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Abstract

This paper proposes a nonparametric method of estimating marginal treatment effects in

heterogeneous populations.   Building upon an insight of Heckman and Vytlacil, the conventional

treatment effects model with heterogeneous effects is shown to imply that outcomes are a

nonlinear function of participation probabilities.   The degree of this nonlinearity, and hence the

shape of the marginal response curve, can be estimated with series methods such as power series

or splines.  An illustration is provided for the returns to higher education in the U.K, indicating

that  marginal returns to higher education fall as the proportion of the population with higher

education rises, thus providing evidence of heterogeneity in returns.



The possible existence of individual heterogeneity in the effect of a treatment on

outcomes in a population has been a focus of much work in the causal effects literature.   In

economics, heterogeneity in the effect of a binary endogenous regressor was introduced in the

literature on switching regression models by Quandt (1972), Heckman (1978), and Lee (1979),

while in the statistics literature the causal model of potential outcomes of Rubin (1974) also

allows full heterogeneity in treatment effects.   This heterogeneity was reformulated as a random

coefficient by Heckman and Robb (1985) and by Björklund and Moffitt (1987).  The latter paper

also introduced the concept of the marginal treatment effect (termed the ‘marginal gain’) in the

context of a multivariate-normal switching regression model and showed that the model was

observationally equivalent to the Lee switching regression model.    Imbens and Angrist  (1994)

showed that the treatment effect in a heterogeneous population across two points in the

distribution, termed the Local Average Treatment Effect (LATE), could be nonparametrically

estimated with instrumental variables (IV) and Angrist et al. (1996) elaborated and clarified this

method.   Heckman and Vytlacil (1999, 2005) have clarified the distinctions between the

marginal treatment effect (MTE), the LATE, and other treatment effects of interest.

In this paper, we build upon a remark by Heckman and Vytlacil (2005, p.691) that the

treatment effects model with heterogeneous effects of a binary treatment implies that outcomes

are simply a nonlinear function of participation probabilities.   A model is set up in this paper

which demonstrates that point in a slightly reformulated random coefficients model which makes

minimal identifying assumptions for the identification of the nonlinearity.   A simple series
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estimation method is proposed to nonparametrically estimate the shape of the outcome-

participation-probability relationship, and hence marginal returns to treatment, which can be

implemented with widely-available software packages.

An empirical illustration is provided for the effect of a binary higher education indicator

on earnings in the UK using the data from a study by Blundell et al. (2005).  The literature on the

effect of education on earnings has seen the largest number of discussions of heterogeneity in the

return, a concept discussed in the Woytinsky Lecture of Becker (1975) and in Mincer (1974). 

Surveys of the empirical literature by Card (1999, 2001) have emphasized the impact of possible

heterogeneity in the return on the interpretation of the estimates in that literature (see also Lang

(1993)).   The large majority of these estimates use only a binary instrument and hence only one

piece of the marginal return function can be nonparametrically identified, whereas in this paper a

wider portion of the return function is estimated because multiple, multi-valued instruments are

used.   Carneiro et al. (2003) and Aakvik et al. (2005) also obtained a wider range of estimates of

the return function but partly because of parametric assumptions; however, Carneiro et al. (2006)

used a wide range of instruments to nonparametrically estimate the full range of returns to

education, similar to the exercise here.  Oreopoulos (2006) examined heterogeneity in returns to

education by comparing LATE estimates based on compulsory schooling laws between two

countries which have different fractions of the population affected by the laws, which implicitly

uses a three-valued instrument rather than a binary one.

The next section lays out the model and estimation method, and the subsequent section

provides the illustration.  A summary appears at the end.



0i i  In the language and notation of potential outcomes, Y  (=$ ) is the value of the1

1i i ioutcome if individual i does not participate, Y  (=$ +" ) is the value of the outcome if

i 1i 0iindividual i does participate, and " =Y -Y  is the program impact for individual i. 
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I.  Estimation of the Heterogeneous Effects Model

The model presented here is adapted from those in the treatment effects literature

i ireferenced in the Introduction.  Let y  be an outcome variable for individual i, D  a dummy

ivariable signifying participation in the program, and Z  an instrumental variable with a

multinomial distribution. An unrestricted model, assuming no other covariates, can be written as

i i i i        y   =   $   +  " D                                                                                                           (1)

*          
i i i        D   =  k(Z , * )                                                                                                              (2)

*                       
i i        D   =  1(D  $ 0)                                                                                                             (3)

         

i i iwhere $  and "  are scalar random parameters and *  is a vector of random parameters.  All

parameters are allowed to be individual-specific and to have some unrestricted joint distribution

i i if($ ," ,* ); thus a separate model (1)-(3) exists for each individual.  The function k is likewise

i i iunrestricted and hence the model for D  can be saturated in Z , though restrictions on *  will be

necessary for interpretation (see below).  Eqn (1) is to be interpreted as a description of potential

i i ioutcomes, not just a description of how y  varies with D  in any particular population; hence "

and its distribution is the object of interest.    There are two sources of possible selection in the1

i imodel: first, selection occurs if $  covaries with *  (those with different unobserved participation

propensities have different levels of y in the absence of the treatment) and, second, selection
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i ioccurs if "  covaries with *  (those with different unobserved participation propensities have

different unobserved ‘gains’ from the treatment).

i i i i i i i iIf we condition (1) on D , we obtain E(y  | D )  =   E($  | D )  +  E("  | D ) D ,  which

illustrates one conditional mean of interest.  But to see which of the classes of objects can be

iidentified, we work instead with the reduced form by conditioning (1)-(3) on Z :

i i i i i i i i i               E(y  | Z =z)  =   E($  | Z =z)  +  E("  | D =1, Z =z) Prob(D =1 | Z =z)                       (4)

i i i               E(D  | Z =z)  =  Prob [k(z, * ) $ 0]                                                                             (5)

We make the following minimal identifying assumptions:

i i                 A1.  E( $  | Z =z) = $                                                                                                 (6)

i i i i i                 A2.  E("  | D =1, Z =z)  =  g[E(D  | Z =z)]                                                                (7)

iAssumptions A1 and A2 are mean independence assumptions needed for Z  to be a valid

exclusion restriction.  Eqn(6) states that the mean of the random intercept must be independent of 

iZ  (individuals must have the same level of y in the absence of treatment for all

values of Z).  Eqn(7) states that the mean ‘gain’ from the treatment among those who participate

i i imust depend on Z  only through the fraction treated and not otherwise.    If "  covaries with * ,

i ia change in Z  will alter the types of individuals who participate and the mean of "  among

participants will change.  For example, in the usual positive selection case, as participation in a

itreatment expands, those brought into the treatment have smaller positive "  than those who have



  In most applications, full independence may hold in any case.  But there may be2

applications where the variation in the participation rate induced by the instrument is located only
in one part of the alpha distribution, and one may have more confidence in the similarity of that
part of the distribution across values of the instrument than in other parts of the alpha
distribution.
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i ialready participated, and the mean "  among participants will fall.  At different levels of Z ,

therefore, that mean will vary.

The existing literature usually assumes, instead of A2, that both potential outcomes are

i i ifully independent of Z  and therefore that their difference, " , is also fully independent of Z ;

i i i ihowever, because Z  enters the D  equation, the distribution of "  in the D =1 subpopulation is

i idependent on Z  through the probability of participation in that case  (assuming "  covaries with

i* ), so (A2) holds.  But A2 is a slightly weaker condition than full independence because it states

i i ithat only the mean of "  in the D =1 subpopulation need be independent of Z , conditional on the

participation probability.  This condition is stated as a primitive rather than deriving it from

other assumptions.2

iTo interpret the estimates of marginal treatment effects estimated below as the mean "  of

those who change participation, we also need a “monotonicity” assumption originally formulated

by Imbens and Angrist (1994):

i i i i                 A3.  D (Z =z)   -  D (Z =z’)          is zero or the same sign for all i for any            (8)
                                                                       distinct values z and z’ 

i iwhere D (Z =z) is the function described in (2)-(3).   This assumption constitutes a restriction on

ithe distribution of *  (see also Heckman and Vytlacil, 2005, for a discussion). 

i i iWith these assumptions, and letting F(Z )=E(D  | Z ),  (4) and (5) can be rewritten as
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i i i i        y   =   $   +   g[F(Z )] F(Z )   +    ,                                                                                 (9)

i i i        D   =  F(Z )   +   <                                                                                                           (10)      

                                                                                             

i iwhere F is a proper probability function and where E(,  | gF ) = E(<  | F ) = 0 by construction. 

i iNo other restriction on the distribution of  ,  or <  is made.   The implication of response

heterogeneity can be seen in (9) to be that the effect of program participation (F) on y varies with

the level of participation because g is a function of F, thus inducing an inherent nonlinearity of y

in F, a feature of heterogeneous treatment effects models noted by Heckman and Vytlacil (2005,

p.691) and also discussed in Heckman et al. (2006).  A homogeneous-effects model is one in

which g is a constant.

Nonparametric identification of the parameters of (9) and (10) is straightforward given

i i i ithat D  is binary and Z  has a multinomial distribution.    F(Z ) is identified at each point Z =z

ifrom the population mean of D  at that z.   The elements of the function g that can be identified

idepend on the support of F(Z ) and, as has been emphasized in the literature and originally

iemphasized by Imbens and Angrist (1994), not all elements can be identified if the support of Z

in the sample does not generate full support of F from 0 to 1.  For two or more points in the

j j’support of F, the local average treatment effect between two participation fractions F  and F  is

j j j’ j’ j j’the discrete slope of the y function between those points, )y/)F=[F g(F )-F g(F )]/(F -F ).  The

jmarginal treatment effect at some point F  is instead the continuous derivative,

j j jMy/MF=g’(F )F +g(F ), which must be obtained by some smoothing method given the multinomial

i jassumption on Z .  If the support of F contains the value 0, g(F ), the effect of the treatment on



  The effect of the treatment on the treated as defined here is conditional on z; however,3

by integrating z out, the effect unconditional on z can be obtained.

  Carneiro et al. (2006) add a vector of X variables and apply the partially-linear model to 4

estimate g(F)F by kernel methods, for example.

  Earlier versions of this paper used this method.5

  The normality restriction on F could be relaxed by applying a more nonparametric6

estimation procedure to the first stage.  Note that the linear probability model would be
inappropriate if it were to predict negative probabilities (in the application below, it does so), for
it would not be sensible to provide estimates of g at negative values of F.
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the treated, is likewise identified at all other points in the support of F.    If   If  F=1 as well as3

F=0 is contained in the support, the average treatment effect, g(1), is therefore also identified.  

Nonparametric estimation of the g function will be conducted here by series estimation

methods rather than with kernel methods.   Series estimation methods, whether by power4

functions or spline functions, are easily implemented in conventional regression packages

because they merely involved adding additional regressors to a linear model.   Here, (9) simply

becomes a linear regression model with regressors that are nonlinear in F(Z).   Estimation

of (10) is possible in several different ways.  For example, (9) and (10) could be jointly estimated

with nonlinear least squares, allowing for heteroskedasticity (particularly in (10)) and for a 

nonzero across-equation error covariance.   However, here, instead, the more traditional two-step5

method will be employed, using first-stage estimates based on probit estimation of F(Z) followed

by second-stage estimation of (9) using predicted values of F as regressors.  Robust standard

errors correcting for estimation error in F and for the nonlinearity of F in (9) are obtained by 

applying formulas from Newey and McFadden (1994, eqn(6.11)).  6

iAdding a vector of exogenous observables X , the model becomes: 
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i i i i i        y   =   " D   +  h (X )                                                                                                    (11)

*          
i i i i        D   =   k(Z , X , * )                                                                                                       (12)

*                        
i i        D    =  1(D  $ 0)                                                                                                            (13)

We assume  

i i i iB1.  E[ h (X ) | X =x, Z =z)  =  h(x)                                                                                     (14)

i i i i i i iB2.  E("  | D =1, X =x, Z =z)  =  g[E(D  | X =x, Z =z), x]                                                  (15)

i i i i i iB3.  D (Z =z, X =x) - D (Z =z’, X =x)   is zero or the same sign for all i for any               (16)
                                                              distinct values z and z’ 

i iThen, conditioning (11)-(13) on X  and Z , we have:

i i i i i i i i        y   =   g[F(Z ,X ), X ] F(Z ,X )  +   h(X )    +    ,                                                          (17)

i i i i        D   =  F(Z ,X )   +   <                                                                                                     (18)      

where, again, the errors are mean-independent of the regressors by construction.  Nonparametric

methods could, in this case, be used to estimate the unknown functions g and h.  However, in our

empirical application below, this is not attempted.  Instead, index functions will be used for all

functions except g:

i i i i i i i i        y   =   X $  +  [X 8  +  g(F(X 0 + Z *))] F(X 0 + Z *)    +    ,                                     (19)

i i i i        D   =  F(X 0 + Z *)   +   <                                                                                              (20)      



   Blundell et al. (2005), however, have an extensive discussion of interactions of X with7

itreatment in the IV model.   Note that the vector X 8 excludes a constant term.

9

with an appropriate redefinition of the function g, and where F is taken as the normal c.d.f.   We

will test for nonlinearities in g by approximating it with series methods, as noted above.   Note

that, even with its linear index restrictions, this model allows an interaction of X with the effect

of treatment on y as long as 8 is nonzero, which is a departure from most IV practice.     Note as7

well that the parametric nature of the model will allow estimation of the entire distribution of g,

since both power functions and splines can be extrapolated beyond the range of F(Z) in the data. 

However, it will be important to note that these estimates are the result of extrapolation and that

the estimates of g within the range of F in the data are presumably more reliable.

II. An Empirical Illustration

Preliminaries.  The empirical illustration presented here will be for the case where the

effect of higher education on future earnings is the object of interest, focusing as well (as in much

of the literature) on the effect of a discrete change in education from less-than-college to college-

or-more.  The education-earnings literature is the literature where heterogeneity in returns has

been discussed most heavily, as noted in the Introduction.  As to whether the MTE for the return

to college should be expected to rise or fall as a larger fraction of individuals go to college, this

depends, as always, on the nature of the instrument and how the conditional mean of " (usually

interpreted as arising from unobserved ability) varies with that instrument.  The usual practice in

the literature is to seek instruments which proxy, or are correlated with, costs of schooling.  In

this case, the Becker Woytinsky Lecture model implies that the MTE will fall if costs fall and



  It should be noted that the relationship of interest here is how the MTE changes as the8

fraction of the population with a fixed level of schooling increases, which differs slightly from
the standard textbook analysis.  The usual Becker-Woytinsky diagram, which portrays returns vs
the level of schooling, must be analyzed with a vertical line drawn at the fixed level of schooling. 
A shift in the marginal cost curve then has the effects just noted. This is somewhat different than
the question of whether the LATE falls at successively higher levels of schooling, which Card
(1999, p.1854) tentatively found to be the case.
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participation expands as the lower-return individuals are drawn into any given level of schooling. 

Therefore, that will be the prior for the empirical exercise conducted here.8

It is also worth noting that the empirical literature to date has generally found OLS

estimates of the return to be below IV estimates, where the latter are interpretable as LATE or, in

continuous terms, as the MTE (Card, 1999, 2001).   One possible explanation of this result (see

Card as well as Angrist and Krueger (1999, pp. 1324-1325)) is that an instrument may affect

different individuals in the population in different ways and may affect those with high MTE

values disproportionately.  The same result applies in the model in (1)-(3) above because that

imodel allows unobserved heterogeneity in * .  This is formally shown in Appendix A, where it is

demonstrated that, for the MTE to be greater than OLS, it is necessary that the MTE also be

greater than the TT (effect of treatment on the treated).  However, it is also shown there that OLS

must nevertheless be greater than the TT and, in addition, the MTE be larger than the TT or OLS

in the neighborhood of F=0 or F=1.  Therefore, a test of this explanation for the MTE-OLS

difference is available if the instruments provide variation in those ranges of F, which are also

necessary to obtain an estimate of the TT.  We will illustrate this in the application.

Application.  For our application, we use the data employed in Blundell et al. (2005), who



  The author would like to thank Lorraine Dearden for providing the data and explaining9

the variables and samples.

 In an earlier version of their paper, Blundell et al. (2001) used all three instruments10

together.
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estimated the effect of higher education on earnings in the UK in 1993.   The data set consisted9

of information on 3,639 males whose earnings were observed at age 33 in 1993, and whose

families had been interviewed periodically since birth to collect child and family background

information.   The regressor of interest was a dummy variable indicating whether the individual

had undertaken some form of higher education, and a set of other socioeconomic characteristics

were available for use as control variables.  The OLS estimate of the effect of higher education

on the log of the hourly wage was .287.   The authors obtained IV estimates with three variables

used as instruments:  (1) a dummy variable for whether the parents reported an adverse financial

shock at either age 11 or age 16 of the child, (2) a dummy variable for whether the child’s teacher

ranked the parent’s “interest in education” high or low when the child was 7, and (3) the number

of older siblings of the child (the total number of siblings was used as a control variable in the

wage regression).   The authors argued that these variables could be excluded from the wage

equation and noted that they have high F-statistics in the first-stage regression.  In this paper, we

do not question the credibility of the instruments but take their validity as a maintained

assumption in order to illustrate the estimation method, which is our main interest.   Blundell et

al. found IV estimates of the return to higher education to fall in a very wide range (.05, 1.17) for

the three different instruments, and made a priori arguments for why different instruments should

have different effects, depending on their correlation with unobserved returns and costs in the

population.10
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Here we use the same data as Blundell et al. and estimate a slightly condensed model with

fewer X variables, excluding those with coefficients of low significance and condensing

categories (e.g., region) where coefficient differences are of low significance.  The means of the

variables in the data set are shown in Appendix B, along with the OLS regressions, which

generate an estimate of the effect of higher education of .287 (robust s.e.=.02), identical to that of 

Blundell et al.  We then estimate our models using all three instruments (Z).   The literature has

noted that different instruments may sweep out different portions of the return distribution and

hence may have different MTEs (Imbens and Angrist, 1994; Card, 1999, 2001; Heckman and

Vytlacil, 2005; see also Blundell et al. for a discussion focused on these three instruments), in

which case the MTE estimates from a model which includes all instruments must be interpreted

as weighted averages of the MTEs in those different populations.  However, different instruments

may also simply sweep out different ranges of the F distribution, and this will also generate

different estimates of the MTE when the instruments are used separately if heterogeneity exists

and hence the MTE is a function of F.   The method used here assumes each Z to sweep out the

same portion of the return distribution at the same F but allows each Z to operate in a different

portion of the F distribution, which will generate a different value of the MTE for each Z for this

reason alone.  In principle, it would be possible to test whether the three instruments generate

different estimates of the return to education at the same F if the supports of F generated by the

instruments overlap, but this is not done here because the methodological goal is best served by

maximizing the range of F and that is achieved by using all three instruments together.  In

practice, the results can be interpreted as weighted averages as discussed in the articles

referenced above.



 There are many more sophisticated spline methods which address some of these11

features, such as methods which allow estimation of the knot points and which allow derivatives
to be continuous at knot points (e.g., de Boor, 2001).
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Table 1 shows the estimates of the treatment effects not allowing the effect of

participation to vary with X (i.e., assuming 8=0).   The g function (=effect of the treatment on the

treated) is estimated with both linear splines and polynomials:

                                     J

0 j j             g(F) =  (   +   E   ( Max(0,F-B )                                                                                (21)
                                   j=1

                                     J

0 j             g(F) =  (  +    E    ( F                                                                                                 (22)  j

                                   j=1

jwhere J is the number of terms in the series and where the B  are preset knots, in this case taken

to be quartile points of the estimated F distribution.  Linear splines with preset knots have the

advantage of allowing one to see slopes directly off the estimates in different regions rather than

having to generate them from a polynomial and of allowing ( to have zero regions, but have the

disadvantage of generating discontinuous derivatives (=the MTE) at knot points and requiring, at

least in the simple method used here, a priori determination of the knots.   11

Column (1) shows estimates of a model with just a constant in (21)-(22), equivalent to the

homogeneous-effects model.  The estimate of .33 is slightly above the OLS estimate, consistent

with much of the literature (estimates of the other parameters in the model are shown in Table

B2).   

Figure 1 shows a histogram of predicted participation rates from the estimated first-stage

equation and indicates a concentration of probabilities in the lower ranges of F and with sizable



  Almost 10 percent of predicted F values from the linear probability model are negative. 12

As noted earlier, this makes it inappropriate for the purpose of this exercise.

  The particular functional form of the incremental effects of the instruments shown in13

Figure 2 is, to some extent, driven by the normal distribution, which necessarily implies a smaller
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fractions of the data at higher probabilities as well, although the distribution becomes thin above

.70.   However, most of this variation is generated by variation in X, and the relevant issue for

this model is instead the incremental effect of the instruments on these probabilities.  The

coefficients on the instruments are generally significant (see Table B2) and have an F-statistic of

18 in a nonlinear least squares estimation of the first-stage equation and an F-statistic of 13 if a

linear first-stage equation is estimated, within the rule-of-thumb ranges for small numbers of

instruments (Stock and Yogo, 2005).    Table 2 shows a box plot of the incremental effect of the12

instruments on the spread of predicted F, where the “baseline” F is obtained by setting the values

of the instruments equal to their means but allowing X to vary, and the “actual” F is obtained by

allowing both Z and X to vary.  The instruments provide quite a bit of additional variation in the

middle ranges of the probabilities (e.g., .30 to .70) but very little additional variation at both low

and high values of F.  This is an important result because it demonstrates that, despite the

concentration of the overall predicted probabilities in the region around F=0, the instruments

have very little power in that region.  They have more power in the higher regions, but there is

also relatively little data in those regions.  The region where there is both a reasonable fraction of

the data and where the instruments have relevance is in the relatively narrow region of

approximately (.30, .60).  These remarks also suggest that, for models with effect heterogeneity,

instruments can be strong in some regions of F but weak in other regions, a feature not generally

noted in the weak instruments literature.13



incremental effect of any regressor at high regions and low regions of F.  However, this must
necessarily also hold in a more nonparametric model, at least qualitatively.  It is worth noting that
a linear probability model for the first stage would generate the same incremental effects on F at
all points in the F distribution, suggesting another limitation of such a model for the purposes of
this paper.

 A cross-validation statistic could be used to more formally choose the degree of14

nonlinearity but is left for future work.
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The rest of the columns in Table 1 show the degree of nonlinearity with respect to F using

splines and polynomials.  Column (2) allows the g function to vary linearly with F and indicates

that the treatment effect declines as F rises and more of the population is engaged in higher

education.  This is therefore consistent with the prior.   Column (3) adds a spline knot at the 50  th

percentile point of the predicted F distribution, showing that the standard errors on the nonlinear

F parameters increase markedly and the parameters reach implausible magnitudes in some

ranges.   Column (4) adds two further splines showing parameters that, while retaining

significance at conventional levels, reach further implausible magnitudes.  Column (5) shows the

effect of adding one additional polynomial term, a quadratic in F (which implies that log wages

are cubic in F) and shows no significant evidence of higher nonlinearity.   Taken as a whole,

these estimates do not provide evidence of any reliably-estimated nonlinearities beyond the first

order, although there are hints in the spline results of some convexity in the function.14

The rapid decline in the stability of the estimates as additional nonlinearities are

introduced could simply reflect the truth; that is, there are indeed no higher-order nonlinearities. 

In fact, the function g which is being estimated is equal to the conventional Heckman normal

lambda term if the unobservables are multivariate normal, and that term is known to be



 To ascertain whether stronger instruments would affect the results, Monte Carlos were15

conducted assuming the coefficients on the three instruments were double and then triple what
they are shown to be in Appendix Table B-2.   All coefficients in the X vector were assumed to
equal what they were estimated to be in that model, and 500 repetitions of multivariate normal
errors were drawn with nonzero correlations to generate heterogeneity, for a sample size of 3639
and the same X and Z distribution as in the data.  While the Monte Carlo estimates of gamma
were, on average, the same regardless of the magnitude of the coefficients on the instruments, 
the standard errors and confidence intervals for gamma were dramatically lower when the
coefficients were double or triple what they are here.
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approximately linear in the probability of selection, at least in the middle range of probabilities. 

However, there are two other, related, sources of instability in the higher-order nonlinear terms. 

The more important is the already-noted weakness of the instruments in high and low ranges of

F; instruments which have little or no effect on F in those regions should be expected to generate

unstable and implausible values.   Figures 3 and 4 plot the g function (treatment on the treated)

and the MTE (derivative of the log wage equation w.r.t. F), respectively, for columns (2), (3), and

(5) of Table 1, along with OLS and the constant-effect estimate (note that the effect of the

treatment on the treated is identified because F=0 is in the support of the data).   In the F region

[.30, .60], the three models allowing nonlinearities, including the polynomial, are reasonably

close to one another.  Further, in Figure 4, these three models also show definite evidence of

declining MTE in that range.   However, the functions diverge much more at both higher and

lower values of F, precisely where the instruments are very weak.15

A second, related factor is that the instruments, while generating more than the single

variation in predicted F that is allowed with only a binary instrument, nevertheless generate only

a limited set of values.  Two of the three instruments are binary and the third (number of older

siblings) is concentrated in only three values (0, 1, and 2).  Thus the number of discrete points of

support in the incremental predicted F distribution is still modest.   Adding parameters to the
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model by introducing spline and polynomial terms necessarily requires a sufficient range of

instruments to support estimation of those parameters, and that range may still not be sufficient

with these instruments.  In estimates not reported here, interactions between the three instruments

and nonlinearities in the third instrument were added to the first-stage equation to generate a

greater range of incremental F contributions, but those additional interactions and nonlinearities

were extremely weak.  The F statistic for five instruments falls to 9, and a more extensive set of

interactions leading to fifteen instruments yields an F statistic of 4.  Tests of interactions of the

initial three instruments with the variables in the X vector leads to F values of 2 or 3.   The

instruments in these data are therefore too weak to obtain more variation in predicted

probabilities and therefore a wider range of probabilities over which to estimate nonlinear

treatment effects.

On the central issue of whether the MTE is constant, the evidence from the three models

with nonlinearities nevertheless provides strong evidence of nonconstancy and therefore of

heterogeneous treatment effects in the population.  Figure 5 shows a 95 percent confidence

interval for the MTE in the most stably estimated model, that with a linearly declining MTE. 

Although the confidence intervals would allow a horizontal line in some regions, the intervals are

narrow enough to make such horizontality very unlikely.

Table 2 allows interactions with treatment and the variables in the X vector (8�0).  The

first three columns, showing results for two of the spline models and the polynomial model,

show that the nonlinear treatment effects are rendered insignificant or much less significant in the

spline models but slightly more significant in the polynomial specification.  At least for the two

spline specifications, this suggests that the unobservable heterogeneity in return found in the



  The OLS estimate shown in Figure 3 is not a “local” OLS estimate, and therefore does16

not strictly conform to the proof in the Appendix, which compares a local OLS estimate to local
MTE estimates.  Therefore, the test here is based on the relationship between the TT and MTE,
which have been locally estimated.
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Table 1 results may be masking heterogeneity in the effects by observables.  However, as can be

seen by an inspection of the results, the interaction coefficients for the large majority of the

seventeen variables have large standard errors.   Restricting the interactions to the five variables

that are significant at conventional levels, shown in the fourth and fifth columns, restores the

spline-model nonlinear effects to significance.  Thus estimates of the effect of unobservables on

estimates of the return are quite sensitive to whether and which interactions are allowed,

suggesting that a more formal determination of which interactions should be included in the

model is needed.   The insignificance of most of the interaction terms may also be related, once

again, to weaknesses in the instruments in generating sufficient incremental effects on the F

distribution for different values of X.   Further work is needed on these issues. 

Finally, recall that the relationship between the MTE and the TT (=the g function)

provides a test of whether the increase in the constant treatment effect when going from OLS to

IV is arising from the differential effects of the instrument in ranges of F between 0 and 1.

Specifically, if the MTE is greater than the TT in some range (it cannot be so at F=0 or F=1), it is

possible for the MTE to also be greater than OLS.    However, all three nonlinear functions16

shown in Figures 3 and 4 have MTE values that lie below the TT values for all values of positive

F.   The TT is g(F) and the MTE is [g(F)+Fg’(F)], so the MTE must be below the TT so long as

g’(F)<0.  But g’(F)<0 holds for all the estimated nonlinear models.   Thus, with the qualification

that the TT estimates obtained here are based on weak instrument variation in the neighborhood
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of F=0, there is little support for the explanation for the OLS-IV difference noted in prior work

and described in Appendix A for these instruments and for these data.

III. Summary and Conclusions

We have proposed a method of estimating the shape of the marginal return function in the

treatment-effects model when heterogeneous returns are present, and have applied the method to

the data from a  prior study of the effect of higher education on earnings of men in the UK.  The

application shows significant effects of heterogeneity, indicating that marginal returns to higher

education fall as the proportion of the population with higher education rises.  This direction of

effect is consistent with the Becker Woytinsky Lecture model.   However, the instruments used

are weak in some ranges of the F distribution and hence these findings apply to only a limited

range of the participation-rate spectrum.   Estimating a wide range of marginal treatment effects

puts greater demands on the instruments than is the case for either a binary instrument or the

average treatment effect obtained when estimating a single IV coefficient with multi-valued

instruments.  The results also reveal some uncertainty regarding the relative contributions of

observables and unobservables to the heterogeneity that has been found.  These topics suggest

further work on more formal methods of addressing these issues.
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Appendix A

Relationship of MTE to OLS and 
Interpretation of IV Estimates

As noted by Card (1999, 2001), heterogeneity in the effect of an instrument on choices 

may lead to IV-based LATE or MTE estimates that exceed OLS estimates.  This effect operates 

iin the model in (1)-(3) through the heterogeneous * .   A  reformulated model for the education

case is:

                  _

i i i i        y   =   $  +  " D    +   ,                                                                                                 (A1)

*          
i i i i        D   =  "    - c   +  L                                                                                                       (A2)

*                       
i i        D   =  1(D  $ 0)                                                                                                             (A3)

                  _

i iwhere $  = $+,  and where the education choice equation is assumed to be based on the earnings

i ireturn minus costs (c ) plus other unobserved determinants (L ), an equation which drops out of 

i i i ithe standard theory.    Let  c =* Z   where Z  measures observed costs or a proxy for it (the

iinstrument) and where  * >0 is a measure of the responsiveness of an individual to a change in

costs; hence

*          
i i i i i        D   =  "    -  * Z    +  L                                                                                                  (A4)

i iThose with greater values of  *  have a lower probability of D =1, hence lower schooling levels.  

We demonstrate the following proposition.
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Proposition A1.  Let the model be (A1), (A4), and (A3). Define
 

OLS i i i i            "    =  E(y  | D =1)  -  E(y  | D =0)                                                                     (A5)
 

TT i i i i i i            "      =  E("  | D =1)  =  I E("  |  u >0, Z )  dH(Z )                                              (A6)

MTE MTE i i            "   =   I " (Z ) dH(Z )                                                                                (A7) 

i i i i i i i MTE i i i iwhere  u =" -* Z +L ,  H(Z ) is the cdf of Z ,  " (Z )=ME(y  | Z ) / MF(Z ) and 

i i i i iF(Z )=Prob(u >0 | Z ).   Assume that E(,  | Z ) = 0 and that positive sorting takes place, defined

as:

i i i i i i i i             E("  | D =1,Z ,* ) > E("  | Z ,* ) = E("  )                                                             (A8)

where a standard mean independence assumption is embodied in the second equality.  Then (1) it

OLS MTE iis possible that " <"   over some ranges of Z  but (2) this cannot be true in the

i i neighborhood of F(Z )=0 and F(Z )=1.

The proposition is not obvious because positive sorting should imply that 

OLS TT MTE" >" >" , but the proposition states that this need not be the case in ranges of F

between 0 and 1.   The proof of the proposition is based on demonstrating that it is possible that

TT MTE OLS MTE" <" , which makes " <"  possible.

From (A5) and (A1), we have

OLS i i i i i i          "    =   E("  | D =1)  +  [E(,  | D =1) - E(,  | D =0) ]                                       (A9)

where the first term is the TT.   Although the second term  (in brackets) could be negative if

those who attend college would have had lower earnings than those who did not attend college if
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OLSthey also did not, this is unlikely.  If it is negative, it is obvious that "  can be arbitrarily low. 

OLS TTTherefore let us only consider the case where it is  positive, implying that " >" .   It would

TT MTE iappear that " >" , for the TT conditional on Z  is

i i i i i i         E("  | D =1, Z )  =  E("  |  u >0, Z )                                                                               (A10)

                                       

i i i i iwhere u =" -* Z +L .  The assumption of positive sorting implies that this is greater than

i i iE("  | u =0, Z ), which is the minimum of the TT distribution and constitutes one definition of

ithe MTE  (integrating (A10) over the distribution of Z  guarantees that the unconditional-on-Z

TT is also positively sorted).    However, the question instead is what values of the MTE are 

iswept out by a change in Z .

iTo determine this, we must calculate the MTE conditional on *  and then integrate over
                                                  _

i i i i i i i i i iit.  Recalling that E(y  | Z , * )=$+E("  | D =1, Z , * )F(Z ,* ),  the MTE conditional on Z  is

 

i i i i i                                    I  [ME(y  | Z , * ) / MZ ]  dG(* ) 

MTE i     " (Z )     =                                                                     

i i i i                                      I  [MF(Z , * ) / MZ ]  dG(* ) 

         (A11)

i i i i i i i i T i                        =         { I [ ME("  | D =1,Z ,* ) / MZ ] F(Z ,* ) dG(* ) } / dF (Z )    

i i i i i i i                                                             +   I  E("  | D =1,Z ,* ) p(Z ,* ) dG(* ) 

i T i i i i iwhere G is the c.d.f. of * , dF (Z ) =  I [MF(Z , * ) / MZ ]  dG(* )  is the total change in the

ifraction with D =1, and 
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i i i                                      MF(Z , * ) / MZ   

i i       p(Z , * )  =                                                                                                                    (A12)

i i i i                             I  [MF(Z , * ) / MZ ]  dG(* )

i iis the proportion of the change in the fraction with D =1 arising from each *  subpopulation.  The 

first term in (A11) is negative since positive sorting implies that a rise (say) in F lowers the TT.  

iHowever, the second term can be arbitrarily greater than the TT.   The unconditional-on-*

TT is

i i i i i i i i      E("  | D =1,Z )  =   I  E("  | D =1,Z ,* ) dG(* )                                                             (A13)

i iwhich can be smaller than the second term in (A11) if p(Z , * ) is positively related to the

iconditional-on-*  TT.  But that is the case in this problem.  This concludes the demonstration

that the MTE can be greater than the TT, and hence that OLS may be smaller than the MTE.

iHowever, the MTE must equal the TT at F=0 (the "  of the first person to participate

constitutes both the MTE and the TT) and the MTE must be less than the TT as F 

iapproaches 1, for the TT for each *  approaches the same number and hence the second term in 

i(A11) approaches the unconditional-on-*  TT.    It must also be the case that OLS must be

everywhere greater than or equal to the TT, at least if the second term in (A9) is non-

negative.
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Table 1

Gamma Parameter Estimates

                                                          (1)               (2)                 (3)                 (4)                 (5)

    Constant .33
(.10)

1.01
(.19)

1.67
(.61)

7.12
(1.77)

1.21
(.39)

    F -- -.73
(.17)

-2.91
(1.86)

-45.87
(13.13)

1.21
(.85)

    Max(0,F-F(.25)) -- -- -- 40.66
(12.31)

--

    Max(0,F-F(.50)) -- -- 2.09
(1.77)

2.83
(1.89)

--

    Max(0,F-F(.75)) -- -- -- 1.26
(.70)

--

    F .372

(.66)

Notes:

1. Standard errors in parentheses.
2. Parameter estimates for the full model including $, *, and 0 are shown in Table B2 for
Column (1).  All models constrain 8=0.
3. Percentile points for splines:   F(.25)=.10,  F(.50)=.24,  F(.75)=.43



Table 2

Gamma and Lambda Parameter Estimates

                                                          (1)               (2)                (3)                  (4)                (5)

Gamma

    Constant .87
(.36)

1.43
(.65)

1.63
(.55)

.95
(.20)

1.75
(.62)

    F .08
(.53)

-2.46
(2.52)

-1.73
(1.15)

-.76
(.18)

-3.35
(1.87)

    Max(0,F-F(.50)) -- 2.14
(2.08)

-- -- 2.47
(1.78)

    F -- -- 1.502

(.83)
-- --

Lambda

    Public School -.14
(.19)

-.09
(.20)

-.27
(.21)

-- --

    Other School .47
(.28)

.44
(.27)

.44
(.27)

.41
(.26)

.40
(.26)

    Math Ability at age 7 -.01
(.04)

.00
(.04)

-.01
(.04)

-- --

    Verbal Ability at age 7 -.04
(.05)

-.02
(.05)

-.03
(.05)

-- --

    Verbal Ability at age 7    
       Missing

.19
(.26)

.28
(.27)

.26
(.26)

-- --

    Math Ability at age 11 .01
(.06)

.03
(.06)

.02
(.06)

-- --

    Verbal Ability at age 11 -.08
(.05)

-.06
(.05)

-.07
(.05)

-- --



Table 2 (continued)

                                                          (1)               (2)                (3)                  (4)                (5)

    Verbal Ability at age 11  
        Missing

-.13
(.26)

-.01
(.28)

-.03
(.27)

-- --

    Father’s Education -.03
(.03)

-.02
(.03)

-.05
(.03)

-- --

    Father’s Education          
       Missing

-.13
(.27)

-.04
(.27)

-.29
(.28)

-- --

    Mother Employed in       
        1974

-.01
(.07)

-.02
(.07)

-.01
(.07)

-- --

    No. of Siblings -.03
(.02)

-.04
(.02)

-.03
(.02)

-.05
(.02)

-.06
(.02)

    Father Unskilled Manual 
         in 1974

.54
(.41)

.52
(.40)

.51
(.40)

-- --

    Father Occupation           
        Missing

-.03
(.29)

.06
(.29)

-.20
(.30)

-- --

    Region Group 1 .24
(.09)

.24
(.09)

.24
(.09)

.16
(.08)

.15
(.08)

    Region Group 2 .26
(.11)

.27
(.11)

.25
(.11)

.18
(.10)

.18
(.10)

    Region Group 3 .35
(.12)

.34
(.12)

.36
(.12)

.24
(.11)

.24
(.11)

Notes:

1. Standard errors in parentheses.
2. Parameter estimates for $, *, and 0 are not shown in Table B2 for Column (1).
3. Percentile points for splines:   F(.25)=.10,  F(.50)=.24,  F(.75)=.43



Table B1

Means of the Variables in the Data Set

Log wage 2.04

D (=1 if higher education) .28

X

    Public School .05

    Other School .02

    Math Ability at age 7 2.72

    Verbal Ability at age 7 2.55

    Verbal Ability at age 7 missing .11

    Math Ability at age 11 2.41

    Verbal Ability at age 11 2.34

    Verbal Ability at age 11 missing .19

    Father’s Education 7.27

    Father’s Education missing .28

    Mother Employed in 1974 .51

    No. of Siblings 1.69

    Father Unskilled Manual in 1974 .03

    Father Occupation Missing .11

    Region Group 1 .47

    Region Group 2 .13

    Region Group 3 .15



Table B1 (continued)

Z

    Adverse Financial Shock .16

    Parental Interest .39

    No. Older Siblings .82

Notes:

N=3,639

Region Group 1:  North Western, North, East and W. Riding, North Midlands, South Western,
Midlands
Region Group 2:  Eastern, Southern
Region Group 3:  Wales, Scotland
London and Southeast omitted



Table B2

Full Estimates for OLS and Basic 2SLS Specifications

                                                                                OLS                                        2SLS

Higher Education .287
(.015)

.326
(.102)

$

    Public School .121
(.032)

.116
(.037)

    Other School -.104
(.056)

-.101
(.056)

    Math Ability at age 7 .028
(.006)

.027
(.006)

    Verbal Ability at age 7 .012
(.006)

.010
(.007)

    Verbal Ability at age 7 missing .192
(.034)

.144
(.037)

    Math Ability at age 11 .028
(.006)

.015
(.009)

    Verbal Ability at age 11 .033
(.008)

.031
(.009)

    Verbal Ability at age 11 missing .174
(.031)

.115
(.036)

    Father’s Education .012
(.004)

.010
(.006)

    Father’s Education missing .104
(.047)

.092
(.058)

    Mother Employed in 1974 .035
(.015)

.035
(.015)



Table B2 (continued)

                                                                                OLS                                        2SLS

    No. of Siblings -.009
(.004)

-.008
(.004)

    Father Unskilled Manual in        
          1974

-.093
(.032)

-.092
(.032)

    Father Occupation Missing -.133
(.031)

-.041
(.062)

    Region Group 1 -.192
(.020)

-.192
(.020)

    Region Group 2 -.106
(.026)

-.106
(.026)

    Region Group 3 -.242
(.024)

-.239
(.024)

    Constant 1.716
(.051)

1.74
(.074)

0

    Public School -- .467
(.105)

    Other School -- -.276
(.206)

    Math Ability at age 7 -- .097
(.022)

    Verbal Ability at age 7 -- .147
(.024)

    Verbal Ability at age 7 missing -- .953
(.117)



Table B2  (continued)

                                                                                OLS                                       2SLS

    Math Ability at age 11 -- .194
(.031)

    Verbal Ability at age 11 -- .121
(.033)

    Verbal Ability at age 11 missing -- 1.056
(.112)

    Father’s Education -- .104
(.015)

    Father’s Education missing -- .962
(.175)

    Mother Employed in 1974 -- -.064
(.060)

    No. of Siblings -- -.003
(.025)

    Father Unskilled Manual in        
   1974

-- -.097
(.172)

    Father Occupation Missing -- .919
(.192)

    Region Group 1 -- -.014
(.074)

    Region Group 2 -- .057
(.093)

    Region Group 3 -- -.083
(.091)

    Constant -- -3.485
(.197)



Table B2  (continued)

                                                                           OLS                                             2SLS

*

    Adverse Financial Shock -- -.300
(.082)

    Parental Interest -- .241
(.054)

    No. Older Siblings -- -.065
(.032)

Notes:

Standard errors in parentheses
2SLS corresponds to Table 1, Column (1)
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Figure 1: Histogram of Predicted Participation Rates, First Step Probit
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