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Abstract. Alpha is the amount by which the returns from a given asset exceed the 

returns from the wider market. The standard way of estimating alpha is to 

correct for correlation with the market by regressing the asset’s returns against 

the market returns over an extended period of time and then apply the t‐test to 

the intercept. The difficulty is that the residuals often fail to satisfy 

independence and normality; in fact, portfolio managers may have an incentive 

to employ strategies whose residuals depart by design from independence and 

normality. To address these problems we propose a robust test for alpha based 

on the Markov inequality. Since it based on the compound value of the estimated 

excess returns, we call it the compound alpha test (CAT). Unlike the t‐test, our test 

places no restrictions of returns while retaining substantial statistical power. The 

method is illustrated on the distribution for three assets: a stock, a hedge fund, 

and a fabricated fund that is deliberately designed to fool standard tests of 

significance. 

1 



 

        

 

                     

                             

                     

                       

                     

                       

                     

                 

                             

                      

 

                         

                       

                       

                   

                           

                           

                           

                

 

                       

                         

                     

1. Testing for alpha 

An asset that consistently delivers higher returns than a broad‐based market 

portfolio is said to have positive alpha. Alpha is the mean excess return that results 

from the asset manager’s superior skill in exploiting arbitrage opportunities and 

judging the risks and rewards associated with various investments. How can 

investors (and statisticians) tell from historical data whether a given asset 

actually is generating positive alpha relative to the market? To answer this 

question one must address four issues: i) multiplicity; ii) trends; iii) cross‐

sectional correlation; iv) robustness. We begin by reviewing standard 

adjustments for the first three; this will set the stage for our approach to the 

robustness issue, which involves a novel application of the Markov inequality. 

The first step in evaluating the historical performance of a financial asset requires 

adjusting for multiplicity. Assets are seldom considered in isolation: investors 

can choose among hundreds or thousands of stocks, bonds, mutual funds, hedge 

funds, and other financial products. Without adjusting for multiplicity, statistical 

tests of significance can be seriously misleading. To take a trivial example, if we 

were to test individually whether each of 100 mutual funds “beats the market” at 

level p = 0.05, we would expect to find five statistically significant p‐values when 

in fact none of them beats the market. 

The literature on multiple comparisons includes a wide variety of procedures to 

correct for multiplicity. The simplest and most easily used of these is the 

Bonferroni rule. When testing m hypotheses simultaneously, one compares the 
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observed p‐values to an appropriately reduced threshold. For example, instead of 

comparing each p‐value pi to a threshold such as p = 0.05, one would compare 

them to the reduced threshold p /m. 

Modern alternatives to Bonferroni have extended it in two directions. The first, 

called alpha spending, allows the splitting of the alpha into uneven pieces; see 

for example Pocock (1977) and OʹBrien and Fleming (1979). The second group of 

extensions provides more power when several different hypotheses are being 

tested. These can be motivated from many perspectives: false discovery rate 

(Benjamini and Hochberg 1995), Bayesian (George and Foster, 2000), information 

theory (Stine, 2004) and frequentist risk (Abramovich, Benjamini, Donoho, and 

Johnstone, 2006). One can even apply several of these approaches 

simultaneously (Foster and Stine, 2007). In the case of financial markets, 

however, the natural null hypothesis is that no asset can beat the market for an 

extended period of time because this would create exploitable arbitrage 

opportunities. Thus, in this setting, the key issue is whether anything beats the 

market, let alone whether multiple assets beat the market. 

A second key issue in evaluating the historical performance of different assets is 

the need to de‐trend the data. This is particularly important for financial assets, 

which generally exhibit a strong upward trend due to compounding. Consider, 

for example, the price series shown in Figure 1 for three different types of assets 

that span several different time periods. 
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Figure 1. Value of three assets observed monthly over different time periods. 

Berkshire Hathaway is a stock that is famous for its superior performance over a 

long period of time. TEAM is a fund that is based on a dynamic rebalancing 

algorithm which seeks to reduce volatility while maintaining high returns 

(Gerth, 1999; see also Agnew, 2002). This fund is especially interesting because 

(unlike many other hedge funds) its rebalancing strategy is explicit and its 

holdings are transparent: one knows at all times what assets are contained in the 

portfolio. By contrast the Piggyback Fund is assumed to be entirely 

nontransparent (to its investors). The reason is that it is based on an options 

trading strategy that is designed to fool investors into believing that the fund 

manager is able to ’beat the market’ when in fact he is manufacturing high 

current returns by hiding large potential losses in the tail of the distribution (Lo, 

2001; Foster and Young, 2010). 

The simplest way to de‐trend such data is to study the period‐by‐period returns 

rather than the value of the asset itself. That is, instead of focusing on the value, 

Vt , one studies the sequence of returns (V Vt  t1) /Vt1 over successive time periods 
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t (see figure 2). The hope is that the returns are being generated by a process that 

is sufficiently stationary for standard statistical tests to be applied. As we shall 

see, this hope may not be well‐founded given that financial portfolios are often 

managed in a way that produces highly nonstationary behavior by design. 

The third issue, cross‐sectional correlation, arises because returns on financial 

assets often exhibit a high degree of positive correlation. The standard way to 

deal with this problem is the Capital Asset Pricing Model (CAPM), which 

partitions the variation in asset returns into two orthogonal components: market 

risk, which is non‐diversifiable and hence unavoidable, and idiosyncratic risk. 

By construction, idiosyncratic risk is orthogonal to market risk and measures the 

rewards and risks associated with a specific asset. It is the mean return on this 

idiosyncratic risk, known as alpha, that draws investors to specific stocks, mutual 

funds, and alternative investment vehicles such as hedge funds. 

Figure 2. Monthly returns series for the three assets 

The standard way to estimate the alpha of a particular asset or portfolio of assets 

such as a mutual fund is to regress its returns against the returns from a broad‐
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based market index such as the S&P 500 after subtracting out the risk‐free return. 

Specifically, let the random variable Mt denote the return generated by the 

market portfolio in period t , and let rt be the risk‐free rate of return during the 

period, that is, the return available on a safe asset such as US Treasury Bills. The 

t th iexcess return of the market during the period is M  r . Let Y denote the t t t 

return in period t from a particular asset (or portfolio of assets) identified by the 

superscript i. The portfolio’s excess return is defined as Yt
i  rt . CAPM posits that 

the excess return on each asset in the tth period is a multiple of the excess return 

on the market plus a random term  t
i that has mean zero and is uncorrelated 

with the market excess returns, that is, 

i i iY  r   (M  r )   , (1)t t t t t t 

where E [ ]  0 E [ (t M  t )]  0   t
i and  i t r  . 

The coefficient t
i is the beta of the asset. Beta describes how returns on the asset 

co‐vary with returns on the market as a whole, while  t
i is the idiosyncratic risk 

associated with the asset. A portfolio that leverages stocks has beta larger than 

1, whereas a portfolio of bonds has beta approaching 0. Typically beta will vary 

over time as the portfolio manager changes his level of exposure to the market. 

Let the random variable Yt  denote the return on a specific asset in time period t, 

where we drop the superscript i. The returns on the asset beat the market if in 

expectation  t
i  is positive.  If this is the case, an investor could increase his 

overall return by investing a portion of his wealth in this asset instead of in the 

market.  Moreover, this increased return could be achieved without exposing 
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himself to much additional volatility, provided he puts a sufficiently small 

proportion of his wealth in the asset. 

A second way in which an actively managed asset (such as a mutual fund) can 

beat the market is through market timing. Suppose that the manager invests a 

proportion pt  of its total wealth in the market at time t and leaves the rest in cash 

earning the risk-free rate rt . The manager can adjust pt  depending on his belief 

about future market movements.  If he expects the market to rise he might buy 

shares on margin, which corresponds to pt 1 and t > 1.  If the manager 

expects the market to fall, he can short the market which implies that pt  0  and 

t  < 0. A portfolio manager who successfully anticipates market movements is 

just as attractive as a manager who invests in assets which intrinsically have 

positive alpha.  The asset labeled TEAM in figures 1 and 2 is an example of an 

actively managed portfolio in which the relative proportions allocated to cash 

and the market are rebalanced at the end of each period.  

The standard way of estimating alpha is first to estimate the manager’s level of 

exposure to the market at each point in time ( t
i ), and then to compute the mean 

of the residuals   (1 / T )   t
i as defined in (1). However, this fails to take 

1 t T  

successful market timing into account, which can be just as valuable as choosing 

specific investments. We therefore propose a generalization of alpha that 

incorporates skill in market timing as well as skill in choosing superior 

investments. 
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This concept is defined as follows. Given returns data for periods t = 1, …, T, let 

M  M  r , Y  Y  r . (2)t t t t t t 

Compute the means M  (1/ T )  M t and Y  (1/ T )  Y t , and let 
1 t T  1 t T  

    (Y Y M )(  M )t t 
1 t T  . (3) 

 (M t M )2 

1 t T  

Thus  is the coefficient in the OLS regression of Y on M t over the entire 

observation period. 1 We can then formally rewrite (1) as follows: 

Y  M  A , where A     M  . (4)t t t t t t t 

The random variable At represents generalized alpha, which includes the returns 

from market timing and excess returns from the specific assets in the portfolio. 

The standard way of conducting a test of significance would be to apply the t‐test 

to the intercept in the regression specified in (4). However, the t‐test presumes 

that the residuals At satisfy independence and normality, and there is no 

particular reason to think that these conditions hold in the present case. Indeed, 

when we graph the residuals from our three candidate assets over time, it 

1 We remark that  can also be interpreted as a weighted average of the period‐by‐period values 

t , weighted by the relative volatility of the asset in each period. 
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becomes apparent that two of them (Team and Piggyback) exhibit highly erratic, 

nonstationary behavior (see Figures 3‐4) that renders the t‐test completely 

inappropriate. 

Figure 3. Market‐adjusted returns versus market excess returns 

Figure 4. Time series of market‐adjusted returns for the three assets. 

In the case of Team, the market-adjusted returns exhibit a cyclic pattern with 

bursts of high volatility followed by periods of low volatility (see Figure 4), and 

residuals that have a peculiar ‘butterfly’ shape (see Figure 3).  These features are 

direct consequence of Team’s dynamic rebalancing strategy.  At any given time 
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the fund is invested in a mixture of cash (earning the risk-free rate of return) and 

the S&P 500. At the end of each period funds are moved from cash to stock if the 

risk-free rate in that period exceeded the market rate of return, and from stock to 

cash if the reverse was true.  For purposes of illustration we chose the target 

proportions to be 20% stock, 80% cash, and rebalanced at the end of each 80-

month period from May 1928 to December 2010.  While this particular choice of 

targets does not produce especially high returns, it illustrates the point that the 

residuals from rebalancing strategies can be highly non-stationary. 

The returns from the Piggyback Fund exhibit even more erratic behavior. The 

reasons for this will be discussed in section 3. Suffice it to say here that these 

returns are produced by a strategy that is designed to earn the portfolio manager 

a lot of money rather than to deliver superior returns to the investors. However, 

since the natural aim of portfolio managers is to earn large amounts of money, 

statistical tests of significance must accommodate this sort of behavior. 

The purpose of this paper is to introduce a robust test for alpha that is immune to 

this and various other types of manipulation. The test is simple to compute and 

does not depend on the frequency of observations. A particularly important 

feature of the test is that it corrects for the possibility that the manager’s strategy 

conceals a small risk of a large loss in the tail. This is not a hypothetical problem: 

empirical studies using multifactor risk analysis have shown that many hedge 

funds have negatively skewed returns and that as a result the t‐test significantly 

underestimates the left‐tail risk (Agarwal and Naik, 2004). Moreover, negatively 

skewed returns are to be expected, because standard compensation arrangements 

give managers an incentive to follow just such strategies (Foster and Young, 

2010). 
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The plan of the paper is as follows. In section 2 we derive our test in its most 

basic form. The essential idea is to adjust the returns by first subtracting off the 

risk‐free rate, then correcting for overall correlation with the market as in (3‐4), 

and then compounding the residuals. We then apply the Markov inequality to 

test whether the compound value is growing, i.e. whether the final value is larger 

than the initial value with a high degree of confidence. 

Section 3 shows why it is vital to have a test that is robust against erratic and 

nonstationary behavior of the residuals. In particular, we show that the t‐test 

applied to the residuals leads to a false degree of confidence in the Piggyback 

Fund, which is constructed so that it looks like it produces positive alpha when 

this is not actually the case. In a second example we show why some other 

nonparametric tests, such as the martingale maximal inequality, are also 

inappropriate in this setting. The difficulty is that the fund manager can 

manipulate the degree of correlation with the market so that the overall degree of 

correlation is low, but in some periods the correlation is high. Thus the end value 

of the fund may not be impressive even though its interim value is large. This 

type of manipulation does not fool the Markov test, which is applied only to the 

final value of the fund, but it can fool the martingale maximal inequality, which 

is based on the maximum value achieved over the period. 

In section 4 we show how to boost the statistical power of the test by leveraging 

the asset. First we show that if the returns of the asset are lognormally 

distributed with known variance, then we can choose a level of leverage such 

that the loss in power is quite low relative to the optimal test, which in this case 
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is the t‐test. In fact, for a p‐value of .01 the loss in power is less than 30%, and for 

a p‐value of .001 the loss in power is only about 20%. We then show how to 

extend this approach to situations where we do not know the mean or variance 

of the asset in question. In this case we create a hypothetical composite portfolio 

such that each asset in the portfolio represents a different level of leverage 

applied to the original asset. We invest equal amounts in each of these 

hypothetical assets at the start of the observation period, compute the maximum 

final value of the portfolio at the end of the period, and apply our Markov test at 

a given level of significance. It can be shown that this leveraged version of the 

test is asymptotically as powerful as the optimal test when the returns are 

lognormally distributed, which is the standard assumption for many financial 

assets. 

In section 5 we illustrate how our approach can be applied to data, focusing on 

the particular case of Berkshire. First we derive the market‐adjusted monthly 

returns by subtracting off the risk‐free rate and correcting for correlation with the 

market. Then we apply different amounts of leverage to these returns, taking 

into account the costs associated with higher levels of leverage (because of the 

need to insure that the fund does not go bankrupt in any given period). The 

resulting Berkshire p‐value is quite impressive – about 0.00095. 

We need to consider, however, that we chose this stock precisely because it has 

been a stellar performer over a long period of time. If Berkshire is the best out of 

a population of 500 stocks, for example, then the Bonferroni correction would 

imply that the appropriate p‐value is (0.00095)500 = 0.475, which is not 

significant. In other words, Berkshire considered by itself is very impressive, but 

out of a large population of stocks it is much less so. 
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2. The compound alpha test (CAT)  

Consider a financial asset, such as a stock, a mutual fund, or a hedge fund whose 

performance we wish to compare with that of the market. The data consist of 

returns generated by the asset over a series of reporting periods t 1, 2,...,T . 

Denote the market return in period t by the random variable Mt and the asset’s 

return by the random variable Y . In applications, Mt would be the return on a 

broad‐based portfolio of stocks such as the S&P 500 or the Wilshire 5000. 

The first step in the analysis is to subtract off the risk‐free rate of return in each 

period, that is, the rate available on a safe asset such as Treasury bills. In other 

 words we define the random variables M  M rt  and Y Y rt , where rt  t t t t 

denotes the risk‐free rate in period t. The second step is to correct for correlation 

with the market over the entire period, that is, we compute the slope  from the 

OLS regression of Y on M as in (3). We then define the market‐adjusted return int t 

period t as follows 

At Y t M . (5)   t 

Next we truncate the returns so that the total return 1  At in each period is 

nonnegative. If the prices of Y t and M t evolve in continuous time with no jumps, 

this can be achieved by placing a stop‐loss order on the market‐adjusted asset 

At  Y t M t . In this case the truncated total return is simply [1  At ] . 
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An alternative approach is to insure the asset for the duration of the period using 

options. Assuming that   0 , one buys a call option on the market that limits 

the risk from a large positive realization of M t , and a put option on the asset that 

limits the risk of a large negative realization of Y t . A crucial point is that, for 

ordinary financial assets such as publicly traded stocks and mutual funds, the 

cost of such insurance is very small when the time periods are short. (The 

reason is that the variance in returns of most assets scales in proportion to the 

length of the period.) Thus if the length of each period is sufficiently small, the 

probability that the returns will exceed a specified threshold is small, which 

implies that the price of insuring against such an event is small.2 

To illustrate, suppose that   0.5 and that the length  of each period is one 

month. One can buy a call that protects against a rise of 67% or more in the 

market by the end of the month, and a put that protects against a fall of more 

than 67% in the price of the asset. This will guarantee that the market‐adjusted 

asset cannot lose more than 100% of its value during the period, i.e., that 1 At is 

nonnegative.3 The cost of such insurance will typically be very small because the 

probability of such an extreme move in one month’s time is very remote; 

moreover it will be even more remote if we take the duration of the options to be 

even shorter, say one week. (In section 5 we estimate the monthly cost of 

insuring Berkshire Hathaway in this manner using empirical data on options 

prices.) 

2 For further details on options pricing see Hull (2009) or Campbell, Lo, and MacKinlay (1997). 
3 The relative amount of protection in puts and calls can be chosen in many different ways to 
protect against a 100% drop in the market‐adjusted asset. One would choose the cheapest such 
mixture based on the prices of the options. 
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Let  be the length of each period, and let ct  ct ( ) represent the cost of 

insuring against negative realizations of the market‐adjusted return 1 At in 

period t. That is, at the start of the period we spend the fraction ct / (1 ct ) of the 

portfolio on insuring the remainder of the portfolio (1/ (1 ct ) ) against 

bankruptcy by the end of the period. Thus the total return (net of insurance 

costs) is given by the nonnegative random variable 

B  [1 A ] / (1 c ) . (6)t t  t 

(For notational convenience we omit the dependence on  .) Consider the 

compound value of the B s' over the T periods of observation: t 

CT   Bt . (7) 
1 t T  

The null hypothesis is that E C[ ]  . Since tT  0 B is a nonnegative random variable, 

the Markov inequality implies that this hypothesis can be rejected at significance 

level p if CT 1 /  p . 

Compound Alpha Test (CAT). Let CT be the compound market‐adjusted return of a 

candidate asset through period T. The null hypothesis that the asset does not have 

positive alpha. This hypothesis can be rejected at significance level p if 

CT 1 /  p . (8) 
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Note that the compound value CT must be very large before CAT rejects the null 

at a standard level of significance. For example, to reject the null at the 5% level 

of significance requires that the asset grow by twenty‐fold after subtracting off the 

risk‐free rate and correcting for correlation with the market. 

Figure 5 shows the beta and compound value of the market‐adjusted returns for 

each of our three candidate assets. Table 1 compares the p‐values from our test 

with those from the t‐test. According to the latter, Berkshire and Piggyback have 

positive alpha at a high level of significance and Piggyback is particularly 

impressive. By contrast, CAT says that we should only have confidence in 

Berkshire, and neither warrants the level of confidence that the t‐test attributes to 

them. 

Figure 5. Compound value of market‐adjusted returns for the three assets, not 

including the cost of insurance. 
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Asset Beta Regression t Regression p‐value CAT p‐value CAT “t”4 

Berkshire 0.67 3.92 0.00005 0.013 2.24 

Team 0.20 ‐0.87 0.764 1.0 0 

Piggyback 1.00 17.05 < 0.00001 0.14 1.09 

Table 1. Regression p‐values versus CAT p‐values for the three assets. 

3. Gaming the t‐test. 

At first it might seem counterintuitive that one would need to see a fund 

outperform the market by at least twenty‐fold in order to be reasonably confident 

(at the 5% level of significance) that the superior performance is “for real.” The 

reason is that an apparently stellar performance can be driven by strategies that 

lead to a total loss with positive probability, but a very long time can elapse 

before the loss materializes. Indeed, it is easy to construct strategies of this nature 

for which the CAT p‐value is tight. Choose a number  1 , and consider the 

following nonnegative martingale with conditional expectation 1 

1/T 1/T 1/TC 1, P C    C )   , P C   0)    for 1 t T  (9)( ( 1    .0 t t1 t 

 1/T  1/TIn each period the fund compounds by the factor with probability and 

crashes with probability 1 1/T . Thus the probability that the fund’s compound 

excess return Ct exceeds  is precisely 1/  over any number of periods T. 

4 CAT “t” is the value of the t‐statistic that corresponds to the given p‐value using the normal 
distribution rather than a t‐distribution. 
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Returns series with this property can be constructed using standard options 

contracts (Foster and Young, 2010). 

The Piggyback Fund is constructed along just these lines. Namely, the fund is 

invested in the S&P 500, and the returns are reported every month. However, 

once every six months the total return is artificially boosted by the factor 1.02. 

This can be done by taking an options position in the S&P 500 that bankrupts the 

fund if the options are exercised. The strike price is chosen so that the probability 

of this event is 1/1.02 = .9804, so the fair value of the option is zero. With 

probability 1/1.02 the fund grows by the factor 1.02 and with probability .02/1.02 

it loses everything, which is a lottery with expectation zero. This strategy 

explains the bizarre pattern of the market‐adjusted residuals in Figure 3: one‐

sixth of the time they are + 2%, and five‐sixths of the time they are –2%. With less 

than 25 years of data there is a sizable probability that the downside risk will 

never be realized, and investors will be lulled into thinking that the fund is 

generating positive alpha. Because it guards against this possibly unobserved 

volatility, CAT attaches a modest p‐value to the returns generated by the 

Piggyback Fund. 

Of course, even a casual inspection of the residuals in Figures 3‐4 suggests that 

the t‐test should not be used in this case. However this is not the essence of the 

problem, because it is easy to construct similar strategies whose returns look i.i.d. 

normal. For instance, suppose that every month the manager boosts the fund’s 

returns by the factor 1.0033 where  is a lognormally distributed error with 

mean 1 and small variance. (The purpose of the variation is to lend plausible 

variability to the realized returns.) As before, the boost comes at the cost of 
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going bankrupt with probability 1/(1.0033)  .9967 /  each month. Assuming 

that the variance of  is small, this scheme will run for about 300 months (25 

years) before the fund goes bankrupt, and the residuals will look very 

convincing. Thus, in this case the t‐test would seem to be appropriate, and the 

estimate of alpha will be about 4% per year at a very high level of significance. 

This is misleading, however, because in reality the distribution of returns is not 

approximately normal ‐‐ there is a large potential loss hidden in the tail. One of 

the main virtues of our test is that it corrects for this “hidden volatility”: after 25 

years the p‐value of this scheme will only be about p  (1.0033)300  .37 . 

A different manipulation based on market timing requires that CAT rely on the 

final cumulative return after a fixed test period rather than, say, using the 

maximum return over t = 1,…,T. The idea of this manipulation is to disguise a 

highly leveraged market position as an asset whose overall  = 0. For instance, 

one can obtain such an asset by leveraging the market to obtain the returns 

Y t  2M t for t = 1,…,T/2. For the remainder of the test period, one would short 

the market so that the returns are Y t  2M t for t = T/2,…,T. By construction, 

 = 0 and At  Y t . Given the generally positive returns produced by the US stock 

market, the intermediate cumulative return is very likely to exceed an impressive 

threshold. 

To illustrate, Figure 6 tracks the compounded monthly returns from a fund that 

leveraged the market by a factor of 2 from January 1926 to June 1968, then 

leveraged it by a factor of  ‐2 from July 1968 to December 2010. By mid‐1968 the 

fund’s value has grown by a factor of 226. If the null hypothesis is that the 

market‐adjusted returns form a martingale, then by the martingale maximal 
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inequality we would reject the null at significance level 1/226 = 0. 0044. In reality, 

however, the fund has no positive alpha. The reason why the martingale 

maximal test is fooled is that the portfolio manager can manipulate the 

correlation with the market over the entire period, hence the market‐adjusted 

returns do not in fact form a martingale.5 

Figure 6. Cumulative returns of a portfolio in which the correlation with the 

market is manipulated . 

4. Power and leverage 

In this section we develop a more powerful variant of our test using leverage. To 

illustrate the approach, we shall first consider the special case in which the 

returns are i.i.d. lognormal with unknown mean and known variance. In this case 

the optimal test of significance is the t‐test applied to the logged returns. We shall 

5 The difficulty arises from the fact that the returns from the asset are adjusted for correlation 
with the market. If one is simply testing whether the returns from an asset are on average higher 
than the returns from the market (with no correction for ), then the martingale maximal 
inequality is an appropriate test (see Foster and Young, 2011). 
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show that by leveraging the asset at an appropriate level (which is determined by 

the variance), we obtain a generalization of our test that involves only a modest 

loss of power compared to the optimal test. Then we shall show that a similar 

result holds even when we do not know the variance. 

To be concrete, consider a manager whose fund is generating compound returns 

C
T 
 0 relative to the risk‐free rate and suppose for simplicity that there is no 

correlation with the market (  0)  . Let us further assume that C
T 

is 

lognormally distributed: 

ln CT ~ N ((  2 / 2)T , 2T ) . (10) 

This is consistent with the traditional representation of asset returns as a 

geometric Brownian motion in continuous time, that is, a stochastic differential 

equation of form dC  C dt  C dW (Berndt, 1996; Campbell, Lo, andt t t t 

MacKinlay, 1997). When the asset is leveraged by the factor   0 ,6 the log of the 

compound returns at time T, C
T 
() , are normally distributed: 

2 2 2 2ln CT () ~ N ((    / 2)T ,  T ) . (11) 

Suppose, for the moment, that  2 is known and  is not. The null hypothesis is 

that   0 and the alternative hypothesis is that   0 . Choose a level of 

6 To leverage an asset which sells for $1 by the factor  one borrows  ‐1 dollars at the risk‐free 
rate and invests  dollars in the asset. If  < 1 this means that  –  is invested in the risk‐free asset 
and the remainder in the risky asset. Notice that to keep a constant level of leverage at all times 
one needs to rebalance the absolute amounts invested in each asset. In continuous time this yields 

the process dC
t 
 C dt   

tt 
C dW

t 
. 
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significance p  0 and a time T at which a test of significance is to be conducted. 

CAT rejects the null at level p if and only if 

logC
T 
()  log(1 / p) . (12) 

Under the null hypothesis, 

logC
T 
()  (2 2 / 2)T

Z
T 
 

 T 
is N (0,1) . (13) 

Hence CAT rejects the null if and only if 

Z
T 
 

log(1 / p)  (2 2 / 2)T 

 T 
. (14) 

To maximize the power of the test we choose the leverage so that the probability 

of rejection is maximized. This occurs when the right‐hand side of (14) is 

minimized, that is, when 

2log(1 /  p)
*  . (15)

 T 

Notice that  * depends on the variance of the process, the time at which the test 

is conducted, and the level of significance p. However, the corresponding z‐

value depends only on p, that is, the test rejects if and only if 

p 
. (16) Z

T 
 2log(1 / p)  c 
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We can interpret cp as the critical value of CAT at significance level p . We wish 

to compare this with the critical value of the t‐test, which rejects at level p if and 

only if 

Z
T 
 1(1 p)  z

p 
. (17) 

Let L( )p denote the maximum power loss at significance level p over all 

combinations of , , T . In other words, L( )p is the maximum probability that 

the t‐test rejects the null at level p when our test accepts. 

Theorem 1. If CAT is applied to a lognormally distributed asset at significance level p, 

the maximum power loss ( )   . (cp  zp ))  1  L p is bounded above by 2 ( 5   . Moreover 

( )  as .L p  0 p  0 

The proof is given in the Appendix. 

Figure 7 plots the upper bound on the power loss L( )p as given in the 

3 5proposition. Observe that the loss is about 20‐25% for p in the range 10 to 10 . 

These p‐values are appropriate when we are testing the best asset out of a large 

population of candidate assets. For example, if we are testing whether the best of 

100 assets has positive alpha at significance level 0.01, the asset would have to 

pass our test at level 0.0001, by the Bonferroni correction. 
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Figure 7. Upper bound on power loss L( )p for CAT when the optimal level of 

leverage is known and the asset can be leveraged in continuous time. 

The situation treated in theorem 1 is special in two respects: i) in practice we may 

not have a precise estimate of the variance, so we cannot use (14) to compute the 

optimal level of leverage, and ii) in practice we cannot rebalance continuously to 

maintain a constant level of leverage. Fortunately both of these issues can be 

dealt with by a suitable modification of our test. The key idea is to choose a 

range of leverage levels [0, ] , leverage the asset at each level [0, ] , and then 

construct a hypothetical composite portfolio that represents a weighted combination 

of these leveraged assets. We then compute the total return of the portfolio in 

each period, and apply CAT to the final value. We shall call this the leveraged 

compound alpha test (LCAT). 

To be specific, let At be the market‐adjusted return in period t from the asset we 

wish to test, as defined in (4). Suppose we wish to leverage the asset by the 

amount   0 . At the start of period t we invest  dollars in the asset and 1 
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dollars in the risk‐free asset (i.e., Treasury bills). Note that if  1 this means that 

we are borrowing at the risk‐free rate to buy the asset on margin. Given our 

assumption that we cannot rebalance in continuous time during the course of the 

period, we need to insure against tail risk by purchasing options. In particular, 

we need to purchase options that effectively trim off negative realizations of the 

leveraged returns 1 At . This insurance comes at a cost, say ct () per dollar 

of the asset at the start of the period, where  is the length of the period. 

Typically the variance in the returns At scales by the factor  , and hence for any 

given value of  , ct ()  0 as  0 . (In the next section we shall analyze a 

concrete example (Berkshire) in detail, and show that the cost of options 

insurance is very small when  is on the order of one month .) 

Let [0, ] be a range of leverage levels and let f ( ) be a density with full support 

on [0, ] . The total return on the  ‐leveraged asset in period t is given by the 

nonnegative random variable 

(1 At )Bt ()  . (18)
(1 ct ()) 

At the start of period t = 1, weight the various leverage levels in [0, ] according 

to the distribution f ( ) . (Note that f ( ) determines the initial weighting; the 

relative amounts invested in the various assets will change over time and are not 

rebalanced.) The final value of this composite portfolio at the end of period T is 

CT ( )f  


 Bt () f ( )d . (19)
0 

1 t T  
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The null hypothesis is that E A   for all t T , which implies that [ ( )  .[ ] 0   E C  f  ] 1  t T 

Note that when  is sufficiently small, the options costs are small over the entire 

range [0, ] , hence the null hypothesis is essentially equivalent to the statement  

[ ( )]  1 . We can therefore reject the null at significance level p if E CT f 

CT ( )  1f  / p . (20) 

This is the leveraged compound alpha test (LCAT) with density f ( ) . As we have 

already noted, this test is robust against a wide variety of manipulations that a 

portfolio manager can employ to make the returns look better than they really 

are. It is therefore rather surprising to find that the loss in power is actually quite 

small. In fact, we claim that LCAT is asymptotically as powerful as the optimal test 

when the returns are lognormally distributed and the time periods are short. 

Theorem 2. Consider an asset with market‐adjusted returns At that are lognormally 

distributed with unknown mean and variance. Let f ( ) be a density with full support 

on an open interval (0, ) that contains the optimal level of leverage as defined in (15). 

Given any small  > 0, the maximum power loss of LCATat significance level p, relative 

to the t‐test, is less than  when p is sufficiently small and the time intervals are 

sufficiently short. 

This result is related to the pioneering work of Cover (1991) on ‘universal 

portfolios.’ However, our focus is on estimating the power loss of a particular 

test relative to the optimal test, which requires a separate proof. The essence of 

the argument can be sketched as follows (for details see Foster and Young 

(2011)). We already know from theorem 1 that there exists a level of leverage  * 
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such that CAT is asymptotically as powerful as the optimal test for small values 

of p. In particular, if the t‐test rejects the null hypothesis for this leveraged asset, 

then CAT is almost certain to reject it also. This happens if the leveraged asset 

has grown by a factor exceeding 1/p. Assets that are leveraged at levels close to 

 * will grow by nearly the same factor. Therefore, if the composite portfolio 

initially puts a positive fraction q > 0 of funds into leverage levels near  * , the 

final compound value of the portfolio will grow by a factor of about q/p. (In fact 

this is an underestimate, because it ignores the growth in value of the assets 

outside this small neighborhood). In particular, the null will be rejected at the 

level of significance p/q. It can be shown, however, that the probability of 

making a type‐I error at level p/q is nearly the same as the probability of making 

a type‐I error at level p when p is sufficiently small (and q is fixed). The details 

are somewhat involved and we shall not give them here; in particular one must 

show that the argument works when the costs of options are taken into account 

(see Foster and Young, 2011).7 

5. Empirical analysis 

In this section we shall apply our framework to the three assets shown in Figures 

1‐4, with a particular focus on Berkshire. Let us recapitulate the basic steps in the 

test. We are given a candidate asset whose returns are observed over T periods: 

Y Y1, 2 ,...,YT . Denote the market returns over the same T periods by M1, M 2 ,..., MT , 

where the “market” refers to some broad‐based index such as the S&P 500 or the 

7 Foster and Young (2011) use the martingale maximal inequality as a test of excess returns. This 
is a more powerful test than the Markov inequality when applied to martingale data. However, 
their estimates of power loss are based on the Markov inequality applied to end‐of‐period value 
(just as we do here), hence their estimates are valid in the present situation. 
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Wilshire 5000. Denote the risk‐free rates of return by 1, 2r r ,..., rT . 

Step 1. Compute the regression coefficient  between the asset’s excess returns 

Y t  Yt  rt and the market’s returns excess returns M t  Mt  rt : 

    (Y Y Mt  )(  t M ) 
1 t T  . 

 (M t M )2 

1 t T  

Step 2. For each t compute the market‐adjusted return 

 A Y  Mt t t 

Step 3.  Choose a range of leverage levels 0  1  2  ...   m . Estimate the cost 

( )   -leveraged asset against default during period t. For each c  of insuring the t k k 

t and each value k  compute the insured returns 

Bt k,  [1 k At ] / (1 ct (k )) . 

Step 4.  Compute the compound values 

Ck   Bk t,  and C  (1/ m)  Ck . 
   k m1 t T  1   

Step 5. Reject the null hypothesis at level p if C 1/  p . 
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How should one choose the range of leverage levels in step 3?  One approach is 

the following.  The expected long-run growth rate of any asset is roughly equal 

to its mean return minus one-half of the variance (the volatility drag).  (In fact 

this statement holds exactly if the returns are lognormally distributed.) This 

suggests that to maximize the compound value of the leveraged market-adjusted 

returns, one should choose the leverage equal to the mean divided by the 

variance of the returns. Since this is only a rough estimate of the optimal 

leverage level, we should in fact choose a range of levels on either side of the 

estimate. 

We shall now illustrate this procedure by analyzing the performance of Berkshire 

Hathaway from November 1976 to December 2010.8 The overall beta for the 

period is  = .67.  The mean market-adjusted return A E [ ]
t
A  is 0.0127 per 

month and the variance is 0.000427 per month. Thus we take 

 0.0127 / 0.00427  3 as a reasonable place to center the range of leverage 

levels. 

Next we compute the compound value of the market-adjusted leveraged returns 

at each of the levels   1,2,3,4,5  but without including options costs. The 

growth in these compound values over the period is shown in Figure 8. The 

maximal final value in 2010 was 4, 426 (leverage 3). When the five levels are 

weighted equally the final value is C  1,834 . 

8 A similar analysis can be applied to Team but it turns out that leveraging does little to increase 
the compound returns over the observation period. The analysis cannot be applied to the 
Piggyback Fund because there is no way to insure the returns, hence the fund cannot be 
leveraged. 
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Figure 8. Compound value of market-adjusted returns on Berkshire Hathaway, 

leveraged at five different levels over the period Nov 1976 - Dec 2010. 

The reciprocal of the value C  gives us a preliminary estimate of the level of 

significance (in this case 1 /  C  0.00054 ).  If the result is not significant we need 

proceed no further.  If it is significant, however, we need to refine the analysis by 

including the cost of insuring that the returns stay non-negative.  For example, to 

protect the market-adjusted return A  Y  .67M for one month leveraged five 
t t t 

times, one could buy five puts on Berkshire and five calls on the market that 

expire in 30 days.  The strike prices need to be chosen to protect against a decline 

of more than 20% in the value of A
t . This will be true if the puts protect against 

a fall of more than x% in Berkshire and the calls protect against a rise of more 

than y% in the market, where x + .67y = 20.  The least costly combination 

depends on the relative volatility of Berkshire versus the market, where the latter 

is taken to be the S & P 500. 
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Using data on options prices in May 2011, we estimated the cost of insuring 

Berkshire at five different amounts of leverage, as shown in columns 1 and 2 of 

Table 2. 

Final Value of BRK 
Leverage Reduction 

in 
Monthly 
Return 

Without 
Option 

With 
Option 

p‐value 

1 nil $ 79 $ 79 0.0130 
2 0.00040 1265 1073 0.00093 
3 0.00118 4426 2722 0.00037 

4 0.00198 3095 1379 0.00072 
5 0.00542 305 33 0.030 

Average 0.00112 1834 1057 0.00095 

Table 2. Results for leveraging Berkshire and accounting for option costs. 

The cost of insurance reduces the final compound value as shown in columns 3 

and 4.  Column 5 shows the level of significance corresponding to the final 

compound value net of options costs. It turns out that three times leverage 

generates the highest final compound value (2,722).  The average value over the 

five leverage levels is C  1057 , which corresponds to a p-value of 0.00095.  Note 

that the inclusion of options costs does not change the level of significance by 

very much:  when options costs are not included the final average value is 1,834, 

which corresponds to the p-value 0.00055. 

Although these p-values would be highly significant when viewed in isolation, 

we need to correct for multiplicity using Bonferroni.  In particular, Berkshire was 
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picked from the S&P 500 precisely because of its outstanding long-run 

performance.  Adjusted for multiplicity, its p-value is 0.00095 x 500 = 0.475, 

which is not significant.  In other words, out of 500 stocks there is nearly a 50% 

chance that at least one of them will do as well as Berkshire. 

Appendix: Proof of Theorem 1 

Let cp  2ln(1/  p) and let zp be the z‐value corresponding to the level of 

significance p. We need to show that 

L p( )   2  (.5(cp  zp ))  1 and lim 
  L p( )  0 . (A1)

p 0 

Under the null hypothesis (   0 ) , 

ln Ct  .5( * )2 t ln C  .5c2 
Zt   t p is N (0,1) . (A2) 

* t c   p 

Hence the t‐test rejects the null at level p if and only if 

ln Ctzp   .5cp . (A3)
cp 

By contrast, CAT accepts the null if and only if ln Ct  ln(1/ p)  .5c2 
p , that is, 

ln Ct  .5cp . (A4) 
cp 

Power loss occurs in the region where both (A3) and (A4) hold. 
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ln Ct  t
Assume now that  .5cp is distributed N (  ,1)  for some   0 . For this 

cp  

   and t the loss in power is the probability of the event 

 t ln Ct  t  t 
zp    .5cp   cp  . (A5)

 cp   

The middle term is distributed N (0,1) , so the probability of this event is 

 t  t
(cp  

) (zp  
) . (A6) 

 t  t
This probability is maximized when zp   

and cp   
are symmetrically 

situated about zero. It follows that the maximal power loss function satisfies 

( )   2(.5(cp  zp ))  L p  1 . (A7) 

  To complete the proof, we need to show that cp  zp  0 as p 0 . Recall that 

when z is large the right tail of the normal distribution has the following 

approximation [Feller, 1971, p.193]: 

 z2 / 2e
P Z(  z)  . (A8) 

z 2 

By definition P Z(  zp )  p . From this and (A8) we conclude that 
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z2  c2  2ln  2  2ln  z . (A9)p p p 

Hence 

c  z  2(ln 2  ln z ) / (c  z ) , (A10) p p p p p 

which implies that cp  zp  0 as p  0 . This concludes the proof of the 

theorem. 
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