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Estimating Marginal 
Treatment Effects 

in Heterogeneous 

Populations 

Robert MOFFITT* 
Johns Hopkins University 

ABSTRACT. -This paper proposes a nonparametric method of estimating 
marginal treatment effects in heterogeneous populations. Building upon an 

insight of Heckman and Vytlacil, the conventional treatment effects model 
with heterogeneous effects is shown to imply that outcomes are a nonlinear 
function of participation probabilities. The degree of this nonlinearity, and 
hence the shape of the marginal response curve, can be estimated with 
series methods such as power series or splines. An illustration is provided 
for the returns to higher education in the U.K, indicating that marginal returns 
to higher education fall as the proportion of the population with higher 
education rises, thus providing evidence of heterogeneity in returns. 

Estimation d'effets de traitement marginaux dans des 

populations h?t?rog?nes 

R?SUM?. - Cet article propose une m?thode non-param?trique pour 
estimer l'effet de traitement marginal dans des populations h?t?rog?nes. 
S'appuyant sur un aper?u de Heckman et Vytlacil, on montre que le 
mod?le conventionnel des effets de traitement avec effets h?t?rog?nes 
implique que les r?sultats sont une fonction non-lin?aire des probabilit?s 
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de participation. Le degr? de cette non-lin?arit? et donc la forme de la 
courbe de r?ponse marginale peut ?tre estim?e par des m?thodes de s?ries 
telles que les s?ries de Taylor ou des splines. On donne une illustration ? 
l'aide de rendements de l'?ducation au Royaume Uni qui montrent que les 
rendements marginaux de l'enseignement sup?rieur baissent lorsque la 

proportion de la population poss?dant une formation sup?rieure augmente, 
donnant ainsi une preuve de l'h?t?rog?n?it? des rendements. 

KEYWORDS: marginal treatment effects, power series method, splines, 
individual heterogeneity, returns to education 
JEL CLASSIFICATION: C21, J24 
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Introduction 

The possible existence of individual heterogeneity in the effect of a treatment on 
outcomes in a population has been a focus of much work in the causal effects lit 
erature. In economics, heterogeneity in the effect of a binary endogenous regressor 
was introduced in the literature on switching regression models by Quandt [1972], 
Heckman [1978], and Lee [1979], while in the statistics literature the causal model 
of potential outcomes of Rubin (1974) also allows full heterogeneity in treatment 
effects. This heterogeneity was reformulated as a random coefficient by Heckman 
and Robb [1985] and by Bj?rklund and Moffitt [1987]. The latter paper also intro 
duced the concept of the maiginal treatment effect (termed the 'marginal gain') in 
the context of a multivariate-normal switching regression model and showed that 
the model was observationally equivalent to the Lee switching regression model. 
Imbens and Angrist [1994] showed that the treatment effect in a heterogeneous pop 
ulation across two points in the distribution, termed the Local Average Treatment 
Effect (LATE), could be nonparametrically estimated with instrumental variables 

(IV) and Angrist et al. [1996] elaborated and clarified this method. Heckman and 
Vytlacil [1999, 2005] have clarified the distinctions between the marginal treat 
ment effect (MTE), the LATE, and other treatment effects of interest. 

In this paper, we build upon a remark by Heckman and Vytlacil [2005, p.691] 
that the treatment effects model with heterogeneous effects of a binary treatment 

implies that outcomes are a nonlinear function of participation probabilities. A 
model is set up in this paper which demonstrates that point in a slightly reformu 
lated random coefficients model which makes minimal identifying assumptions for 
the identification of the nonlinearity. A simple series estimation method is proposed 
to nonparametrically estimate the shape of the outcome-participation-probability 
relationship, and hence marginal returns to treatment, which can be implemented 
with widely-available software packages. 

An empirical illustration is provided for the effect of a binary higher education 
indicator on earnings in the UK using the data from a study by Blundell et al. 

[2005]. The literature on the effect of education on earnings has seen the largest 
number of discussions of heterogeneity in the return, a concept discussed in the 

Woytinsky Lecture of Becker (1975) and in Mincer [1974], Surveys of the empiri 
cal literature by Card [1999,2001] have emphasized the impact of possible hetero 

geneity in the return on the interpretation of the estimates in that literature (see also 
Lang [1993]). The large majority of these estimates use only a binary instrument 
and hence only one piece of the marginal return function can be nonparametrically 
identified, whereas in this paper a wider portion of the return function is estimated 
because multiple, multi-valued instruments are used. Carneiro et al. [2003] and 
Aakvik et al. [2005] also obtained a wider range of estimates of the return function 
but partly because of parametric assumptions; however, Carneiro et al. [2006] 
used a wide range of instruments to nonparametrically estimate the full range of 
returns to education, similar to the exercise here. Oreopoulos [2006] examined 

heterogeneity in returns to education by comparing LATE estimates based on com 

pulsory schooling laws between two countries which have different fractions of the 

population affected by the laws, which implicitly uses a three-valued instrument 
rather than a binary one. 
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The next section lays out the model and estimation method and the subsequent 
section provides the illustration. A summary appears at the end. 

1 Estimation of the Heterogeneous 
Effects Model 

The model presented here is adapted from those in the treatment effects literature 
referenced in the Introduction. Let y. be an outcome variable for individual /, D. 
a dummy variable signifying participation in the program, and Z. an instrumental 
variable with a multinomial distribution. An unrestricted model, assuming no other 

covariates, can be written as 

(1) * 
= 

?, + "A 

(2) =*( ? ,) 

(3) A=1(D;>0) 

where ?. and a. are scalar random parameters and . is a vector of random param 
eters. All parameters are allowed to be individual-specific and to have some unre 
stricted joint distributiony(?., a-, ;); thus a separate model (l)-(3) exists for each 
individual. The function k is likewise unrestricted and hence the model for D. can 
be saturated in Zp though restrictions on . will be necessary for interpretation (see 
below). Eqn (1) is to be interpreted as a description of potential outcomes, not just 
a description of how y. varies with D. in any particular population; hence a. and 
its distribution is the object of interest1. There are two sources of possible selec 
tion in the model: first, selection occurs if ?f covaries with . (those with different 
unobserved participation propensities have different levels of y in the absence of 
the treatment) and, second, selection occurs if a. covaries with . (those with differ 
ent unobserved participation propensities have different unobserved 'gains' from 
the treatment). 

If we condition (1) on Dp we obtain E(yP) 
= E .\0) + E(apt)D., which illus 

trates one conditional mean of interest. But to see which of the classes of objects can 
be identified, we work instead with the reduced form by conditioning (l)-(3) on Z.: 

(4) E( . = ) 
= E .\ . 

= 
) + E(a l,Z. 

= 
z)Prob(D.= l|Z. 

= 
z) 

(5) ?(Z)i|Z. 
= z) = Prob[?(z,e|.)>0] 

We make the following minimal identifying assumptions: 

1. In the language and notation of potential outcomes, F^?,) *s me value ?f me outcome if individual 
does not participate, ^-?, 

+ 
a,) is the value of the outcome if individual does participate, and 

a. = Yj. 
- 
Y0|. is the program impact for individual i. 
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(6) Al. E?.\Zrz) 
= ? 

(7) A2. E(a.\D. 
= 

1, Z. = z) 
= 

g[E(D?. 
= 

)] 

Assumptions Al and A2 are mean independence assumptions needed for Z. to be 
a valid exclusion restriction. Eqn (6) states that the mean of the random intercept 
must be independent of Z. (individuals must have the same level of y in the absence 
of treatment for all values of Z). Eqn (7) states that the mean 'gain' from the treat 
ment among those who participate must depend on Z. only through the fraction 
treated and not otherwise. If a. covaries with &p a change in Z. will alter the types 
of individuals who participate and the mean of a. among participants will change. 
For example, in the usual positive selection case, as participation in a treatment 

expands, those brought into the treatment have smaller positive a. than those who 
have already participated, and the mean a. among participants will fall. At different 
levels of Zp therefore, that mean will vary. 
The existing literature usually assumes, instead of A2, that both potential out 

comes are folly independent of Z. and therefore that their difference, a., is also folly 
independent of Z.; however, because Z. enters the D. equation, the distribution of ay 
in the D. = 1 subpopulation is dependent on Zf through the probability of participa 
tion in that case (assuming a. covaries with ,.), so (A2) holds. But A2 is a slightly 

weaker condition than full independence because it states that only the mean of a, 
in the D. = 1 subpopulation need be independent of Zp conditional on the participa 
tion probability. This condition is stated as a primitive rather than deriving it from 
other assumptions2. 

To interpret the estimates of marginal treatment effects estimated below as the 
mean a. of those who change participation, we also need a "monotonicity" assump 
tion originally formulated by Imbens and Angrist (1994): 

(8) A3. DfZ. 
= 

z) 
- 
DfZ. 

= 
z') is zero or the same sign for all i for any distinct 

values and z' 

where Dt(Z. 
= 

z) is the function described in (2)-(3). This assumption constitutes 
a restriction on the distribution of . (see also Heckman and Vytlacil, 2005, for a 

discussion). 
With these assumptions, and letting F(Z?) 

= 
E(D.\Z?), (4) and (5) can be rewritten 

as 

(9) yrV + gWiZfiFiZi + Zi 

(10) >, 
= / ,) + , 

where F is a proper probability function and where E(z.\gF) 
= 

?(v.|F) 
= 0 by con 

struction. No other restriction on the distribution of s. or v. is made. The implica 
tion of response heterogeneity can be seen in (9) to be that the effect of program 

2. In most applications, full independence may hold in any case. But there may be applications where 
the variation in the participation rate induced by the instrument is located only in one part of the alpha 
distribution, and one may have more confidence in the similarity of that part of the distribution across 

values of the instrument than in other parts of the alpha distribution. 
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participation (F) on y varies with the level of participation because g is a function 
of F, thus inducing an inherent nonlinearity of y in F, a feature of heterogeneous 
treatment effects models noted by Heckman and Vytlacil [2005, p. 691] and also 
discussed in Heckman et ai [2006]. A homogeneous-effects model is one in which 

g is a constant. 

Nonparametric identification of the parameters of (9) and (10) is straightforward 
given that D. is binary and Z. has a multinomial distribution. F(Z.) is identified at each 

point . = from the population mean of Dt at that z. The elements of the function g 
that can be identified depend on the support of F(Z.) and, as has been emphasized in 
the literature and originally emphasized by Imbens and Angrist [1994], not all ele 

ments can be identified if the support of Z. in the sample does not generate full sup 
port of F from 0 to 1. For two or more points in the support of F, the local average 
treatment effect between two participation fractions F. and F y is the discrete slope 
of the y function between those points, Ay/AF = [Fyg(Fy ) 

- 
Ffg(Ff )] /(Fy 

- 
Ff ). 

The marginal treatment effect at some point F. is instead the continuous derivative, 
dy/dF= gf(Fj)Fj 

+ 
g(Fy), which must be obtained by some smoothing method 

given the multinomial assumption on Zr If the support of F contains the value 0, 

giFj), 
the effect of the treatment on the treated, is likewise identified at all other 

points in the support of F3. If F = 1 as well as F = 0 is contained in the support, the 

average treatment effect, g(l), is therefore also identified. 

Nonparametric estimation of the g function will be conducted here by series 
estimation methods rather than with kernel methods4. Series estimation meth 
ods, whether by power functions or spline functions, are easily implemented in 
conventional regression packages because they merely involve adding additional 

regressors to a linear model. Here, (9) simply becomes a linear regression model 
with regressors that are nonlinear in F(Z). Estimation of (10) is possible in several 
different ways. For example, (9) and (10) could be jointly estimated with nonlin 
ear least squares, allowing for heteroskedasticity (particularly in (10)) and for a 
nonzero across-equation error covariance5. However, here, instead, the more tradi 
tional two-step method will be employed, using first-stage estimates based on pro 
bit estimation of F(Z) followed by second-stage estimation of (9) using predicted 
values of F as regressors. Robust standard errors correcting for estimation error 
in F and for the nonlinearity of F in (9) are obtained by applying formulas from 

Newey and McFadden [1994, eqn (6.11)]6. 
Adding a vector of exogenous observables X.9 the model becomes: 

(11) y^aPt + hfiQ 

(12) 

3. The effect of the treatment on the treated as defined here is conditional on z; however, by integrating 
out, the effect unconditional on can be obtained. 

4. Carneiro et al [2006] add a vector of X variables and apply the partially-linear model to estimate 

g(F)F by kernel methods, for example. 
5. Earlier versions of this paper used mis method. 
6. The normality restriction on F could be relaxed by applying a more nonparametric estimation pro 

cedure to the first stage. Note that the linear probability model would be inappropriate if it were to 

predict negative probabilities (in the application below, it does so), for it would not be sensible to 
provide estimates of g at negative values of F. 
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(13) A.=1(?>;>0) 

We assume 

(14) Bl. E[hfX?)\X. 
= , . = ) 

= 
h(x) 

(15) 2.?(a. .= \9 . = 9 ) 
= 

8[E( .\ 9 )9 ] 

(16) 3. D?. 
= 9 . = )- Df? 

= ', . = ) is zero or the same sign for 
all i for any distinct values and z' 

Then, conditioning (11)-(13) onX. and Z., we have: 

( ) y = g[F(Z,, X)9 JQF(Z., X) + /*(*.) + e,. 

(18) D. = 
F(Z.,JQ 

+ v. 

where, again, the errors are mean-independent of the regressors by construction. 

Nonparametric methods could, in this case, be used to estimate the unknown func 
tions g and A. However, in our empirical application below, this is not attempted. 
Instead, index functions will be used for all functions except g: 

(19) y.=X? + [XtX + gTOt? + Zf?WWfl + Zf? + e,. 

(20) D. = F(X.r\ + Zfi) + vi 

with an appropriate redefinition of the function g, and where F is taken as the normal 
c.d.f. We will test for nonlinearities in g by approximating it with series methods, 
as noted above. Note that, even with its linear index restrictions, this model allows 
an interaction of X with the effect of treatment on y as long as is nonzero, which 
is a departure from most IV practice7. Note as well that the parametric nature of the 

model will allow estimation of the entire distribution of g, since both power functions 
and splines can be extrapolated beyond the range of F(Z) in the data. However, it will 
be important to note that these estimates are the result of extrapolation and that the 
estimates of g within the range of F in the data are presumably more reliable. 

2 An Empirical Illustration 

Preliminaries. The empirical illustration presented here will be for the case where 
the effect of higher education on future earnings is the object of interest, focusing 

7. Blundell et al. [2005], however, have an extensive discussion of interactions of X with treatment in 

the IV model. Note that the vector XtX excludes a constant term. 
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as well (as in much of the literature) on the effect of a discrete change in education 
from less-than-college to college-or-more. The education-earnings literature is the 
literature where heterogeneity in returns has been discussed most heavily, as noted 
in the Introduction. As to whether the MTE for the return to college should be 

expected to rise or fall as a larger fraction of individuals go to college, this depends, 
as always, on the nature of the instrument and how the conditional mean of a (usu 
ally interpreted as arising from unobserved ability) varies with that instrument. The 
usual practice in the literature is to seek instruments which proxy, or are correlated 

with, costs of schooling. In this case, the Becker Woytinsky Lecture model implies 
that the MTE will fall if costs fall and participation expands as the lower-return 
individuals are drawn into any given level of schooling. Therefore, that will be the 

prior for the empirical exercise conducted here8. 

It is also worth noting that the empirical literature to date has generally found 
OLS estimates of the return to be below IV estimates, where the latter are inter 

pretable as LATE or, in continuous terms, as the MTE (Card, [1999,2001]). One 

possible explanation of this result (see Card as well as Angrist and Krueger 

[1999, pp. 1324-1325]) is that an instrument may affect different individuals in 
the population in different ways and may affect those with high MTE values dis 

proportionately. The same result applies in the model in (l)-(3) above because that 
model allows unobserved heterogeneity in .. This is formally shown in Appendix 
A, where it is demonstrated that, for the MTE to be greater than OLS, it is neces 

sary that the MTE also be greater than the TT (effect of treatment on the treated). 
However, it is also shown there that OLS must nevertheless be greater than the 
TT and, in addition, the MTE be larger than the TT or OLS in the neighbourhood 
of F = 0 or F = 1. Therefore, a test of this explanation for the MTEOLS differ 
ence is available if the instruments provide variation in those ranges of F, which 
are also necessary to obtain an estimate of the TT. We will illustrate this in the 

application. 

Application. For our application, we use the data employed in Blundell et ai 

[2005], who estimated the effect of higher education on earnings in the UK in 
19939. The data set consisted of information on 3,639 males whose earnings were 
observed at age 33 in 1993, and whose families had been interviewed periodically 
since birth to collect child and family background information. The regressor of 
interest was a dummy variable indicating whether the individual had undertaken 
some form of higher education, and a set of other socioeconomic characteristics 
were available for use as control variables. The OLS estimate of the effect of higher 
education on the log of the hourly wage was .287. The authors obtained IV estimates 
with three variables used as instruments: (1) a dummy variable for whether the 

parents reported an adverse financial shock at either age 11 or age 16 of the child, 
(2) a dummy variable for whether the child's teacher ranked the parent's "inter 
est in education" high or low when the child was 7, and (3) the number of older 

siblings of the child (the total number of siblings was used as a control variable in 

8. It should be noted that the relationship of interest here is how the MTE changes as the fraction of the 

population with a fixed level of schooling increases, which differs slightly from the standard textbook 

analysis. The usual Becker-Woytinsky diagram, which portrays returns vs the level of schooling, 
must be analyzed with a vertical line drawn at the fixed level of schooling. A shift in the marginal 
cost curve then has the effects just noted. This is somewhat different than the question of whether the 
LATE falls at successively higher levels of schooling, which Card [1999, p. 1854] tentatively found 
to be the case. 

9. The author would like to thank Lorraine Dearden for providing the data and explaining the variables 
and samples. 



ESTIMATING MARGINAL TREATMENT EFFECTS IN HETEROGENEOUS POPULATIONS 247 

the wage regression). The authors argued that these variables could be excluded 
from the wage equation and noted that they have high F-statistics in the first-stage 
regression. In this paper, we do not question the credibility of the instruments but 
take their validity as a maintained assumption in order to illustrate the estimation 

method, which is our main interest. Blundell et al. found IV estimates of the return 
to higher education to fall in a very wide range (.05, 1.17) for the three different 

instruments, and made a priori arguments for why different instruments should 
have different effects, depending on their correlation with unobserved returns and 
costs in the population10. 
Here we use the same data as Blundell et al. and estimate a slightly condensed 

model with fewer X variables, excluding those with coefficients of low signifi 
cance and condensing categories (e.g., region) where coefficient differences are 
of low significance. The means of the variables in the data set are shown in 

Appendix B, along with the OLS regressions, which generate an estimate of the 
effect of higher education of .287 (robust s.e. 

= 
.02), identical to that of Blundell 

et al. We then estimate our models using all three instruments (Z). The litera 
ture has noted that different instruments may sweep out different portions of 
the return distribution and hence may have different MTEs (Imbens and Angrist 

[1994]; Card [1999,2001]; Heckman and Vytlacil [2005]; see also Blundell et 
al. for a discussion focused on these three instruments), in which case the MTE 
estimates from a model which includes all instruments must be interpreted as 

weighted averages of the MTEs in those different populations. However, differ 
ent instruments may also simply sweep out different ranges of the F distribution, 
and this will also generate different estimates of the MTE when the instruments 
are used separately if heterogeneity exists and hence the MTE is a function of F. 
The method used here assumes each to sweep out the same portion of the return 
distribution at the same F but allows each to operate in a different portion of 
the F distribution, which will generate a different value of the MTE for each 
for this reason alone. In principle, it would be possible to test whether the three 
instruments generate different estimates of the return to education at the same F 
if the supports of F generated by the instruments overlap, but this is not done here 
because the methodological goal is best served by maximizing the range of F and 
that is achieved by using all three instruments together. In practice, the results 
can be interpreted as weighted averages as discussed in the articles referenced 
above. 

Table 1 shows the estimates of the treatment effects not allowing the effect 
of participation to vary with X(i.e.9 assuming 

= 
0). The g function ( 

= effect 
of the treatment on the treated) is estimated with both linear splines and poly 
nomials: 

j 

(21) 

(22) j 

10. In an earlier version of their paper, Blundell et al [2001] used all three instruments together. 
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where J is the number of terms in the series and where the . are preset knots, 
in this case taken to be quartile points of the estimated F distribution. Linear 

splines with preset knots have the advantage of allowing one to see slopes 
directly off the estimates in different regions rather than having to generate 
them from a polynomial and of allowing to have zero regions, but have the 

disadvantage of generating discontinuous derivatives ( 
= the MTE) at knot 

points and requiring, at least in the simple method used here, a priori determi 
nation of the knots11. 

Column (1) shows estimates of a model with just a constant in (21)-(22), 
equivalent to the homogeneous-effects model. The estimate of .33 is slightly 
above the OLS estimate, consistent with much of the literature (estimates of the 
other parameters in the model are shown in Table B2, Appendix B). 

Figure 1 shows a histogram of predicted participation rates from the esti 
mated first-stage equation and indicates a concentration of probabilities in the 
lower ranges of F and with sizable fractions of the data at higher probabilities 
as well, although the distribution becomes thin above .70. However, most of 
this variation is generated by variation in X9 and the relevant issue for this 

model is instead the incremental effect of the instruments on these probabili 
ties. The coefficients on the instruments are generally significant (see Table 

B2, Appendix B) and have an F-statistic of 18 in a nonlinear least squares 
estimation of the first-stage equation and an F-statistic of 13 if a linear first 

stage equation is estimated, within the rule-of-thumb ranges for small numbers 
of instruments (Stock and Yogo, [2005])12. Figure 2 shows a box plot of the 
incremental effect of the instruments on the spread of predicted F, where the 
"baseline" F is obtained by setting the values of the instruments equal to their 
means but allowing X to vary, and the "actual" F is obtained by allowing both 

and X to vary. The instruments provide quite a bit of additional variation in 
the middle ranges of the probabilities (e.g., .30 to .70) but very little additional 
variation at both low and high values of F. This is an important result because it 
demonstrates that, despite the concentration of the overall predicted probabili 
ties in the region around F = 

0, the instruments have very little power in that 

region. They have more power in the higher regions, but there is also relatively 
little data in those regions. The region where there is both a reasonable fraction 
of the data and where the instruments have relevance is in the relatively narrow 

region of approximately (.30, .60). These remarks also suggest that, for models 
with effect heterogeneity, instruments can be strong in some regions of F but 
weak in other regions, a feature not generally noted in the weak instruments 
literature13. 

11. There are many more sophisticated spline methods which address some of these features, such as 

methods which allow estimation of the knot points and which allow derivatives to be continuous at 
knot points (eg., de Boor [2001]). 

12. Almost 10 percent of predicted F values from the linear probability model are negative. As noted 

earlier, this makes it inappropriate for the purpose of this exercise. 
13. The particular functional form of the incremental effects of the instruments shown in Figure 2 is, 

to some extent, driven by the normal distribution, which necessarily implies a smaller incremental 
effect of any r?gresser at high regions and low regions of F. However, this must necessarily also 

hold in a more nonparametric model, at least qualitatively. It is worm noting that a linear probability 
model for the first stage would generate the same incremental effects on F at all points in the F 

distribution, suggesting another limitation of such a model for the purposes of this paper. 
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Table 1 

Gamma Parameter Estimates 

(1) (2) (3) (4) (5) 
7.12 1.21 

(1.77) (.39) 

-45.87 1.21 

(13.13) (.85) 

40.66 

(12.31) 

2.83 

(1.89) 
1.26 

(.70) 
.37 

_(-66) 
Notes: 
1. Standard errors in parentheses. 
2. Parameter estimates for the full model including ?, , and are shown in Table 
B2 for Column (I). All models constrain =0. 
3. Percen?le points for splines: F(.25)=.10, F(.50)=.24, F(.75)=.43 

Figure 1 

Histogram of Predicted Participation Rates, First Step Probit 
1401-1-1-1-1-1-1-1-1-1-1 

0 a 0 0? 04 0.5 .? 0.7 04 0.9 1 
rlBUWWO a a ? 

Constant .33 1.01 1.67 

(.10) (.19) (.61) 

-.73 -2.91 

(.17) (1.86) 

Max(0,F-F(.25? 

Max(0,F-F(.50)) 
- - 2.09 

(1.77) 

Max(0,F-F(.75)) 

F2 
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Figure 2 

Baseline and Actual F Distribution at Deciles of Baseline F 

The rest of the columns in Table 1 show the degree of nonlinearity with respect to 

F using splines and polynomials. Column (2) allows the g function to vary linearly 
with F and indicates that the treatment effect declines as F rises and more of the 

population is engaged in higher education. This is therefore consistent with the 

prior. Column (3) adds a spline knot at the 50th percentile point of the predicted 
F distribution, showing that the standard errors on the nonlinear F parameters 
increase markedly and the parameters reach implausible magnitudes in some ranges. 

Column (4) adds two further splines showing parameters that, while retaining 

significance at conventional levels, reach further implausible magnitudes. Column 

(5) shows the effect of adding one additional polynomial term, a quadratic in F 

(which implies that log wages are cubic in F) and shows no significant evidence of 

higher nonlinearity. Taken as a whole, these estimates do not provide evidence of 

any reliably-estimated nonlinearities beyond the first order, although there are hints 

in the spline results of some convexity in the function14. 
The rapid decline in the stability of the estimates as additional nonlinearities are 

introduced could simply reflect the truth; that is, there are indeed no higher-order 
nonlinearities. In fact, the function g which is being estimated is equal to the conven 

tional Heckman normal lambda term if the unobservables are multivariate normal, 
and that term is known to be approximately linear in the probability of selection, 
at least in the middle range of probabilities. However, there are two other, related, 
sources of instability in the higher-order nonlinear terms. The more important is the 

already-noted weakness of the instruments in high and low ranges of F; instruments 
which have little or no effect on F in those regions should be expected to generate 
unstable and implausible values. Figures 3 and 4 plot the g function (treatment on 

the treated) and the MTE (derivative of the log wage equation w.r.t. F)9 respectively, 
for columns (2), (3), and (5) of Table 1, along with OLS and the constant-effect esti 
mate (note that the effect of the treatment on the treated is identified because F = 0 is 
in the support of the data). In the F region [.30, .60], the three models allowing non 

linearities, including the polynomial, are reasonably close to one another. Further, in 

Figure 4, these three models also show definite evidence of declining MTE in that 

14. A cross-validation statistic could be used to more formally choose the degree of nonlinearity but is 

left for future work. 
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range. However, the functions diverge much more at both higher and lower values 
of F, precisely where the instruments are very weak15. 

Figure 3 

Value of the Effect of the Treatment on the Treated for Different Models 

.OLS 
" Constant Gamma) 

-Linear Gamma 
?H?Spine Gamma 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
F 

Figure 4 

MTEfor Different Models 

.OLS 
-Constant Gamma | 
-Linear Gamma 

?I? Sp?rte Gamma 
-Polynomial 

15. To ascertain whether stronger instruments would affect the results, Monte Carlos were conducted 

assuming the coefficients on the three instruments were double and then triple what they are shown 
to be in Appendix B, Table B-2. All coefficients in the ̂vector were assumed to equal what they 

were estimated to be in that model, and 500 repetitions of multivariate normal errors were drawn 
with nonzero correlations to generate heterogeneity, for a sample size of 3639 and the same X and 

distribution as in the data. While the Monte Carlo estimates of gamma were, on average, the 
same regardless of the magnitude of the coefficients on the instruments, the standard errors and 
confidence intervals for gamma were dramatically lower when the coefficients were double or triple 
what they are here. 
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A second, related factor is that the instruments, while generating more than the 

single variation in predicted F that is allowed with only a binary instrument, nev 

ertheless generate only a limited set of values. Two of the three instruments are 

binary and the third (number of older siblings) is concentrated in only three values 

(0,1, and 2). Thus the number of discrete points of support in the incremental pre 
dicted F distribution is still modest. Adding parameters to the model by introducing 
spline and polynomial terms necessarily requires a sufficient range of instruments 
to support estimation of those parameters, and that range may still not be sufficient 

with these instruments. In estimates not reported here, interactions between the 
three instruments and nonlinearities in the third instrument were added to the first 

stage equation to generate a greater range of incremental F contributions, but those 
additional interactions and nonlinearities were extremely weak. The F statistic for 
five instruments falls to 9, and a more extensive set of interactions leading to fifteen 
instruments yields an F statistic of 4. Tests of interactions of the initial three instru 

ments with the variables in the vector leads to F values of 2 or 3. The instruments 
in these data are therefore too weak to obtain more variation in predicted probabili 
ties and therefore a wider range of probabilities over which to estimate nonlinear 
treatment effects. 

On the central issue of whether the MTE is constant, the evidence from the three 
models with nonlinearities nevertheless provides strong evidence of nonconstancy 
and therefore of heterogeneous treatment effects in the population. Figure 5 shows 
a 95 percent confidence interval for the MTE in the most stably estimated model, 
that with a linearly declining MTE. Although the confidence intervals would allow 
a horizontal line in some regions, the intervals are narrow enough to make such 

horizontality very unlikely. 

Figure 5 
95% C.L for MTE of Linearly Declining Gamma Model 

Table 2 allows interactions with treatment and the variables in the X vector 

( 0). The first three columns, showing results for two of the spline models and 
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the polynomial model, show that the nonlinear treatment effects are rendered insig 
nificant or much less significant in the spline models but slightly more significant 
in the polynomial specification. At least for the two spline specifications, this sug 
gests that the unobservable heterogeneity in return found in the Table 1 results may 
be masking heterogeneity in the effects by observables. However, as can be seen 

by an inspection of the results, the interaction coefficients for the large majority 
of the seventeen variables have large standard errors. Restricting the interactions 
to the five variables that are significant at conventional levels, shown in the fourth 
and fifth columns, restores the spline-model nonlinear effects to significance. Thus 
estimates of the effect of unobservables on estimates of the return are quite sensi 
tive to whether and which interactions are allowed, suggesting that a more formal 
determination of which interactions should be included in the model is needed. The 

insignificance of most of the interaction terms may also be related, once again, to 
weaknesses in the instruments in generating sufficient incremental effects on the F 
distribution for different values of X. Further work is needed on these issues. 

Table 2 

Gamma and Lambda Parameter Estimates 

(1) (2) (3) (4) (5) 
Gamma 

Constant .87 1.43 1.63 .95 1.75 

(.36) (.65) (.55) (.20) (.62) 
F .08 -2.46 -1.73 -.76 -3.35 

(.53) (2.52) (1.15) (.18) (1.87) 
Max(0,F-F(.50)) 

- 2.14 - - 2.47 

(2.08) (1.78) 
F2 - - 1.50 

(.83) 
Lambda 

Public School -.14 -.09 -.27 

(.19) (.20) (.21) 
Other School .47 .44 .44 .41 .40 

(.28) (.27) (.27) (.26) (.26) 
Math Ability at age 7 -.01 .00 -.01 

(.04) (.04) (.04) 
Verbal Ability at age 7 -.04 -.02 -.03 

(.05) (.05) (.05) 
Verbal Ability at age 7 .19 .28 .26 

Missing (.26) (.27) (.26) 
Math Ability at age 11 .01 .03 .02 

(.06) (.06) (.06) 
Verbal Ability at age 11 -.08 -.06 -.07 

(.05) (.05) (.05) 
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Table 2 (continued) 

(1) (2) (3) (4) (5) 
Verbal Ability at age 11 -.13 -.01 -.03 

Missing (.26) (.28) (.27) 
Father's Education -.03 -.02 -.05 

(.03) (.03) (.03) 
Father's Education Missing -.13 -.04 -.29 

(.27) (.27) (.28) 
Mother Employed in 1974 -.01 -.02 -.01 

(.07) (.07) (.07) 
No. of Siblings -.03 -.04 -.03 -.05 -.06 

(.02) (.02) (.02) (.02) (.02) 
Father Unskilled Manual in .54 .52 .51 - - 

1974 (.41) (.40) (.40) 
Father Occupation Missing -.03 .06 -.20 

(.29) (.29) (.30) 

Region Group 1 .24 .24 .24 .16 .15 
(.09) (.09) (.09) (.08) (.08) 

Region Group 2 .26 .27 .25 .18 .18 
(.11) (.11) (.11) (.10) (.10) 

Region Group 3 .35 .34 .36 .24 .24 
(.12) (.12) (.12) (.11) (.11) 

Notes: 
1. Standard errors in parentheses. 
2. Parameter estimates for ? , and are not shown in Table B2 for Column 
<%>? 
3. Pereentile points for splines: F(.25)=.10, F(.50)=.24, F(.75)=.43 

Finally, recall that the relationship between the MTE and the TT ( 
= the g func 

tion) provides a test of whether the increase in the constant treatment effect when 

going from OLS to IV is arising from the differential effects of the instrument in 

ranges of F between 0 and 1. Specifically, if the MTE is greater than the TT in 
some range (it cannot be so at F = 0 or F = 

1), it is possible for the MTE to also be 

greater than OLS16. However, all three nonlinear functions shown in Figures 3 and 
4 have MTE values that lie below the TT values for all values of positive F. The TT 
is g(F) and the MTE is [g(F) + Fg'(F)]9 so the MTE must be below the TT so long 
as g\F) < 0. But g\F) < 0 holds for all the estimated nonlinear models. Thus, with 
the qualification that the TT estimates obtained here are based on weak instrument 
variation in the neighbourhood of F = 

0, there is little support for the explanation 
for the OLS-W difference noted in prior work and described in Appendix A for 
these instruments and for these data. 

16. The OLS estimate shown in Figure 3 is not a "local" OLS estimate, and therefore does not strictly 
conform to the proof in the Appendix, which compares a local OLS estimate to local MTE estimates. 

Therefore, the test here is based on the relationship between the TT and MTE, which have been 

locally estimated. 
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3 Summary and Conclusions 

We have proposed a method of estimating the shape of the marginal return func 
tion in the treatment-effects model when heterogeneous returns are present, and 
have applied the method to the data from a prior study of the effect of higher 
education on earnings of men in the UK. The application shows significant effects 
of heterogeneity, indicating that marginal returns to higher education fall as the 

proportion of the population with higher education rises. This direction of effect 
is consistent with the Becker Woytinsky Lecture model. However, the instruments 
used are weak in some ranges of the F distribution and hence these findings apply 
to only a limited range of the participation-rate spectrum. Estimating a wide range 
of marginal treatment effects puts greater demands on the instruments than is the 
case for either a binary instrument or the average treatment effect obtained when 

estimating a single IV coefficient with multi-valued instruments. The results also 
reveal some uncertainty regarding the relative contributions of observables and 
unobservables to the heterogeneity that has been found. These topics suggest fur 
ther work on more formal methods of addressing these issues. 
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Appendix 

A. Relationship of E to OLS and Interpretation of IV 
Estimates 

As noted by Card [1999,2001], heterogeneity in the effect of an instrument on 
choices may lead to IV-based LATE or MTE estimates that exceed OLS estimates. 
This effect operates in the model in (l)-(3) through the heterogeneous (.. A refor 
mulated model for the education case is: 

(Al) ^? + a,?,+e,. 
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(A2) ^a,- + ,? 

(A3) Z),.=1(I>;>0) 

where ?,? 
= ? + e,. and where the education choice equation is assumed to be 

based on the earnings return minus costs (c?) plus other unobserved determinants 

( .), an equation which drops out of the standard theory. Let c. 
= 

hjZ. where Z. meas 

ures observed costs or a proxy for it (the instrument) and where . > 0 is a measure 
of the responsiveness of an individual to a change in costs; hence 

(A4) =a,- , ,+ , 

Those with greater values of . have a lower probability of D. = 
1, hence lower 

schooling levels. 

We demonstrate the following proposition. 

Proposition Al. Let the model be (Al), (A4), and (A3). Define 

(A5) aOLS 
= 

Eiyp. 
= 

1) 
- 

E(yp. 
= 

0) 

(A6) ajr = E(a, \ D? = 1) = |?(a,? | u, > 0, Z)dH(Z) 

(A7) amE = ?auTEiZ^dHiZi) 

where u. = ay 
- 

^. 
+ ., H(Z?) is the cdf of Z., o.m?Z^ 

= 
dE(yt\Z?)/dF(Z?) and 

F(Zt) 
= 

Prob(wf. 
> 0|Z.). Assume that ̂(e^ .) 

= 0 and that positive sorting takes 

place, defined as: 

(A8) E(ap. 
= 

1, Zp .) > E(a.\Zp .) 
= 

E(at) 

where a standard mean independence assumption is embodied in the second equal 
ity. Then (1) it is possible that a0LS 

< 
aAfTE over some ranges of Z. but (2) this can 

not be true in the neighbourhood of F(Z.) 
= 0 and F(Z.) 

= 1. 

The proposition is not obvious because positive sorting should imply that 

aOLS >a7 
> 

aA > but *e proposition states that this need not be the case in ranges 
of F between 0 and 1. The proof of the proposition is based on demonstrating that 
it is possible that < which makes a0LS 

< 
amE possible. 

From (A5) and (Al), we have 

(A9) aOLS 
= 

E(ap. 
= 

1) + [E(e . = 1) 
- 

?(e.| >. = 0)] 

where the first term is the TT. Although the second term (in brackets) could be 

negative if those who attend college would have had lower earnings than those 
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who did not attend college if they also did not, this is unlikely. If it is negative, it 
is obvious that aOLS can be arbitrarily low. Therefore let us only consider the case 

where it is positive, implying that aOLS 
> It would appear that > OLmE9 for 

the TT conditional on Z. is 

(AIO) E{*p. 
= 

1, Z.) 
= 

2*(a>. 
> 0, Z.) 

where u. = a,. 
- 

^ . + vr The assumption of positive sorting implies that this is 

greater than ?(ajw. 
= 

0, .), which is the minimum of the TT distribution and con 
stitutes one definition of the MTE (integrating (AIO) over the distribution of Z. 

guarantees that the unconditional-on-Z TTis also positively sorted). However, the 

question instead is what values of the MTE are swept out by a change in Z.. 

To determine this, we must calculate the MTE conditional on . and then inte 

grate over it. Recalling that E(yt | Z? ,) 
= ? + ?(a,? | A 

= 1, ,?, 6,.)F(Z,, ;), the 

MTE conditional on . is 

= ?[dEinizM/dz^dG^y <W*i)- 
j[dF(Zi98?VdZi]dG(8i) 

(All) ={ J[??(a,. | A =l,Z/,??0/5ZJF(Z?,6l0rfG(6/)}/?/Fr(Z/) 
+ 

?E(a, IA = 1, Zi9 , )/<Z? ,.^ ,?) 

where G is the c.d.f. of ., dFT(Z?) = J[?F(Z/5 ,)/dZ?dG^) is the total change 
in the fraction with D. = 1, and 

(A.2, , ,, ,)-W-^Z, 

is the proportion of the change in the fraction with D. = 1 arising from each . sub 

population. The first term in (AI 1) is negative since positive sorting implies that a 
rise (say) in F lowers the TT. However, the second term can be arbitrarily greater 
than the TT. The unconditional- - . TTis 

(A13) E(a IA = 1, Z,.) = j?(a,. | A = U Zi9 ?JdG^) 

which can be smaller than the second term in (AI 1) if ( .9 .) is positively related 
to the conditional- - . TT. But that is the case in this problem. This concludes the 
demonstration that the MTE can be greater than the 7T, and hence that OLS may 
be smaller than the MTE. 

However, the MTE must equal the TT at F = 0 (the a. of the first person to par 
ticipate constitutes both the MTE and the 77) and the MTE must be less than the TT 
as F approaches 1, for the TT for each . approaches the same number and hence 
the second term in (All) approaches the unconditional- - . TT. It must also be 
the case that OLS must be everywhere greater than or equal to the 7T, at least if the 
second term in (A9) is non-negative. 
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B. Tables 

Table 1 

Means of the Variables in the Data Set 

Log wage 

D (=1 if higher education) 
X 

Public School 

Other School 

Math Ability at age 7 

Verbal Ability at age 7 

Verbal Ability at age 7 missing 

Math Ability at age 11 
Verbal Ability at age 11 

Verbal Ability at age 11 missing 

Father's Education 

Father's Education missing 

Mother Employed in 1974 
No. of Siblings 

Father Unskilled Manual in 1974 

Father Occupation Missing 

Region Group 1 

Region Group 2 

Region Group 3 

Adverse Financial Shock 

Parental Interest 

No. Older 
Siblings_ 

Notes: 
N=3,639 
Region Group 1: North Western, North, East and W. Riding, North Midlands, 
South Western, Midlands 

Region Group 2: Eastern, Southern 

Region Group 3: Wales, Scotland 
London and Southeast omitted 

2.04 

.28 

.05 

.02 

2.72 

2.55 

.11 

2.41 

2.34 

.19 

7.27 

.28 

.51 

1.69 

.03 

.11 

.47 

.13 

.15 

.16 

.39 

.82 
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Table B2 

Full Estimates for OLS and Basic 2SLS Specifications 

Higher Education 

? 
Public School 

Other School 

Math Ability at age 7 

Verbal Ability at age 7 

Verbal Ability at age 7 missing 

Math Ability at age 11 

Verbal Ability at age 11 

Verbal Ability at age 11 missing 

Father's Education 

Father's Education missing 

Mother Employed in 1974 

No. of Siblings 

Father Unskilled Manual in 1974 

Father Occupation Missing 

Region Group 1 

Region Group 2 

Region Group 3 

Constant 

Public School 

OLS 
.287 

(.015) 

.121 

(.032) 
-.104 

(.056) 
.028 

(.006) 
.012 

(.006) 
.192 

(.034) 
.028 

(.006) 
.033 

(.008) 
.174 

(.031) 
.012 

(.004) 
.104 

(.047) 
.035 

(.015) 
-.009 

(.004) 
-.093 

(.032) 

-.133 

(.031) 

-.192 

(.020) 
-.106 

(.026) 
-.242 

(.024) 
1.716 

(.051) 

2SLS 
.326 

(.102) 

.116 

(.037) 
-.101 

(.056) 
.027 

(.006) 
.010 

(.007) 
.144 

(.037) 
.015 

(.009) 
.031 

(.009) 
.115 

(.036) 
.010 

(.006) 
.092 

(.058) 
.035 

(.015) 
-.008 

(.004) 

-.092 

(.032) 

-.041 

(.062) 
-.192 

(.020) 
.106(.026) 

-.239 

(.024) 
1.74 

(.074) 

.467 

(.105) 
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Table B2 

Other School -.276 

(.206) 
Math Ability at age 7 

~ .097 

(.022) 
Verbal Ability at age 7 

~ . 147 

(.024) 
Verbal Ability at age 7 missing 

~ .953 

(.117) 
Math Ability at age 11 - .194 

(.031) 
Verbal Ability at age 11 ~ .121 

(.033) 
Verbal Ability at age 11 missing 

? 1.056 

(.112) 
Father's Education ~ . 104 

(.015) 
Father's Education missing 

~ .962 

(.175) 
Mother Employed in 1974 ? -.064 

(.060) 
No. of Siblings 

- -.003 

(.025) 
Father Unskilled Manual in 1974 - -.097 

(.172) 
Father Occupation Missing 

- .919 

(.192) 
Region Group 1 - -.014 

(.074) 
Region Group 2 ? .057 

(.093) 
Region Group 3 ? -.083 

(.091) 
Constant - -3.485 

(.197) 

Adverse Financial Shock ? -.300 

(.082) 
Parental Interest ~ .241 

(.054) 
No. Older Siblings 

- -.065 

_(.032) 
Notes: 
Standard errors in parentheses 
2SLS corresponds to Table 1, Column (1) 
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