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Abstract 

A stochastic learning dynamic exhibits fast convergence in a popu-

lation game if the expected waiting time until the process comes near 

a Nash equilibrium is bounded above for all sufficiently large popula-

tions. We propose a novel family of learning dynamics that exhibits 

fast convergence for a large class of population games that includes 

coordination games, potential games, and supermodular games as spe-

cial cases. These games have the property that, from any initial state, 

there exists a continuous better-reply path to a Nash equilibrium that 

is locally stable. 

1 Overview 

Evolutionary game theory is concerned with the dynamical behaviour of large 

populations of players who are engaged in repeated interactions. Players 

adapt their behaviour according to local or partial information but not al-

ways in a fully rational manner. Two questions present themselves: Are 

∗This research was supported by AFOSR grant #FA9550-09-1-0538. 
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there natural adaptive rules that lead to Nash equilibrium in general classes 

of games? If so, how long does it take to reach equilibrium from out-of-

equilibrium conditions? 

The answer to the first question depends on whether the adaptive dynam-

ics are deterministic or stochastic. In the former case the results are largely 

negative: there exist no natural deterministic dynamics that converge to 

Nash equilibrium in general games (Hofbauer and Swinkels [14, 1991]; Hart 

and Mas-Colell [10, 2003]; Hofbauer and Sandholm [13, 2008]). The basic 

difficulty is that given virtually any deterministic dynamic one can choose 

the payoffs so that the process gets trapped in a cycle. By contrast, the 

answer to the question is positive for certain classes of stochastic dynamics. 

Indeed there exist simple stochastic learning rules that come close to Nash 

equilibrium with high probability in large classes of normal-form games (Fos-

ter and Young, [6, 2003],[7, 2006]; Hart and Mas-Colell, [11, 2006]; Germano 

and Lugosi, [8, 2007]; Young, [26, 2009]). Furthermore there are rules with 

this property that are completely uncoupled, that is, a players updating pro-

cedure depends only on his own realized payoffs, and not on the actions or 

payoffs of anyone else. 

The answer to the second question – how long does it take to reach Nash 

equilibrium – has only recently been studied in any depth. The key result 

to date is due to Hart and Mansour [9, 2010]. They consider learning rules 

that are uncoupled, that is, the updating procedure depends on a player’s 

own payoffs and possibly on the actions of others, but not on others’ payoffs. 

Using methods from communication theory, they show that when everyone 

uses an uncoupled learning rule, there exist N -person normal form games 

such that the number of periods it takes to reach a Nash equilibrium is 
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exponential in N . 1 These results are proved by constructing payoff functions 

that are difficult to learn by design, that is, the payoffs constitute a worst-case 

scenario.2 

The results of Hart and Mansour leave open the question of whether Nash 

equilibrium, or something close to Nash equilibrium, can be learned reason-

ably quickly in games that have a natural payoff structure. The purpose of 

this paper is to show that this is indeed the case. In particular, we shall 

show that there exists a family of stochastic learning rules such that behav-

iors come close to Nash equilibrium with high probability in bounded time 

(not merely polynomial time) provided that the population game is weakly 

acyclic’. Such games have the property that, from any initial state, there 

exists a Lipschitz continuous path to a neighbourhood of some Nash equilib-

rium such that: i) it is a better-reply path, that is, the direction of motion at 

each point on the path represents a payoff-improving change by one or more 

subpopulations, and ii) for any � > 0 there is a δ > 0 such that, once the 

process is within δ of the target Nash equilibrium there is no better-reply 

path that moves more than � away from it.3 

A special case of weakly acyclic population games are potential games 

in which every Nash equilibrium is a strict local maximum of the potential 

function and there are a finite number of local maxima. Another example 

are supermodular games (see section 5). The key feature of a weakly acyclic 

population game is that, although it may contain better-reply cycles, there 

1By contrast, correlated equilibria can be learned in a polynomial number of time 

periods (Papadimitriou, [17, 2005]; Hart and Mansour, [9, 2010]). 
2For related work on the speed of convergence see Babichenko ([1, 2010a], [2, 2010b]). 
3This definition extends the concept of weak acyclicity in normal-form games. A finite 

normal form game G is weakly acyclic if from each strategy-tuple there exists a better-

reply path – one player moving at a time – that leads to a pure-strategy Nash equilibrium 

(Young, [24, 1993], [25, 1998]). 
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always exists a better-reply path that leads away from such a cycle and 

toward a Nash equilibrium (A potential game is much more special because 

there can exist no better-reply cycles). 

A novel feature of our set-up is that the learning dynamics involve stochas-

tic perturbations of two different types. If an agent is currently playing strat-

egy i and he learns that strategy j has a higher payoff, he switches from i 

to j with positive probability. In the simplest case, the switching probabil-

ity is a linear function of the payoff difference, a specification known as the 

Smith dynamic (Smith [23, 1984]).4 In addition, however, we shall assume 

that there is a positive probability that the environment prevents an i-player 

from learning about the payoffs of the j-players. In other words, at each 

point in time there is a chance that the information about the payoffs of the 

j-players is inaccessible to the i-players due to some form of interference. 

We assume that these interference probabilities evolve over time according 

to a random walk, and that the updating opportunities for individual agents 

are governed by i.i.d. Poisson arrival processes. Taken together these two 

types of perturbations define a stochastic dynamical system that describes 

how the behaviors in the population evolve. The main contribution of this 

paper is to show that, when the game is weakly acyclic, the expected time it 

takes to reach a neighbourhood of a Nash equilibrium with high probability 

is bounded above for all sufficiently large populations N . We also show 

that this result fails in the absence of environmental interference, that is, 

when players get information with certainty and they update according to 

standard revision protocols such as the Smith dynamic. Stochasticity in 

the environment combined with stochasticity in the players’ learning rules is 

4More generally, switching rules of this type are called pairwise comparison protocols 

(Sandholm, [20, 2010]). 
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needed for fast convergence in this class of games. 

2 Learning Dynamics in Population Games 

We begin by defining a population game (Hofbauer and Sandholm [12, 2007]). 

Let P = {1, . . . ,m} be a set of m populations, and let N be the size of each 

population. Members of population p ∈ P choose strategies from the set 

Sp = {1, . . . , np}. Let Xp = Δp be the np − 1 dimensional simplex and let Q 
mX = p∈P X

p be the overall strategy distribution. Let n = n1 + . . . + n . 

The payoff function of strategy i ∈ Sp is denoted by Fi
p : X → R and is 

assumed to be Lipschitz continuous. 

Definition 1. A population state x is a Nash equilibrium if, for every pop-

ulation p ∈ P and every strategy i ∈ Sp such that xp
i > 0, 

∀j ∈ Sp Fi
p(x) ≥ Fj

p(x). 

Definition 2. Given a population game, a revision protocol (Bjornerstedt 

and Weibull [4, 1996]) is a set of matrices (R1 , . . . , Rm) one for each popu-

plation p, and Rp is of size np × n . Each element, ρij
p ∈ Rp corresponds to a 

: Rnp × Xp → Rnp×np 
(πpLipschitz function ρp 

+ . The value ρp
ij , xp), represents 

the rate at which members of population p who are playing strategy i switch 

to strategy j, when the state is x and the payoff vector πp. 

Let N be the number of agents in each population, and let χN = {x ∈ X : 

Nx ∈ Zn} be the set of feasible states. Each state x ∈ χN may be interpreted 

as a vector x = (x1 , . . . , xm), such that each xp represents the distribution of 

strategies in population p. In other words, N · xi
p is the number of agents in 

p ∈ Rnpopulation p who are playing strategy i ∈ Sp. Let ei be the unit vector 

with 1 in the ith coordinate. 
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The behaviour of the population can be described by a continuous time 

pure jump Markov process {XN (t)}t≥0 as follows. Let X 
ρpλ = maxp,i{ (x) : x ∈ X}. (1)ij 

j 

Assume that, revision opportunities arrive at the rate λN = m · N · λ. Each 

time such an opportunity occurs and the population is in state x, a new state 

x + z is determined according to the following transition probabilities: 

⎧ 
pρp⎪xi ij (x,F (x)) 1 p p⎨ for z = (e − e )

mλ N j iPN = (2)x,x+z p⎪ P P P x ρp (x,F (x))⎩ i ij1 − if z = 0. p i∈Sp j∈Sp mλ 

Based on Lemma 1 in Benäım and Weibull [3, 2003], we know that when 

the size of the population grows, the behaviour of {XN (t)}t≥0 can be approx-

imated by the following mean field differential equation:5 

X X 
p p pż = z ρp (F p(z), zp) − z ρp (F p(z), zp). (3)i j ji i ij 

j∈Sp j∈Sp 

Example 1 (The Replicator Dynamic). P 
By letting ρp (πp, xp) = xp[πp − πp]+ and F p(z) = xpF p(z), a simpleij j i j j∈Sp j j 

calculation reveals that (3) takes following form: 

żp = zp(F p(z) − F p(z)),i i i 

This is the replicator dynamic. 

Example 2 (Smith Dynamic). 

If we let ρp (π) = [πp − πp]+, the resulting mean field dynamic isij j i X 
p p pż = z [F p(z) − F p(z)]+ − z [F p(z) − F p(z)]+.i j i j i j i 

j∈Sp 

5Henceforth, to simplify notation, we omit the dependence on t. 
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Definition 3. A pairwise comparison revision protocol ρ has the property 

that, for each population p and every pair of strategies i, j ∈ Sp, 

• ρp (π, x) = ρp (πp, πp).6 
ij ij i j 

• sign(ρp
ij (π)) = sign(πj − πi). 

In words, a pairwise comparison revision protocol depends on the state 

of the population only through the payoffs, and for every two strategies 

i, j ∈ Sp there exists a positive switching rate from i to j iff πj > πi. The 

Smith revision protocol (Example 2) has this property, but not the protocol 

defining the replicator-dynamic (Example 1). 

Henceforth we shall only consider pairwise comparison revision protocols, 

and therefore we shall omit the term ‘pairwise comparison’ in the interest of 

brevity. 

3 Weakly Acyclic Games 

Our first task is to generalize the definition of weakly acyclic games to the 

population game set-up. For every x ∈ X the tangent space at x is defined 

as follows: 

TX(x) = {y ∈ Rn : z = α(y − x) for some y ∈ X and α ≥ 0}. 

Let M > 0 be some positive constant. For every p ∈ P and i ∈ Sp, let X 
V p pθp [F p pθp(x) = { x (x)−F p(x)]+−x [F p(x)−F p(x)]+ : 0 ≤ kθk∞ ≤ M}.i j ji i j i ij j i 

j∈Sp 

(4) 

Further, let V = ((Vi
p)i∈Sp )1≤p≤m. 

6For simplicity write ρp
ij (π

p). 

7 



Definition 4. A Lipschitz path z : [0, T ] → X is a better-reply path if for 

almost every time t ∈ [0, T ], 

ż(t) ∈ V (z(t)). (5) 

Equivalently, for every population p, strategy i ∈ Sp, and almost every time 

t ∈ [0, T ], ∀p ∈ P , i ∈ Sp 

X X 
p p pżi ∈ { zj θji 

p [Fi
p − Fj

p]+ − zi θij
p [Fj

p − Fi
p]+ : 0 ≤ kθpk∞ ≤ M}. 

j∈Sp j∈Sp 

A better-reply path has the property that, at each point along the path, 

a positive change from j to i in population p occurs only if strategy i yields 

a strictly higher payoff than does j. 

Remark 1. Definition 5 can be generalized by replacing [Fi
p − Fj

p]+ with a 

monotone Lipschitz function g(Fi
p − Fj

p), such that g(x) = 0 for x ≤ 0 and 

g(x) > 0 for x > 0. 

Let Φ(t, x) be the semi-flow of the differential inclusion (5), that is, Φ(t, x) 

is the set of points that are on some better-reply path starting from x: 

Φ(t, x) = {z(t) : z(0) = x and z(s){0≤s≤t} is a better-reply path}. 

Definition 5. Let x be a Nash equilibrium. The �-basin of x is defined as 

follows: 

BA�(x) = {y ∈ X : ∀t > 0, Φ(t, y) ⊆ B�(x)}. 

Definition 6. A population game Γ is weakly acyclic if for every � > 0 and 

y ∈ X there exists a better-reply path z : [0, T ] → X such that z(T ) ∈ 

int(BA�(x)) for some equilibrium x. (In particular we assume that BA�(x) 

has a non empty interior.) 
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Recall that a normal form game G = (I, (Si)i∈I , (Ui)i∈I ), is weakly acyclic 

if for every pure strategy there exists a strict better-reply path to some 

pure Nash equilibrium s ∗ (Young [24, 1993]). That is, for every s ∈ S, 

there exists a sequence of strategy profiles s1 , . . . , sk and a corresponding 

sequence of players i1, . . . , ik such that sk is a Nash equilibrium, and for 

l l+1 every 1 ≤ l ≤ k − 1, s−il 
= s and Uil ) < Uil−il 

(sil ).(sil+1 

A normal form game defines a population game Γ as follows. For each 

player i ∈ I, create a population in Γ with strategy space Si. A state 

in Γ specifies the proportion of members in each population playing each 

available strategy, and the payoffs are defined as if these proportions were 

mixed strategies in G. 

We establish the following connection between the two definitions for 

weakly acyclicity. 

Proposition 1. If Γ is the population game derived from a generic normal 

form weakly acyclic game G, then Γ is weakly acyclic. 

Proof. Assume for the moment that G is a weakly acyclic two-player game 

and let Γ be the population game on X = X1 × X2 that is derived from G. 

Let y ∈ X be an initial state that is not a Nash equilibrium. Then one of the 

players, say player 1, can improve his payoff. By genericity we may assume 

that i1 is a unique best reply for player 1. 

Define a better-reply path z(t) such that, over some initial time interval 

[0, T1], most of population 1 switches to playing strategy i1. (For this purpose 

let θji 
1 

1 
= M in Equation 4 for every j 6= i1.) Note that the rate of change 

from j to i1 is proportional to the fraction of j-players in population 1, namely 

xj 
1 , hence after any finite time there will be some residue of the population 

that is still playing j. However, this residue can be made as small as we like 

by choosing T1 to be large. 
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By genericity, there exists a strategy i2 for player 2 such that i2 is the 

unique best reply for player 2 in state z(T1). Beginning at time T1 we let 

θji 
2 

2 
= M for all t ∈ (T1, T2], where T2 is chosen to be sufficiently large that 

by time T2 most of the population is concentrated on (i1, i2). By assump-

tion, there exists a better-reply path in G from (i1, i2) to some strict Nash 

equilibrium e. One can extend the better-reply path in Γ in a way that very 

closely mimics this better reply path in G, and that ends in the �-basin of 

e. A similar argument applies if G is an n-player weakly acyclic game with 

n > 2. 

We now demonstrate two important families of normal form games which 

are weakly acyclic. 

Definition 7. A normal form game G with a strategy set S is a potential 

game if there exists a function P : S → R such that, for every player i ∈ I, 

a strategy profile s−i ∈ S−i, and pure strategies a, b ∈ Si, 

Ui(a, s−i) − Ui(b, s−i) = P (a, s−i) − P (b, s−i). 

Every generic potential game is weakly acyclic because the potential 

strictly increases along any better-reply path, hence cycles are impossible. 

A second family of weakly acyclic games consists of two player coordi-

nation games (which are not necessarily potential games.) A third family 

consists of supermodular games, which we shall consider in more detail in 

section 5. 

Definition 8. A two player game G is a coordination game if both players 

have the same strategy set S = S1 = S2, and the profile (s, s) is a strict pure 

Nash equilibrium for every s ∈ S. 
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4 Population Potential Games 

Potential games can be generalized to the population game set-up as follows. 

Definition 9. Let F be the payoff function of a population game, and assume 

that we can extend F continuously to a function F : R+ 
n → R. Say that 

F is a potential game if there exists a continuously differentiable function 

f : Rn 
+ → R such that, 

rf(x) = F (x) for all x ∈ Rn 
+. (6) 

This condition is equivalent to:7 

∂f 
(x) = Fi

p(x) for all i ∈ Sp, p ∈ P , x ∈ Rn 
+. 

∂xp
i 

A natural question is whether population potential games are weakly 

acyclic as in the normal form case. It turns out that under some additional 

regularity conditions the answer is affirmative. 

Definition 10. Let Γ be a population potential game and let e be a Nash 

equilibrium. A Nash equilibrium is strict if it uniquely maximizes the po-

tential function f locally in X. That is, there exists a neighbourhood Ue of 

e in in X such that, e = argmax f(x).x∈Ue 

Definition 11. A Nash equilibrium e is escapable if there exists a neigh-

bourhood of e, Ue, such that for every x ∈ Ue \{e} there exists a better-reply 

path starting at x that goes outside of Ue. 

Definition 12. A population potential game Γ is regular if their are finitely 

many Nash equilibria and each Nash equilibrium is either strict or escapable. 

7In a recent paper Sandholm [18, 2009] provides an alternative notion of potential game 

that does not rely on the extension of F to all Rn 
+. In this paper, for the sake of simplicity, 

we will use the definition above. 
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Proposition 2. Every regular potential game is weakly acyclic. 

Proof. Let F be a potential game with a potential function f . Let E be the 

(finite) set of Nash equilibria and let Ec be its complement. Let E� be the set 

of points within � of some point in E. We shall show that, for every x ∈ (E)c 

and � > 0, there is a better-reply path to the interior of some �-basin of some 

strict equilibrium. 

By Lemma 7.1.1 and Lemma 5.6.5 in Sandholm [20, 2010], the potential 

function increases along every better-reply path. Let o(x) be the orbit of the 

point x, that is, 

o(x) = ∪t≥0Φ(t, x). 

Let γ = sup{f(y) : y ∈ o(x)} and let � be small enough that, 

1 
0 < � < min{d(y, y 0) : e, e 0 ∈ E, and e 6= e 0}. 

2 
∀ e ∈ E, B�(x) ⊂ Ue. 

By the continuity of F , there exists δ such that for every y0 ∈ (E�)c , there 

exists a population p and strategies i, j ∈ Sp such that, 

∀y, ky − y 0k ≤ δ ⇒ Fi
p(y) ≥ Fj

p(y) + δ and yj
p ≥ δ. (7) 

(If this were false we could construct a sequence of points {yn} ⊂ (E�)c that 

converges to a Nash equilibrium, which contradicts the definition of E�.) 

Now let z : [0, T ] → X be a better-reply path starting at x such that 

f(z(T )) > γ − δ4 . We claim first that z(T ) ∈ Ue for some Nash equilibrium 

e. 

Assume by way of contradiction that z(T ) 6∈ Ue for every e ∈ E. In 

particular, z(T ) 6∈ E� . Let p be a population and i, j ∈ Sp two strategies 

such that Equation (7) holds for y0 = z(T ). Extend z(T ) by letting θji 
p (t) = 1 
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in Equation 4 for t ∈ [T, T + δ]. By definition of population potential game 

for every t ∈ [T, T + δ], 

pḟ(z(t)) = rf(z(t)) · ż(t) = z (F p(z(t)) − F p(z(t)))2 .j i j 

For all t ∈ [T, T + δ] the path z(t) stays within δ of z(T ), hence by (7) 

ḟ(z(t)) ≥ δ3 . It follows that f(z(T + δ)) ≥ f(z(T )) + δ4 , which contradicts 

the definition of γ. 

We can now deduce that z(T ) ∈ Ue for some strict Nash equilibrium e. If 

this were not the case, then e is escapable, hence we can find a better reply 

path from z(T ) to some y ∈ (E�)c . Since the potential increases along any 

better-reply path we have f(y) ≥ f(z(t)) ≥ γ − δ4 . As before this leads to a 

contradiction. This completes the proof of the lemma. 

5 Supermodular Games 

Let Γ be a population game. For each population p define T p : Xp → Rnp−1 

by 
nXp 

T p(xp)i = xj
p . 

j=i+1 

Define T : X → Rn−m by T (x) = (T 1(x1), . . . , T m(xm)). 

Definition 13. A population game Γ is ingroup neutral if the payoff to the 

members of each population depends only on the behaviors of members in 

the other populations, that is, 

∀p, x ∈ X, j ∈ Sp, Fj
p(x) = Fj

p(x −p). 
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Definition 14. An ingroup neutral population game is supermodular if for 

p −p −p ∈ X−p:every p, i < n , and x , y 

T −p(y −p) ≤ T −p(x −p) ⇒ F p (y −p) − F p(y −p) ≤ F p (x −p) − F p(x −p). (8)i+1 i i+1 i 

It is strictly supermodular if the inequality in (8) holds strictly. 

Remark 2. A supermodular game has the following property. Suppose that 

(i1 0 , . . . , im) ∈ S is a pure strategy profile and that s is obtained from s by 

some population p switching to jp =6 ip. If jp > ip then for any population 

q =6 p, q’s best reply to s0 is nondecreasing relative to q’s best reply to s. 

< ip 0Similarly if jp then q’s best-reply to s is nonincreasing relative to q’s 

best reply to s. This fact will be used repeatedly in the proof of the following 

proposition. 

Proposition 3. Let Γ be an ingroup neutral, strictly supermodular popu-

lation game with at least two populations such that at every pure strategy 

profile, each population has a unique best reply. Then Γ is weakly acyclic. 

Proof. Let x ∈ X be an initial state that is not a Nash equilibrium. By 

ingroup neutrality and strict supermodularity of Γ, one can show that there 

exists a better-reply path to a state where almost all of the mass of every 

population is concentrated on a pure strategy profile s. To be specific, let 

population 1 flow to a state in which almost everyone is playing a pure best 

reply to x−1, holding the other populations constant. (Note that this con-

struction assumes ingroup neutrality, for otherwise the best reply of popula-

tion 1 may shift as the distribution of behaviors in this population changes.) 

Then repeat for each population in succession until the whole population is 

concentrated on some pure strategy profile s = (j1 , . . . , jm) ∈ S. 

We shall show first that there exists a pure best reply path from s to a 

strict pure Nash equilibrium. In particular, there exists a sequence of pure 

14 



strategy profiles s1, . . . , sk such that sh = (jh 
1 , . . . , jh

m) for each 1 ≤ h ≤ k, 

and a corresponding sequence of populations p1, . . . , pk−1 such that for every 
−ph −ph F ph −ph1 ≤ h ≤ k − 1, s = s and jph = argmaxi (s ). Furthermore, h h+1 h+1 i h 

s1 = s and sk is a strict Nash equilibrium. 

To see this, start with s, and for every population p let jp(s) be the unique 

best reply to s. If for every population p, jp(s) ≥ ip, call s a local minimum. 

If jp(s) < ip for some population p let p1 = p and s2 = (j
p(s), s−p). Since 

there are finitely many pure strategy profiles, we can repeat this process 

until we reach a local minimum r = (i1 , . . . , im). If r is a Nash equilibrium 

then by assumption it is a strict Nash equilibrium and we are done. If r is 

not Nash equilibrium, one can construct an increasing best reply sequence 

r ≤ r2 ≤ . . . ≤ rk as follows. Since r is a local minimum, there exists a 

population p such that jp(r) > jp. Let r2 = (j, r−p). If r2 is an equilibrium 

we are done. Otherwise there exists a population q =6 p such that jq(r2) =6 jq. 

By remark 2, jq < jq(r2). Let r3 = (i, r2 
−i). Continuing in this fashion we 

obtain a monotone sequence r ≤ r2 ≤ r3 ≤ . . .. Since the set of pure 

strategy profiles is finite, this increasing sequence must end in a strict Nash 

equilibrium. 

From this point on the proof is the same as the proof of Proposition 1. 

Namely, one can construct a better-reply path in Γ that closely mimics any 

given pure best reply path in G. This completes the proof of Proposition 

3. 

6 Fast Convergence 

Fix a population game Γ and revision protocol ρ. Let XN (t) denote the 

process defined by (2) when the population size is N . Let E ⊆ X be the set 
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of Nash equilibria of Γ, and for each � > 0 let E� be the set of x ∈ X such 

that 

infe∈E kx − ek < �. 

Define the indicator function 1E� (·) as follows, 

1E� (x) = 1 if x ∈ E� 

1E� (x) = 0 if x 6∈ E� . 

Let Z 
1 t 

DN
� (t) = 1E� (XN (s))ds. 

t 0 

This is the proportion of time that the process spends within � of one or 

more Nash equilibria up to time t. 

Definition 15. Given � > 0 the process XN (t) converges with precision �, if 

for all initial conditions x, 

P(liminft→∞DN
� (t) > 1 − �) > 1 − �. 

Note that the precision � refers simultaneously to how close the process 

is to equilibrium, the proportion of times that the process is close to equilib-

rium, and also how likely it is that the process is not close to equilibrium. 

Given � > 0 and L > 0 let Z t+L 

D� 

L 
1 

t 
1E� (XN (s))ds.L,N (t) = 

Definition 16. Given � > 0 the process XN (t) exhibits fast convergence 

with precision � if there exists a window of length L > 0, depending on �, 

such that for all sufficiently large N , all initial conditions x(0), and all t ≥ 0, 

P(D� 
L,N (t) > 1 − �) > 1 − �. 
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In the case of finite normal form games, weak acyclicity guarantees fast 

convergence in the following sense. Suppose that players are drawn at random 

to revise their strategies. Every time a player gets to revise he chooses a 

better reply given the others’ strategies, and he chooses among his better 

replies uniformly. By assumption there exists a better reply path to a Nash 

equilibrium. Since the game is finite this path will be followed with positive 

probability. It follows that given � > 0 there is a time T� such that, after T� 

has elapsed, the probability is at least 1 − � that the process has reached a 

pure strategy Nash equilibrium. 

A similar argument applies to population games that are derived from 

weakly acyclic normal form games, provided that the population size N is 

held fixed. However, it need not be the case that the waiting time is bounded 

as N grows to infinity. We now demonstrate this with an example. 

Consider the following family of three player games Γγ,δ where γ, δ ≥ 0. 

Example 3. 

L R 

L M R L M R 

T 

M 

B 

−1, −1, 1 γ, 0, 1 0, γ, 1 

0, γ, 0 −1, −1, 1 γ, 0, 1 

γ, 0, 1 0, γ, 1 −1, −1, 1 

0, 0, 0 0, 0, 0 0, 0, 0 

2, 2, δ 0, 0, 0 0, 0, 0 

0, 0, 0 0, 0, 0 0, 0, 0 

Population 1 plays row, population 2 plays column, and population 3 chooses 

between the two matrices L, R. 

Proposition 4. 

(i) For every γ > 0 and δ > 0, the population game Γγ,δ is weakly acyclic. 
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(ii) For every � > 0, every N > 0, and every starting point x, 

P(lim inf DN
� (t) = 1) = 1. 

t→∞ 

(iii) Given a sufficiently small � > 0 there exists γ, δ > 0 and starting point 

y, such that for every finite t, 

P(DN
� (t) = 0) > 1 − � for all sufficiently large N . (9) 

Note that (9) implies a failure of fast convergence in a particularly strong 

sense. Namely, the process stays bounded away from all the Nash equilibria 

for arbitrarily long periods of time when N is arbitrarily large. 

Proof. It can be verified that the underlying normal form game is weakly 

acyclic. Indeed from any pure strategy-tuple there exists a better-reply path 

to the unique pure Nash equilibrium (M, L, R). Furthermore, even though 

the game is not generic, it can be checked that the proof of Proposition 1 

remains valid for this case. This establishes the first claim. 

To establish the second claim, note that for every fixed N and initial state 

y ∈ χN , there exists a time T such that with positive probability the process 

will arrive at the unique pure Nash equilibrium by time T . Since the number 

of states χN is finite and the equilibrium is absorbing, claim (ii) holds. 

To establish claim (iii), we begin by showing that we can choose γ and 

δ, and a starting point y ∈ X, such that the orbit of y has the following 

properties. 

1 2 3(x , x , x 3) ∈ o(y) ⇒ x = (1, 0) (10) 

1 2 1(x , x , x 3) ∈ o(y) ⇒ x · x 2 ≤ 1/100. (11) 

These statements imply in particular that the deterministic dynamic (start-

ing from y) stays more that .20 away from any Nash equilibrium. Indeed the 
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unique Nash equilibrium when population 3 plays L is: 

e = ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3), L). 

However, x1 · x2 ≤ 1/100 implies that for at least one p and j, xj
p ≤ 1/10, 

hence kx − ek ≥ 1/3 − 1/10 > .20. To establish the existence of a state y 

with these properties, let us consider the sub-game for players 1 and 2 when 

player 3 is held fixed at L. 8 

L M R 

T 

M 

B 

−1, −1 γ, 0 0, γ 

0, γ −1, −1 γ, 0 

γ, 0 0, γ −1, −1 

For each 0 ≤ γ < 1 let φγ : [0, ∞) × X → X be the semi-flow for the 

two-player game derived from the revision protocol ρ. 

A compact set A ⊆ X is an attractor for the semi-flow φ if it is invariant 

that is, ∀ t ≥ 0, Φt(A) = A, and there is a neighbourhood U of A such that, 

lim sup 
t→∞ x∈U d(φt(x), A) = 0. 

Let A ⊂ X be the set of states where the diagonal strategy combinations 

have mass zero that is, 

1 1 2A = {(x , x 2) : x · x = 0, for j = 1, 2, 3}.j j 

A is an attractor for the semi-flow φ0 . 

By theorem 9.B.5 in Sandholm [20, 2010] for all sufficiently small γ > 0, 

there exists an attractor Aγ of φγ such that A0 = A and the map γ → Aγ 

8One may verify that for small enough γ and δ there are only two Nash equilibria; the 

mixed equilibrium e, and the pure equilibrium, (M, L, L). 
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is upper-hemicontinuous. It follows that for all sufficiently small γ > 0, all 

elements (x1, x2) ∈ Aγ have the property that x1 · x2 ≤ 1/100. 

Fix such a value γ > 0. From the properties of the revision protocol ρ it 

follows that among all states in Aγ the mass on the strategy pair (M, L) is 

at most 1 − 2τ for some τ > 0. 

Choose δ ≡ τ in the definition of the matrix R. (We have not relied on 

the value of δ up to this point.) Then for every state (x1, x2) ∈ Aγ population 

3 strictly prefers matrix L to matrix R. 

Now let y = (y1, y2, y3), where y3 = (1, 0) and puts all the mass on L. 

By construction the full three-population game is such that the flow from y 

stays in the set Aγ × (1, 0) hence both (10) and (11) holds. 

The proof of claim (iii) is now completed as follows. Fix a finite time T 

and let � < 1/10. By Lemma 1 in Benäım and Weibull [3, 2003], the stochas-

tic process XN (t) stays within � of the path of the deterministic dynamic with 

probability at least 1 − � over the period [0, T ] provided that N is sufficiently 

large (given � and T ). Therefore, starting from the state y identified above, 

the probability is at least 1 − � that XN (t) is at least .2 − � > � away from 

any Nash equilibrium in Γγ,δ over the entire period [0, T ]. This establishes 

(9), and completes the proof of the proposition. 

7 Environmental Interference 

We now introduce an additional feature of the evolutionary process that leads 

to fast convergence with arbitrarily high precision. The idea is that players 

do not learn about the payoff of other strategies with certainty, but rather 

with some probability that is determined by the environment. In particular 

we shall assume that the switching rate between two strategies is determined 
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not only by their payoffs, but also by the probability that a player knows 

these payoffs. 

To be specific, suppose that the i-players currently have payoff πi
p(t) 

and the j-players have payoff πj
p(t). If an i player has a revision opportu-

nity, he switches to j with probability proportional to αji 
p (t)ρji(π

p(t)), where 

ρp 
ji(π

p(t)) is the usual switching rate (determined by the current payoffs and 

the protocol), and αp
ji(t) ∈ [0, 1] to the probability that i “hears about” 

the payoffs of the j-players.9 This latter probability is a feature of the en-

vironment, which evolves according to a separate stochastic process to be 

discussed below. 

To take a concrete example, Smith [23, 1984] originally proposed his 

dynamic as a model of route choices by drivers. The idea is that a driver 

switches from route i to route j at time t with a probability proportional to 

the current payoff difference (πj
p(t) − πi

p(t)). In our version of the model , the 

driver switches from i to j with a probability proportional to αji(t)(πj
p(t) − 

πp 
i (t)) where αji(t) is the probability he hears about πj (t) at time t, say 

through a radio broadcast. 

We can formalize these ideas as follows. The environment at time t is 

~described by a vector of matrices A = (A1(t), . . . , Am(t)) where Ap(t) = 

(αp represents the accessibility of information about the j-players inij (t))ij∈Sp 

population p by the i-players (we assume that αii ≡ 1). The environment 

evolves over time according to a Poisson random walk with a constant step 

size. To be specific, each αij
p (t) is a Poisson random variable with arrival rate 

a. At each arrival αp
ij increases by √1 

a with probability one-half (provided 

αp 1 1√ ≤ 1) and decreases with probability one-half (provided αp − √ ≥ 0).ij + 
a ij a 

~The state of the process can be written in the compact form as (A, x). Given 

9Recall that, by assumption, ρp
ji actually depends only on πp

j and πp
i . 
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⎪⎪⎪⎪
⎪⎪⎪⎪

~ a state (A, x) the new switching rates are determined as follows: 

1√ 

ρ̄p (πp, αp) = αp · ρp (π).ij ij ij 

Let λ be as in equation (1). Revision opportunities by some member of 

the population arrive at the rate λN = Nλ + ca. Assume that the current 

~ state of the population is (A, x). Whenever a revision opportunity arrives, the 

~ process moves to a new state (B, y) according to the following probabilities: ⎧ 
pN ·x ρp (F p(x))αp 
i ij ij 1 p pwhere β = α, y = x + (e − e )

λN N j i⎪⎨ 
√· min{ 1 

ij a 
p 

√ 

, [1 − (αp 
ij + 

· max{ 1 

a where y = x, β − α = e )]+}2λN a ⎪⎩ 1√ 
a 

p 
ij , [αp

ij 
a where y = x, β − α = −e − ]+}.2λN a 

1√ 

(12) 

1√ 

Equation 12 has the following simple interpretation. With a probability 
pN ·x ρp (F p(x))αp 
i ij ijof 

λN a member of population p playing strategy i switches to 

astrategy j. With probability the variable αp increases by
2λN ij , and with 

a 

provided that the constraints 0 ≤ αij
pa ≤ 1 are satisfied.it decreases by

2λN a 

~With the complementary probability the process stays in the state (A, x). 

~Denote this process by (A(t), Xa
N (t)). Our main theorem states that if the 

environment evolves in sufficiently small steps, we obtain fast convergence. 

Theorem 1. For every weakly acyclic population game Γ, revision protocol 

ρ, and � > 0, for all sufficiently large a > 0, Xa
N (t) exhibits fast convergence 

with precision �. 

Remark 3. We have assumed that the environment evolves according to a 

Poisson random walk, but in fact the theorem holds for many other stochastic 

models of the environment. For example, one could assume that each αp
ij 

changes according to a Poisson process, and that every time a change occurs 

αp is drawn uniformly from the interval [0, 1].ij 
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Remark 4. Let us recall Example 3, where we showed that convergence 

is slow when the process follows a revision protocol with no environmental 

interference. When there is environmental interference the process is kicked 

out of the cycle. This occurs because there is now a positive probability 

of being in a state where the strategy-tuple (M, L, L) has mass larger than 

1 − δ. When this happens population 3 is better-off switching to the right-

hand matrix, and the process converges rapidly to the Nash equilibrium 

(M, L, R). 

Remark 5. Fast convergence means that the waiting time to come close to 

equilibrium is bounded above for all population sizes N . It leaves open the 

question of how long the waiting time actually is; this may depend on the 

details of the revision protocol. Our result also says nothing about the time 

it takes to reach a particular equilibrium, such as a potential-maximizing 

equilibrium in a potential game. This issue examined by Shah and Shin [22, 

2010]. 

8 Informal Sketch of the Proof 

Although the proof of this theorem is rather technical, the main ideas are 

quite intuitive. Here we shall sketch the general gist of the argument. 

Given � > 0, let us say that a state is “good” if it lies within � of a 

Nash equilibrium, and “very good” if it lies in the interior of the �-basin of 

some Nash equilibrium. Otherwise the state is “bad.” Starting from any 

state y, we know that there exists a better-reply path to a very good state. 

Lemmas 1-4 show that with positive probability there is a realization of the 

environment such that the expected motion of the process is very close to 

this path. Given such a realization the process follows a nearby path with 
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high probability when N is sufficiently large (Lemma 4). 

It then follows that there is a time T y such that, if the process Xa
N (t) starts 

close enough to y and N is large enough, there is a positive probability that 

by time T y + t the process will be in a very good state. Using compactness 

arguments, one can show that there is a T such that this statement holds 

for all y. Moreover, once the process is in the neighbourhood of a very good 

state, it is very improbable that it will leave for a long period of time (much 

longer than T ) provided N is large enough. 

The formal proof of Theorem 1 relies on a series of technical lemmas. 

The first of these states that any better-reply path can be approximated by 

a better-reply path with a continuous Lipschitz selection of θ (recall equation 

4). 

Lemma 1. Let z : [0, T ] → X be a better-reply path and let ρ be a revision 

protocol. For every � > 0 there exists a Lipschitz continuous function K : 

[0, T ] → [0, M ]d and a better-reply path w : [0, T ] → X such that, for all 

t ∈ [0, T ], p, and i ∈ Sp: X 
p Kp p pẇ = ρp (F p(y))w − Kp ρp (F (w))wi , (13)i ji ji j ij ij 

j∈Sp 

and 

sup0≤t≤T kz(t) − w(t)k < �. (14) 

Let h(t, x) : [0, T ] × Rn → Rn be a piecewise continuous function in t that 

is Lipschitz with respect to x with Lipschitz constant ν. Let g(t, x) : [0, T ] × 

Rn → Rn be a piecewise continuous function that is Lipschitz with respect to 

x. By Picard’s Theorem, along the interval [0, T ], for any z0, y0 ∈ Rn there 
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are a unique solutions to the differential equations 

ż(t) = h(t, z(t)), z(0) = z0, 

ẏ(t) = g(t, y(t)), y(0) = y0. 

The following Lemma provides a standard approximation to the distance 

between these two solutions, as a function of the initial conditions, and the 

distance between the functions h and g. 

Lemma 2. If kh(t, x) − g(t, x)k∞ < β and kz0 − y0k < δ then 

supt∈[0,T ]kz(t) − y(t)k < (δ + βT ) exp(νT ). 

The following Lemma shows that if the step size √1 
a defining the evolution 

of the environment is sufficiently small, then the environment follows any 

pre-specified continuous path very closely with positive probability. 

Lemma 3. Let K : [0, T ] → [0, 1]d be a continuous path, and let α(t) evolve 

according to a Poisson random walk with arrival rate a. For every γ > 0 

there exists δ > 0 and a0 such that for every a > a0: 

P(supγ≤s≤T +γ |α(s + γ) − K(s)| < γ : α(0)) > δ. 

Given a population of size N , let α : [0, T ] → Rd be a piecewise constant, 

right-continuous realization of the Poisson random walk (with arrival rate a). 

Let Xa
N (t) be the stochastic process defined by ρ and α beginning in state 

x0 ∈ χN . Let 0 = τ0 < τ1 < . . . < τk be the sequence of times at which one 

or more environmental variables αp change for some (p, i, j). Between theseij 

distinct times the α’s remain fixed. Let z(t) be the unique solution of the 

following differential equation: X 
p p pż (t) = z ρp (F p(z))αp − z ρp (F p(z))αp (15)i j ij ij i ji ij . 

j∈Sp 
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Let Z(t) be the stochastic process defined by equation 15. The following 

Lemma is a variant of Lemma 1 in Benäım and Weibull [3] (see also Kurtz 

[15]) and shows that, given a realization of the environment, the stochastic 

process Xa
N (t) can be approximated by Z(t) provided that N sufficiently 

large. 

Lemma 4. Let (α(t))0≤t≤T be any realization of the environment with c(T ) ≤ 

k jumps along [0, T ]. For every � > 0, there exists NT,k,� such that, 

∀N > NT,k,�, Px(supt∈[0,T ]kXa
N (t) − Z(t)k > � : (α(t))0≤t≤T ) < 1 − �, (16) 

Furthermore, 

∀N > NT,a,�, Px(supt∈[0,T ]kXa
N (t) − Z(t)k > �) < 1 − �, (17) 

9 Proof of The Main Theorem 

Fix � > 0 and recall that E� is the set of points within � of some Nash 

equilibrium. Let y ∈ (E�)c . By definition of weakly acyclicity there exists a 

better-reply path zy : [0, T y] → X and an equilibrium x such that z(T y) ∈ 

int(BA�(x)). By Lemma 1 we may assume that there exists a Lipschitz 

continuous function Ky : [0, T ] → [0, 1]d such that X 
y,p y,pρp y))Ky,p y,pρp y))Ky,p ∀ p, ż = z (F p(z − z (F (z .i j ji ji i ij ij 

j∈Sp 

It follows that there exists δy > 0 such that Bδy (zy(T y)) ⊆ BA�(x). (In 

general Br(x) denotes the ball of radius r centered at x.) 

Let α : [0, T y] → [0, 1]d be any realization of the environment, which 

is piecewise constant, hence piecewise Lipschitz continuous. Let w be the 

solution for the following differential equation starting at y0: X 
p p p∀ p, ẇ = w ρp (F p(y))αp − w ρp (F (w))αp 
i j ji ji i ij ij . 

j∈Sp 
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By Lemma 2, if y0 is close enough to y and the realization of the environ-

ment, α, is close enough to Ky, then the distance between w(T y) and zy(T y) 

is smaller than δy. That is, there exists a small θy > 0 such that, 

sup0≤t≤T y kα(t) − Ky(t)k < 2θy and ky − y 0k < 2θy, 

⇒ kw(T y) − z(T y)k < δy. (18) 

Assume that the current population state at time t0 lies within θy of y. It 

follows from Lemma 3 that for every γ > 0 there exists ay (which represents 

the arrival rate of the environment) such that for all a > ay, α(t) is close to 

Ky(t−(t0 +γ)) with positive probability, along the interval [t0 +γ, t0 +T y +γ]. 

By Lemma 4, one can choose γy such that for every for every N > Ny(a, γy), 

Xa
N (t0 + T y + γy) lies within δy of z(T y), with probability greater than some 

�y > 0. This may be summarized as follows. 

Lemma 5. There exists small enough γy > 0, large enough ay, and �y > 0 

such that for every a > ay there exists Ny(a, γy) such that 

∀ N > Ny , P(XN (t0+γy+T y) ∈ Bδy (zy(T y)) | kXN (t0)−yk < θy) > �y (19)a a 

Proof. See Appendix. 

We show next that there exists a large T and a small �0 > 0, such that 

within time T , the process reaches an interior point of an �-basin of some 

equilibrium. 

Note that {Bθy (y)}y∈(Eε)c is a cover of the compact set (E�)c . By com-

pactness there exists a finite set {y1, . . . yl} such that, 

[l 

(E�)c ⊆ Bθym (ym). 
m=1 SlLet M = m=1 Bδym (zym (T ym )) and let L = ∪x∈E int(B�(x)) be the set of 

interior points of all �-basins of some equilibrium. By construction, M⊂ L. 
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In particular, M⊂ E� . Let 

T = max{T y1 , . . . , T yl }, 

�0 = min{�y1 , . . . , �yl }, 

a > max{ay1 , . . . , ayl }. 

Let 

N > max{Ny1 (a, γy1 ), . . . , Nyl (a, γyl )}. 

Given y 6∈ E� it follows from Lemma 5 that 

P(∃t ≤ T s.t. XN (t0 + t) ∈M | XN (t0) = y) > �0 . (20)a a 

Let Z(t) be the stochastic process defined by (15) starting at x ∈M. By 

construction, Z(t) ∈ L for all t > 0. By (17), 

P(sup0≤t≤T kXN (t0 + t) − Z(t)k > � | XN (t0) = x ∈M) (21)a a 

goes to 0 uniformly in x when N grows. Theorem 1 now follows from equa-

tions (20) and (21). 
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Appendix 

We shall use the following form of Grönwall’s inequality: 

Lemma 6 (Grönwall’s Inequality). Let I = [0, T ] denote an interval of the 

real line. Let α, β and u be real-valued functions defined on I. Assume 

that β and u are continuous and that α is non-decreasing and is integrable 

on every closed subinterval of I. If β is non-negative and if u satisfies the 

integral inequality Z t 

u(t) ≤ α(t) + β(s)u(s)ds ∀ t ∈ I (22) 
0 

then, Z t 

u(t) ≤ α(t) exp( β(s)u(s)ds) ∀ t ∈ I. (23) 
0 

Proof of Lemma 1. Since ż(t) integrable, there exists a measurable selection 

θ : [0, T ] → [0, M ]d such that, X X 
p p pż = z [F p(z) − F p(z)]+θp − z [F p(z) − F p(z)]θp 
i j i j ji i j j ij . 

j∈Sp j∈Sp 

Let C : [0, T ] → [0, M ]d be a Lipschitz �-approximation of θ in L1 , that 

is, Z T 

∀p, i, j ∈ Sp |θp (t) − Cp (t)|dt < �.ij ij 
0 

Let h : [0, M ] × X → TX be the following function: X X 
hp p[F p(y) − F p p[F p(y) − F p 

i (t, y) = yj i j (y)]+Cji 
p − yi j i (y)]+Cij

p , (24) 
j j 

and let y : [0, T ] → X be the solution for h(t, y) starting at z(0). We shall 

show that y(t) is an approximation of z(t) in the interval [0, T ]. Letting 
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u(t) = kz(t) − y(t)k, we have: 

u(t) = kz(t) − y(t)kZ t

t 

≤ kż(s) − h(s, y)kds 
0Z Z t 

≤ kż(s) − h(s, z)kds + kh(s, z) − h(s, y)kds. (25) 
0 0 

Let us evaluate the right-hand side of (25) first: Z t 

|hp
i (s, z) − hp

i (s, y)|ds Z0 Xt 

(zp
j [F

p
i (z) − F p

j 
p
j [F

p
i 

p
j (y)]+)Cji 

p≤ |
0 

(z)]+ − y (y) − F |ds (26) 
jZ Xt 

zp
i [F

p
j 

p
i 

p
i [F

p
j 

p
i (y)]+Cij

p 

0 
| (z) − F (z)]+ − y (y) − F |ds. (27)+ 

j 

As for (26) we have: Z Xt 
p
j 

p
i 

p
j 

p
j 

p
i 

p
j≤ |z (z) − F (z)]+ − y (y) − F (y)]+|dsM [F [F· 

0 Z j Xt 
p
j 

p
i 

p
j 

p
j 

p
i 

p
j≤ |z (z) − F (z)]+ − z (y) − F (y)]+|dsM [F [F· 

0 Z j Xt 
p
j 

p
i 

p
j 

p
j 

p
i 

p
j|z (y) − F (y)]+ − y (y) − F (y)]+|dsM [F [F+ · 

0 Z j 

t 

≤ M · Dkz(s) − y(s)k + 2kF kkz(s) − y(s)kds 
0Z t 

= M(D + kF k)kz(s) − y(s)kds, 
0 

p
iwhere D is the maximal Lipschitz constant for the functions z → [F (z) − 

F p
j (z)]+. A similar approximation may be provided for (27). Therefore, Z Zt t 

kh(s, z) − h(s, y)kds ≤ 2 M(D + kF k)kz(s) − y(s)kds. 
0 0 

Turning to the left-hand side of (25) one can see that Z t 

kż(s) − h(s, z)kds ≤ 2kF knT �. 
0 
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It follows from Grönwall’s inequality (23) that: Z t 

u(t) ≤ 2kF knT � exp( M(D + kF k)u(s)ds). 
0 

Since the integral is bounded, y(t) approximates z(t) for small �. 

In order to complete the proof of Lemma 1 we are going to show that 

every better-reply path y with Lipschitz selection Cji 
p can be approximated 

by a function w which has the desired properties (13)-(14). Define X X 
hp,δ p p 

i (t, y) = y [[F p(y)−F p(y)]+ −δ]+Cp − y [[F p(y)−F p(y)]+ −δ]+Cp 
j i j ji i j i ji. 

j j 

(28) 

Note that hδ(t, y) converges uniformly to the function h(t, y) defined in (24). 

Hence for any � > 0 there exists a δ0 such that for every 0 < δ < δ0, 

supt≤T ky(t) − w(t)k < �, 

where w is a solution of (28) starting at y(0). Given any δ < δ0 we have X X 
p p pẇ = wj [[F p(w) − Fj

p(w)]+ − δ]+Cp − wi [[F p(w) − Fi
p(w)]+ − δ]+Cji 

p .i i ji j 
j j 

Define10 

Kp [[Fi
p(w(t)) − Fj

p(w(t))]+ − δ]+Cji 
p (t)

(t) = ji . 
ρp (F p(w(t)))ji 

It follows that, X 
p p pKp ρp − Kp ρpẇ = (F p(w))w (F (w))wi .i ji ji j ij ij 

j∈Sp 

Since ρp (F p) is continuous and positive wherever F p > F p it follows thatji i j 

ρp (F p) is bounded away from zero whenever F p ≥ F p − δ. Note that theij i j 

numerator is zero whenever Fi
p < Fj

p −δ. This completes the proof of Lemma 

1. 
10We use the convention that 0 = 0.0 
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Proof of Lemma 2. Assume that kh(t, x) − g(t, x)k∞ < δ and kz0 − y0k < δ. 

Let u(t) = kz(t) − y(t)k for every t ∈ [0, T ]. Then Z t 

u(t) = kx0 − y0 + h(s, z(s)) − g(s, y(s))dsk Z0 
t 

= kx0 − y0k + kh(s, z(s)) − g(s, y(s))dsk Z 0 
t 

≤ δ + kh(s, z(s)) − f(s, y(s))k + kh(s, y(s)) − g(s, y(s))kds Z0 
t 

≤ δ + (νkz(s) − y(s)k + β)ds (29) 
0 Z t 

≤ δ + βt + νu(t) 
0 

Hence, by Grönwall’s inequality u(t) ≤ (δ + βt) exp(νt). 

Proof of Lemma 3. For simplicity, choose d = 1. (Similar arguments hold 

for any integer d.) Let τ be a Poisson process with an arrival rate a, and let 

{ξn}∞ be a sequence of i.i.d random variables with mean zero and variance n=1 Pτ(t)1. Let χa(t) = √1 ξn. By Theorem 7.1 in Durrett [5, 1996] (with a = 1 
a n=1 

and b = 0) we have 

χa(t) ⇒a→∞ B(t) in probability, (30) 

where B(t) is a one dimensional Brownian motion that starts at the origin. 

Assume first that K(0) = 0. Theorem 2.10 in Durrett [5, 1996] implies 

that for every � > 0 there is a positive probability that the maximal difference 

B(t) − K(t) on the interval [0, T ] is smaller than �: 

∃ δ > 0 P(sup0≤t≤T |K(s) − B(s)| < �) > δ. (31) 

We claim that, given any � > 0, any f : [0, 1] → [0, 1], and any 0 ≤ x ≤ 1, 

there exists δ0 > 0 such that 

P(sup |K(t−t0−�)−B(t)| < � and B(t) ∈ (0, 1) : B(t0) = x) > δ0 .t0+�≤t≤T +t0+� 
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To see this, consider the function that is linear between x and K(0) on the 

interval [t0, t0 + �], and that agrees with K(t − (t0 + �)) on [t0 + �, T + t0 + �]. 

Let τ be the first point such that χa(t) ∈ {0, 1}. The result now follows 

from (30), (31) and the fact that α(t) has the same distribution as χa(t) on 

the interval [0, τ ]. 

Proof of Lemma 4. Lemma 1 in Benäım and Weibull implies the following: 

Lemma 7. Let ρ be a revision protocol for the game F and, let XN (t) be 

the pure jump Markov process corresponding to ρ and F . Let ξ(t, x) be the 

flow of the differential equation defined by (3), and let 

DN (T, x) = max0≤t≤T kXN (t) − ξ(t, x)k∞. 

exp(νT )νT There exists a scalar c(T ) such that for any � > 0, T > 0 and N > 
� : 

Px(D
N (T, x) ≥ �) ≤ 2n exp(−�2 c(T )N), (32) 

and, 
exp(−2BT ) 

c(T ) = . 
8TA 

(Here A and B are constants that depend on kρk2
2 the Lipschitz constant of 

ρ, and the Lipschitz constant of the payoff function F .) 

Let α : [0, T ] → [0, 1]d be any realization of the environment and let 

(τ1, . . . , τk) be the sequence of distinct times at which the environment changed. 

Note first that on [τl, τl+1) the process Xa
N (t) is distributed according to the 

stochastic process generated by the revision protocol ρ̄ defined by, 

∀ p, ∀ i, j ∈ Sp, ρ̄p
ij = ρp

ijαij
p (τl), 

with initial condition Xa
N (τl). Note also that for any realization α of the 

environment, the protocol ρ̄ has a Lipschitz constant that is no higher than 

the Lipschitz constant for ρ. 
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Let s(t) be the piecewise continuous process that is defined as follows: X X 
p p pṡ (t) = s (t)ρp (F p(s))αp − s (t)ρp (F p(s))αp 
i j ji ji i ij ij , 

j∈Sp j∈Sp 

and ∀ 1 ≤ l ≤ k let s(τl) = XN (τl). Let c(t) = max{k : τk < t}, and notea 

that c(T ) = k. Let τk+1 = T . We then have, 

sup0≤t≤T kXa
N (t) − z(t)k (33) 

≤ sup0≤t≤T [kXa
N (t) − s(t)k + ks(t) − z(t)k] 

k+1X 
= supτl−1≤t≤τl 

[kXN (t) − s(t)k + ks(t) − z(t)k].a 

l=1 

Hence 

P(sup0≤t≤T kXa
N (t) − z(t)k > � : (α(t))0≤t≤T ) (34) 

k+1X 
≤ P(supτl−1≤t≤τl 

kXN (t) − s(t)k > � : (α(t))0≤t≤T )a 

l=1 

+ P(supτl−1≤t≤τl 
ks(t) − z(t)k > � : (α(t))0≤t≤T ). (35) 

Pk+1 P(supτl−1≤t≤τl 
kXN (t) − s(t)k > � : (α(t))0≤t≤T ) can be evaluated usingl=1 a 

Lemma 7 and goes to zero uniformly in N for any realization α with k jumps 

or less. Pk+1We claim that l=1 P(supτl−1≤t≤τl 
ks(t) − z(t)k > � : (α(t))0≤t≤T ) goes to 

zero in N note that by Lemma 2, 

supτl−1≤t≤τl 
ks(t) − z(t)k (36) 

≤ exp(ν(τl − τl−1))ks(τl−1) − z(τl−1)k. (37) 

Thus inductively one has, 

k+1X 
sup0≤t≤T ks(t) − z(t)k ≤ exp(ντl)ks(τ1) − z(τ1)k 

l=2 

≤ k exp(νT )kXa
N (τ1) − z(τ1)k, 
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which goes to zero uniformly in N . This establishes (16) of Lemma 4. Equa-

tion (17) follows from (16) and the fact that E(c(T )) = aT < ∞. 

Proof of Lemma 5. By Lemma 3 for every γ > 0 there exists ay(γ) and δ0 > 0 

such that, for every a > ay(γ): 

P(supt0+γ≤t≤Ty +γ kα(t) − K(t)k < 2θy ) > δ0 . (38) 

Choose γy > 0 such that, 

1 
infN P(kXN (t0 + γy) − yk < 2θy | kXN (t0) − yk < θy) > . (39)a a 2 

Note that, (39) goes to 1, uniformly in a, when γy goes to zero. Let A be 

the following event, 

A = {XN (t0 + γy) ∈ B2θy (y), sup0≤t≤Ty 
kα(t + t0 + γy) − Ky(t)k < 2θy}.a 

By Equations (38) and (39) for every a > ay(γy), 

P(A) > 0. (40) 

By Lemma 4 and Equation (18) there exists N0 such that 

∀N > N0, P(Xa
N (t0 + γy + T y) ∈ Bδy (zy(T y)) | A) > 0. (41) 

Lemma 5 follows from (40) and (41). 
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