that reward expert managers who produce excess
returns, and do not reward non-experts who cannot produce such returns. In
other words, there are no monetary incentive schemes that induce managers to
self-select into the expert and non-expert types. By contrast, the present paper
shows that there exist statistical criteria of performance that can in fact

distinguish between the two types.

4. Leveraging the compound excess returns test

The compound excess returns test guards against several different types of
manipulation. The one that we have emphasized so far is unrealized tail risk,
that is, the possibility that the fund could suddenly go bankrupt due to a low
probability event that is hidden from investors. However, even if extreme tail
risk is negligible there are other reasons why portfolio returns may be highly
erratic and difficult to evaluate using standard statistical methods. Some of
these problems arise from common trading strategies, such as market timing
or momentum based strategies. Others may result from more deliberate
manipulation, such as engaging in high leverage early in the returns series
and reducing the leverage later on in order to enhance a performance

measure such as the Sharpe ratio.

11



In this section we shall propose a variant of CERT that can be applied when
extreme tail risk is not an issue, either because the manager offers a guarantee
against large losses, or because the investor can control the downside by
purchasing portfolio insurance. This still leaves the possibility that the returns
are highly nonstationary and manipulated in other ways. We shall
demonstrate a variant of our test that can be applied in this case that is
asymptotically as powerful as the t-test, yet makes no assumptions about the
serial correlation of returns or the parametric form of the returns-generating

process.

The key idea is the following: when extreme tail risk is either absent or can be
controlled through the purchase of portfolio insurance, the portfolio can be
leveraged. We claim that the ability to leverage greatly increases the ability of
the test to discriminate between processes that generate positive excess
returns and those that do not. Furthermore, the level of leverage that
optimizes the power of the test does not need to be known in advance: one
can be completely ignorant about the optimal amount of leverage to use and
still design a test that is very powerful at high levels of statistical significance.
Like the unleveraged test (CERT) this approach guards against type-I errors,
i.e, falsely concluding that a returns series is produced by an ‘expert’
manager when in fact it is produced by chance. It improves on CERT in the
sense that type-II errors have low probability when the returns are well-
behaved, i.e., satisfy the usual assumptions of independence and log

normality.

As before, let A,A,,..,A be the excess returns from a portfolio in each of

periods, net of the risk-free rate. We shall assume that the portfolio can be

12



insured against large downside losses over short periods. This can be done in
several different ways. One possibility is for the portfolio manager to
purchase insurance under a customized policy with an insurer. To obtain
such a policy the manager would normally have to provide the insurer with
considerable transparency regarding his positions and trading strategies. An
alternative is for the investor to purchase protection against downside risk in
the derivatives market (assuming such derivatives are available). This also
presumes a certain amount of transparency, for otherwise market participants
would have no way of knowing how to price the tail risk. In what follows we
shall adopt the second point of view. While this is a somewhat restrictive
assumption, it allows us to separate the issue of unrealized tail risk from the

extent to which returns may be manipulated in other respects.

Let A be the length of a reporting period, e.g., a quarter, a month, or a day.
Assume for simplicity that the price of the portfolio at the start of a given

period t is $1 per share. Given a number 0<b <1, let »,(b,A) be the cost of a
European put with strike price b(1+r,) that expires at the end of the period.
Suppose that we buy enough puts so that 1/ (1+y,(b,A)) of the portfolio is in
shares and y,(b,A)/(1+y,(b,A)) is in puts. Then all shares are protected and

the value of the portfolio at the end of the period will be at least

bA+r,)/ (L+y,(b,A)) times its value at the start of the period.

Given A >1, we can leverage this insured portfolio as follows: buy A dollars
of the insured portfolio and borrow 1-A1 dollars at the risk-free rate. Per
dollar in the portfolio at the start of the period we will then have at least the

following amount by the end of the period

Ab(L+r,)/ A+ y,(b,A)+(Q-A)A+T1y,) . (8)

13



For this to be nonnegative, it suffices that

b/@+7y,(b,A) 211/ 1. 9)

Define b (1) to be the value of b that satisfies (9) as an equality. When the

cost of puts is very small, which will be the relevant case in the results to
follow,

b (1) ~1-1/A. (10)

For each A >1, let the random variable B*(1) denote the return (net of the

risk-free rate) from the insured, leveraged portfolio constructed as above.

Note that B(1) is obtained by truncating the total return 1+A below
b, (1)(d+r,), correcting for the cost of the puts, and dividing by (1+r,). This

leads to the expression

g (1) = Max{B(2) 1+ A} | a1
‘ 1+7,(b(A),4)

By construction we know that
1+ 4B*(1)=0. (12)
We shall say that options are competitively priced if the options market is

efficient and there are no arbitrage opportunities. (This is their risk-neutral

valuation.) In this case we must have

E[A]l=E[B*(1)], (13)

14



for otherwise one could make excess returns by selling portfolio insurance. It

follows that, in a competitively priced options market,

[1@+A) is a nonnegative martingale iff T 1+ AB2(A)) isa

1<s<t 1<s<t

nonnegative martingale. (14)

In practice, of course, we cannot assume that options will be priced at exactly
their competitive (risk-neutral) value. Fortunately we will not need to assume
this for most of our subsequent results to hold: indeed our results on power
hold even if out-of-the-money options are overpriced by a very large factor

(see theorem 2 below).

There is, however, very little reason to think that options are under-priced, that
is, portfolio insurance is too cheap. In other words, it is reasonable to suppose

that in general

E[A]= E[B}(A)]. (15)

This condition implies that H 1+ 1B} () is a nonnegative supermartingale.

1<s<t

We shall assume that this condition holds for the remainder of the paper.

Theorem 1. Let A,A,,..., A be the excess returns of a portfolio over T periods of
length A=1/T . Let B(1) be the excess return in period t from an insured version
of the portfolio that is leveraged at level A >0, and let G(A) be any distribution
function for A. The null hypothesis is that the returns A are zero in expectation.

The null can be rejected at significance level p if

max,.. [, [[T@+2B2(2)1dG(2)>1/ p. (16)

1<s<t

15



Proof. For each 4 >0 let

Cl() =] @+1B}(1). (17)

1<s<t

The null hypothesis is that [ ] @+ A\) is a nonnegative martingale. Assuming

1<s<t

that options are not underpriced, C(4) constitutes a nonnegative

supermartingale. ~ Therefore C= J.: []@+2B}(2)]1dG(4) is a convex

1<s<t
combination of nonnegative supermartingales, which implies that it too is a
supermartingale. Given any p-value, it follows from the martingale maximal

inequality that max,, C>1/p with probability less than p (Doob, 1953).

This concludes the proof of theorem 1.

We shall call the test in (16) the Leveraged Compound Excess Returns Test

(LCERT) with distribution function G(4).
5. Power and leverage

We shall now show that when the distribution function G(A) is judiciously
chosen, LCERT is nearly as powerful as the optimal test when the p-value is small.

Let C, (1) be the compound value of the original asset in continuous time r
starting from an initial value C,(1) =1 with A = 1. Suppose that the asset is

lognormally distributed, that is, for some x and o,

logC, (1) isN((u—0c?12)r,0%7). (18)

16



Here and in what follows we shall always assume that returns are expressed net
of the risk-free rate. The lognormal distribution is consistent with the standard
representation of asset returns as a geometric Brownian motion in continuous
time, and is the basis for Black-Scholes options pricing (Campbell, Lo, and
MacKinlay, 1997).

When the asset is leveraged by a constant factor 4 >0 in continuous time, its

compound value at time 7, C_(1), is lognormally distributed:

logC, (1) is N((Au — A6 | 2)r,A°c°) . (19)

Fix a target time 7* at which to test the null hypothesis at significance level p.
There is no loss of generality in choosing the time scale so that 7*=1, which
will be assumed throughout the remainder of the analysis. The optimal test of
the null hypothesis (2 =0) versus the alternative (x> 0) is the one-sided ¢-

test. The t-test rejects the null (#=0) at time 7*=1 if

_logC, +(c?12)
o

Z >z, where N(z,)=(1-p). (20)

Notice that this test is independent of the amount of leverage 4. Hereafter we
shall usually omit the subscript 1 on the variables Z and C, it being

understood that these are the values at the time (7*=1) the test is conducted.

We are interested in the situation where the returns are lognormal but we do
not know this a priori. (If we did we would use the t-test.) The question is
how much power we lose by using LCERT, which is in principle more
conservative than the t-test, because it makes no assumptions about the

normality or independence of returns among periods.

17



Maximal power loss function. Given o >0, A>0, and pe(0,1), the maximal
power loss function L, (p) is the maximum probability over all x>0 that the t-
test correctly rejects the null (x=0) at level p while LCERT incorrectly accepts

the null at level p.

We shall show that there exist ‘universal’ distributions G(4) such that L. (p)

is small when: i) the value of p is small; ii) the time increments A are short, iii)

put options are competitively priced.

In fact we can weaken the last condition considerably. Say that puts are
conservatively priced if there exists a constant K >1 such that the cost of a put is

at most K times its risk-neutral valuation.

Theorem 2. Let A,A,,.., A be the excess returns of a portfolio over T periods of
length A=1/T . Let B(X) be the excess return in period t from an insured version
of the portfolio that is leveraged at level A > 0. The null hypothesis is that the returns

A are zero in expectation. The null can be rejected at significance level p if

maxlstg{j:[lgll (1+4B; (/1)](12—//11)2}> 1/p. 1)

ii) Suppose in addition that portfolio insurance is conservatively priced and the
returns A come from a lognormal process. Given any & >0, if p is sufficiently small

and A is sufficiently small given p, the maximal power loss from the test (21) is less

than & .
Before turning to the proof, several remarks are in order.

Remark 1. We know from theorem 1 that the first statement (21) holds for any

cumulative distribution function G(1). The essential claim is that under the

18



particular c.d.f. G(4)=A/(1+A) plus fairly weak conditions on the cost of
insurance, the maximal power loss goes to zero with p. Other distribution
functions also have this property; the key is that the distribution have full

support on the positive reals and be fairly ‘flat.”

Remark 2. The test in theorem 2 is “universal” in the sense that it can be
applied with no prior knowledge of the actual distribution of returns. In
particular, there is no presumption that the distribution is lognormal. The
theorem states that if the returns happen to be lognormal, we do not lose much
power by applying our test. At the same time we protect ourselves against
type-I errors in the event that the returns are not lognormal (this follows from

theorem 1). This is a luxury that the t-test does not permit.

The universal aspect of the test is similar in spirit to Cover’s pioneering work
on universal portfolios (Cover, 1991). Cover showed that a convex
combination of leveraged portfolios will grow at a rate that is asymptotically
as fast as the growth rate of an optimally leveraged portfolio. This is true in
our set-up as well. However our focus is on deriving an asymptotic bound on
the maximum power loss relative to a lognormal distribution. This requires a
more specific choice for the distribution of leverage levels; it also requires
factoring in the cost of portfolio insurance, which is not a feature of Cover’s

framework.

Remark 3. The proof will show that it suffices to be able to insure the portfolio
against large downside losses over short periods of time at a cost that is not
unboundedly larger than the risk-neutral value of the options. In particular, we
do not assume that the options market is so complete or well-priced so that
one could simply deduce the distribution of returns from the options prices

themselves.

19



Remark 4. The test is most powerful when the level of significance is high (the
p-value is small). The logic of this may be explained as follows. Suppose for
example that p = .001. Then the compound value of the leveraged portfolio
must grow by a factor of 1000 to pass our test. This is clearly very
demanding, but in this case the t-test is also very demanding. The substance
of the argument is to show that when the returns are lognormally distributed
and they pass the t-test at a high level of significance, then the leveraged

compound value is likely to pass our test as well.

Moreover, we would argue that small p-values are relevant in the context of
financial markets, where there are many funds to choose from. For example,
if there are N funds and we want to know whether the best of them is able to
beat the market, we must correct for the fact that pN of them will pass at
significance level p purely by chance. The Bonferroni correction for
multiplicity implies that to be 95% confident that the best of 100 funds is run

by an expert who can beat the market, it must pass at a level of .0005.

Proof of theorem 2. The first statement of the theorem (21) follows
immediately from theorem 1, expression (16). The essence of theorem 2 is the
second statement, namely, that for this particular distribution of leverage
levels the power loss is arbitrarily small when p and A are sufficiently small.
This result will be established in two steps. First we shall show that the power
loss would be small if the portfolio could be leveraged continuously (A = 0);
then we shall show that the conclusion still holds when A is sufficiently small
but not zero. (Note that, in our framework, the portfolio cannot be leveraged
continuously because time periods are discrete. If continuous leveraging

were possible, then we would be assuming that the price of the portfolio can

20



be represented as a continuous-time process, which would restrict the

distribution much more than we wish to do.)

For each 1>0, let C(1) =C,(4) denote the compound value of the portfolio at

time 7*=1 when it is continuously leveraged at level 4. By assumption,

INC(A) =(Ao)z+Au—A*c*12, where zisN(0,1). (22)

Define the random variable

W=z+ulo. (23)

Completing the square, (22) can be rewritten as follows:

INC(A) =W /2~ (1o —w)> /2. (24)
Let
C= J.:C(/i)g(/i)dﬂ , (25)
where
g(A) =1/ L+ 2)°. (26)

From (24) and (25) we deduce that

C=e"" j: g oW g4 . (27)

Making the change of variable z = Ao —w, we obtain

21



C=

-7%/2
EeWZ’ZI € g(z/oc+w/o)dz. (28)

o w2
Let N(-) denote the cumulative normal distribution. Then we can write

—72/2
-2212

© e W —
z/lo+w/o)dz >
L= )dz> [ ox

9(z/o+w/o)dz

=E[g(z/oc+w/o)|-w<z <W][N(w)—-N(-w)]

>g(w/o)[N(w)—-N(-w)]. (29)

The last inequality follows from the convexity of g¢(4) and Jensen’s

inequality. From (28)-(29) we obtain

2z

C > e 2g(w/ o) [N (W) — N(-w)]. (30)
(o2

Note that this derivation holds for any convex density g(-) on the positive
reals. This fact allows our results to be extended to wvarious other
distributions, though for the sake of concreteness we shall conduct the
remainder of the proof using the specific density g(1)=1/(1+2)?. In this case

(30) takes the form
C > (N27)e" ?[o 1 (o +W)?][N (W) — N (~w)] . (31)

We now turn to the estimation of the maximal power loss function L. (p)

when A=0 (continuous leverage). Power loss occurs whenever LCERT
accepts the null and the t-test rejects. On the one hand, LCERT accepts the null

at significance level p if
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max{C, :7<13<1/p. (32)

This obviously implies that C =C, <1/ p. On the other hand, the t-test rejects

the null at level p if

W=z+ulo>z,, where N(z,)=1-p. (33)

Therefore the following overestimates the probability of power loss, that is,

L2 (p) is less than

P(z,<wand C<1/p) . (34)

From this and (30) we conclude that L. (p) is less than

P(z, <wand (V27)e"[c/ (o +W)*][N(W)~N(-w)]<1/p).  (35)

Consider the right-most inequality in (35), namely,

(27)e" [/ (o +W)? ][N (W) = N (-w)] <1/ p. (36)

Taking logs of both sides we can rewrite this as follows:

w2 <2In(/ p)-In(27) + 4In(/o + W/ Vo) —2In(N (W) — N (-w)). (37)
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Define the number

¢, =+2In(L/ p). (38)

From (34)-(38) we deduce that the maximum power loss at significance level p is

strictly less than P(we | ), where the interval | is defined as follows

I, ={w:z, <w < \/c; —In@27) +4In(o +wW/Jo)=2In(N(W) - N(-w))}. (39)
Lemma 2.1. The length of the interval |, goes to zero as p goes to zero.

Proof. Let ¢ > 0. First we shall show that

wel, = w<c, +¢ for all sufficiently small p. (40)

Then we shall show that

¢, -z, < ¢ for all sufficiently small p. 41)
To establish (40), note that we |, implies z, <w, which implies
N(w)—N(-w)>N(z,)-N(-z,)=1-2p. (42)
From this we conclude that

w2 <c2 —In(27) + 4In(Vo +w/ Vo) -2In-2p), (43)
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and hence

w—c, <(w+c,) [-In(27) + 4In(Jo +w/ o) -2In(L-2p)] . (44)

We know that z, > as p—>0. Since w>z , the right-hand side of (44) is

smaller than ¢ for all sufficiently small p. This establishes (40).

To prove the lemma, it remains to establish (41), namely, C,—Z,<¢& for all
sufficiently small p. We can estimate the value of z, using the tail

approximation for the normal distribution [Feller, 1957, p.193]:

2
—2;/2

p=1—N(zp)>eﬁ(zgl—z;3). (45)
From (45) we deduce that
c; =2In1/ p) < z; +2In(27) +2In(z}) - 2In(z; -1) . (46)
Hence
¢, —Z, <[2In(2z)+2In(z))1/(c, +2,) . (47)

Clearly the right-hand side of (47) is less than ¢ when p is sufficiently small.
This establishes (41). Together with (40), it follows that the length of the

interval | is less than 2¢ for all sufficiently small p. This concludes the

proof of Lemma 2.1.
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The preceding shows that, given any small ¢ >0, for all sufficiently small p

the power loss L. (p) is less than
P(z, <w <z,+2¢). (48)

By definition, W=z + u/ o where zis N(0,1), hence L} (p) is less than

2
2-ulo+2s @72 12

£ dz. 49
wsle J2n *9)

maxﬂj

When p is sufficiently small the right-hand side of (49) is less than 2&/+/27 .
We have therefore shown that, for each o, the maximum power loss (over all
) is arbitrarily small provided that p is sufficiently small and the portfolio is

leveraged continuously.

It remains to be shown that this statement remains true when the portfolio is
leveraged over discrete time intervals of sufficiently short duration. Recall
that the number of discrete periods is T =1/A where A >0 is the length of a
period. Given leverage level A >0, the compound value of the leveraged

insured portfolio at the time the test is conducted is

C*(1) =] @a+2B>(1) . (50)

1<t<T

The overall value of the portfolio is

C* = I: [T @+4BA(A)g(R)dA. (51)

1<t<T
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We wish to compare the following values at the time 7*=1 when the test is
conducted:
C = the value of the continuously leveraged portfolio

C*= the value of the discrete-time leveraged portfolio

We claim that, when A is small, C*/C is close to one with high probability in the

region where power loss occurs.

To establish this claim, recall that we estimated power loss in the

continuously leveraged case by writing (see expression (28))

C=

2
[272_ 5 w efz 12
e /ZJ'

zlo+w/o)dz. 52
e aelarwlo) (52)

The integral can be broken into two parts as follows

w e—22/2 we—ZZ/Z
z/lo+w/o)dz+
L7 o 9],

g(z/o+w/o)dz. (53)

In our previous estimation of C we dropped the second term in this
expression (see (29)). In particular, we showed that power loss is small even
when we underestimate C by ignoring realizations of z=Ac—-w that are

greater than w. Let us define

—-22/2
ﬂewz/zj  g(zlo+wlo)dz. (54)
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In effect, C results from truncating the distribution of 1’s to those satisfying
z=Ac—-w<w, that is, Ao <2w. From the earlier part of the proof we know

that, when p is sufficiently small, w< c,+¢&, and in particular w< c, +1. Thus

C = the value of the continuously leveraged portfolio when the

distribution of A's is truncated at A = 2(c,+)/o. (55)

As before, let y(4,A) denote the cost of insuring one dollar’'s worth of the

portfolio for a period of length A at a strike price that allows leveraging at
level 4 >1. Since the process is i.i.d. we can assume this cost is the same in all
periods. When y(A4,A) is small, the required strike price is approximately

equal to 1-1/ 1, as we observed earlier (see expression (10)).

Let q(4,A) be the probability that a put option with these characteristics is
exercised. In other words, ¢(4,A) is the probability that the portfolio loses at

least 1/ A of its value by the end of the period. By assumption, the logarithm
of the portfolio returns over a period of length A have the distribution
N(uA—-0’A/2,6°A) for some £ >0. In an efficient market, the cost of such an

option is the probability of exercise times the conditional value if exercised,

under the risk neutral assumption that ¢#=0. Since the conditional value
when exercised is less than 1, the cost q(4,A) of such an option satisfies
q(4,A) =P(x<In(1-1/ 1)) where x=z0+vVA—-0°A/2 and zis N(0,1). (56)

When A >1 we have the inequality In(1-1/ 1) <-1/ A4, hence

q(4,A) < P(Xx< -1/ 1) = P(zoJA — A1 2< -1/ )

57
=P(z<-1/ AoA+o\A12) >
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When A is small we have

—1/ AoNA +oJA12<-11220+/A . (58)

From (57), (58), and the standard approximation of the tail of the normal we

conclude that for all sufficiently small A,

q(4,A) < 210~ /Ae Vo™ (59)

In fact, we are only assuming that options are conservatively priced, that is, for
some constant K >1, »(4,A) is at most K times the risk neutral price.
Therefore y(A,A) is at most K times the probability of exercise q(4,A), and

hence

7(A,A) < 2K Ao [Ae V3™, (60)

To leverage the insured portfolio at level A requires buying A puts per
period for T =1/A periods. This reduces the compound growth of the

portfolio by a factor of at most 1—(1— Ay(4,A))”*, which by (60) is at most

ZKZZGA—l/Ze—US%ZUZA ) (61)

Note that when A is sufficiently small, this factor is smaller than & for all
1< A< . Thus the cost of the options does not reduce the compound growth

of the portfolio by very much when the time periods are short.

There are, however, two further “costs” to insuring the portfolio. First, there
is a positive probability that the value of the insured portfolio will fall to zero

at some time before the test is conducted; in fact this occurs in any period
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where the options are exercised. (By contrast, the value of a continuously
leveraged, lognormally distributed asset almost surely never reaches zero.)
The second potential cost is that the value of the portfolio over each time
period does not exactly follow a lognormal distribution with leverage level A,
because the quantities of the portfolio and the risk-free asset are not
rebalanced to keep the leverage constant within each period. To complete the
proof of theorem 2, we need to show that with high probability these factors
have only a small effect on the cumulative value of the portfolio when the test

is conducted.

Let us recall that

C = the value of the continuously leveraged portfolio when the

distribution of A’s is truncated at 2 =2(c, +1)/ o

We wish to compare this with

C" = the value of the discrete-time leveraged portfolio when the

distribution of A’s is truncated at A = 2(c,+)/o.

The preceding argument shows that when A is sufficiently small, the cost of
the puts reduces the value of the insured portfolio C* by a factor less than &

(compared to C). This assumes however that the puts are not exercised: if in
any period a put is exercised, the value of the insured portfolio drops to zero.

From (59) we know that the probability of this event is at most

max,_,_,{A™q(4,A)} < max,_,_{2Acon 2 PH ey

62
<2 /T O_A-l/ze—uszza?A ( )
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The latter can be made less than ¢ by taking A to be sufficiently small. We
have therefore shown that for all sufficiently small A: i) the probability is less
than ¢ that the discrete-time portfolio C* will go bankrupt; ii) if it does not
go bankrupt, the cost of the puts decreases the value by a factor less than &

compared to C.

Finally, we must consider the fact that the discrete-time portfolio does not
grow at exactly the same rate as the continuously leveraged portfolio within
each period. The difference between the two rates is small in any given period
with high probability; we claim that the cumulative difference over 1/A

periods is also small with high probability.

To establish this claim, fix 1< 1. Let R (1) be the growth rate in period t of

the portfolio when continuously leveraged at level A throughout the period.

Let R*(1) be the growth rate of the discrete-time portfolio when leveraged at

level A at the start of period t. The following shows that the cumulative
difference between these two rates over T periods is very small with high

probability.

Lemma 2.2. If A is sufficiently small, Z (R*(A)—R (1)) <& with probability

I<t<T

atleast1 —e¢.

Proof. The growth rate of the continuously-leveraged portfolio in period t is

Rt (/I) — ethO'\/ZJrlyA—lZO'ZA/Z _1. (63)
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The growth rate of the discrete-time portfolio in period t is

RtA (/1) — /fi(eZ[U«/X-*—yA—o-ZA/Z _1) . (64:)

Note that the random variable Z, is N(0,1) and is the same in the two

expressions. From the Taylor’s expansion e* =1+x+x*/2+...we see that (63)

can be written as follows

(A) = AZ,0JA + ApA — 226 A 12+ A°Z262A 12+ O(AY?) f (1) . (65)
t t

The coefficient on the residual term, f (1), depends on x, 1, and o, but the

latter two are fixed whereas y is not. Similarly we have

MA) = AZ, oA + ApA— AN 2+ AZ2PA12+0(AY) F(w) . (66)
t t

Therefore we can express the difference between the growth rates as follows

for some bounded function h(u):

RA(A)-R(4) = (Z2 ~1)(A* - A)o*A 2+ O(A%h(w) . (67)

Next we estimate the cumulative difference over T =1/ A periods:

> (RN -R () =5(4* -2)a*A Y (Z; -1)+O(A)h(x). (68)

1<t<T I<t<T

The T draws of Z, are independent, Z7 -1 has mean zero and variance 4,

hence

(27 -1) is approximately N(0,4/A). (69)
t

I<t<T
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Therefore the overall difference in growth rates between the two portfolios is

approximately

> (RY(A) ~R(A) W (22~ 2)o*A) + O(v/A)h(x) where W is N(0,2). (70)

I<t<T

For a given value of x4, we can make this difference less than & with

probability at least 1-¢ by choosing A to be sufficiently small, say 0<A<A .

This concludes the proof of Lemma 2.2.

To complete the proof of theorem 2, let us recall that we are estimating the
loss of power in the worst case, that is, for values of x that maximize the
probability of accepting the null when the f-test rejects. When u is
sufficiently large, say greater than 1, the probability that our test accepts the
null is less than ¢, hence the power loss must also be less than ¢. (This is an
immediate consequence of expression (19).) Thus in expression (70) it suffices

to consider values of u satisfying x4 <z. The function h(x) is uniformly
bounded above for all x <, hence there is a number A>0 such that (70)

holds uniformly for all A such that 0<A<A .

Putting the various parts of the argument together, we have shown that there

are numbers A>0 and % >O0such that: i) power loss is less than & when
1> ;i) when <z and 0<A<A, the cumulative value of the insured

portfolio C* closely approximates the cumulative value of the continuously

leveraged portfolio C in the sense that

C* > (1-2¢)C with probability at least1—2¢ . (71)
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We already know, however, that the maximum power loss goes to zero as p
goes to zero for the continuously leveraged portfolio C. It follows from (71)

that the same holds for the insured discrete-time portfolio C*. This completes

the proof of Theorem 2.
5. Targeting the leverage

Theorem 2 demonstrates the existence of a strategy-proof test that has good
power even when one has no prior information about the variance of the
underlying process. However, the maximal power loss function is difficult to
calculate explicitly because of its dependence on the unknown o and on the
significance level p of the test. We can obtain a clearer picture of the
magnitude of the power loss if we assume that o is known with high
accuracy to begin with. In this case we do not need to integrate over a
distribution of leverage levels; we can instead choose a single level that
optimizes the power of the test conditional on our estimate of o. This

situation is summarized in the following result.

Theorem 3. Let A,A,,..., A be the excess returns of a portfolio over T periods of

length A=1/T . Let o be an estimate of the standard deviation of the returns, and

let p be the desired level of significance. Let B(A") be the excess return in period t

from an insured version of the portfolio that is leveraged at level

A =c, /o where ¢, =/2In(l/ p). (72)

The null hypothesis is that the returns A are zero in expectation. The null can be

rejected at level p if
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C*(A) =] @B (A7) >1/p. (73)

1<t<T

If portfolio insurance is conservatively priced and A is sufficiently small, and if the

estimate o is correct, the maximal power loss of this test is at most

2N(5(z, —c,))-1. (74)
Proof of theorem 3.
We shall estimate the power loss in the continuous case, from which the
conclusion in the discrete case follows by arguments similar to those in the
proof of theorem 2. When the portfolio is continuously leveraged at level
A >0, its value at the time when the test is conducted (7* =1) is

INC(A) = (A0)z+ Au—(Ao)* 12 where 7 is N(0,1). (75)

Power loss occurs when InC(4) <1/ p and the t-test rejects the null, that is,

when

log(1/ p)—Au+(Ao)? 12

Zp<ZS
Ao

(76)

The probability of this event is minimized when the right-hand side is as

small as possible, which occurs (for a given x and o) when

A=c,/o. Call this the optimal amount of leverage

ﬂ*(p,a)chla. (77)
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Given our estimate o, we will use the optimal amount of leverage provided
our estimate of o is accurate, which is assumed in the statement of the
theorem. The important point is that the optimal leverage does not depend on

4 (which is assumed to be unknown).

Substituting the optimal A4~ into (76) and rearranging terms, we conclude that

power loss occurs when

z,<z+ulo<c,. (78)

For a given o and p, the probability of event (78) is maximized when u/c

lies halfway between Z, and C, that is, when

u=(z,+c)ol2. (79)

Therefore the power loss is at most

P(z, <z+(z,+c,)/2<c,)=P(5(z,-c,)<z<.5(,-z,))
=N(5(c, -2,))-N(5(z, -c,)) (80)

=2N(.5(z, -¢c,)) -1.

However, we already know from (41) that (z,-c,)—>0asp —0. This

completes the proof of theorem 3.
We are now in a position to compare the maximal power loss of our test when

o is known and when o is unknown. The first case is covered by theorem 3

and the second by theorem 2. These are admittedly somewhat extreme
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situations: in practice one might have a preliminary estimate (or guess) about
o that is subject to some uncertainty. In this case one could choose a
universal distribution of leverage levels that is centered around one’s best
guess (as we shall show explicitly below), and one would be protected if one’s

guess turns out to be wrong.

To fix ideas let us begin by considering the maximal power loss when o is

known. In this case we have the upper bound

f(p)=2N(5(z, —c,))~1. (81)

The solid curve in figure 3 shows the behaviour of f(p) for small values of p.
Of course this is only a theoretical upper bound on the maximal power loss,
and it was obtained by making a number of approximations. The most
significant of these was that we estimated the power loss using the compound
value of the portfolio at the time the test is conducted rather than its maximal
value up to the time that the test is conducted. The squares in figure 3 represent
the power loss over many simulations when this weaker test is used. The
close correspondence between the squares and the curve show that our

estimate, f(p), is quite close to the actual power loss using this weaker test.

When we simulate the process using the stronger test (based on the maximal
compound value), we obtain the dotted line shown in Figure 3. This shows
that the actual power loss from the test is considerably smaller than the
theoretical upper bound in (81). For example, when p = .001 the maximal
power loss (based on simulations) is on the order of 15%, whereas the upper
bound we computed is about 25%. A 15% chance of a type-II error is a

modest price to pay for the extra protection afforded by our test compared to
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the t-test, which, as we have seen, is easy to game.
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Figure 3. Maximal power loss of LCERT as a function of the significance level
p. The curve represents the theoretical upper bound. The squares represent
the power loss as estimated from simulations when the weaker form of the
test is used (the compound value of the portfolio at the time of the test). The
dots represent the power loss as estimated from simulations when the
stronger form of the test is used (the maximal compound value up to the time
of the test).

We should stress that all of these results involve a worst-case analysis, that is,
we are estimating the maximum power loss that could occur if the mean of
the distribution happens to fall in a particular range. For most values of u
the power loss will be very small at a given level of significance. To illustrate
this point, let us fix o and p and compute the power loss for different values
of u. Since the loss depends only on the ratio x#/o, we may as well assume
that o=1. The results for p = .001 are illustrated in figure 4. Note that
although the maximal power loss is about .15, it is less than .05 outside of the

range 2< u<5.
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Figure 4. Power loss as a function of 4 when o =1 and p=.001.

6. Comparing power loss under targeted versus distributed leverage

When we do not have a good prior estimate of o we need to employ a
universal test such as the one in theorem 2. In this case the power loss can be
considerably higher. This is the price we must pay for lack of information
about the variance of the true distribution. To estimate the magnitude of the
difference, let us recall that under the universal test, power loss occurs in the

interval

Z, <W S\/cf)—In(27z)+4ln(\/g+W/\/g)—2In(N(W)—N(—W)), (82)

where W=7+ /o and zis N(0,1). Since w> 2z, , the term N(w)—-N(-w) is at
most 1 and at least 1-2p. Hence when p<.01 the quantity
2In(N(w)-N(-w)) is negligible, and we have the nearly equivalent

expression
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2, <W <\[c2~In(27) +4In(o +w/ Vo) . (83)

This defines a power loss interval whose lower end-point is z, and whose

upper end-point is the value of w that solves
w2 =c2-In(27) +4In(Vo +w/ o). (84)

Call this value d (o). It is straightforward to show that d (o) is strictly
larger than ¢, for all o. Indeed if we define d, =min_d (o), then d is the

solution to the equation,
d>=ci+In(d?)+In(@8/ ), (85)
which is certainly larger than c, .

Suppose now that we have an estimate or “guess” about the value of o, say
&, but we want to be protected against type-I errors if our guess turns out to
be wrong. Let p be the desired level of significance. We can then rescale the
universal distribution so that the smallest power loss interval occurs precisely
when our guess is correct, that is, when o=6. It can be shown that this is

achieved by choosing the density

d, /&

9= (A, 1&)+ A7

(86)

It is straightforward to show that the minimum power loss interval (the
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analog of (83)) occurs when o =&, and this interval is precisely (z,,d ].

We can now compute an upper bound on the power loss. This will depend, of
course, on how far off our estimate (&) is from the truth (o). There is no loss
of generality in assuming that & =1, in which case we can use the density

g(A)=d,/(d,+ A)?. The preceding argument shows that the following is an

upper bound on the maximum power loss for given p and o':

L,(0)=2N(5(d (o) -2,)) -1, (87)

where d (o) is the value of that solves equation (84).

Table 1 gives values of Ep (o) for various choices of o. Notice that they are

very stable across radically different values of o. For example, even if the
estimate is off by a factor of 10, the power loss is only slightly higher than if

the estimate is on target.

Let us compare these values with the power loss when o is known in

advance and we choose the single level of leverage (namely, 1=c /o) that

optimizes power given this o. This is the solid curve in figure 3. For the
range of p-values in table 1, the power increases by about .20. But what if our
estimate of o turns out to be wrong? In this case the loss of power can be
much greater than if we used the universal distribution. This is shown in
table 2 below, which gives the bound on power loss when our prior estimate
is 6=1 and the true value is o. Comparing these values with the
corresponding values in table 1, we see that the universal distribution offers
considerably more protection (lower power loss) when the prior estimate of

o is off by a factor of two or more. We should also remark that the numbers
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in both tables are upper bounds on the maximal power loss function. As we
saw in figure 3, the actual loss will be considerably less (on the order of .10

less) for this range of values of o and p.

p 107 10° 10 10° 10°

o

01 57 5l 47 44 42
02 52 47 44 41 .39
05 48 43 40 .38 .36
1 46 42 .39 37 .35
2 47 43 40 .38 .36
10 .56 51 47 44 42

Table 1. Upper bound on the power loss when the true standard deviation is

o, the estimate is =1, and the distribution g(4)=d /(d, + A)? is used.

p 107 10° 10" 10° 10°

0.1 .99 1.00 1.00 1.00 1.00
0.2 .99 1.00 1.00 1.00 1.00

05 54 .56 .59 .61 .64
1 28 25 .23 21 20
2 54 56 .59 61 64

10 1.00 1.00 1.00 1.00 1.00

Table 2. Upper bound on power loss when the true standard deviation is o ,

the estimate is & =1, and the single leverage level 1=c, is used.
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7. Conclusion

In this paper we have proposed a test of portfolio returns that is appropriate
when an investor has no knowledge of the portfolio manager’s investment
strategy. First, the test protects against the possibility that there is unrealized
tail risk.  This is important because managers typically have a strong
incentive to take on such risk in order to enhance their performance bonuses.
The level of risk can be low and still create the appearance of sizable excess
returns before the risk is realized. For example, an annual excess return equal
to 5% is impressive, yet it can be driven by tail risk that in expectation will
take 20 years to show up. Second, the test is valid for returns that are serially
dependent and not normally distributed, a situation that can easily result
from dynamic trading strategies and market timing schemes. Third, while the
test is inherently conservative, it can be turned into a powerful test if we have
some information about the price of insuring against extreme tail risk.
Contrary to what one might expect, the price of insurance need only be
roughly correct -- say within an order of magnitude of the risk-neutral price --

for the test to have high power.
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