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Abstract. This paper studies the spread of losses and defaults in financial networks with
two interrelated features: collateral requirements and alternative contract termination
rules. When collateral is committed to a firm’s counterparties, a solvent firm may default if
it lacks sufficient liquid assets to meet its payment obligations. Collateral requirements can,
thus, increase defaults and payment shortfalls. Moreover, one firm may benefit from the
failure of another if the failure frees collateral committed by the surviving firm, giving it
additional resources to make other payments. Contract termination at default may also
improve the ability of other firms to meet their obligations through access to collateral. Asa
consequence of these features, the timing of payments and collateral liquidation must be
carefully specified to establish the existence of payments that clear the network. Using this
framework, we show that dedicated collateral may lead to more defaults than pooled
collateral, we study the consequences of illiquid collateral for the spread of losses through
fire sales, we compare networks with and without selective contract termination, and we
analyze the impact of alternative resolution and bankruptcy stay rules that limit the seizure
of collateral at default. Under an upper bound on derivatives leverage, full termination

reduces payment shortfalls compared with selective termination.

History: Accepted by Kay Giesecke, finance.
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1. Introduction

This paper studies the spread of losses and defaults
through financial networks when payment obliga-
tions are at least partly secured by collateral. A
combination of changes in regulation and industry
practices following the financial crisis of 2007-2009
have greatly expanded the use of collateral in trad-
ing and lending. In the over-the-counter (OTC) de-
rivatives market, most standardized contracts now
trade through central counterparties, which require
participants to post collateral in the form of initial
margin (IM). The part of the market that continues
to trade bilaterally is now also subject to IM re-
quirements. Similarly, unsecured interbank lending
is far lower than its precrisis levels and has mostly
been replaced by collateralized lending through re-
purchase agreements. See, for example, Duffie (2017),
Ghamami and Glasserman (2017), Financial Stability
Board (2017), and U.S. Department of the Treasury
(2017b) for background.

Collateral provides a buffer against the spread of
losses: if one party to a contract defaults on a payment
obligation, its counterparty can seize available col-
lateral to offset the loss. In this sense, collateral sup-
ports financial stability.

But, as our analysis shows, this is not the whole
story. We highlight additional mechanisms that com-
plicate the impact of collateral. First, committing col-
lateral to specific contracts and counterparties can lead
to an ex post inefficient allocation of a firm's assets: a
firm may find itself unable to make a current payment
obligation on one contract despite having posted col-
lateral to protect future potential obligations on other
contracts. Firms do not ordinarily have the option to
terminate contracts to recover posted collateral. In re-
ducing counterparty credit risk, collateral requirements
can increase strains on funding liquidity because col-
lateral requirements create additional funding needs."
These effects are intimately connected to contract ter-
mination rights because terminating a contract can
provide access to collateral and, indeed, is ordinarily
necessary for access to collateral.

Collateral held in less liquid assets creates a further
consequence for contagion. At the failure of one in-
stitution, its counterparties would seize and liquidate
collateral. This sell-off or fire sale could drive down
the price of the collateral assets, creating market
losses at other firms holding those assets. In partic-
ular, firms that had posted similar assets as collateral
would find themselves with a collateral shortfall—and
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an obligation to add collateral—as a result of the fire
sale. See Stein (2013), Shleifer and Vishny (2011), and
Gennaioli and Shleifer (2018, chapters 1 and 2), and
the references therein for background on the role of
fire sales in financial crises.

We develop these ideas in a network model. The
nodes of the network are parties to financial contracts;
for brevity, we sometimes refer to these as banks
though we have in mind a broader set of financial and
even nonfinancial companies. The nodes are linked
through contracts that carry payment obligations. We
take the network configuration as an input to our
analysis; our model does not seek to explain how a
particular configuration comes about.

We build on the standard framework of Eisenberg
and Noe (2001). The Eisenberg-Noe model takes a set
of nodes with balance sheets linked through uncol-
lateralized payment obligations and identifies one or
more clearing vectors. A clearing vector describes a set
of actual payments under which a node never pays
more than it owes, all contracts have equal seniority,
and nodes face limited liability. These properties
lead to a fixed-point characterization of clearing pay-
ments. The Eisenberg—Noe model has been extended
to cover many other features, including bankruptcy
costs (Rogers and Veraart 2013) and claims of different
seniority (Elsinger 2009) or maturity (Kusnetsov and
Veraart 2019); see Cabrales et al. (2016), Glasserman
and Young (2016), Hurd (2016), and Jackson and
Pernoud (2019) for overviews and extensive refer-
ences. Despite these many extensions, the inclusion of
collateral poses special complications and requires a
departure from the usual solution approach.

In a collateralized network, the failure of one node
may improve the ability of other nodes to meet their
obligations. If a surviving node had committed col-
lateral to a contract with the failed node, the failure
frees that collateral, providing the surviving node
additional resources to make other payments. Indeed,
the freed collateral might even be necessary for the
surviving node to meet its obligations, in which case
the failure of one node prevents the failure of another.
We show that, under these circumstances, the notion
of clearing payments may not be well defined.

In an equilibrium of the Eisenberg-Noe model, the
timing of events (payments and defaults) is imma-
terial, and these events may be understood as oc-
curring simultaneously. In modeling collateral, we
separate the timing of two types of events following a
default. We assume that creditors have immediate
access to collateral posted by the defaulting node, but
the freeing of collateral posted to the default node
follows a short delay. This modeling choice is sup-
ported by key principle 5 of the Basel Committee on
Banking Supervision and International Organization
of Securities Commissions(2015, p. 20) principles on

margin requirements for noncleared derivatives: “Initial
margin collected should be held in such a way as to
ensure that (i) the margin collected is immediately
available to the collecting party in the event of the
counterparty’s default, and (ii) the collected margin
must be subject to arrangements that protect the
posting party to the extent possible under applicable
law in the event that the collecting party enters
bankruptcy.” The return of collateral in (ii) does not
carry the same urgency as the access to collateral in (i),
so we do not assume they occur simultaneously.

By separating these events, we show that we can
arrive at a well-defined set of clearing payments.
The separation eliminates the possibility that the
failure of one node could prevent the failure of an-
other node by freeing collateral—a scenario we see as
unrealistic as well as a complication for the analysis.
Along with the clearing payments, we characterize
the set of defaulting nodes and the redistribution
of collateral.

We use this framework to evaluate the effects on a
network of various policy options related to collat-
eral and contract termination rights because contract
termination controls access to collateral. We take as
our measures of financial stability the size of the
default set and the network’s total payment shortfall.
We examine these measures in various scenarios and
establish the following conclusions:

i. Costless termination. As a starting point for
comparison, we consider networks in which nodes
are free to terminate contracts, and we show that,
under this assumption, posting collateral is equiva-
lent to making certain payments, so collateral plays
no essential role. This reference point establishes the
close connection between access to collateral and
restrictions on contract termination that runs through
the rest of our analysis.

ii. Pooled collateral. We investigate the trade-off be-
tween committing collateral to specific counterparties
versus pooling collateral and holding additional cash.
This trade-off is analogous to the comparison between
collateral requirements and capital requirements: cap-
ital absorbs any type of loss, whereas collateral protects
specific obligations. Although pooling may appear to
allow a better allocation of resources, we show that
pooling is guaranteed to reduce defaults under ad-
ditional conditions. For instance, we show that, when
committed collateral exceeds current payment obli-
gations, pooling reduces defaults and does not affect
payment shortfalls. This result is applicable with de-
rivative contracts. Because, in OTC derivatives mar-
kets, collateral in the form of initial margin captures
in part extreme potential future exposures, it can ex-
ceed current payments (Ghamami 2020a). In general,
however, pooling may produce larger or smaller
paymentshortfalls, depending on anode’s position in
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the network, so the trade-off cannot be resolved by
considering a node in isolation.

iii. Collateral illiquidity. We expand our model to
capture the potential spread of losses through col-
lateral fire sales. We extend the method of Cifuentes
et al. (2005), which models illiquidity through a price-
impact function. When a node fails, its creditors lig-
uidate collateral, driving down its price and lowering
the value of similar assets held by other nodes. This
price-mediated channel amplifies losses beyond the
direct effect of missed payments. Collateral illiquidity
increases defaults and payment shortfalls.

iv. Automatic stays. We consider the effect of a
stay under which payments are made before collateral
is liquidated and show that it has no effect on defaults
or payment shortfalls when collateral is liquid. We in-
terpret this point as consistent with the policy recom-
mendations of Duffie and Skeel (2012) and the sub-
sequent finalized stay rule on collateral sale in repo
markets, under which collateral can be accessed imme-
diately only if it is held in cash or cash-like assets.

v. Accelerated payments triggered by defaults. Shortly
after Lehman Brothers filed for bankruptcy, its coun-
terparties terminated approximately 733,000 of more
than 900,000 OTC derivatives contracts (Fleming and
Sarkar 2013). A contract termination creates a new
payment obligation, equal to the market value of the
contract, from the out-of-the-money party to the in-
the-money party. Lehman'’s counterparties generally
terminated contracts with positive value to the sur-
viving party and chose not to terminate contracts with
positive value to Lehman. We expand our model to
compare this type of selective termination (ST; known
as “cherry-picking”) with full termination (FT). In-
corporating accelerated payments through contract
termination complicates the analysis, again because
one node can benefit from the failure of another, in
this case because a default by one node may accelerate
payments to other nodes. Arriving at a well-defined
set of clearing payments requires making further as-
sumptions on the timing of events; we assume a delay
between the failure of a node and any accelerated
payments resulting from that failure. This modeling
choice is supported by the unfolding of the Lehman
bankruptcy in 2008. Claims against Lehman resulting
from contract termination became part of the bank-
ruptcy process, leading to delays in payments as
discussed in Fleming and Sarkar (2013).

vi. Alternative contract termination rights. Using the
framework of accelerated payments, we compare
networks under different contract-termination proto-
cols and discuss these comparisons in the context
of postcrisis automatic stay rules” on access to col-
lateral upon a counterparty’s failure. We compare
three scenarios: selective termination (cherry-picking)
by surviving nodes, full termination of all contracts

with a failed node, and no termination. We show that
selective termination ordinarily results in fewer de-
faults, but we also show that full termination can re-
duce systemwide payment shortfalls under a con-
straint on a measure of firms’ derivatives leverage. We
make a similar comparison of full-termination and
no-termination scenarios. These comparisons are mo-
tivated by continuing discussions on the treatment of
derivatives in the bankruptcy and resolution of large
financial institutions. See Jackson (2012), Ghamami
(2020b), U.S. Department of the Treasury (2018),
and the references therein.

Section 2 reviews the Eisenberg-Noe model, ex-
plains the difficulties introduced by collateral, and
presents our solution; it also examines the case of
costless contract termination and collateral pooling.
Section 3 introduces illiquid collateral and presents
the joint solution of clearing payments and market
prices for collateral assets along with the implica-
tions for defaults and payment shortfalls. Section 4
extends our model to cover accelerated payments
from contract termination. Section 5 compares de-
faults and payment shortfalls under alternative ter-
mination scenarios governing collateral access. We
defer all proofs to the appendix.

2. Network Model

In this section, we first review the model of Eisenberg
and Noe (2001) and then introduce collateral.

2.1. Networks Without Collateral

We consider a network with nodes N ={1,...,N}
representing banks or other market participants. (We
can also think of one node as representing the outside
world.) We use the following notation:

pij = payment due from i to j,i,j € N;
¢; = cash held by node i e NV;
pij = actual payment from i to j,i,j e N.

We refer to ¢; as cash for brevity; more generally, ¢
represents the near-term cash value of assets (other
than the pj;) available to node i to make payments.
We assume that payment obligations are netted so
that p;; and p;; cannot both be strictly positive.

We seek to model default triggered by illiquidity
rather than insolvency, and this differentiates our
formulation from most interbank network models.
In our setting, the claims and obligations p;; and cash
values ¢; are not intended to provide a complete ac-
counting of a node’s balance sheet; each node would
typically have other longer-term assets and liabilities.
The p;; measure payments due. A node defaults if it
does not have the cash to make a payment even if
the total value of its assets exceeds the value of its
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liabilities. Each ¢; includes the cash a node could raise
by borrowing against longer-term assets.

We imagine that, outside the model, some nodes
have experienced an exogenous loss of asset value,
and we proceed to evaluate payments made, taking
the c;as cash levels after the exogenous shock. Givena
collection of payments pj;, node i's cash is given by

Al =ci+ > pu (1)
ket
and its payments due are given by
L;= Z Pik- 2)
k#i

Node i defaults if A? < L;, so the default set is
={i: N : A} <L}

If node i defaults, its creditors’ claims all have equal
priority, and any remaining cash held by node iis paid
to the creditors in proportion to their claims. These
proportions are given by

a5 = piif D Pk irj €N )
[

For each 7, we have X a;}- =1.
Clearing payments are characterized by the fixed-
point equation
Pij = Pij A @A

Zﬁ;j/\ |C,=+£I?J,-Zpk,}. (4)

#i

This specification ensures that actual payments never
exceed obligations (p; < pj), all creditors have equal
priority in the sense that they receive payments
proportional to their claims in the event of default,
and the total payments made 3z pjj cannot exceed the
available cash A{(p). Eisenberg and Noe (2001) show
the existence of a solution to (4) and also give con-
ditions for uniqueness. Tarski’s (1955) fixed-point
theorem ensures the existence of a largest and a small-
est solution of (4).

2.2. Networks with Collateral: Round 1
We now introduce collateral, which we also refer to
as IM. We let

m;; = margin posted by node i for obligations
to node j.

Suppose, forexample, thatnodes iand jare two banks
that have entered into a swap contract. Under rules
adopted in the United States in 2015 and 2016, each
bank is required to post IM as collateral against po-
tential future payments to the other bank? If node j

is a central counterparty (CCP), then i posts IM to j,
butjdoes post IM to i. Because IM is intended to cover
potential future losses, a node often faces a margin
requirement on a contract even if no payment is due.

We refer to m;; as margin posted or committed by
node 7 to node j. We assume that the margin m;; re-
mains an asset of node i until node i fails to make a
payment to node j.* The quantity my differs from
other assets held by node 7 in that node j's claim to
the my has priority over the claims of any other
creditors. We take my; = 0 for all i.

We assume the following sequence of events at
default. Node i goes into default when it has insuf-
ficient cash (including payments received from other
nodes) to meet its obligations. Rather than make
partial payments that would not stave off default,
node i briefly suspends making any payments. At this
point, node j seizes enough of the collateral m; to
cover any payment due p;; from i to j. The amount of
collateral seized by node j from node i is given by

_ | my Afﬂfj, ieD,;
Ay = {0, i¢D. ©)

In particular, if node i defaults, node j's claim to the
collateral m;; is determined solely by the payment obli-
gation p;; and is unaffected by any other claims on
node i's assets. This is the defining feature of collateral.

If the margin seized by node j from node i is in-
sufficient to cover the obligation py, node j retains a
residual claim of p; — myj, which has equal priority
with any residual claims against i by other nodes.
This claim produces a partial payment from i to j if
node i has any remaining assets. To reflect a pro rata
allocation of node i's cash to these equal-priority
claims, we replace (3) with the proportions

f,l]— [Py —myl"/ Dl —ma]’, iLjeN. (6)
pex

If the denominator is zero, no node has a residual
claim on i, and we may set am = (); if node i does not
default, set a (1) =4 asin (3)

Let p,” denote the total payment made by node i to
node j, c0n51st1ng of any collateral seizure A;; and any
partial payments based on the proportions in (6).
Given payments ph] made to node i, the cash available
to node i is given by

A“) =¢;+ Z p(l) (7)

this expression has the same form as (1), but it in-
cludes node i's access to collateral my; posted by other
nodes and seized according to (5). The set of defaulting
nodes is given by

D=lien:aP <Ly, ®)
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with the sets L; as in (2). The requirements for first-
round clearing payments pf-l) now take the form
P(_]) _ PN |m,]1 + a( )A[I) , ieD; ©)

L i¢D.

These conditions extend (4) using (6)—~(8) and includ-
ing the collateral my;. If, for some j, mjj +a; ])AU < Pijs
then zz)T A D pii, and node i is in default We may,
therefore, write (9) as

pq) = pij A |mj + a(])Am (10)
This expression is similar to the Eisenberg-Noe
Equation (4), but the similarity hides an important
difference: we cannot recover the default set from
payments in (10) because a node in default may meet
its payment obligations through access to collateral.
In (4), py = pyy implies that node i had not defaulted,
but we cannot make a similar inference from p,}) = Py
in (10).

We conﬁrm the existence of clearing payments
p® = (p1,i,j € N'} satisfying (6)~(10) shortly, but we
first elaE’mrate on the potential complications intro-
duced by collateral.

2.3. Freed Collateral: Round 2

Following a default by node i, it may happen that
the collateral committed to node j exceeds the pay-
ment obligation to j, in which case the excess m; — Ay
would become available to node i to meet other ob-
ligations. If another node k also defaults, then margin
my posted by i to k may also become available to i.
This return of collateral is potentially problematic for
the existence of clearing payments as the following
example illustrates.

Example 2.1. Consider the network illustrated in
Figure 1 with nodes A, B, and C. The number inside
each circle indicates the node’s cash; all cash levels
are initially zero. The arrows indicate the directions
of payment obligations, and the labels on the ar-
rows indicate the amounts due. The labels in square
brackets show posted margin. For example, the label
“[5-A]” above node C indicates that node A has
posted collateral worth five to node C. As no node has

Figure 1. Three-Node Network

[5-8]

()

Notes. All nodes start with zero cash. The labels in brackets show
collateral: the amount posted and the posting party.

cash, all nodes default. The default of node C returns
collateral worth five to A, and similarly, B and C each
recover collateral worth five from the defaults A and B.
The result is the configuration in the middle of the
figure. With the freed collateral, all nodes can meet
their payment obligations, resulting in the final con-
figuration. However, if all nodes have met their pay-
ment obligations, have they defaulted? It is not possible
in this example to simultaneously determine a con-
sistent set of payments and default designations. In
the rightmost configuration, no node appears to be in
default, but we cannot reach that configuration with-
out freeing collateral, which requires defaults.

The problem illustrated by this example is that the
default of one node can lead to the return of collateral
to other nodes. Those nodes may then be able to make
greater payments to the defaulted node, potentially
lifting that node out of default and precluding the
existence of an internally consistent set of payments.®

We avoid this difficulty through the definition of
the default set in (8) based on p™. In this formulation,
freed collateral does not become available until after
payments have been made and nodes have been
declared in default. We have, thus, separated the
payments process into two rounds: a first round in
which payments are made and collateral is seized as
needed and a second round in which excess collateral
and collateral posted to defaulted nodes becomes avail-
able to the posting party to make other payments.

Obstacles to defining clearing payments arise in
other extensions of Eisenberg and Noe (2001) as well.
Elsinger (2009) redefines clearing vectors to cover
cross-holdings of debt and equity among banks, David
and Lehar (2017) consider clearing payments when
debt is subject to renegotiation, Kusnetsov and Veraart
(2019) propose a detailed algorithm to handle debt
with different maturities, Jackson and Pernoud (2019)
note that clearing payments may not be well defined
when banks buy credit protection on other banks,
and Banerjee and Feinstein (2018) similarly preclude
banks from speculating on other banks. None of these
extensions fits our setting. Bichuch and Feinstein (2019)
consider networks with collateral, but in their setting,
banks post collateral outside the network to raise
cash; in particular, they donot allow one bank to seize
collateral posted by another bank, which is a key
feature of collateral in our setting.

In Figure 1, no collateral is seized because collateral
is sitting at the wrong nodes to secure payments due.
For example, C owes A, but A has posted collateral
to C. As a result, all collateral is freed when the nodes
default. Figure 2 shows the opposite configuration
with the direction of collateral postings reversed. All
nodes default, all nodes seize collateral worth five to
cover the amount owed, and there are no remaining
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Figure 2. Direction of Collateral Is Reversed Relative to
Figure 1

[5-C] [5-B]

payment obligations. As in Figure 1, there is no way
to simultaneously define clearing payments and the
default set: if all nodes default, then all payments
are covered, so no node defaults; if no node defaults,
then no collateral is seized, no payments are covered,
so all nodes default.

The return or freeing of collateral in Figure 1 im-
plicitly assumes that contracts with defaulted nodes
are automatically terminated. Recall that margin m;
is intended to cover future potential losses on a
contract (e.g., a swap), so it is possible to have margin
posted when no payment is due; that is, my > 0 and
Pik = pri = 0. If node k defaults on its payments to
other nodes, the implications for node i are unclear.
We assume (for now) that any contracts between i
and k are canceled and that posted collateral is
returned: my becomes available to node i, and my;
becomes available to node k. We examine alternative
assumptions on contract termination and collateral
access later.

Suppose the first round results in payments p!"
i,j € N'. In other words, the p[ ) satisty (6)-(9). If t e
payment due from i to j, ps, exceeds the payment p,} .
then node i enters the second round with a remaining
payment obligation to node j of

i =y - - (11)

In round 2, we deal with the allocation of remaining
resources to meet remaining payment obligations.
These remaining resources result from freed collateral.

In the Eisenberg-Noe setting, (4) ensures that a
node in default pays out all its cash. But the use of
collateral in round 1 makes two types of resources
potentially available at a defaulted node in round 2:
a node may recover excess collateral committed to
another node, and it may recover freed collateral
committed to a defaulting node as a result of contract
termination. Figure 3 illustrates these mechanisms.”

Example 2.2. Figure 3 shows three starting configu-
rations. In the first network, A defaults, B seizes col-
lateral to cover missed payments from A, and excess
collateral is returned to A, allowing A to pay C. In the
second network, C defaults on its obligation to B; C's
default cancels its contract with A, freeing the collateral
posted by A to C, leaving A with five in cash. In the last

Figure 3. Three Initial Configurations, Each Leaving A
with Cash

5 g {\ P - i
Y, ) &) C> 2/
5 5"

5 5 5\

(N
it

Notes.In the first network, excess collateral is returned to A following
A’s default. In the second network, contract termination returns
collateral to A. In the third network, A is left with cash despite
defaulting on its payment to B.

network, A defaults, B seizes its collateral, and A is left
with four units of cash despite having defaulted. See
Section 2.4 for a discussion of full repayment follow-
ing default.

The total collateral “returned” to node i after round 1
is given by

Tjsilmi— Ay), ieD;
To= . 12
! [Zjep ij, i¢gD (12
Here, Dis fixed by (8) in round 1. If this freed collateral
is insufficient to meet all of node i’s remaining claims,

payments are made in the proportions

ap =pyp/ Z Pic (13)

taking a(f] =0 if the denominator is zero. Thus, we
seek round 2 payments satisfying

P =p Aafd (r,- +> p,g?), LjeN. (14)
k#i

For later use, we record a relationship between the

allocation fractions in the two rounds.

Lemma 2.1. Jfaf.fl #0, then ag;) = af.;).

In the following, we use pgﬂ =X pgf), £=1,2, to
denote the total amount paid by node i in each round.

Proposition 2.1. For any collateral levels {m,f, i,jeNY},
there exist clearing payments (p,p®) satisfying (6)~(9)
and (11)—(14). Moreover,

0]

P+ = pi A | Ailp® +p®) + Z M

. (15)

where
Afp® +p@) = ¢, + Z (pm x pcz))
k#i

As our examples illustrate, the existence of clearing
payments depends on separating the timing of pay-
ments due from the freeing of collateral: the default
set D and returned collateral r; are determined by
the first-round payments p"). Without this separa-
tion, the network often fails to admit a consistent set
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of clearing payments. Equation (15) has a simple in-
terpretation: the total payments made by a node over
two rounds equal the lesser of the node’s total obli-
gations and the node’s total cash, including collat-
eral. However, (15) does not extend to node-specific
payments pg) + p,.f) because collateral is initially com-
mitted to specific counterparties.

In subsequent sections, we compare outcomes of
networks under different policies regarding collat-
eral and contracts. We make these comparisons based
on the sets of defaulting nodes and the system-wide
payment shortfall, which builds on the total payments
in (15).

Definition 2.1. A network’s payment shortfall is the
difference between payments due and payments made
given by

L=3 (- - p?) = S (p-p" - p?).

icD

(16)

For each node i that defaults, p; — p,!l) = p?) is the
difference between i's total payment obligation and
its total payments; if i does not default, then f, = p{",
pi® =0, and its shortfall is zero.

Table 1 shows the default sets and payment short-
falls for the examples in several figures. In several
cases, we have designed the examples to have L =0
to highlight the effect of two rounds of payments. In
the first example of Figure 3, for instance, increasing
node A’s payment obligations from 9 to 10 + x results
in L = x for any x > (0 without changing D.

To see that our two rounds cannot be combined in
general, consider an ordinary Eisenberg-Noe network
without collateral. Suppose that, for some node i,
there exists a cash level ¢ such that i defaults if ¢; < ¢
and i does not default if ¢; > c. (We can see from (7)
and (8) that such thresholds commonly exist.) Now,
introduce collateral and consider any proposed pro-
tocol with the following two intended features: (i)
collateral posted by a node is used toward the node’s
payment obligations if and only if that node defaults,
and (ii) a node is deemed to default if and only if it
fails to meet its payment obligations. Such a protocol
is not in general consistent.

Proposition 2.2. Suppose 3 mj; > ¢ — ¢; > 0 and suppose
mye = 0 for all k # i. If node i defaults, then it meets all its
payment obligations; if node i does not default, then it does

not meet all its payment obligations. In other words, no
choice of default set D is consistent with the protocol.

The proof of this claim is simple: If node i is deemed
to default, then the resources ¢; + X;mj; > ¢ suffice to
meet the node’s obligations along with any cash re-
ceived from other nodes. If node i does not default,
then the cash level ¢; < ¢ does not suffice for i to
make its payments. In either case, we have a con-
tradiction. Similar contradictions result from many
other configurations.

2.4. Default with Full Repayment

We have seen (as in Table 1) that it is possible for a
node to default in the first round yet fully meet its
payment obligations by the end of the second round,
eliminating its first-round shortfall. In other words,
a node may fail through illiquidity—a shortage of
cash to meet payments due—even if it is solvent be-
cause some of its assets have been pledged as col-
lateral. Indeed, the major failures and near-failures
of 2008 are generally understood as (at least initially)
crises of liquidity rather than solvency. Postcrisis reg-
ulation responded by introducing a liquidity cover-
age ratio for banks as a complement to traditional
capital requirements.

One may ask whether a default is costly if creditors
are ultimately repaid. This question goes to our defi-
nition of the default set, so we highlight two important
practical considerations that inform our modeling
choice. First, a delay in payments can be costly because
of its ripple effect on downstream parties that rely on
receiving those payments to meet their own obliga-
tions. Delays can also lead to credit downgrades,
which then affect a node’s ability to borrow. Second, a
delay that results in bankruptcy destroys franchise
value; it locks a failed firm out of markets that rely on
a solid reputation for meeting payment obligations
on time, and such a reputation is not restored simply
through eventual repayment. Nor are other costs of
bankruptcy recovered. The specifics of these mech-
anisms are beyond the scope of our model, but these
considerations explain why we treat first-round de-
faults as costly even when second-round obligations
are fully met.

2.5. Networks with a Free Termination Option
As a benchmark, we consider a variant of our model
in which nodes have the option to terminate contracts

Table 1. Default Sets D and Payment Shortfalls L for Examples in the Figures

Figure 1 Figure 2 Figure 3 Figure 5 Figure 6
D ={A,B,C} D={A,B,C} D = {A} D={C} D = {A} D = {A} D = {A}
L=0 L=0 L=0 L=5 L=0 L=9 L=5

Notle. Figure 3 has three examples.
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in order to redeploy collateral they have posted.
This termination option is exercised whenever a
node would otherwise default. We investigate other
contract termination scenarios more extensively in
Sections 4 and 5.

To motivate this variant, consider the three net-
works in Figure 3. Suppose that node A has the option
to terminate any contract by using collateral posted
to pay its counterparty, recovering any remaining
collateral. In the first case, this would mean paying
five to B and recovering five; in the second case,
paying zero to C and recovering five; and in the third
case, paying five to B and recovering zero. In each
case, A would avoid default.

We show in Appendix A.3 that this model can be
reduced to a standard Eisenberg-Noe model with
lower payment obligations and adjusted cash bal-
ances in the following sense:

Lemma 2.2. Payments py clear the network with collateral
and free contract termination if and only if payments p;; —
(m;; A pyj) clear the reduced Eisenberg—Noe network. The two
networks have the same default sets and payment shortfalls.

The reduced network is defined precisely in Ap-
pendix A.3. This result shows that collateral plays no
essential role in a network in which each node can
recover collateral by terminating contracts. With the
option to terminate, posting collateral reduces to pay-
ing down certain obligations. This result allows us to
compare the collateralized networks of Sections 2.2
and 2.3 with otherwise identical networks that al-
low free contract termination.®

Proposition 2.3. Free contract termination reduces de-
faults but does not affect total payment shorifalls.

This comparison confirms the natural intuition that
collateral trapped in the “wrong” places increases
defaults (because it is not immediately available to
meet payment obligations) but does not affect even-
tual payments (because excess collateral is eventually
returned and deployed to make payments).

The free-termination model is useful for illustra-
tion, but it overlooks two key points. First, parties
to swaps and similar contracts do not ordinarily
have the right to terminate contracts unilaterally® and
must pay for that option by, for example, buying a
swaption. The issue of termination near default can
be particularly contentious—a point we return to in
Section 5. Furthermore, in the second example of
Figure 3, suppose we change A’s obligation to B to
eight and change C’s obligation to B to three. Node A
would like to terminate its contract with C to recover
its collateral. But C has no reason to agree and would
like to extract a payment from A. To avoid default,
both nodes would like to keep at least three of the
five units of collateral.

The second key point missed by this model variant
is the distinction between payments due and contract
values. Suppose node A has taken out a loan of 50
from node C and posted fivein collateral. In the
middle example of Figure 3, no interest is due on the
loan. However, if A were to terminate the contract
to recover its collateral, it would need to repay the
principal, dramatically increasing its immediate
payment obligations. The same can happen with a cross-
currency swap, which entails an exchange of principal
at maturity. We consider these consequences of con-
tract termination in detail in Section 4. For these
reasons, we work with the framework of Sections 2.2
and 2.3 for the rest of the paper: collateral becomes
accessible only following a default.

2.6. Collateral Pooling

In the examples of Figures 2 and 3, some defaults
occur because collateral is tied up in the wrong places.
More precisely, some defaults could be avoided if
nodes were able to hold on to their collateral as cash
rather than commit it to specific counterparties. This
points to a trade-off similar to the trade-off between
capital requirements and collateral requirements: col-
lateral provides a buffer against specific losses, whereas
capital absorbs any type of loss. Similar considerations
apply in debates over “ring-fencing” capital to absorb
losses in specific jurisdictions as opposed to holding
capital at the parent level.

These considerations might suggest that defaults
and losses can be reduced by having all nodes hold
additional cash rather than post collateral. But that
conclusion is incorrect because changing the distribu-
tion of collateral changes the distribution of payments.

Consider the example of Figure 4. The labels on
the edges indicate payment obligations. None of the
nodes holds cash, but node A may have posted col-
lateral to By or C;. We compare defaults and shortfalls
in the following scenarios:

Dz{A,Bl,Bg}, L:(),‘
D:{A1511821C1}1 L :5;
D={A,C), L=4.

Ca =0, mAB]=U, mAC]=2Z
Ca :2, mAB,:O, m,q(‘]:{):

ca =0, map, =2, mac,=0:

Figure 4. Pooling Collateral May Increase or Decrease
Payment Shortfalls and the Number of Defaults

["TAB,]
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In the first scenario, collateral is committed to node C;.
Holding the collateral as cash instead, as indicated
in the second scenario, results in a payment of one to
each of By and C;. This increases the number of de-
faults, but it reduces systemwide payment shortfalls,
which argues in favor of pooling. However, the third
configuration, with collateral committed to node By,
yields the fewest defaults and the smallest shortfall.

As this example illustrates, pooling collateral is not
unambiguously better or worse than committing it to
specific counterparties. The comparison depends on
the network and cannot be resolved by considering a
node in isolation.

The next result shows that pooling is preferable in
two settings. To be precise, we need some terminol-
ogy. Let us say that one network is obtained from
another by pooling collateral if it results from one
or more transformations of the form m:J =mi; =9,
¢; = ¢+ 06, 6 < my. By the excess collateral posted by
node i to node j, we mean [m;; — p;]*. We say that the
network has proportional collateral if my = kip; for
some k; € [0,1] for all i and j. (The case k; > 1 would
be a special case of excess collateral.)

Proposition 2.4. (i) Pooling excess collateral reduces de-
faults and does not affect payment shortfalls. (ii) Under
proportional collateral, pooling that preserves proportion-
ality reduces defaults and does not affect payment shortfalls.

This proposition and the example of Figure 4 to-
gether suggest that pooling is unambiguously better
(in reducing defaults and shortfalls) only under spe-
cial conditions. A proportional collateral rule (such as
a fixed loan-to-value ratio) is found in some circum-
stances, but it is not applicable with derivative con-
tracts that carry different levels of risk or when pay-
ment obligations are not known precisely at the time
collateral is posted. Excess collateral is applicable to
derivative contracts as collateral in the form of initial
margin can exceed current contractual payment ob-
ligations. Because initial margin in part captures ex-
treme potential future exposures, it can exceed current
payments, making the excess collateral condition par-
ticularly relevant to OTC derivatives markets.

3. llliquid Collateral and Fire Sales
In Sections 2.2 and 2.3, we implicitly treat collateral
as cash: if node j seizes collateral A; from node i,
node i’s payment obligation is reduced by exactly Ay;.
In the noncleared derivatives market, a wide range
of less liquid securities, including corporate bonds,
foreign-denominated bonds, and equities, are accepted
as collateral, and these types of securities are also used
as collateral in repurchase agreements.

In this section, we extend our earlier analysis to
incorporate the use of less liquid collateral. When a
creditor seizes collateral, it must sell the collateral to

recover cash. Selling less liquid collateral drives down
its price, spreading losses to other holders of similar
assets. Moreover, if excess collateral is available, the
creditor has no incentive to sell at the best possible
price, making the risk of a fire sale particularly acute.
Indeed, collateral liquidity is at the heart of de-
bates over contract termination rights and bankruptcy
stays that motivate our investigation. As explained,
for example, in Roe and Adams (2015), the purpose
of bankruptcy stays is to avoid the value destruction
and fire sales that would occur if creditors were allowed
to cease and sell a failing firm’s illiquid collateral.
Regulators and industry participants continue to de-
bate the extent to which less liquid collateral should
be allowed for derivatives and repo and whether the
nature of the collateral necessitates different restric-
tions on contract termination and rules on stays.

3.1. Round 1 Revisited

Asafirststep, wereformulate the analysis of Sections 2.2
and 2.3 to incorporate illiquidity. We now take my;
to be the shares of collateral committed by node i to
node j for an asset with price 17, making ;7 the value
of the collateral. The case considered in Sections 2.2
and 2.3 corresponds to a constant value 7t = 1. In this
section, the price starts at one but falls as collateral
is liquidated.

We posit that © is a strictly decreasing function
G(1, A) of the total shares sold, A, the first argument
of G indicating the initial price of one. To be concrete,
we set

n=G(1,A) =, (17)

for some o > 0. A larger a corresponds to a less liquid
asset. This choice of price-impact function is also used
in Cifuentes et al. (2005); Amini et al. (2016) discuss
conditions on a.

We make the simplifying assumption that all col-
lateral is held in a single illiquid asset. Assigning
different prices and price-impact functions to dif-
ferent collateral assets would complicate notation
without significantly changing our analysis. Assum-
ing a single illiquid asset for all collateral overstates
the effect of fire sales, but the overstatement can be
offset through a smaller value of a. The choice of a
should reflect the average price impact across dif-
ferent types of collateral and the imperfect correlation
in price impact across different securities.

As in (7) and (8), we have

AV =+ >, D= {i A Zp,-k}, (18)
k k

but the payments in ASH received by node i now re-
flect the market price of the collateral asset. If node i
defaults and node j seizes collateral m;; with price 7,
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node jnow holds a residual claim of (p;; — 7om;;) " against
node i, reflecting the market value rtmy of the col-
lateral available. Node i’s assets are allocated to other
nodes in proportion to the values of these claims, so
we replace (6) with

l’]) = (pq ﬂmt} fZ(P:k T[mxk) . (19)

Example 3.1. Figure 5 illustrates the difference be-
tween allocation proportions in (6) and (19). Node A
has six in cash and 20 in payment obligations, so it
defaults. Node B seizes the five shares of the collateral
asset posted by A. The six in cash held by A is divided
between B and C. Under (6), B would be allocated a
proportion (10 —5)/15 =1/3 and C a proportion 2/3.
Under (19), node B claims a proportion (10— 5m)/
(20 — 5m), which is a decreasing function of the price 1
at which B sells collateral it seized from A; the allo-
cation proportions depend on the market price of the
collateral asset.

With asset price 7 >0, the shares of collateral
seized and sold by node j upon the default of node i
are given by

AP ieD:
An = | T AT ieD; D)
o={o"% feh 0

which reduces to (5) with 7= = 1. Dividing by 7 in (20)
converts the dollar obligation p;; into the number of
shares required to cover the payment at the current
market price. For 7 = 0, interpret (20) as A;; = my; if
pij > 0 and A;; = 0 otherwise. The total shares of col-
lateral liquidated are given by

A= Z Z Ay, (21)
I

and the sale of these shares drives down the price
through (17). We modify (9) by seeking clearing pay-
ments p'Y and an asset price 7V satisfying

oyl

) ; s
pg)z{ ,}."\ITE nij + ay; 1‘eD, 22)

Pijs i¢ D,
together with (17)-(21).

Figure 5. After A Defaults, B Seizes Tts Collateral, and A’s
SixUnits of Cash are Divided Between B and C

[5-A)

3.2. Round 2 Revisited

Suppose that round 1 clears with payments p™ and
asset price nV). Define r; as in (12) and interpret it as
the number of shares of collateral freed or returned
to node i. As in (11), node i's remaining obligation
to node j is given by p,f =Py — p,;

To meet its remaining obligations p ), node i lig-
uidates some or all of its freed collateral which fur-
ther drives down the price of the shares. Given second-
round payments p;; @ and a second-round share price
7@ > 0, the number of shares liquidated by node i is
given by

L=rA—s (Z A ZP}?) (23)

biad i

The expression in parentheses is the difference be-
tween node i’s remaining payment obligations and
the second-round payments it receives; dividing by
1@ yields the number of shares of collateral required
to make up this shortfall, but node i cannot liquidate
more than the r; shares it recovers. The total amount
liquidated by all nodes is I' = 33; I';, driving the price to

n® = G(nm,l" )i= rWeaT, (24)

To clear round 2, we need payments p® and a price
n® satisfying

prZ) — p(zl % a(2) (Z pg) e n‘”r,-), (25)
k#i

together with (23) and (24) and ag) as in (13). The
following result ensures the existence of clearing
payments and compares networks with liquid and
illiquid collateral.

Proposition 3.1. There exist clearing payments and prices
(™M, 7y and (P, 7?) for rounds 1 and 2 with illig-
uid collateral.

Two features in particular distinguish this result
from other network models with fire sales, such as
Cifuentes et al. (2005), Braouezec and Wagalath (2018),
and Cont and Schaanning (2017): one is the need to
split the payments into two rounds because of the
collateral, and the second is the fact that the pro-
portions (19) depend on the collateral price 7. Both
features lead to more involved arguments for the
existence of clearing payments and prices. The source
of the fire sale is also different. In prior work, the fire
sale is driven by banks selling their own assets to meet
capital requirements; in our setting, the fire sale is
driven by creditors selling collateral to recover pay-
ment shortfalls.

Our next result compares networks with liquid
and illiquid collateral. In stating the result, we need to
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account for the possibility that each network admits
multiple sets of clearing payments. We show thateach
network has a largest and smallest set of first-round
and total payments (p),p(") +p@). The following
comparison should be understood to hold for the
largest and smallest solutions of networks with liquid
and illiquid collateral:

Proposition 3.2. Collateral illiquidity increases defaults
and the total payment shortfall.

3.3. Collateral Fire Sale and Contagion

Our model formulation in Sections 2.2 and 3.1 as-
sumes that, upon a default in round 1, collateral is
seized first, and partial payments are made second.
For comparison, in this section, we consider an al-
ternative formulation in which access to collateral is
delayed and partial payments are made first. Within
round 1, we reverse the order of collateral seizure and
partial payments; round 2 proceeds as before. This
reversal may be interpreted as the result of an auto-
matic stay in which a defaulting node’s counter-
parties are prevented from immediately seizing and
liquidating collateral. (We discuss stays in greater
detail in Section 5.) We give an example here and
leave the details for Appendix A.7. We show there
that, in the absence of fire sales, the total payments
made from one node to another remain unchanged
under this protocol even though the mix of collateral
and cash payments may change. With illiquid col-
lateral, delaying collateral liquidation reduces sys-
temwide losses and defaults.

Figure 6 illustrates the result. Node A defaults
because its cash level eight falls below its payment
obligations of 20. Under the collateral-first protocol,
nodes Band C seize and liquidate the collateral posted
by A, which is map = 5 and mac = 10. Applying (10)
with ag}} =1and aLl{): =0, node A makes a cash pay-
ment of five to node B in addition to the collateral
transfer of five. The total first-round payments are
pgl), = pfqnc =10, and there are no second-round pay-
ments. Under the payments-first protocol, node A
first makes a cash payment of eight to node B, again

because aﬂ}; =1land af,}]c = 0. Node C liquidates mac =

10 shares of collateral, but node B liquidates only two

Figure 6. Nodes B and C Hold Collateral Posted by A

Notes. Under the payments-first protocol, A pays eight to B before
collateral is seized. Under the collateral-first protocol, A pays five to B
after collateral is seized.

shares and returns three to node A. The total first-
round payments are qﬂé = qg(): =10, and there are no
second-round payments. However, the total amount
of collateral liquidated has been reduced from 15 to 12.

As in this example, the analysis of Appendix A.7
shows that, when collateral is held in cash-like assets,
the spread of losses through the network is unaffected
by the order of collateral seizure and partial payments.
However, as the example suggests, the collateral-first
protocol results in greater collateral liquidation. As a
consequence, the collateral-first protocol can result in
greater losses when collateral is illiquid.

If we interpret the payments-first protocol as the
result of an automatic stay on collateral seizure by
the counterparties to a failed node, then this obser-
vation is in line with policy recommendations of
Duffie and Skeel (2012) and the subsequent finalized
stay rule on collateral sale in repo markets. The stay
rule allows immediate seizure and liquidation of
collateral only if it is held in cash or cash-like assets.

4. Accelerated Payment Obligations
from Contract Termination

A financial firm'’s failure to make a payment due on
one contract may trigger the termination of other
contracts on which no payments are due. This is par-
ticularly true in over-the-counter derivatives markets.
OTC derivative contracts often provide participants the
right to terminate a contract if the counterparty enters
bankruptcy even if the counterparty has met all obli-
gations under the contract. Bankruptcy courts also
provide failed firms certain rights to terminate con-
tracts. Upon termination, the market value of a swap
or other derivative contract becomes due from the out-
of-the-money party to the in-the-money party; in this
sense, a default can accelerate payment obligations that
would not otherwise be due.

In this section, we augment the model of Section 3 to
incorporate this feature. We show that accelerated
payments from contract termination can create in-
consistencies in a network model similar to those we
encountered with collateral. We again resolve these
complications by carefully specifying the timing of
events. Whereas clearing a network with collateral
could require two rounds, addressing contract ter-
mination may require as many rounds as there are
nodes because each round of terminations may trig-
ger further defaults and, thus, further terminations.
In this section, we assume that all contracts with a
node are terminated upon the node’s default; in the
next section, we address selective termination.

Let

vy = positive value to node j of its derivative
contracts with node i.
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Under full contract termination, the default of node i
triggers the termination of its derivatives; at termi-
nation, node i incurs an obligation to pay node j the
outstanding value v;; if v;; > 0. 1f, however, v;; > 0, then
the default of i triggers a payment obligation of vj;
fromjtoi. We assume that all contracts betweeniand j
are fully netted, so v;v; = 0.

Whereas the p;; represent payments due under or-
dinary circumstances (including, for example, routine
payments on swap contracts), the vj; represent asset
(vj > 0) or liability (v;; > 0) values for node i that turn
into payment obligations only upon contract termi-
nation. If all derivatives are subject to daily settle-
ment (such as futures contracts), then all changes in
market values would be offset by daily payments, and
we would always have v; = v;; = 0. In practice, the
balance sheets of large banks show significant de-
rivatives assets and liabilities, indicating that not all
contracts are settled daily.

The contingent payment obligations created by con-
tract termination create some of the same complications
we saw previously as the following example illustrates:

Example 4.1. Consider a three-node network with

Prz=4 p=2 pn=2 c=c=4

All other model parameters are zero except for the
termination values, which we specify shortly. Node 1
defaults as its cash, c; = 4, falls below its required
payments to nodes 2 and 3. Node 1 pays p12 = a12¢1 =
4/6 x4 =267 to node 2 and p13 =2/6 x4 =~ 1.33 to
node 3. Node 3 defaults as the payment of p3; = 1.33 it
makes to node 2 is less than p32 = 2. Prior to contract
termination, node 2 does not have any payment
obligations.

Supposevz; = 2and v13 = va3 = 0. Node 2, with cash
of c + p12 + pa2 = 8, pays va; = 2 to node 1. With this
influx of cash, node 1 can now fully meet its payment
obligations to nodes 2 and 3. In other words, node 1
can make all payments due, apparently avoiding
default, but only if it defaults! This example shows
that it is not always possible to simultaneously spec-
ify a consistent set of payments and default desig-
nations with automatic contract termination even
without collateral.

To resolve this type of inconsistency, we separate
payments into rounds as we did before, consistent
with the sequence of events described informally in
Example 4.1. However, each round of contract ter-
minations can now potentially trigger additional pay-
ment obligations and, therefore, additional defaults.
In a network with N nodes, we may have up to N
rounds of defaults and N rounds of payments.

As in Section 3.3, we include the sale of any col-
lateral in the total payment from node i to node j
and denote this total payment by p;. We assume

the network follows the collateral-first protocol of
Sections 3.1 and 3.2. Perhaps most importantly, we
assume that, if node i defaults in round £, then any
termination values v;; or v;; triggered by this default
become payment obligations in round £+ 1. This
timing is consistent with the interpretation of accelera-
ted obligations as consequences of default rather than
causes of default.

4.1. Round 1

Round 1 proceeds exactly as in Section 3.1. The first-
round quantities p?{ D, A?), D, ag), and AV = A are
defined by Equations (17)—(22).

4.2. Subsequent Rounds

We now consider round m, 2 < m < N. With c[w =,
the cash available to node i at the beginning of the
round is given by

-1 -1 -1
="+ e - P
k#i k#i

with ) = py. We let DO denote the set of nodes that
default in round I (and not before) and define S, to be
the set of nodes that survive rounds 1,...,n,

Sy = {i:fc;_ UD“)},
=1

with 1 <n <N, and 5p = N. Payment obligations in
round m are defined by

wi+py —py ", dorjeD™ Y,
—(m) _ and i,j€ 5, 9;
gl _an (26)
17 o=, iorj¢ Smo;
0, 1,] [ Sm—l-

In each round, any previous payment obligation ﬁg-"_l)

is reduced by any payment made p,(}"_l). A default by
either node in the previous round creates the addi-
tional obligation vj; from contract termination. If both
nodes have survived to the current round, then the
original payment obligation p; was met in the first
round, and no subsequent obligation has been in-
troduced, so the remaining obligation is zero.

As in Section 2.3, defaults in the previous round
may free collateral in the current round. Recovered
shares of collateral in round m are given by

(m-1)
™ = {Z’@Ml mij = Ay
1

jjeDim-1) Mij,

i € Dim-1).

i€ Sm—l-

The number of shares of collateral posted by i that are
seized and liquidated by j in round m is given by

im) . i
Ar(j'_") = Jmy A ;"@, ie DM and j € Sm-1; (27)
0, otherwise.
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Given total payments pg-"] and a share price ™, let

A?") = cg"') + Tt(”')rg"’) +37 p,(;") (28)
k#i
denote the value of node i's remaining cash and seized

and returned collateral. The set of nodes that default
in the mth round is given by

Dfml={ i€S,.1, and A(’")<Zp"">}. (29)
k#i
Set

afm = |P(m) (m)Ag")I /,(Zlf’f(?)_”
#i

Clearing payments in round m must satisfy

(m) AT)I
i B

P = 500 A |n.[rn) AP + A[m)l (30)

The number of shares of returned collateral liquidated
by node i is given by’

(m) _ (m) (m) o) (m)
LY =r" A (m)|ZP"' (im "‘kE#Pk?)I' (31)
With the totals
P="STM and AGI=DTSYASNEE o),
: i

the amount of collateral liquidated in round m drives
the price to

lm — G(T[(m_l], rim 4 A(m]) e ﬂ(m—l)e—a(]"(mhmm)). (32)

Proposition 4.1. For any levels of derivatives values
{vi,i,j € N'}, there exist clearing payments and prices
(p("’), n('")), m=1,...,N

With the benefit of this result, we can revisit
Example 4.1. Nodes 1 and 3 do indeed default in
round 1; their first-round payments are pn] =8/3and
p?,,,) = 4/3. The default of node 1 creates a new pay-
ment obl1gat10n vy for node 2; the second round
payments are pS; =031 =2, Plz 4/3, and Pn 2/3.
At the end of the second round, all payment obli-
gations have been met.

5. Bankruptcy Stays and

Selective Termination
The pros and cons of OTC derivative contract ter-
mination at bankruptcy have been debated since the
1990s, and the matter has received renewed attention
since the failure of Lehman Brothers. We provide some
background before adapting our model to consider
some of the key trade-offs.

Most creditors in bankruptcy are subject to a stay
that prevents them from seizing assets of a bank-
rupt entity. This provision is intended to improve
the chances that the debtor returns to viability or to

maximize the value of the debtor’s assets to repay
creditors. Derivatives and certain other financial con-
tracts have long been exempt from these stays. As
explained in chapter 9 of Skeel (2010), the exemption
was introduced to reduce the risk of spillovers upon
the failure of a financial firm by giving special pro-
tections to derivatives counterparties.

Since the failure of Lehman Brothers, regulators
have come to have a different perspective, seeing ter-
mination rights as potentially destabilizing. Fleming
and Sarkar (2013) report that Lehman’s derivatives
counterparties selectively terminated contracts when
they stood to gain but maintained contracts when ter-
mination would have resulted in a payment to Lehman,
a practice often referred to as cherry-picking.!' The
Federal Deposit Insurance Corporation (2011) re-
ports that contract terminations by Lehman’s coun-
terparties caused market disruptions and left Lehman
exposed to greater market risk. In 2017, the Federal
Reserve (2017) adopted rules placing some limits on
termination of derivatives or, more precisely, quali-
fied financial contracts (QFCs). In explaining the need
for an automatic stay on terminations, the Federal
Reserve (2017) notes the risk of a “chain reaction” of
failures and the risk of fire sales from the liquidation
of large volumes of collateral assets.'?

To capture the phenomenon of creditor cherry-
picking, which we refer to as selective termination,
we modify the framework of Section 4. We assume
that, upon the failure of node i, all amounts v;; become
due, but amounts v;; do not come due (unless node j
also defaults). In other words, if node j survives
when node i fails, node j terminates contracts that
trigger obligations from node i but not contracts that
trigger obligations to node i. We compare defaults
and payment shortfalls under full termination and
selective termination.'?

5.1. Full vs. Selective Contract Termination

We detail the full termination model in Section 4. In
contrasting the two scenarios, we use the following
notation for the FT and ST models:'

pg),ﬁgf),nm : payments, payment obligations, and
collateral prices in the FT model;

qg), q,!?, 7 : payments, payment obligations, and
collateral prices in the ST model;

the evolution of the ST model is identical to that of
the FT model with one exception: in place of (26), the
payment obligations become

oy +iy ) —q', ieDmD,
_(m) _ and 1, €Sy 2;
T =\ am- o (33)
P, dorjgSua
0 1,] € Sm—l-
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Only the first case has changed: the obligation vy is
added only if i defaults.

By construction, the FT and ST models are identical
in round 1, so they admit the same sets of clearing
payments pf;) and qg). Moreover, under selective ter-
mination, a node that survives round 1 has no pay-
ment obligations in round 2, so no defaults occur
after round 1, and the process terminates at the end
of round 2. By the argument used for Proposition 4.1,
we have the following result:

Proposition 5.1. For any levels of derivatives values
{vij,i,j € N'}, there exist clearing payments and prices
(g™, 7AWy and (g, 7&@). The feasible clearing payments
and collateral prices in round 1 under the ST and FT models
coincide, and thus, so do the first-round payment shortfalls.
The ST default set is a subset of the FT default set.

Because the two models agree in the first round,
they produce the same defaults in round 1,and be-
cause the ST model has no subsequent defaults, full
termination always produces at least as many de-
faults as selective termination. The comparison of
payment shortfalls is less clear. Full termination creates
additional payment obligations and, thus, more op-
portunities for payments to fall short, but full ter-
mination can also increase the flow of payments,
potentially offsetting the first effect.

To formulate the comparison precisely, we use the
notation in (29) to denote the total default sets for the
two models (full and selective termination) by

D=| D% p=p" (34)
=1

We define payment shortfalls for the two models as
differences between payments due and payments made:

Lf=2(vf+ﬁ;‘—}i‘i)l and LS=Z(Uf+ﬁ"_q’)’

ieDf icl¥
(35)

where p; =37 p", ;=" +4®, and v = Bjuvy.

These shortfall measures are calculated relative to
payments currently due, which is the relevant focus
in a moment of market stress or a crisis following
defaults, and ignore future obligations. The total
payments due in the FT case are always at least as
large as in the ST case, but the comparison of shortfalls
can go either way as the following example illustrates.

Example 5.1. Consider the linear network of Figure 7
with nodes labeled 0,1,...,N+1. Nodes i=1,...,N
have payments due to their successor nodes, p;i1 =d.
Node 0 has a potential obligation vy = d. Node 0 holds
g in cash; no other nodes have cash. In round 1, nodes
1,...,N default. Under selective termination, nothing
more happens; none of the Nd payments due are
made, so L’ = Nd. Under full termination, the default of

Figure 7. Network of Example 5.1

@1’91_:_‘1'0 d O d d O d O
0 1 2 N N+l

Notes. The dashed-line payment from node 0 to node 1 becomes due
only upon contract termination. Nodes 1,..., N + 1 have no cash.

node 1 triggers termination of the contract between
nodes 0 and 1, creating a payment obligation ;3{{? -
vy = d. Node 0 pays (d A cp) tonode 1, and this amount
is passed through all downstream nodes. The pay-
ment shortfall becomes I/ = (N + 1)d — (N + 1)(d A cg) =
(N +1)(d — co)*. By varying the parameters N and d, we
can make I/ = 0 and [? arbitrarily large, but we can also
make I — ¥ arbitrarily large.

This example suggests the following properties: if
full termination does not increase the set of defaults,
then it (weakly) lowers the payment shortfall com-
pared with selective termination. Unless a node is
exactly on the boundary of default, a sufficiently
small increase in payment obligations will not push
it into default. Thus, for sufficiently small v;, we
have Lf < Ls,but by increasing some v;;, we can make
L/ — L arbitrarily large so long as j defaults and i does
not. The key then to comparing payment shortfalls
is to understand the magnitudes of derivatives lia-
bilities relative to node distances from their default
boundaries. We interpret these relative magnitudes
as measures of derivatives leverage.

As a first step in formalizing these ideas, we show
that full termination increases payments when col-
lateral value is constant. Recall that the ST and FT
models coincide in round 1.

Lemma 5.1. Suppose the collateral price is constant 1 = 7t = 1.
Then, full and selective termination models satisfy

pf_jﬂ > q%?), forall i,jeN, (36)

taking the smallest or largest clearing payments under
each model.

In the proof of the lemma, we confirm that the
smallest and largest clearing payments are welldefined
for the two models. We compare these extremal solu-
tions to account for the possibility of nonuniqueness.
If each model has unique second-round clearing pay-
ments, then (36) holds directly. In light of these con-
siderations, we compare models under payments
satisfying either of the following conditions:

pm = qm, 7" =4, and pm and qm are the
largest second round payments; (37)

pm = qm, M) = 71, and pm and qm are the
smallest second round payments. (38)

When the ST and FT models produce the same de-
fault sets, the additional termination obligations under
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the FT model must be fully met; otherwise, they would
trigger additional defaults. Combining this observation
with Lemma 5.1 yields the following.

Corollary 5.1. Suppose either (37) or (38) holds and the
collateral price is constant. If Df = D¢, then IS < I5.

To build on this observation, we develop the notion of
derivatives leverage introduced informally earlier. Let ¢;
denote the net worth of node i at the end of round 1:

ei=ci+nVr; + ZPE) - > i (39)
= [

Proposition 5.2. Suppose (37) or (38) holds. Full termi-
nation reduces payment shortfalls in the sense that L/ < L
under the “aggregate derivatives leverage” condition

U £ Z ej, (40)

ieD —-pm ieD/ DM

if either (i) the collateral price is constant m=1fi=1 or
(ii) there is no excess collateral, meaning that m; < py,

Vi jeN.

We call (40) a derivatives leverage condition because it
compares derivatives liabilities on the left with a mea-
sure of equity on the right. A simple sufficient con-
dition for (40) is v; < ¢; for all i ¢ D™. This condition
applies to Example 5.1. Only node 0 survives the first
round, and its net worth is ey = ¢p. If ¢y = vy = d, then
I/ =0, and thus, L/ < L*. Condition (40) also holds
when D = D'the case considered in Corollary 5.1.

To add some qualitative context to (40), we note
that postcrisis capital and liquidity regulations have
significantly increased bank capital and liquidity levels.
According to the U.S. Department of the Treasury
(2017a), large U.S. banks hold nearly 24% of their
assets in high-quality liquid assets, such as cash and
U.S. Treasury securities. We know from bank regu-
latory reporting that derivatives transactions con-
stitute a small portion of the balance sheets of even
the largest U.S. bank holding companies. These con-
siderations suggest that the cash demands from
contract terminations are unlikely to topple an oth-
erwise solvent bank, favoring full termination over
selective termination.

In defining the shortfall measure L* in (35), we have
not included contracts that have positive value vy
for a failed node i € D°, where k ¢ ¥ is a surviving
node: under selective termination, these contracts are
not terminated, and the payment obligations are not
accelerated. To include these quantities as payment
shortfalls, we can define

LY=1" 43 > v

kDF icDs

As L5 < I¥*, we clearly have If < L** under the con-
ditions of Proposition 5.2.

The following modification of Example 5.1 high-
lights the effect of collateral fire sales on the total
payment shortfalls under full and selective termination.

Example 5.2. We modify the linear network of Ex-
ample 5.1 by setting ¢, = 0 to remove node 0's cash and
introducing collateral shares mg; > 0 posted by node 0
to node 1. With a fixed collateral price m=1 and
mp = ¢y, the shortfalls in this network are identical to
those in Example 5.1: following the first-round default
of nodes 1,...,N, the collateral my, is returned to
node 0, and node 0 pays d A mip; to node 1 in the case
of full termination; it pays nothing in the case of se-
lective termination. Suppose mg; > d so that node 0
could meet its obligation in the FT case if m=1,
resulting in L = 0. If the collateral is illiquid, its value
drops when node 0 sells collateral shares. Applying (31)
and (32), we find that the amount liquidated is
I =my Adfr? with 7@ = exp(-al'®), so @ =
mp A dexplal’ @), Hmy <d exp(armg), then I @ =
(all shares are liquidated), and the amount node 0
pays to node 1 is @ mgy = g exp(—ampy) < d. The
resulting shortfall is Lf = (N+1)d-mpy exp(—amg1))",
whereas L* = Nd. We, thus, have Lf > L7 for sufficiently
large a. In other words, the illiquidity of the collateral
can reverse the order of the two shortfalls.

5.2. Comparison with No Termination

If we set aside the option for a bankrupt node to reject
certain contracts, we can model an automatic stay by
supposing that no payments are accelerated at de-
fault. This no-termination scenario is equivalent to
setting all v; =0, which reduces to the model of
Sections 2 and 3. We compare no termination with full
and selective termination.

We begin with the comparison between full and no
termination. We continue to use p;j to denote clearing
payments under the full termination protocol; in this
section, we use g;; to denote clearing payments with
no accelerated payments. The two scenarios coincide
in round 1, and without contract terminations, no
defaults occur after round 1, and no payments are
made after round 2. We compare payments under the
assumption that (37) or (38) holds, applying these
conditions to the new g;;. The total payment shortfall
in the no-termination scenario is given by

"= > (pi—q).

iepM

with g; = q?) + qu].

Proposition 5.3. Suppose that (37) or (38) holds. Suppose
there is no excess collateral, meaning that m;; < py;, Vi, j € N.
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Then, full termination results in the same default set as no
termination and lower payment shortfalls, Lj < L", if the
following condition holds:

Bl
v; < ir
Zkgnm Uki,

i¢ DO,

ie DO, (41)

The comparison of full and no termination presents
trade-offs similar to those in Section 5.1. Contract
termination creates additional payment obligations,
but it can also increase the flow of cash to meet
payment obligations. As in Proposition 5.2, the con-
dition in (41) can be interpreted as a constraint on
derivatives leverage.

If we take the view that counterparties of a failed
node have to replace their contracts, then we may define

plE= Z (0; +ﬁ,‘ = L_i,}
ieDM

This shortfall measure includes the total value v; of
node i's outstanding contracts and, thus, the re-
placement cost imposed on node i's counterparties.
Proposition 5.3 clearly applies with L” replaced by L™*.

For the comparison of selective termination (cred-
itor cherry-picking) and no termination, we have the
following simpler result. Recall that the two models
coincide in round 1.

Proposition 5.4. Suppose there is no excess collateral,
meaning that my < ps, Vi,j € N. For any common set of
first-round payments under selective termination and no
termination, we have D" = [° gnd 1" <[5,

The network is unlikely to have excess collateral
following a large shock. But, if we drop the assumption
of no excess collateral, the comparison of shortfalls
could go either way. For example, suppose in Figure 7
that node 0 has a payment obligation to some other
node A that it cannot meet, and suppose node 0
has posted excess collateral to node A. That excess
collateral is returned to node 0 in round 2. If node 1
selectively terminates its contract with node 0, this
creates a new payment obligation vy, potentially in-
creasing the systemwide shortfall. But, if the ex-
cess collateral returned to node 0 is large, the con-
tract termination leads to additional payments by
nodes 1 through N, potentially reducing the system-
wide shortfall.

6. Concluding Remarks

This paper introduces a framework to study conta-
gion in collateralized financial networks and to an-
alyze the effects of the contract termination rules that
control access to collateral. We compare alternative
scenarios through their impact on the set of nodes
that default and the total payment shortfall. In a col-
lateralized network, the failure of one firm may im-
prove the ability of other firms to meet their obligations.

We show that this phenomenon makes the problem
of determining clearing payments ill posed. We resolve
this difficulty and arrive at a well-defined set of clearing
payments by carefully specifying the timing of pay-
ments and collateral liquidation.

It is interesting to view our analysis through a
regulatory lens. In its comparison of margin require-
ments and capital requirements, the Basel Committee
on Banking Supervision and International Organization
of Securities Commissions (2015, p. 4) writes that,
“margin can be seen as offering enhanced protection
[in comparison with capital] against counterparty
credit risk provided that it is effectively implemented.
In order for margin to act as an effective risk mitigant,
it must be (i) accessible when needed and (ii) provided
in a form that can be liquidated rapidly and at a pre-
dictable price even in a time of financial stress.” Our
analysis of fire sales reinforces the second point, and
our baseline model of collateral presupposes that
collateral is accessible at default. Our results also
show that, even when (i) and (ii) hold, collateral is not
guaranteed to improve financial stability. Depending
on how collateral is allocated to counterparties, it can
increase or decrease defaults and payment shortfalls.
For instance, we show that committing excess collateral
may increase risks to financial stability. This result is ap-
plicable with derivative contracts in which initial margin
can lead to collateral levels in excess of current payment
obligations. Moreover, a comparison of alternative policies
on collateral seizure requires consideration of a firm’s
positions in a network of payment obligations and
cannot be made by considering a firm in isolation.

The same point—that the network matters—applies
to the comparison of alternative rules on contract
termination. The debate over stays on contract ter-
mination upon the failure of a firm gained renewed
attention after the failure of Lehman Brothers. Poli-
cies adopted earlier argued that financial stability
required protecting the termination rights of sur-
viving counterparties; more recently, the regulatory
consensus argues that financial stability requires
limiting these rights. Our analysis compares sys-
temwide losses and defaults under alternative as-
sumptions about contract termination. These com-
parisons require analyzing the network; our results
and examples show that none of the termination
scenarios we consider is uniformly better than the
others in stemming losses.

We are able to make a stronger statement under a
constraint on derivatives leverage in the network. When
this condition holds, full termination results in lower
payment shortfalls than selective termination or no
termination. A reduction in derivatives leverage is con-
sistent with postcrisis increases in bank capital and a
general decline in over-the-counter derivatives, adding to
the relevance of the condition we introduce.
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Appendix A. Supporting Analysis

A.1. Proof of Lemma 2.1

Write S; = {k: pg) < pic} for the set of nodes to which node {
did not meet its payment obligations in round 1. If j ¢ S;,
then u(J) =0, so we may suppose j € S; in partlcular S is
nonempty. The sums in the denominators ofa Dand a(f) can
be restricted to k € Si. We prove the result in the more
general setting of Section 3, for which ) =@ =1 is a
special case. For all k € S,

()

P = ntl)mk + amﬂ.m
I

Making this substitution in gll) and (13) and letting K;
denote the denominator of a yields
Pij — n(l)m,-j - a};)A?)
Tkes, (ﬁik - nMmy — ﬂgl}A(]J)
(P — 7 Omy) (1 - A/K)

i Ztes, Pk — ?m,k}(l -AD ,'K,.)

a0
|} &

a2 =
i

A.2. Proof of Proposition 2.1
The existence of clearing payments in this setting is a special
case of the more general claim in Proposition 3.1, which we
prove separately. Here we prove (15).

The secnnd round payments Ln (14) satisfy p(z) < p(z) =
Pij — p,j, , using (11), so pf;] + p,‘ < py- Sum.mmg over j,
we get

P +pi? < (A1)

We next show that the second term in (15) is also an up-
per bound:

PO+ pP <ot E(P‘” )+ Sme (A2)
ki ki

The second-round payments in (14) have exactly the
structure of Eisenberg and Noe (2001) clearing payments (4)
with r; in (14) playing the role of ¢; in (4) and payment
obligations given by ﬁg) Any node that did not default in
the first round has no payment obligations in the second

round. As in Eisenberg and Noe (2001), we may write the
node totals as

k#i

In other words, the minimum in (14) is either attained by the
first term forall j or the second term foraall j. Fori € D, we can
rewrite r; using (5) and (12) as r; = Zg(my — pi)*. Making this
substitution and using (11), we get

(2) il [p pll)] (Z(”‘lk — P+ ZP(ZJ) (A3)
kFi

From (10), we have

P = (ma A pa) + (“E:)A?) A :'m)

(A4)
< (m,-k A ﬁjk} + af;]Aim

Summing both sides of (A.4) over k and recalling the def-
inition of A!” in (7), we get

P <cik 2P0+ 2 (ma A pa)-
k#i ki
Adding (A.5) to (A.3) yields (A.2).
In light of (A.1) and (A.2), to prove (15), we need to
show that

(A.5)

if Pﬂ)

s S ) + S
k

We claim that, if pﬁl) + pm < pi, then equality holds in (A.4),
and (10) can be written as

+ P;@ <p; then p@" + P:@
(A6)

(A7)

To show this equivalence, we need to consider three cases.
(i) If py < my, then (6) yields a(l) =0, so (10) and (A.7) both
give p(k) = Pk (i) If Py > my + a( )Am then (10) and (A.7)
both give p‘? = m,k+ak)A (m) The remaining case
is Mg <Pi <My +amAm, which is equivalent to 0 < py —
Mg < au Am In light of the definition of am in (6), this
1mplles 5,lpy — myl* <Am But this mequallty says that,
following the seizure of collateral, node i has sufficient
remaining assets to meet all its residual claims, making
pr;) = pi for all k. Summing over k yields p?) = pi. Thus,
under the condition pm + pfz) < py, case (iii) is precluded
and (A.7) holds.

Summing overk i m (A.7) we get equality in (A.5). Under
the condition p; o +p; @ < piin (A.6), the minimum in (A.3) is
attained by the second term. Adding this term to the right
side of (A.5) yields the claimed result in (A.6).

1 = 1 1
P = (ma A pa) +ad AD.

A.3. Analysis of Free-Termination Model
We begin with a precise formulation of the model of Section 2.5.
To capture the nodes” access to collateral, we need to et
--cl+2ph+2[m,k—p,k] —c”-v-th (A.8)
k#i

The term [m — pi]* reﬂects the excess col.latera] nodeican
call back from k to make payments to other nodes. Node i
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defaults if A; < Z[pu — ma]*; in other words, default is the
failure to meet uncollateralized obligations. We can write the
default set as

= {i LG+ D P+ D Mg < Zf’:‘k}- (A9)
% 3 ¥

Upon #'s default, node j’'s share of any remaining assets is
proportional to its residual claim, so

= +
aij = M (A.10)
Tkl Pi — |
Clearing payments are required to satisfy
Pij = Pij A [ + @i (A11)

Existence of (largest and smallest) clearing payments fol-
lows from Tarski's (1955) fixed-point theorem.

To formulate the equivalent Eisenberg—Noe model, de-
fine reduced obligations

i = [P — my]", (A12)

and increased cash

cf = e+ D [ma — pu| T+ 2 (M A ).
3 *

The additional cash reflects collateral [my — py| ™ recovered
by iand any paying down of obligations to i using collateral
posted by k, 1y A pri- Set

A? = C? T quh'r
kit

and notice that 4;; in (A.10) equals 7;/ Zk Ju- With no col-
lateral, the standard Eisenberg-Noe condition for clearing
payments becomes

gij = Gig A @iAj. (A.13)

We may rephrase the first statement of Lemma 2.2 as saying
that payments g;; satisfy (A.13) if and only if payments p; =
i + (my A py) satisfy (A.11).

Proof of Lemma 2.2. If (A.13) holds, the substitutions g;; =
= (mj; A py) and (A.12) yield

pii = (my A py) = [y — my]" nagAl,
SO

Py = Py A [(my A py) + ayA]] (A1)
= pij A [y + agAT].
But
Al =ci+ Zk][msk —pu|"+ ;(mﬁ A ) + Zk] i
=ci+ Zkl[mfk —pu]"+ Zk:Ph‘ = Ay

so (A.14) yields (A.11). Conversely, if (A.11) holds, then, as
Pij = qi + (my; A pj), we have

95+ (mi A pg) = @+ (msg A )| A [my + AT,

qij fﬁ; A [(m:; q} +HI}A ] = q:; A a!;Ar'

Because, if mj;; > pyj, then g = 0. As A] = A;, (A.13) follows.
To see that the payment shortfalls coincide, observe that
[Py = my]" = [py = (my A Py) | =Py = py-

The default sets coincide because gij < gy if and only
if Pij < ,1.-7,1 [m]

Gij — Gij =

Proof of Proposition 2.3. For the model with free termi-
nation, we can use ¢, in (A.8) to rewrite the clearing condition
(A.11) as

i =Py A (A13)

m,-,-+a,-,-(cf+2pﬁ)].
3

This equation has exactly the same form as the first-round
clearing payments in (10) but with ¢; in (7) replaced by /. As
& = ¢, it follows from theorem 3 of Milgrom and Roberts
(1994) that the largest and smallest fixed points of (A.15) are
no smaller than, respectively, the largest and smallest fixed
points of (10). In other words, payments with free termina-

tion exceed first-round payments in the nngmal model. By
comparing (8) and (A.9), we see that py; > p unphes DP C D:

free termination results in fewer defaults.

To compare payment shortfalls in the two models, we use
Equation (A.16), proved as follows, and claim that we can
replace ¢ + r; with & to write

1 2]
Py +p

= ﬁi,l

my + af (a’ +Z( 0 +pl2>))]

Ifi ¢ D, then p“) = Pij, p,m = 0, and there is nothing to show.
Ifi € D, then the returned collateralis r; = ¥y [my— pa]*, and
indeed ¢; + r; = /. Comparison with (A.15) now shows that
total payments in the two systems coincide. O

A.4. Proof of Proposition 2.4

We first derive an expression for total payments p(;) + pS,Z)
that is of mdependent Lnterest Using Lemma 2.1, we can
replace a( in (14) with a( because, if aq) =0, then F":; = Pij,
50 p[ Y = 0 and is unchanged by the replacement. With this
subqtltutmn and adding (10) and (14), we get

1 2
Py + Py

=y A ( my + ( + me)]
+ a}?)(r,- + Epg)))
3

my; + a (c, +ri+ Z (pm + p(z)))] (A.16)

Pij A

E f,‘u

This expression does not quite reduce the two rounds to a
single round because the returned collateral r; is determined
after the first round and is not an exogenous parameter. We
now turn to the two claims in the proposition.
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i. Removing excess collateral has no effect on round 1
payments and no effect on which nodes default. All ex-
cess collateral becomes returned collateral in round 2.
Replacing excess collateral with cash increases ¢; by exactly
the amount it decreases returned collateral r;, so we can see
from (A.16) that pooling excess collateral does not affect the
set of clearing payments and, therefore, does not affect
payment shortfalls. The increase in ¢; can, however, reduce
the default set, which is determined in round 1.

ii. Under proportional collateral, [f),; - m,-,,-]+ =(1- ki)ﬁ;j,
S0 ug:) = Pij/ Lk Pik, from which it follows that mi;; = aﬁ].n m; with
m; = Xjmy. Moreover, with k; € [0,1], there is no excess
collateral, so no defaulting node receives any returned col-
lateral, meaning that a!:)r,- =0. We may, therefore, write
(A.16) as

ps;) + pﬁ}.z) =pyA ag;) (m,- +ci + Zk:(pg) + pg))) A

As the total payments depend on m; and ¢ only through
their sum, pooling while preserving proportional collateral
(increasing ¢; by decreasing k;) has no effect on payment
shortfalls, but as before, increasing ¢; can reduce defaults.

A.5. Proof of Proposition 3.1

We begin with the analysis of first-round payments. Through
an arbitrary ordering of pairs of nodes, we can record the set of
payments p;° in a vector pm; interpret the vector p ac-
cordingly. If we take any 7t € [0,1] and p™" € [0, 7] and plug
these variables into the right side of (17)+22), then the
variables on the left side of (17) and (22) return new values
of e [0,1] and p € [0,7]. In other words, expressions
(17)-(22) define a mapping F : (1, p™) — (, p") of [0,1] x
[0, 7] into itself.

Lemma A.1. F is monotone increasing.

Proof. In (22), we see that ngl] is monotone increasing in A}”
and, therefore, monotone increasing in pg), k #i. Now,
consider pgfl) as a function of 7. If i ¢ D, then ps;) = py, and
changing m has no effect on pf-j,-l]. For i€ D, we consider
three cases.

Case 1. Suppose that, AED < Zilpy —mimy) and py > e
In this case, (22) yields a right derivative of

w_ o mAd
an : S(pa — oma)
(P — Tlm:j}JrA,w S g P > Tmg}

[Zk pac — Tlm;‘k)+]z

(A17)
+

The second term on the right is less than m;; because we
have assumed A?) < Eppik = mg)t. The third term is
nonnegative, and the derivative is then as well. A small
increase in 7 yields an increase in p,(-]).

Case 2. Suppose that, A?) > Yi(pa — omy)" and py > oy
These conditions imply p;’ = pj, and they are preserved
under a small increase in 7, so dpy;/dn = 0.

Case 3. Suppose that, py < nmi. In this case, pg) = Pij.
S0 apg.l),’r?n =0.

As 7 increases, we may transition into cases 2 or 3. Either
transition yields pg}) = pyj, 50 monotonicity holds.

It remains to show that (17) makes 7 on the left an in-
creasing function of all pS}J and 7 on the right. Monotonicity
in 7t is immediate from the monotonicity of G. An increase
in pg ) leads the default set D to contract or remain un-
changed, resulting in a decrease in A and an increase in 7. O

By Tarski’s (1955) fixed-point theorem, Lemma A.1 im-
plies that F has a fixed point in [0, 1] x [0, p], which delivers
the required clearing payments and collateral price. The
following lemma ensures that a fixed point is reached
through iterative application of F, starting from the upper
boundary of this domain.

Lemma A.2. Fiscontinuous from the right; that is, for any
decreasing convergent sequence (rf,p‘) — (n,p"), we
have F(rf, pf) — F(n*,p*).

Proof. Equations (17)~(22) imply that pg) is continuous in p("
and 7, and (17) implies 7 on the left is continuous in 7t on the
right. A change in p") may produce a change in D and, thus, a
discontinuity in 7. However, a small increase in pm preserves
the inequalities defining the default set in (18), leaving D
unchanged and implying right-continuity of 7 in pV. O

We can now conclude the proof of Proposition 3.1. By
Lemma A.1, the iterates of F starting from (1,p) form a
decreasing sequence F(rf, p%) = (n*1,p’*1). This sequence is
bounded below by (0,0) and, therefore, has a limit (7", p*).
Thus, F(rf, p¥) — (n*, p*). However, Lemma A.2 implies that
F(n’,p") — F(r", p*). We conclude that F(r*, p*) = (1", p*).

This fixed point provides a first-round price and clear-
ing vector ('), p")). The existence of (1'?, p@) now follows
by a similar but simpler argument. Expressions (23)—(25)
define a mapping from (7, p®) on the right to (=, p®)
on the left. The mapping is clearly monotone increasing
and continuous, and it maps [0, 1] x [0,p?] into itself. Tt,
therefore, has a fixed point, and the fixed point delivers the
required solution (1, p?).

A.6. Proof of Proposition 3.2
The existence of a largest (and smallest) first-round solution
follows from Tarski’s (1955) fixed-point theorem and the
monotonicity of F in Lemma A.1. By theorem 3 of Milgrom
and Roberts (1994), the monotonicity of Fin 7)) implies that
the largest and smallest p" are smaller with illiquid col-
lateral (n'V < 1) than with liquid collateral (=" = 1). This
implies that the default set is larger with illiquid collateral.
With illiquid collateral, the argument leading to
(A.16) yields

pgj + p}? = py A |y + ag) (ci +nPr Z(PS) + pg)) ],
k
(A18)
=pi A [T{mm,-j + ag];i,-]. (A.19)

With this representation, we may write (p",n(",p® +
p(Z)‘ n?) = (F(p(l),n(l)),ﬁ(p(1),ﬂ(1},ptl) + p(ZJ’n&))) with F as in
Temma A.1 and F defined by (A.19) and (24).

In (A.19), A; is increasing in p +p@, in @, and in r,
which is increasing in 7t"). Moreover, (A.19) has the same
form as (22), so the argument in Lemma A.l shows that F
is monotone increasing. It follows from Tarski’s (1955)
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fixed-point theorem that the mapping defined by (F, F) hasa
largest and smallest fixed point. By theorem 3 of Milgrom
and Roberts (1994), with n'?, 7@ <1 (illiquid collateral),
the largest and smallest fixed points are smaller than the
largest and smallest fixed points when weset () = @ =1
(the case of liquid collateral). As illiquid collateral yields smaller
total payments pt") + p'?, it yields larger payment shortfalls.

A.7. Analysis of Collateral-First Protocol

In several places in this paper, we compare our baseline
model of Sections 2.2, 2.3, 3.1, and 3.2 with alternative
models. In making these comparisons, we use the notation
i and 7t (with superscripts to distinguish rounds) to denote
payments and prices in the alternative model. The specific
meaning of these variables is different in different sections
as we use this notation to compare our baseline model
against different alternatives.

In this section, we use (q{” (2}) and (&1, ) to denote
two rounds of payments and collateral prices under a
protocol in which payments precede collateral seizure in
round 1. First-round payments are characterized by

i [ AD + [ (5 - a2 AD) " rs]
1)
‘L} ieD;
Pij» i¢ DA
The first case should be read as follows: node i makes a
partial payment to node j ofa ]A( ), ; any residual obligation
(i — (1)A(1))+ is paid from collateral up to the amount
ava]lable fimy;; the total payment cannot exceed the amount
due py. The assets A(]) have the same form as in (7) but now
with incoming payments qh), the default set is determined

exactly as in (8), but we have labeled it I to indicate its
. 1
dependence on the payments q(l). The proportions agj ) are as

(A.20)

given in (19) and, thus, reflect the collateral posted. Upon
node i's default, the shares of collateral seized and sold by
node j become

m |
[Fif ay Ay .
A:!} & {m,-,- AL, ieDy;

0, ig¢ DI
The first case in (A.21) captures the feature that a failed
node’s collateral can be seized and liquidated only after its
other assets are exhausted. Set A7 = 3; 33; Al Asbefore, the
price impact function 7t() = ¢# determines the equilibrium
asset price. Once first-round payments and A are deter-
mined, second-round payments qm and #® are character-
ized by (23)—(25), just as before. The proof of Proposition 3.1
can be used to show the existence of first- and second-round
clearing payments and prices (g, #") and (g, @®).

In the case of liquid collateral, @ = 1, total payments in
the original (collateral-first) model and the alternative
(payments-first) model are the same:

(A.21)

Proposition A.1. Assume that collateral is posted in cash so that

there are no fire-sale effects. If (p" L. F’:[; ]) i,j € N, are total clearing
payments for the original model, then q(” = p(l) and g 2 = pg,z),
i,j € N, are total clearing payments in the aitematwe modei with
delayed collateral seizure. Thus, with liquid collateral, the two

protocols yield the same default set and the same payment shortfalls.

Proof of Proposition A.1. We first show that, if all incoming
payments to node i agree under the two models, qm = pm,
k € N, then outgoing payments p gwen by (10) and qm
given by (A.20) agree for all j € N

If all incoming payments to node i agree under the two
models, then the two models yleld the same Am and i € D if
and only if ie DI Ifzf -‘ —p,j P(r] for all j.
Suppose i¢ D. Tf py < aj ’A“’ then "(10) and (A.20) both
evaluate to Pi- If p Pij > amAm then (A.20) evaluates to

qg;) = Py A [gﬂ”A!” + [ﬁ - a@-l)Agl)] A mrf]
= pij A [P‘J (m*f "'“(UA(D)]

which agrees with (10). Thus, qg;) = pffl) for all j.

We now turn to the second-round payments. We assume
that all first-round payments agree under the two models,
and we assume that all second-round incoming payments

[2) = pm for all k € A, and we show that this implies
that qm = p(zJ forall je N.

If zé D, then node i has no second-round payment obli-
gations, so q(z) = pu) = 0forallj. Supposei € D. If the amount
of returned co].latera] r; is the same in the two models, then the
payments made by node i under the two models agree be-
cause they are determined by (14).

The only remaining case to consider is the possibility that
the two models may produce different quantities of returned
collateral r;. We see from (12) that the quantities of 11qu1dated
collateral A;; in (5) and A'f in (A.21) must then differ for some .
We always have A < A, < my;, so for the quantities to differ,
we must have A < Ay, and thus, A < my. We must then
have a};)Agl) + AE. = py; if we had a#’A?’ + Aﬁ; < pyj, additional
collateral would have been liquidated in the first round of the
payments-first protocol to meet the obligation p;;. Using the
deﬁ.ruhnn of a(l) in (6), we can write the equation amAm

ij = py as

Pl o ar a0
kgl P — ma]" '

> > [P —mul".
A

However, this inequality states node i has sufficient

assets to meet all its round 1 obligations under the

collateral- ﬁrst pmtocol S0 pl = py;; hence, ‘L = py, im-
. O

plying that p q

A.8. Proof of Proposition 4.1

The first round with contract termination is identical to the
first round in Section 3.1, so the existence of (p"), V) fol-
lows from Proposition 3.1. For m = 2, we claim that A(’") =0.
In light of (27), it suffices to consider the case IG D,
j€Sma- But, if i€ D™ then i survived the first m—1
rounds, S0 i € Sp_1. In this case, (26) yields fig"] =0, and (27)
yields A(;"] = (0. With all A(;"] 0, the mapping defined by
Equations (26)—~(32) becomes a special case of the mapping
in Lemma A.1 with one modification, which is the inclu-
sion of the returned collateral value n("‘)rl’") Al’"] in (28).
The monotonicity proved in Lemma A.1 holds with this
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modification: the only step affected is (A.17), in which we
pick u;:: an additional positive term from the monotonicity
of AS'" in n™. The existence of (p™, 7)) follows as in
Proposition 3.1.

A.9. Proof of Proposition 5.2

Proof of Lemma 5.1. The second-round payment obliga-
tions in the FT model are given by

iorjeDm;

. (A22)
otherwise.

& (1
=2) _ ) Oy P — Py,
= {0.’ Y
This follows from (26) with m = 2, recalling that all nodes
are in Sg. Under the ST model, qﬁ;) = pf-jl), and the second-
round payment obligations are given by

= 1 .
%= {gff +py-py, €D (A23)

, otherwise,

because the amount v;; becomes due only if i defaults. Com-
paring (A.22) and (A.23), we can write fr}f) > E]Ef), Vi,jeN.

Second-round payments under full termination are given
by (30) with m = 2. In the proof of Proposition 4.1, we show
that Aﬁ;”) =0 for m > 2, so (30) yields

P om0

2) _ 2 2
P}‘j) = F’Ej) A“E;'J
K
5 " (A.24)
o= P

i @

Sepifly
taking a}.z) =0 if node i has no second-round obligations.

Under selective termination,

2’ =(2) a2 2 - 2
5 =10 DD 422D 4 340

ki
@) EL('Z)
W)= L = (A.25)
Zti T
The cash amounts ¢ and returned collateral #? are indeed

equal in these twor expressions because t}\e!l'wo models
agree in round 1. Equations (A.24) and (A.25) represent p®
and ¢ as fixed points of a common mapping, parame-
terized by 5 and a® in the first case and by §® and #? in
the second case. Moreover, pfj,z ) in (A.24) is an increasing
function of ﬁg?) 512)
function of :?SJ.Z) @

We have shown that 5® > 7®; we now claim that 2 >
ﬁgja for all i,j € M. Tf i € D, then we see from (A.22) and
(A.23) that ﬁﬁl = i?ff] forallk, so agjz) = figf), and ifi ¢ D, then
ﬁs}.ﬂ = (. The ordering in (36) now follows from theorem 3 of
Milgrom and Roberts (1994)for the smallest and largest
fixed points of the two models, which also ensures the
existence of these extremal fixed points. O

and a;;’, and q,[-j?] in (A.25) is an increasing

and 4

Proof of Proposition 5.2. From (34), we have I C Df, and as
noted there, D = D). To compare payment shortfalls, we use
(35) to write

P-1f=3p-0)- > (@+p-p)

D) ieDf —DM
A.26
- (o) S e
= Pi q; Ui + Pi p,)
EpNe2 ieDf —D
=2 (ZPS‘) -qu)) - > (v,-— Zp}"). (A27)
ieDUN £22 ieD/—piv =2

Equation (A.26) uses two properties: the first-round pay-
ments agree, pl-n = qﬁ“, for all i,and under selective termi-
nation, there are no payments after the second round, so q,m =
0 for £ > 2. Equation (A.27) follows because, if i ¢ D1 then
node i must have met its first-round payment obligations,
so i =piV.

Under full termination, if node i survives round 1 but
defaults in a subsequent round (i.e., i € D — D), then its
payments 3o pf‘) must be at least as large as its net worth ¢;
defined in (39); if a node paid out less than its net worth, it
would not default. From (A.27), we get

o 35

ieDM \£22

- Z (v; — &).

ieDf DM

(A28)

In case (i), Lemma 5.1 applies, so p?) = q?), and the first
term on the right in (A.28) is positive. Under condition (40),
we conclude from (A.28) that I* > I/. For case (i), we note
that, if my < py for all i,j € N, then, under selective termi-
nation, nodes that default in round 1 do not have any col-
lateral returned and do not receive any subsequent payments,
so they cannot make any subsequent payments; thus, qf =0
in (A.28), so (40) again implies [* > L. O

Proof of Proposition 5.3. Under full termination and the
condition v; < e, Vi ¢ DU, a node that survives the first round can
meet its second-round obligations because these obligations v; do
not exceed the node’s net worth e;. Thus, Df = DM, and without
further defaults, p}fJ =0 for all £>2.

In the no-termination scenario, D) is also the default set
because the two models agree in round 1. In the absence of
excess collateral, a node that defaults in round 1 has no
collateral returned. If no contracts are terminated, then such a
node has no influx of cash and, therefore, cannot make any
further payments: qff) =0for£22ifie D If i¢ DV, then
node i has no payment obligations after round 1, so again
qg{) =0 for £=2. The difference in payment shortfalls is
given by

U'-U=3Gi—a)- >, (w+p-p)
ieD1 feDy
- S0 S
ieD) feDit
=3 -> o (A29)
1Dl ieDil
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where the first equation uses D' = DIV, and the third step uses
pf.n = qg“, qga =0,£{=2,and prm =0 for all £>2.

Tf i € DY, then node #'s total second-round payments are
given by the lesser of its payment obligations and its cash

influx, so

e fron-t (e 5]

kgD keD()

A v+ D) pg) =,
keD)

using the second case in (41). Tt now follows from (A.29) that
"-1f>0.0

Proof of Proposition 5.4. Under both selective termination and
no termination, if the network has no excess collateral, then no
collateral is returned in round 2 and no payments are made in
round 2. Selective termination does not create any new defaults, so
D* = DW = D". Compared with no termination, selective termi-
nation increases second-round payment obligations, but with no
second-round payments made, this results in larger payments
shortfalls, so L" < L*. O

Appendix B. Institutional Features

This appendix provides some institutional background on
collateral ownership and contract termination in the mar-
kets for OTC derivatives; similar considerations apply to
many forms of collateralized borrowing, including stan-
dard repurchase agreements. The points we emphasize are
as follows: collateral is owned by the posting party until
that party defaults; upon default by the posting party, the
surviving party may seize the collateral quickly; a surviving
party may face delays in recovering collateral posted to a
counterparty that defaults; parties may not ordinarily
terminate contracts at will as a means of recovering pos-
ted collateral.

OTC derivatives are traded either bilaterally (the non-
cleared market) or through CCPs. Following reforms in-
troduced in 2009, when two parties enter into a bilateral
contract, they post collateral to each other, and the amount
of collateral is updated regularly as market prices changes.
The amounts exchanged may be asymmetric; for exam-
ple, the seller of an option needs to post more collateral than
the buyer.

These arrangements are typically governed by an Inter-
national Swaps and Derivatives Association (ISDA) agree-
ment. Under such an agreement, each party retains own-
ership of the collateral it pledges and grants to the other
party a “priority interest” in the collateral in case the
pledging party defaults. Contracts agreed to under an ISDA
agreement are terminated by events of default and certain
additional events including changes in law, certain tax
events, force majeure events, and other triggers (such
as credit downgrades) to which the parties might agree
(see, e.g., International Swaps and Derivatives Association
2019). Neither party may unilaterally terminate the contract
unless that option is itself part of the contract.

The internationally agreed upon principles governing
bilateral margin (Basel Committee on Banking Supervision
and International Organization of Securities Commissions
2015) specify that it should be “immediately available to
the collecting party in the event of the counterparty’s
default”(p. 23). They also state that “collateral collected as
initial margin from the customer is treated as a customer
asset” (p. 24) and “the collected margin must be subject to
arrangements that fully protect the posting party to the
extent possible under applicable law in the event that the
collecting party enters bankruptcy” (p. 8). Our model is
designed to capture these principles in simplified form:
collateral belongs to the posting party, it can be seized
quickly by the collecting party if the posting party de-
faults, and the return of collateral to the posting party may
be delayed by bankruptcy proceedings if the collecting
party fails.

In the centrally cleared market, CCPs collect but do not
post collateral. Here, too, collateral arrangements ensure
immediate access by the CCP in case of a counterparty’s
default. Trades with a CCP cannot be unilaterally termi-
nated because the CCP needs to maintain a “matched book”
with an offsetting contract for every trade.

Endnotes

' Researchers also debate the implications for economic growth of the
demand for safe assets as collateral; see Duffie et al. (2015)and
Sidanius and Zikes (2012)for estimates of the demand. Our analysis
addresses the distribution and allocation of collateral rather than its
overall level.

2These rules generally apply to what are known as QFCs, which
include derivatives and repos. See Duffie and Skeel (2012),
Skeel (2010), and Roe and Adams (2015)for legal background on
stays for QFCs. See Bolton and Oehmke (2015)and Duffie and
Wang (2017)for corporate finance and game-theoretic models of
automatic stays and contract termination.

3us. banking regulators and the Commodity Futures Trading
Commission finalized their uncleared swap margin rules in 2015
and 2016. U.S. margin rules for uncleared swap transactions follow
closely the guidelines established by the Basel Committee on
Banking Supervision and International Organization of Securities
Commissions (2015).

*This assumption is consistent with the treatment of IM in practice.
The required IM is commonly held by a third-party custodian.
5The assumption that collateral is taken first and the bankrupt firm's
assets are distributed in proportion to the residual claims is consistent
with the legal discussion in Ayer et al. (2004).

sChang (2018)develops a model in which borrowers may fail to
recover collateral when a lender defaults because the lender has, in
turn, posted the collateral to another node. In our analysis, we assume
nodes fully recover any collateral to which they are entitled.

Tt is also possible for node i to default in round 1 yet end the round
holding cash even before the return of collateral. However, in this
case, we would have p!iz) =0 for all j and node i has no remaining
payments. This case is also illustrated in the figure.

8Here and in several subsequent results, we are comparing two
networks defined by fixed-point equations. To account for the pos-
sibility of multiple fixed points, the comparison should be understood
to hold for the largest fixed points of the two networks and for the
smallest fixed points. The existence of largest and smallest fixed
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points follows from applications of Tarski’s (1955) fixed-point the-
orem. These issues are discussed in greater detail in the proofs of the
relevant results.

¥Most OTC derivatives contracts are governed by an ISDA master
agreement, which specifies the very limited settings—primarily
events of default by the counterparty—in which one party may
terminate a contract. See the discussion in Appendix B.

0 formulating I'S'”), we have made the reasonable assumption that
banks use their liquid assets before selling illiquid returned collateral.
If the order is reversed, Ti™ becomes 7™ A 34 ;’Jf}f‘] [,

" As explained in Skeel and Jackson (2012), debtors may engage in
their own form of cherry-picking. With the protection of a bankruptcy
stay, a debtor may decide which contracts to “assume” and which to
“reject.” Skeel and Jackson (2012) also explain that this optionality is
consistent with the treatment of “executory” contracts in nonfinancial
bankruptcies.

2 Title T of the Dodd-Frank Act and the resolution framework of the
Federal Deposit Insurance Corporation (in coordination with the
Federal Reserve and Office of the Comptroller of the Currency (OCC))
impose a one- to two-day stay for QFC counterparties of the most
complex U.S. bank holding companies (U.S. global systemically
important banks). Under the U.S. Treasury’s proposed chapter 14
bankruptcy process, termination rights of QFC counterparties are
stayed for two days (U.S. Department of the Treasury 2018). That is,
automatic stays for QFCs can be in place in both bankruptcy and
resolutions proceedings.

" Although we interpret selective termination as the result of creditor
cherry-picking, a similar outcome would result if the failed node
chose to terminate all its out-of-the-money contracts. This possibility
is noted in Skeel and Jackson (2012). By terminating these contracts, a
failed node could force its counterparties to accept lower payments
through bankruptcy proceedings.

" Our use of g and 7t in this section should not be confused with their
use in Section 3.3. In both cases, we use g and 7 to indicate an al-
ternative to a model that uses p and n.
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