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1. Gaming portfolio returns

A fundamental problem for investors is to determine

whether a given portfolio is making positive returns

relative to a benchmark such as the risk-free rate or a

stock market index. This is a challenging problem for

traditional statistical tests when little or nothing is known

about the composition of the portfolio, the trading

strategies the manager is using, or the amount of leverage

he is taking on. The difficulty is that the manager may

have both the incentive and the ability to create returns

that ‘look good’ for extended periods of time even though

in expectation they are no better than the returns

obtainable from standard market instruments. In partic-

ular, the manager can inflate his returns using options

trading strategies that hide large downside risks in the tail

of the distribution (Lo 2001, Foster and Young 2010).

Standard measures of performance, such as Jensen’s

alpha and the Sharpe ratio, do not take account of this

unobserved downside risk. Nor do more recent proposals,

such as the class of performance measures suggested by

Goetzmann et al. (2007).
To illustrate the difficulty, consider the returns series in

figure 1, which shows the monthly returns from a

hypothetical portfolio over a period of 30 years. The

returns appear to be i.i.d. normally distributed, and the

OLS estimate of the mean monthly return over

360 months is 0.00324 with estimated standard deviation

0.000764. The t-statistic is 4.2, which implies that the

returns are positive and significantly different from 0 at

the 99.99% confidence level. In reality, however, the

expected returns are zero. Here is how they were

generated: in each month t the manager sold a covered

asset-or-nothing put{ whose log probability of exercise,

At, was determined by a random draw from a normal

distribution with mean 0.00275 and standard deviation

0.0144. If the put was not exercised in a given month the

manager earned an excess return of eAt � 1 over and

*Corresponding author. Email: peyton.young@economics.ox.ac.uk
{We assume that the put is covered by the portfolio itself, which will be completely liquidated if the put is exercised.
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above the risk-free rate. If the put was exercised in a given

month, the fund would be completely wiped out.
Assuming no arbitrage in the pricing of puts, the premium
paid by the purchaser is offset by the probability that the

put will be exercised and the expected excess return is
zero. Under our assumptions the probability that the fund
does not crash in a 30-year period (360 months) is

approximately ðe�0:00275Þ360 � 0:37.
The particular simulation shown in figure 1 is a series in

which a crash did not occur. The t-test is fooled because
the returns appear to be i.i.d. normal and positive on

average, but there is a large potential loss that has not yet
shown up in the data.

This type of manipulation is not purely hypothetical;
indeed, it is in the interest of fund managers to create

return series that are ‘front-loaded’ in order to attract
clients and generate large performance bonuses (Lo 2001,
Foster and Young 2010). The question is whether one can

design a statistical test that protects against type-I errors,
that is, against concluding that the returns exceed some
given benchmark (such as the risk-free rate or a stock

index) when in fact they do not.
The answer we propose is to test whether the compound

excess returns form a non-negative martingale. We first
described this idea in its basic form in Foster et al. (2008)

and showed how to apply it to empirical returns data. The
present paper is more theoretical and shows that we can

greatly increase the statistical power of this class of tests
through the use of leverage. The essential idea is the
following: to test the returns from a given portfolio we

construct a hypothetical family of leveraged versions of
the portfolio. We then form a convex combination of
these leveraged portfolios and apply the martingale

maximal inequality to assess the probability that the

returns from the original portfolio could have been
produced by chance rather than superior expertise. This
approach is similar in spirit to the universal portfolio
framework pioneered by Cover (1991), but our construc-
tion is more specific and allows us to calculate the power
of the test explicitly. The test is ‘strategy-proof’ in the
sense that a manager whose strategy does not produce
excess returns will fail the test with high probability. (We
give a formal definition of this concept in the next
section.) However, the test is asymptotically powerful in
the sense that, for high confidence levels, it will pass a
series of bona fide excess returns with a probability that is
nearly as high as the t-test.

2. The compound excess returns test

Consider a portfolio whose returns A1,A2, . . . ,AT are
observed at regular intervals (e.g. quarterly, monthly, or
daily). We assume that these returns accurately reflect the
portfolio’s change in value in each period, but that the
process producing the returns is a ‘black box’, that is,
the manager’s strategy is unobservable. If rft is the risk-
free rate in period t, the total excess return in the period is
ð1þ AtÞ=ð1þ rftÞ and the net excess return is ~At ¼

ð1þ AtÞ=ð1þ rftÞ � 1.y We wish to test whether these
returns are likely to have been produced by a strategy that
yields positive excess returns in expectation, or whether
they could have been produced by a strategy designed to
fool us into thinking they are positive in expectation when
in fact they are not.

The null hypothesis is that the excess returns have zero
conditional expectation in every period, that is,

Null hypothesis:

E ½ ~Atj ~A1, ~A2, . . . , ~At�1� ¼ 0, for all t, 1 � t � T: ð1Þ

The alternative is that the expected net excess returns are
non-negative and in some periods they are strictly
positive, that is,

Alternative hypothesis:

E ½ ~Atj ~A1, ~A2, . . . , ~At�1� � 0, and strict inequality

holds for some t, 1 � t � T:
ð2Þ

Conservative test. A hypothesis test is conservative at
significance level p if it rejects the null with probability at
most p when the null is true. A test is conservative if this
property holds for all p 2 ð0, 1Þ.

Strategy proof test. A test for excess returns is strategy-
proof if it is conservative for any returns process satisfying
(1), that is, whenever the excess returns form a martingale
difference.

We shall assume throughout that a portfolio cannot
lose more than 100% of its value in any period, that is,
~At � �1 for every t.z Hence the null hypothesis can be

Figure 1. Monthly excess returns of a hypothetical portfolio
over 30 years (360 months).

yOne can also define the excess return relative to other benchmarks, such as the return from a broad-based stock market index.
zIf the portfolio manager has short positions he could lose everything and still owe money to his creditors. However, this is a risk
borne by the creditors not the investors: we assume that an investor cannot lose more than 100% of the amount invested, which
places a lower bound of –1 on the net return in each period.
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reformulated as follows:

Null:

Ct :¼
Y
1�s�t

ð1þ ~AsÞ is a non-negative martingale

with expected value 1: ð3Þ

The martingale maximal inequality states that, for any

non-negative martingale with expectation 1, and for any

time T and target value x4 0, the maximum of the values

C1,C2, . . . ,CT is greater than x with probability less than

1=x (Doob 1953). Therefore, the following is a strategy-

proof test for excess returns: given any time T and

significance level p 2 ð0, 1Þ, reject the null hypothesis at

time T if and only if

max
1�t�T

Ct 4 1=p, ð4Þ

which holds with probability less than p. We shall call this

the Compound Excess Returns Test (CERT).
Note that this test assumes nothing about the para-

metric distribution of returns within a period or the serial

dependence of returns among periods. It is also extremely

simple to compute. A particularly important feature of

the test is that it corrects for unobserved tail risk. For

example, consider the compound returns generated by the

period-by-period returns in figure 1 (see figure 2). By the

end of year 30 the maximum compound value that

the portfolio ever achieved was 3.42 times the size of a

fund compounding at the risk-free rate. Our test says that

this could happen with probability 1=3:42 ¼ 0:29.
Thus we cannot reject the null with reasonable confi-

dence. (In contrast, the t-test incorrectly rejected the null

with very high confidence.)
CERT is a highly conservative test but this is unavoid-

able if the test is to be strategy-proof. The reason is that

any sequence of positive excess returns (of any length) can

be reproduced by an options-trading strategy that has, in

expectation, zero excess returns. The essence of the idea
can be explained as follows (for further details, see Foster
and Young (2010)). Let ~a1, ~a2, . . . , ~aT be a sequence of
numbers that are the target excess returns over T periods.
At the start of each period t, 1 � t � T, create a binary
option that expires at the end of the period and gives the
buyer of the option the right to the entire portfolio at the
end of the period, including the accumulated interest over
the period at the risk-free rate plus the premium from
the sale of the option itself. Design the option so that the
probability of exercise is pt ¼ ~at=ð1þ ~atÞ. Let vt be the
value of the portfolio at the start of the period (including
the proceeds from selling the option), and let vtþ1 be its
value at the end of the period if the option is not
exercised. This is a fair bet if

ð1� ptÞvtþ1 þ pt � 0 ¼ ð1þ rftÞvt, ð5Þ

that is,

vtþ1=vt ¼ ð1þ ~atÞð1þ rftÞ: ð6Þ

This is a martingale strategy that produces the excess
return ~at with probability 1=ð1þ ~atÞ and a total loss with
probability ~at=ð1þ ~atÞ. Repeated over T periods it
produces the target sequence of returns ~a1, ~a2, . . . , ~aT
with probability

Q
1�t�T ð1þ ~atÞ

� ��1
. To guard against

such strategies—and a great variety of similar ones—one
needs a test that is conservative with respect to the entire
class of non-negative martingales. CERT is such a test.

The preceding construction shows that the CERT
rejection threshold is sharp: a ‘gamester’ can produce a
series of excess returns whose compound value grows by a
factor 1/p with probability p. This has some striking
implications. It says, for example, that to be 95%
confident that a given ‘black box’ portfolio is producing
positive excess returns, its compound value must grow by
a factor of at least 20-fold compared with a portfolio
compounding at the risk-free rate. Although this may
seem like an impossibly high standard to meet, it can be
interpreted instead as the handicap that accompanies a
complete lack of transparency. If the portfolio manager
were to reveal more information about his positions and
their implied tail risk, he might not need to meet such a
high standard in order to convince investors that his
returns are ‘for real’. In subsequent sections we shall
explore the effect of greater transparency in more detail,
and show that the power of the test can be greatly
increased if we have some information about extreme
tail risk.

3. Related literature

There is a related literature on the testing of experts that
spans both game theory and finance (Foster and Vohra
1998, Lehrer 2001, Shafer and Vovk 2001, Sandroni 2003,
Sandroni et al. 2003, Olszewski and Sandroni 2008, 2009).
This literature emphasizes the difficulty of identifying
phony experts who make probabilistic forecasts of future
events without having any knowledge of the process that

Figure 2. Compound value of the period-by-period returns
shown in figure 1. The bar indicates the point at which the
maximum value was achieved.
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is actually governing these events. There are many ways of
formalizing this problem and we shall not attempt to
review them here. Broadly speaking, however, our
approach differs from this literature in two key respects.
First, we restrict ourselves to a particular class of
stochastic processes (non-negative martingales represent-
ing returns from a financial asset) and ask whether a
supposed expert is producing returns from this class or
not. Second, we adopt a classical hypothesis-testing
approach to assess how likely it is that a given series of
returns was produced by an expert (at a given level of
significance). In particular, this puts the burden of proof
on the experts, who must distinguish themselves from the
non-experts by producing returns that are highly unlikely
to have been produced by chance. In much of the expert
testing literature, by contrast, the null hypothesis is
effectively reversed, and the expert is presumed to be
expert unless the evidence is strongly against it. We would
argue that, in the context of financial markets, it is
fundamentally very difficult to consistently deliver excess
returns because arbitrage opportunities tend to be elim-
inated through competition. Hence the natural presump-
tion is that any given portfolio manager does not have
such expertise until proven otherwise.

There is also a literature in finance that draws attention
to the manipulability of traditional measures of perfor-
mance, such as the Sharpe ratio and Jensen’s alpha
(Goetzmann et al. 2007). These authors propose a novel
class of measures that overcome some forms of manip-
ulation. This class is defined as follows: given a series of
period-by-period returns ð ~a1, . . . , ~aTÞ and a parameter
�4 1, define the function

Gð ~a1, . . . , ~aTÞ :¼ ð1� �Þ
�1 ln ð1=TÞ

X
1�t�T

ð1þ ~atÞ
1��

" #
:

ð7Þ

Since 1� � is negative, this measure imposes a heavy
penalty on realizations in which any of the numbers 1þ ~at
is close to zero. The measure has the desirable property
that it is invariant to the shifting of returns between
periods, i.e. it makes no difference whether high returns
come early or late in the sequence.

Villaverde (2010) points out another problem with
traditional measures, namely that they may give high
marks to returns series that lack consistency; for example,
there might be a few very good years early in the series
and quite mediocre returns later on. He suggests a
measure that incorporates consistency as well as the
average magnitude of returns. In our framework we do
not distinguish between steady and erratic returns as such.
However, erratic returns may result in a lower final value
due to volatility drag, which does affect the outcome of
our test.

The main difference between these two papers and our
approach is that they do not provide a test of signifi-
cance—a metric for evaluating how likely it is that a given
series of returns could have been produced by chance.
Furthermore, unlike our test, they do not correct for
unobserved tail risk.

The idea of using the martingale maximal inequality to
test returns series was proposed by Foster et al. (2008).
That paper shows how the martingale approach can be
applied to the analysis of actual returns series from
mutual funds and stocks. The present paper takes the
analysis considerably further by showing how to ramp up
the power of the approach by testing a convex combina-
tion of leveraged portfolios. The present paper is also
related to an earlier one on the gaming of performance
fees (Foster and Young 2010). In that paper we showed
that it is essentially impossible to design bonus schemes
that reward expert managers who produce excess returns,
and do not reward non-experts who cannot produce such
returns. In other words, there are no monetary incentive
schemes that effectively distinguish between expert and
non-expert types. By contrast, the present paper shows
that there exist statistical criteria of performance that can
in fact distinguish between the two types.

4. Leveraging the compound excess returns test

The compound excess returns test guards against several
different types of manipulation. The one that we have
emphasized so far is unrealized tail risk, that is, the
possibility that the fund could suddenly go bankrupt due
to a low probability event that is hidden from investors.
However, even if extreme tail risk is negligible there are
other reasons why portfolio returns may be highly erratic
and difficult to evaluate using standard statistical
methods. Some of these problems arise from common
trading strategies, such as market timing or momentum
based strategies. Others may result from more deliberate
manipulation, such as engaging in high leverage early in
the returns series and reducing the leverage later on in
order to enhance a performance measure such as the
Sharpe ratio.

In this section we shall propose a variant of CERT that
can be applied when extreme tail risk is not an issue, either
because the manager offers a guarantee against large
losses, or because the investor can control the downside by
purchasing portfolio insurance. This still leaves the possi-
bility that the returns are highly non-stationary and
manipulated in other ways.We shall demonstrate a variant
of our test that can be applied in this case that is
asymptotically as powerful as the t-test, yet makes no
assumptions about the serial correlation of returns or the
parametric form of the returns-generating process.

The key idea is the following: when extreme tail risk is
either absent or can be controlled through the purchase of
portfolio insurance, the portfolio can be leveraged. We
claim that the ability to leverage greatly increases the
ability of the test to discriminate between processes that
generate positive excess returns and those that do not.
Furthermore, the level of leverage that optimizes the
power of the test does not need to be known in advance:
one can be completely ignorant about the optimal amount
of leverage to use and still design a test that is very
powerful at high levels of statistical significance. Like the
unleveraged test (CERT) this approach guards against
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type-I errors, i.e. falsely concluding that a returns series is
produced by an ‘expert’ manager when in fact it is
produced by chance. It improves on CERT in the sense
that type-II errors have low probability when the returns
are well-behaved, i.e. satisfy the usual assumptions of
independence and log normality.

As before, let ~A1, ~A2, . . . , ~At be the excess returns from
a portfolio in each of t periods, net of the risk-free rate.
We shall assume that the portfolio can be insured against
large downside losses over short periods. This can be done
in several different ways. One possibility is for the
portfolio manager to purchase insurance under a cus-
tomized policy with an insurer. To obtain such a policy
the manager would normally have to provide the insurer
with considerable transparency regarding his positions
and trading strategies. An alternative is for the investor to
purchase protection against downside risk in the deriva-
tives market (assuming such derivatives are available).
This also presumes a certain amount of transparency, for
otherwise market participants would have no way of
knowing how to price the tail risk. In what follows we
shall adopt the second point of view. While this is a
somewhat restrictive assumption, it allows us to separate
the issue of unrealized tail risk from the extent to which
returns can be manipulated in other respects.

Let D be the length of a reporting period, e.g. a quarter,
a month, or a day. Assume for simplicity that the price of
the portfolio at the start of a given period t is $1 per share.
Given a number 0 � b5 1, let �tðb,DÞ be the cost of a
European put with strike price bð1þ rftÞ that expires at
the end of the period. Suppose that we buy enough puts
so that 1=ð1þ �tðb,DÞÞ of the portfolio is in shares and
�tðb,DÞ=ð1þ �tðb,DÞÞ is in puts. Then all shares are
protected and the value of the portfolio at the end of
the period will be at least bð1þ rftÞ=ð1þ �tðb,DÞÞ times its
value at the start of the period.

Given �4 1, we can leverage this insured portfolio as
follows: buy � dollars of the insured portfolio and borrow
�� 1 dollars at the risk-free rate. Per dollar in the
portfolio at the start of the period we will then have at
least the following amount by the end of the period:

�bð1þ rftÞ=ð1þ �tðb,DÞÞ þ ð1� �Þð1þ rftÞ: ð8Þ

For this to be non-negative, it suffices that

b=ð1þ �tðb,DÞÞ � 1� 1=�: ð9Þ

Define btð�Þ to be the value of b that satisfies (9) as an
equality. When the cost of puts is very small, which will be
the relevant case in the results to follow,

btð�Þ � 1� 1=�: ð10Þ

For each �4 1, let the random variable BD
t ð�Þ denote the

return (net of the risk-free rate) from the insured portfolio
constructed as above. Note that BD

t ð�Þ is obtained by
truncating the total return 1þ ~At below btð�Þ, and
correcting for the cost of the puts. This leads to the
expression

BD
t ð�Þ ¼

maxfbtð�Þ, 1þ ~Atg

1þ �tðbtð�Þ,DÞ
� 1: ð11Þ

For 0 � �5 1 the cost of insurance is zero, and 1� � of
the portfolio is invested in the risk-free asset. In this case
BD
t ð�Þ ¼ �

~At and the total return in period t is 1þ � ~At.
(Note that this may result in a higher compound value by
reducing the volatility of the returns.)

By construction we know that

1þ �BD
t ð�Þ � 0: ð12Þ

We shall say that options are competitively priced if the
options market is efficient and there are no arbitrage
opportunities. (This is their risk-neutral valuation.) In this
case we must have

E ½ ~At� ¼ E ½BD
t ð�Þ�, ð13Þ

for otherwise one could make excess returns by selling
portfolio insurance. It follows that, in a competitively
priced options market,Y

1�s�t

ð1þ ~AsÞ is a non-negative martingale iff

Y
1�s�t

ð1þ �BD
s ð�ÞÞ is a non-negative martingale:

ð14Þ

In practice, of course, we cannot assume that options will
be priced at exactly their competitive (risk-neutral) value.
Fortunately, we will not need to assume this for most of
our subsequent results to hold: indeed, our results on
power hold even if out-of-the-money options are over-
priced by a very large factor (see theorem 2 below).

There is, however, very little reason to think that
options are under-priced, that is, portfolio insurance is too
cheap. In other words, it is reasonable to suppose that, in
general,

E ½ ~At� � E ½BD
t ð�Þ�: ð15Þ

This condition implies that
Q

1�s�t ð1þ �B
D
s ð�ÞÞ is a non-

negative supermartingale. We shall assume that this
condition holds for the remainder of the paper.

Theorem 1: Let ~A1, ~A2, . . . , ~AT be the excess returns of a
portfolio over T periods of length D ¼ 1=T. Let BD

t ð�Þ be
the excess return in period t from an insured version of the
portfolio that is leveraged at level �40, and let Gð�Þ be any
distribution function for �. The null hypothesis is that the
returns ~At are zero in expectation. The null can be rejected
at significance level p if

max
1�t�T

Z 1
0

Y
1�s�t

ð1þ �BD
s ð�ÞÞ

" #
dGð�Þ4 1=p: ð16Þ

Proof: For each �4 0 let

CD
t ð�Þ :¼

Y
1�s�t

ð1þ �BD
s ð�ÞÞ: ð17Þ

The null hypothesis is that
Q

1�s�tð1þ
~AsÞ is a non-

negative martingale. Assuming that options are not
underpriced, CD

t ð�Þ constitutes a non-negative super-
martingale. Therefore, CD

t ¼
R1
0

Q
1�s�t ð1þ �B

D
s ð�ÞÞ�

dGð�Þ is a convex combination of non-negative super-
martingales, which implies that it too is a
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supermartingale. Given a significance level p4 0, it
follows from the martingale maximal inequality that
max1�t�T C

D
t 4 1=p with probability less than p (Doob

1953). œ

We shall call the test in (16) the Leveraged Compound
Excess Returns Test (LCERT) with distribution
function Gð�Þ.

5. Power and leverage

We shall now show that when the distribution function
Gð�Þ is judiciously chosen, LCERT is nearly as powerful as
the optimal test when the significance level p is small. Let
C�ð1Þ be the continuous time, compound value of the
original asset to time � starting from an initial value
C0ð1Þ ¼ 1 with �¼ 1. Suppose that the asset’s value is
lognormally distributed, that is, for some � and �,

logC�ð1Þ � Nðð�� �2=2Þ�, �2�Þ: ð18Þ

Here and in what follows we shall always assume that
returns are expressed net of the risk-free rate. The
lognormal distribution is consistent with the standard
representation of asset returns as a geometric Brownian
motion in continuous time, and is the basis for Black–
Scholes options pricing (Campbell et al. 1997).

When the asset is leveraged by a constant factor �4 0
in continuous time, its compound value C�ð�Þ at time � is
lognormally distributed:

logC�ð�Þ � Nðð��� �2�2=2Þ�, �2�2�Þ: ð19Þ

Fix a target time �* at which to test the null hypothesis at
significance level p. There is no loss of generality in
choosing the time scale so that �	 ¼ 1, which will be
assumed throughout the remainder of the analysis. The
optimal test of the null hypothesis (� ¼ 0) versus the
alternative (�4 0) is the one-sided t-test. The t-test rejects
the null (� ¼ 0) at time �	 ¼ 1 if the observed value C1

satisfies

Z1 :¼
logC1 þ ð�

2=2Þ

�
4 zp, where NðzpÞ ¼ ð1� pÞ:

ð20Þ

Notice that this test is independent of the amount of
leverage �. Hereafter we shall usually omit the subscript 1
on the variables Z and C, it being understood that these
are the realized values at the time �	 ¼ 1 when the test is
conducted.

We are interested in the situation where the returns are
lognormal but we do not know this a priori. (If we did we
would use the t-test.) The question is how much power we
lose by using LCERT, which is in principle more
conservative than the t-test, because it makes no assump-
tions about the normality or independence of returns
among periods.

Maximal power loss function. Given �4 0, D4 0, and
p 2 ð0, 1Þ, the maximal power loss function LD

� ð pÞ is the
maximum probability over all �4 0 that the t-test

correctly rejects the null ð� ¼ 0Þ at level p while LCERT
incorrectly accepts the null at level p.

We shall show that there exist ‘universal’ distributions
Gð�Þ such that LD

� ð pÞ is small when: (i) the value of p is
small; (ii) the observation time increments D are short, (iii)
put options are competitively priced.

In fact, we can weaken the last condition consid-
erably. Let us say that puts are conservatively
priced if there exists a constant K � 1 such that the
cost of a put is at most K times its risk-neutral
valuation.

Theorem 2: Let ~A1, ~A2, . . . , ~AT be the excess returns of a
portfolio over T periods of length D :¼ 1=T. Let BD

t ð�Þ be
the excess return in period t from an insured version of the
portfolio that is leveraged at level �40. The null hypothesis
is that the returns ~At are zero in expectation. The null can
be rejected at significance level p if

max
1�t�T

Z 1
0

Y
1�s�t

ð1þ �BD
s ð�Þ

" #
d�

ð1þ �Þ2

( )
4 1=p: ð21Þ

Suppose, in addition, that portfolio insurance is conserva-
tively priced and the returns ~At come from a lognormal
process. Given any "4 0, if p is sufficiently small, and D is
sufficiently small given p, the maximal power loss from the
test (21) is less than ".

Before turning to the proof, several remarks are in
order.

Remark 1: We know from theorem 1 that the first
statement (21) holds for any cumulative distribution
function Gð�Þ. Thus it holds in particular for the
distribution Gð�Þ ¼ 1=ð1þ �Þ, which implies dGð�Þ ¼
d�=ð1þ �Þ2: The essential claim of the theorem is that,
under this particular c.d.f., plus several fairly weak
conditions on the cost of insurance, the maximal power
loss goes to zero with p. Other distribution functions also
have this property; the key conditions are that the
distributions have full support on the positive reals and
be fairly ‘flat’.

Remark 2: The test in theorem 2 is ‘universal’ in the
sense that it can be applied with no prior knowledge of the
actual distribution of returns. In particular, there is no
presumption that the distribution is lognormal. The
theorem states that if the returns happen to be lognormal,
we do not lose much power by applying our test. At the
same time we protect ourselves against type-I errors in the
event that the returns are not lognormal (this follows from
theorem 1). This is a luxury that the t-test does not
permit.

The universal aspect of the test is similar in spirit to
Cover’s pioneering work on universal portfolios (Cover
1991). Cover showed that a convex combination of
leveraged portfolios will grow at a rate that is asymptot-
ically as fast as the growth rate of an optimally leveraged
portfolio. This is true in our set-up as well. However, our
focus is on deriving an asymptotic bound on the
maximum power loss relative to a lognormal distribution.
This requires a more specific choice for the distribution of
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leverage levels; it also requires factoring in the cost of
portfolio insurance, which is not a feature of Cover’s
framework.

Remark 3: The proof will show that it suffices to be able
to insure the portfolio against large downside losses over
short periods of time at a cost that is not unboundedly
larger than the risk-neutral value of the options. In
particular, we do not assume that the options market is so
complete or well-priced that one could simply deduce the
distribution of returns from the options prices themselves.

Remark 4: The test is most powerful when the level of
significance is high (i.e. p is small). The logic of this may
be explained as follows. Suppose, for example, that
p¼ 0.001. Then the compound value of the leveraged
portfolio must grow by a factor of 1000 to pass our test.
This is clearly very demanding, but in this case the t-test is
also very demanding. The substance of the argument is to
show that when the portfolio returns are lognormally
distributed and they pass the t-test at a high level of
significance, then the leveraged compound value is likely
to pass our test as well.

Moreover, we would argue that small values of p are
especially relevant in the context of financial markets,
where there are many funds to choose from. For example,
if there are N funds and we want to know whether the best
of them is able to beat the market, we must correct for the
fact that pN of them will pass at significance level p purely
by chance. The Bonferroni correction for multiplicity
implies that to be confident at level p that the best of N
funds is run by an expert who can beat the market, it must
pass at significance level p/N.

Proof of theorem 2: The first statement of the theorem
(21) follows immediately from theorem 1, expression (16).
The essence of theorem 2 is the second statement, namely
that for this particular distribution of leverage levels the
power loss is arbitrarily small when p and D are
sufficiently small. This result will be established in two
steps. First we shall show that the power loss would be
small if the portfolio could be leveraged continuously
(D ¼ 0); then we shall show that the conclusion still holds
when D is sufficiently small but not zero. (Note that, in
our framework, the portfolio cannot be leveraged con-
tinuously because time periods are discrete. If continuous
leveraging were possible, then we would be assuming that
the price of the portfolio can be represented as a
continuous-time process, which would restrict the distri-
bution much more than we wish to do.)

For each �4 0, let Cð�Þ :¼ C1ð�Þ denote the compound
value of the portfolio at time �	 ¼ 1 when it is continu-
ously leveraged at level �. By assumption,

lnCð�Þ ¼ ð��Þ ~zþ����2�2=2, where ~z�Nð0,1Þ: ð22Þ

Define the random variable

w :¼ ~zþ �=�: ð23Þ

Completing the square, (22) can be rewritten as follows:

lnCð�Þ ¼ w2=2� ð�� � wÞ2=2: ð24Þ

Let

C :¼

Z 1
0

Cð�Þ gð�Þd�, ð25Þ

where

gð�Þ :¼ 1=ð1þ �Þ2: ð26Þ

From (24) and (25) we deduce that

C ¼ ew
2=2

Z 1
0

e�ð���wÞ
2=2gð�Þd�: ð27Þ

Making the change of variable z :¼ �� � w, we obtain

C ¼

ffiffiffiffiffiffi
2�
p

�
ew

2=2

Z 1
�w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdz: ð28Þ

Let Nð�Þ denote the cumulative normal distribution. For

any given value of w we haveZ 1
�w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdz

4
Z w

�w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdz

¼ E ½ gðz=� þ w=�Þj � w � z � w�½NðwÞ �Nð�wÞ�

4 gðw=�Þ½NðwÞ �Nð�wÞ�: ð29Þ

The last inequality follows from the convexity of

gð�Þ :¼ 1=ð1þ �Þ2 and Jensen’s inequality. From (28)

and (29) we obtain

C4

ffiffiffiffiffiffi
2�
p

�
ew

2=2gðw=�Þ½NðwÞ �Nð�wÞ�: ð30Þ

Note that this derivation holds for any convex density gð�Þ

on the positive reals. This fact allows our results to be

extended to various other distributions, though for the

sake of concreteness we shall conduct the remainder of

the proof using the specific density gð�Þ ¼ 1=ð1þ �Þ2. In
this case, (30) takes the form

C4 ð
ffiffiffiffiffiffi
2�
p
Þew

2=2½�=ð� þ wÞ2�½NðwÞ �Nð�wÞ�: ð31Þ

We now turn to the estimation of the maximal power loss

function L0
�ð pÞ when D ¼ 0 (continuous leverage). Power

loss occurs whenever LCERT accepts the null and the

t-test rejects. On the one hand, LCERT accepts the null at

significance level p if

maxfC� : � � 1g � 1=p: ð32Þ

This obviously implies that C :¼ C1 � 1=p. On the other

hand, the t-test rejects the null at level p if

w ¼ zþ �=�4 zp, where NðzpÞ ¼ 1� p: ð33Þ

Therefore, the following overestimates the probability of

power loss, that is, L0
�ð pÞ is less than

Pðzp 5w and C � 1=pÞ: ð34Þ
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From this and (30) we conclude that L0
�ð pÞ is less than

Pðzp 5w and

ð
ffiffiffiffiffiffi
2�
p
Þew

2=2½�=ð� þ wÞ2�½NðwÞ �Nð�wÞ� � 1=pÞ: ð35Þ

Consider the right-most inequality in (35), namely

ð
ffiffiffiffiffiffi
2�
p
Þew

2=2½�=ð� þ wÞ2�½NðwÞ �Nð�wÞ� � 1=p: ð36Þ

Taking logs of both sides we can rewrite this as follows:

w2 � 2 lnð1=pÞ � lnð2�Þ þ 4 lnð
ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ

� 2 lnðNðwÞ �Nð�wÞÞ: ð37Þ

Define the number

cp :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1=pÞ

p
: ð38Þ

From (34)–(38) we deduce that the maximum power loss at

significance level p is strictly less than Pðw 2 IpÞ, where the

interval Ip is defined as follows:

Ip ¼ w : zp 5w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p � lnð2�Þ þ 4 lnð

ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ

� 2 lnðNðwÞ �Nð�wÞÞ

vuut
8<
:

9=
;:
ð39Þ

Lemma 2.1: The length of the interval Ip goes to zero as p

goes to zero.

Proof: Let "4 0. First we shall show that

w 2 Ip ) w � cp þ " for all sufficiently small p: ð40Þ

Then we shall show that

cp � zp 5 " for all sufficiently small p: ð41Þ

From these two statements it follows that jIpj5 2", and
hence that jIpj ! 0 as p! 0:To establish (40), note that

w 2 Ip implies zp 5w, which implies

NðwÞ �Nð�wÞ4NðzpÞ �Nð�zpÞ ¼ 1� 2p: ð42Þ

From this we conclude that

w2 5 c2p � lnð2�Þ þ 4 lnð
ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ � 2 lnð1� 2pÞ,

ð43Þ

and hence

w� cp 5 ðwþ cpÞ
�1
½� lnð2�Þ þ 4 lnð

ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ

� 2 lnð1� 2pÞ�:
ð44Þ

We know that zp!1 as p! 0. Since w4 zp, it follows

that w!1 as p! 0. Hence the right-hand side of (44) is

smaller than " for all sufficiently small p. This

establishes (40).

To prove the lemma, it remains to establish (41),

namely cp � zp 5 " for all sufficiently small p. We can

estimate the value of zp using the tail approximation for

the normal distribution (Feller 1971, p.193):

p ¼ 1�NðzpÞ4
e�z

2
p=2ffiffiffiffiffiffi
2�
p ðz�1p � z�3p Þ: ð45Þ

From (45) we deduce that

c2p :¼ 2 lnð1=pÞ5 z2p þ 2 lnð2�Þ þ 2 ln z3p

� �
� 2 lnðz2p � 1Þ:

ð46Þ

Hence

cp � zp 5 2 lnð2�Þ þ 2 ln z3p

� �h i
=ðcp þ zpÞ: ð47Þ

Clearly, the right-hand side of (47) is less than " when p is

sufficiently small. This establishes (41). Together with

(40), it follows that the length of the interval Ip is less than

2" for all sufficiently small p. œ

The preceding shows that, given �4 0 and a small

"4 0, for all sufficiently small p the power loss L0
�ð pÞ

satisfies the inequality

L0
�ð pÞ5Pðzp 5w � zp þ 2"Þ: ð48Þ

By definition, w ¼ zþ �=� where z is Nð0, 1Þ. Hence,

given � and ", for all sufficiently small p40,

L0
�ð pÞ5 max

�

Z zp��=�þ2"

zp��=�

e�z
2=2ffiffiffiffiffiffi
2�
p dz5 2"=2�: ð49Þ

We have therefore shown that, for every given �, the

maximum power loss over all � is arbitrarily small

provided that p is sufficiently small and the portfolio is

leveraged continuously.
It remains to be shown that this statement remains true

when the portfolio is leveraged over discrete time intervals

of sufficiently short duration. Recall that the number of

discrete periods is T ¼ 1=D where D4 0 is the length of a

period. Fix some �4 0. Given a particular leverage level

�4 0, the compound value of the leveraged insured

portfolio at the time the test is conducted is

CDð�Þ ¼
Y

1�t�T

ð1þ �BD
t ð�ÞÞ: ð50Þ

Integrated over all leverage levels, the value of the

portfolio is

CD ¼

Z 1
0

Y
1�t�T

ð1þ �BD
t ð�ÞÞ gð�Þd�: ð51Þ

We wish to compare the following values at the time

�	 ¼ 1 when the test is conducted:

C :¼ the value of the continuously leveraged portfolio

:¼

Z 1
0

Cð�Þ gð�Þd�,

CD :¼ the value of the discrete� time leveraged portfolio

:¼

Z 1
0

CDð�Þ gð�Þd�:

We claim that, when D is small, CD=C is close to one with

high probability in the region where power loss occurs.
To establish this claim, recall that we estimated power

loss in the continuously leveraged case by writing (see
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expression (28))

C ¼

ffiffiffiffiffiffi
2�
p

�
ew

2=2

Z 1
�w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdz: ð52Þ

The integral can be broken into two parts as follows:

Z w

�w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdzþ

Z 1
w

e�z
2=2ffiffiffiffiffiffi
2�
p gðz=� þ w=�Þdz:

ð53Þ

In our previous estimation of C we dropped the second

term in this expression (see (29)). In particular, we showed

that power loss becomes arbitrarily small as p! 0 even

when we underestimate C by ignoring the realizations of

z ¼ �� � w that are greater than w.
Restricting z ¼ �� � w to the interval ½�w,w� is equiv-

alent to restricting � to the interval ½0, 2w=��. From the

first part of the proof we know that, for all sufficiently

small p40, w � cp þ " and a fortiori w � cp þ 1. Thus we

already know that the power loss becomes arbitrarily

small when we apply our test to the value

~C ¼

Z ��

0

Cð�Þ gð�Þd�, where �� :¼ 2ðcp þ 1Þ=�: ð54Þ

It remains to be shown that the power loss becomes

arbitrarily small when we apply our test to the corre-

sponding discrete-time value

~CD ¼

Z ��

0

CDð�Þ gð�Þd�: ð55Þ

As before, let �ð�,DÞ denote the cost of insuring one

dollar’s worth of the portfolio for a period of length D at a

strike price that allows leveraging at level �4 1. Since the

process is i.i.d. we can assume this cost is the same in all

periods. When D is small the cost �ð�,DÞ is small;

moreover, the required strike price is approximately

equal to 1� 1=�, as observed earlier (see expression (10)).
Let qð�,DÞ be the probability that a put option with

these characteristics is exercised. In other words, qð�,DÞ is
the probability that the portfolio loses at least 1=� of its

value by the end of the period. By assumption, the

logarithm of the portfolio excess return over a period of

length D has the distribution Nð�D� �2D=2, �2DÞ for

some � � 0. In an efficient market, the cost of such an

option is the probability of exercise times the conditional

value if exercised, under the risk-neutral assumption that

� ¼ 0. Since the conditional value when exercised is less

than 1, the cost �ð�,DÞ of such an option satisfies

�ð�,DÞ � qð�,DÞ � Pðx � lnð1� 1=�ÞÞ, ð56Þ

where x :¼ z�
ffiffiffiffi
D
p
� �2D=2 and z is Nð0, 1Þ.

When �4 1 we have the inequality lnð1� 1=�Þ5
�1=�. Hence for all sufficiently small D4 0,

�ð�,DÞ � Pðx � �1=�Þ ¼ Pðz�
ffiffiffiffi
D
p
� �2D=2 � �1=�Þ

¼ Pðz � �1=��
ffiffiffiffi
D
p
þ �

ffiffiffiffi
D
p

=2Þ:

ð57Þ

The following inequality holds for all sufficiently small

D4 0:

�1=��
ffiffiffiffi
D
p
þ �

ffiffiffiffi
D
p

=25 � 1=2��
ffiffiffiffi
D
p

: ð58Þ

From (57), (58), and the standard approximation of the

tail of the normal we conclude that, for all sufficiently

small D,

�ð�,DÞ5 2��
ffiffiffiffi
D
p

e�1=8�
2�2D: ð59Þ

In fact, we are only assuming that options are conserva-

tively priced, that is, for some constant K � 1, �ð�,DÞ is at
most K times the risk-neutral price. Therefore, �ð�,DÞ is
at most K times the probability of exercise qð�,DÞ, hence

�ð�,DÞ � 2K��
ffiffiffiffi
D
p

e�1=8�
2�2D: ð60Þ

To leverage the insured portfolio at level � requires

buying � puts per period for T ¼ 1=D periods. This

reduces the compound growth of the portfolio by a factor

of at most 1� ð1� ��ð�,DÞÞ1=D, which by (60) is at most

2K�2�D�1=2e�1=8�
2�2D: ð61Þ

Note that when D is sufficiently small, this factor is

smaller than " for all 15 � � ��. Thus the cost of the

options does not reduce the compound value of the

portfolio by very much when the time periods are short.
There are, however, two further ‘costs’ to insuring the

portfolio. First, there is a positive probability that the

value of the insured portfolio will fall to zero at some time

before the test is conducted; in fact, this occurs in any

period where the options are exercised. (By contrast,

the value of a continuously leveraged, lognormally

distributed asset almost surely never reaches zero.) The

second potential cost is that the value of the portfolio over

each time period does not exactly follow a lognormal

distribution, because the quantities of the portfolio and

the risk-free asset are not rebalanced to keep the leverage

constant within each period. To complete the proof of

theorem 2, we need to show that with high probability

these factors have only a small effect on the cumulative

value of the portfolio when the test is conducted.
The preceding argument shows that when D is suffi-

ciently small, the cost of the puts reduces the value of the

insured portfolio ~CD by a factor less than " (compared

with ~C). This assumes, however, that the puts are not

exercised: if in any period a put is exercised, the value of

the insured portfolio drops to zero. From (59) we know

that the probability of this event is at most

max
15�� ��

fD�1qð�,DÞg5 max
15�� ��

2��D�1=2e�1=8�
2�2D

n o
� 2 ���D�1=2e�1=8 ��2�2D: ð62Þ

The latter can be made less than " by taking D to be

sufficiently small. We have therefore shown that, for all

sufficiently small D: (i) the probability is less than " that
the discrete-time portfolio ~CD will go bankrupt; (ii) if it

does not go bankrupt, the cost of the puts decreases the

value by a factor less than " compared with ~C.
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Finally, we must consider the fact that the discrete-time

portfolio does not grow at exactly the same rate as the

continuously leveraged portfolio within each period. The

difference between the two rates is small in any given

period with high probability; we claim that the cumulative

difference over 1=D periods is also small with high

probability.
To establish this claim, fix � � �� :¼ 2ðcp þ 1Þ=�. Let

Rtð�Þ be the growth rate in period t of the portfolio when

continuously leveraged at level � throughout the period.

Let RD
t ð�Þ be the growth rate of the discrete-time portfolio

when leveraged at level � at the start of period t. The

following shows that the cumulative difference between

these two rates over T periods is very small with high

probability.

Lemma 2.2: If D is sufficiently small,
P

1�t�T ðR
D
t ð�Þ �

Rtð�ÞÞ5 " with probability at least 1� ".

Proof: The growth rate of the continuously leveraged

portfolio in period t is

Rtð�Þ ¼ e�Zt�
ffiffiffi
D
p
þ��D��2�2D=2 � 1: ð63Þ

The growth rate of the discrete-time portfolio in period t is

RD
t ð�Þ ¼ �ðe

Zt�
ffiffiffi
D
p
þ�D��2D=2 � 1Þ: ð64Þ

Note that the random variable Zt is Nð0, 1Þ and is the

same in the two expressions. From the Taylor expansion

ex ¼ 1þ xþ x2=2þ � � � we see that (63) can be written as

follows:

Rtð�Þ ¼ �Zt�
ffiffiffiffi
D
p
þ ��D� �2�2D=2

þ �2Z2
t �

2D=2þOðD3=2
Þ f ð�Þ: ð65Þ

The coefficient on the residual term, f ð�Þ, depends on �,
�, and �, but the latter two are fixed whereas � is not.

Similarly, we have

RD
t ð�Þ ¼ �Zt�

ffiffiffiffi
D
p
þ ��D� ��2D=2

þ �Z2
t �

2D=2þOðD3=2
Þ ~f ð�Þ: ð66Þ

Therefore, we can express the difference between the

growth rates as follows for some bounded function hð�Þ:

RD
t ð�Þ � Rtð�Þ ¼ ðZ

2
t � 1Þð�2 � �Þ�2D=2þOðD3=2

Þhð�Þ:

ð67Þ

Next we estimate the cumulative difference over T ¼ 1=D
periods:X

1�t�T

ðRD
t ð�Þ � Rtð�ÞÞ

¼ ð1=2Þð�2 � �Þ�2D
X
1�t�T

ðZ2
t � 1Þ þOð

ffiffiffiffi
D
p
Þhð�Þ:

ð68Þ

The T draws of Zt are independent, Z
2
t � 1 has mean zero

and variance 4, henceX
1�t�T

ðZ2
t � 1Þ is approximately Nð0, 4=DÞ: ð69Þ

Therefore, the overall difference in growth rates between
the two portfolios is approximately

X
1�t�T

ðRD
t ð�Þ � Rtð�ÞÞ �Wð�2 � �Þ�2

ffiffiffiffi
D
p
Þ þOð

ffiffiffiffi
D
p
Þhð�Þ,

where W is Nð0, 1Þ: ð70Þ

For a given value of �, we can make this difference less
than " with probability at least 1� " by choosing D to be
sufficiently small, say 05D � D�. œ

To complete the proof of theorem 2, let us recall that
we are estimating the loss of power in the worst case, that
is, for values of � that maximize the probability of
accepting the null when the t-test rejects. When � is
sufficiently large, say greater than ��, the probability that
our test accepts the null is less than ", hence the power loss
must also be less than ". (This is an immediate conse-
quence of expression (19).) Thus in expression (70) it
suffices to consider values of � satisfying � � ��. The
function hð�Þ is uniformly bounded above for all � � ��,
hence there is a number �D4 0 such that (70) holds
uniformly for all D such that 05D � �D.

Putting the various parts of the argument together, we
have shown that there are numbers �D4 0 and ��4 0 such
that: (i) power loss is less than " when �4 ��; (ii) when
� � �� and 05D � �D, the cumulative value of the insured
portfolio CD closely approximates the cumulative value of
the continuously leveraged portfolio ~C in the sense that

CD � ð1� 2"Þ ~C, with probability at least 1� 2": ð71Þ

We already know, however, that the maximum power loss
goes to zero as p goes to zero for the continuously
leveraged portfolio ~C. It follows from (71) that the same
holds for the insured discrete-time portfolio CD. This
completes the proof of theorem 2. œ

6. Targeting the leverage

Theorem 2 demonstrates the existence of a strategy-proof
test that has good power even when one has no prior
information about the variance of the underlying process.
However, the maximal power loss function is difficult to
calculate explicitly because of its dependence on the
unknown � and on the significance level p of the test. We
can obtain a clearer picture of the magnitude of the power
loss if we assume that � is known with high accuracy to
begin with. In this case we do not need to integrate over a
distribution of leverage levels; we can instead choose a
single level that optimizes the power of the test condi-
tional on our estimate of �. This situation is summarized
in the following result.

Theorem 3: Let ~A1, ~A2, . . . , ~AT be the excess returns of a
portfolio over T periods of length D ¼ 1=T. Let �	 be an
estimate of the standard deviation of the returns, and let p
be the desired level of significance. Let BD

t ð�
	Þ be the excess

return in period t from an insured version of the portfolio
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that allows leverage up to level

�	 ¼ cp=�
	, where cp :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1=pÞ

p
: ð72Þ

The null hypothesis is that the returns ~At are zero in
expectation. The null can be rejected at level p if

CDð�	Þ 

Y

1�t�T

ð1þ�	BD
t ð�
	ÞÞ4 1=p: ð73Þ

If portfolio insurance is conservatively priced and D is
sufficiently small, and if the estimate �	 is correct, the
maximal power loss of this test is at most

2Nððzp � cpÞ=2Þ � 1: ð74Þ

Proof of theorem 3: We shall estimate the power loss in
the continuous case, from which the conclusion in the
discrete case follows by arguments similar to those in the
proof of theorem 2. When the portfolio is continuously
leveraged at level �4 0, its value at the time when the test
is conducted (�	 ¼ 1) is

lnCð�Þ ¼ ð��Þzþ ��� ð��Þ2=2, where z is Nð0, 1Þ:

ð75Þ

Power loss occurs when lnCð�Þ � 1=p and the t-test
rejects the null, that is, when

zp 5 z �
logð1=pÞ � ��þ ð��Þ2=2

��
: ð76Þ

The probability of this event is minimized when the right-
hand side is as small as possible, which occurs (for a given
� and �) when � ¼ cp=�. Call this the optimal amount of
leverage

�	ð p, �Þ :¼ cp=�: ð77Þ

Given our estimate �	, we will use the optimal amount of
leverage provided our estimate of � is accurate, which is
assumed in the statement of the theorem. The important
point is that the optimal leverage does not depend on �
(which is assumed to be unknown).

Substituting the optimal �	 into (76) and rearranging
terms, we conclude that power loss occurs when

zp 5 zþ �=� � cp: ð78Þ

For a given � and p, the probability of event (78) is
maximized when �=� lies halfway between zp and cp, that
is, when

� ¼ ðzp þ cpÞ�=2: ð79Þ

Therefore the power loss is at most

Pðzp 5 zþ ðzp þ cpÞ=2 � cpÞ

¼ Pððzp � cpÞ=25 z � ðcp � zpÞ=2Þ

¼ Nððcp � zpÞ=2Þ �Nððzp � cpÞ=2Þ

¼ 2Nððzp � cpÞ=2Þ � 1: ð80Þ

However, we already know from (41) that ðzp � cpÞ !
0 as p! 0: œ

We are now in a position to compare the maximal
power loss of our test when � is known and when � is

unknown. The first case is covered by theorem 3 and the
second by theorem 2. These are admittedly somewhat
extreme situations; in practice, one might have a prelim-
inary estimate (or guess) about � that is subject to some
uncertainty. In this case one could choose a universal
distribution of leverage levels that is centered around
one’s best guess (as we shall show explicitly below), and
one would be protected if one’s guess turns out to be
wrong.

To fix ideas let us begin by considering the maximal
power loss when � is known. In this case we have the
upper bound

f ð pÞ ¼ 2Nððzp � cpÞ=2Þ � 1: ð81Þ

The solid curve in figure 3 shows the behaviour of f ð pÞ for
small values of p. Of course, this is only a theoretical
upper bound on the maximal power loss, and it was
obtained by making a number of approximations. The
most significant of these was that we estimated the power
loss using the compound value of the portfolio at the time
the test is conducted rather than its maximal value up to the
time that the test is conducted. The squares in figure 3
represent the power loss over many simulations under the
null hypothesis when this weaker test is used. The close
correspondence between the squares and the curve show
that our estimate, f ð pÞ, is quite close to the actual power
loss using this weaker test.

When we simulate the process using the stronger test
(based on the maximal compound value), we obtain the
dotted line shown in figure 3. This shows that the actual
power loss from the test is considerably smaller than the
theoretical upper bound in (81). For example, when
p¼ 0.001 the maximal power loss (based on simulations)
is on the order of 15%, whereas the upper bound we

Figure 3. Maximal power loss of LCERT as a function of the
significance level p. The curve represents the theoretical upper
bound. The squares represent the power loss as estimated from
simulations when the weaker form of the test is used (the
compound value of the portfolio at the time of the test). The
dots represent the power loss as estimated from simulations
when the stronger form of the test is used (the maximal
compound value up to the time of the test).
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computed is about 25%. A 15% chance of a type-II error
is a modest price to pay for the extra protection afforded
by our test compared with the t-test, which, as we have
seen, is easy to game.

We should stress that all of these results involve a
worst-case analysis, that is, we are estimating the maxi-
mum power loss that could occur if the mean of the
distribution happens to fall in a particular range. For
most values of � the power loss will be very small at a
given level of significance. To illustrate this point, let us
fix � and p and compute the power loss for different
values of �. Since the loss depends only on the ratio �=�,
we may as well assume that � ¼ 1. The results for
p¼ 0.001 are illustrated in figure 4. Note that although
the maximal power loss is about 0.15, it is less than 0.05
outside of the range 2 � � � 5.

7. Comparing power loss under targeted versus

distributed leverage

When we do not have a good prior estimate of � we need
to employ a universal test such as the one in theorem 2.
In this case the power loss can be considerably higher.
This is the price we must pay for lack of information
about the variance of the true distribution. To estimate
the magnitude of the difference, let us recall that under
the universal test, power loss occurs in the interval

zp 5w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p � lnð2�Þ þ 4 lnð

ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ

�2 lnðNðwÞ �Nð�wÞÞ

s
, ð82Þ

where w :¼ zþ �=� and z is Nð0, 1Þ. Since w4 zp, the
term NðwÞ �Nð�wÞ is at most 1 and at least 1� 2p.
Hence when p � 0:01 the quantity 2 lnðNðwÞ �Nð�wÞÞ is
negligible, and we have the nearly equivalent expression

zp 5w �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p � lnð2�Þ þ 4 lnð

ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ

q
: ð83Þ

This defines a power loss interval whose lower end-point
is zp and whose upper end-point is the value of w that
solves

w2 ¼ c2p � lnð2�Þ þ 4 lnð
ffiffiffi
�
p
þ w=

ffiffiffi
�
p
Þ: ð84Þ

Call this value dpð�Þ. It is straightforward to show that
dpð�Þ is strictly larger than cp for all �. Indeed, if we define
dp :¼ min� dpð�Þ, then dp is the solution to the equation

d2p ¼ c2p þ ln d2p

� �
þ lnð8=�Þ, ð85Þ

which is certainly larger than cp.
Suppose now that we have an estimate or ‘guess’ about

the value of �, say ��, but we want to be protected against
type-I errors if our guess turns out to be wrong. Let p be
the desired level of significance. We can then rescale the
universal distribution so that the smallest power loss
interval occurs precisely when our guess is correct, that is,
when � ¼ ��. It can be shown that this is achieved by
choosing the density

gð�Þ ¼
dp= ��

ððdp= ��Þ þ �Þ2
: ð86Þ

It is straightforward to show that the minimum power
loss interval (the analog of (83)) occurs when � ¼ ��, and
this interval is precisely ðzp, dp�.

We can now compute an upper bound on the power
loss. This will depend, of course, on how far off our
estimate ð ��Þ is from the truth ð�Þ. There is no loss of
generality in assuming that �� ¼ 1, in which case we can
use the density gð�Þ ¼ dp=ðdp þ �Þ

2. The preceding argu-
ment shows that the following is an upper bound on the
maximum power loss for given p and �:

�Lpð�Þ :¼ 2Nððdpð�Þ � zpÞ=2Þ � 1, ð87Þ

where dpð�Þ is the value of w that solves equation (85).
Table 1 gives values of �Lpð�Þ for various choices of �.

Notice that they are very stable across radically different
values of �. For example, even if our estimate of � is off
by a factor of 10, the power loss is only slightly higher
than if the estimate is on target.

Let us compare these values with the power loss when
we choose the single level of leverage (namely, � ¼ cp=�)
that optimizes power given our estimate of �. When our
estimate is correct, the power losses for various values of p
are as shown in line 4 of table 2. Comparing these values
with line 4 of table 1, which was constructed using the
universal distribution, we see that the power using the
point estimate is higher by about 0.20, assuming that
the point estimate of � is correct. However, the universal
distribution offers considerably more protection when our
estimate of � is not correct; for example, if our estimate is
off by a factor of 2 or more, the power loss under the
universal distribution is considerably lower than under
the single leverage level. We should remark that the
numbers in both tables are upper bounds on the maximal
power loss function. As we saw in figure 3, the actual loss
will be considerably less (on the order of 0.10 less) for this
range of values of � and p.

Figure 4. Power loss as a function of � when � ¼ 1 and
p ¼ 0:001.
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8. Conclusion

In this paper we have proposed a test of portfolio returns
that is appropriate when an investor has no knowledge of
the portfolio manager’s investment strategy. First, the test
protects against the possibility that there is unrealized tail
risk. This is important because managers typically have a
strong incentive to take on such risk in order to enhance
their performance bonuses. The level of risk can be low
and still create the appearance of sizable excess returns
before the risk is realized. For example, an annual excess
return equal to 5% is impressive, yet it can be driven by
tail risk that in expectation will take 20 years to show up.
Second, the test is valid for returns that are serially
dependent and not normally distributed, a situation that
can easily result from dynamic trading strategies and
market timing schemes. Third, while the test is inherently
conservative, it can be turned into a powerful test if we
have some information about the price of insuring against
extreme tail risk. Contrary to what one might expect, the

price of insurance need only be roughly correct—say
within an order of magnitude of the risk-neutral price—
for the test to have high power.
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Table 1. Upper bound on the power loss when the true
standard deviation is �, the estimate is �� ¼ 1, and the universal

distribution gð�Þ ¼ dp=ðdp þ �Þ
2 is used.

p
� 10�2 10�3 10�4 10�5 10�6

0.1 0.57 0.51 0.47 0.44 0.42
0.2 0.52 0.47 0.44 0.41 0.39
0.5 0.48 0.43 0.40 0.38 0.36
1 0.46 0.42 0.39 0.37 0.35
2 0.47 0.43 0.40 0.38 0.36
10 0.56 0.51 0.47 0.44 0.42

Table 2. Upper bound on power loss when the true standard
deviation is �, the estimate is �� ¼ 1, and the single leverage level

� ¼ cp is used.

p
� 10�2 10�3 10�4 10�5 10�6

0.1 0.99 1.00 1.00 1.00 1.00
0.2 0.99 1.00 1.00 1.00 1.00
0.5 0.54 0.56 0.59 0.61 0.64
1 0.28 0.25 0.23 0.21 0.20
2 0.54 0.56 0.59 0.69 0.64
10 1.00 1.00 1.00 1.00 1.00
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