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1 Introduction

A researcher analyzing choices of an economic agent often cannot observe some of the inputs

that went into the agent’s decision problem. Such missing information is typically referred to

as unobserved heterogeneity, and addressing it is important in many empirical applications.

For example, labor and macro economists face this issue when they analyze the decision to go

to college, since individual’s costs or return to education are only imperfectly measured in the

data. The same problem arises in the empirical analysis of auctions with private information.

For example, the results of an empirical evaluation of the distribution of rents, efficiency,

or of an optimal design of an auction mechanism depends on the researcher’s ability to

uncover the distribution of bidders’ private information, and the auction literature has long

emphasized that unobserved variation in the distribution of bidders’ private information is

likely present in many environments. Several methods have been proposed in the literature to

control for unobserved auction heterogeneity. However, it remained unclear whether private

information can be separated from unobserved auction heterogeneity on the basis of auction

data.

In a first price auction environment where bidder valuations are known to them but are

their private information, a growing literature started by Laffont, Ossard and Vuong (1995)

and Guerre, Perrigne and Vuong (2000) uses the equilibrium relationship between bids and

valuations to uncover the distribution of private information. The identification power of

the methods proposed by this literature crucially relies on the fact that, after controlling for

observed auction characteristics, the remaining variation in bids is generated by variation

in private information. More specifically, these methods cannot be directly applied in an

environment where a part of the variation in bids may be generated by systematic differences

in auctions that are known to bidders but unobserved by the researcher.

This paper studies the first price auction environment with private information and

unobserved auction heterogeneity. It uses insights from a multi-factor measurement error

literature to develop a nonparametric estimation method to recover distributions of private

information and unobserved auction heterogeneity from submitted bids. It also establishes

sufficient conditions under which these distributions are identified and shows uniform consis-

tency of the estimators. The estimation method is applied to data from Michigan highway

procurement auctions to quantify the importance of private information in this market and

to demonstrate the implication of unobserved auction heterogeneity for the evaluation of the

distribution of rents, efficiency, and optimal mechanism design.
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I assume that an environment with unobserved auction heterogeneity with n bidders

can be characterized by a set of (n+1) factors. One of the factors, a common cost compo-

nent, represents information about cost attributes that is available to all bidders. Part of

this information may not be observed by the researcher. Other factors, individual cost com-

ponents, reflect cost attributes privately observed by each bidder. A bidder’s costs are given

by the product of the common cost component and this bidder’s individual cost component.

This cost structure implies that the distribution of costs may vary across projects even after

all project characteristics known to the researcher are held constant. I allow bidders to be

asymmetric, so that the distribution of the individual cost component may vary with the

observable bidder characteristics.

The unobserved part of the common component (unobserved auction heterogeneity)

generates dependence between bids submitted in the same auction. This dependence can

be used to recover the distributions of the unobserved auction heterogeneity and individual

bid components. In particular, I show that the distributions of components are identified

from the joint distribution of two arbitrary bids submitted in the same auction when the

individual cost components are independently distributed across bidders and are independent

from the common component. Further, the distributions of individual bid components are

used to uncover the distributions of individual cost components. The identification argument

suggests a number of tests that can be performed to verify whether assumptions of the

multi-factor model are satisfied in the data. The paper also demonstrates that the set of

bid distributions that can be rationalized by affiliated private values, another informational

environment that induces dependence in bids submitted in the same auction, is distinct from

the set of bid distributions that can be rationalized by the model with unobserved auction

heterogeneity. It proposes a test that can be used in practice to distinguish between these

environments.

The estimation procedure proposed in the paper follows the steps of the identification

argument. The Monte Carlo simulations confirm that the estimation procedure performs well

in samples of moderate size.

I use data from Michigan highway procurement auctions to quantify the importance

of accounting for unobserved auction heterogeneity. I estimate the distributions of private

information and unobserved auction heterogeneity using the estimation procedure described

earlier in the paper. I test the assumptions of the model and find that they are strongly

supported by the data. The results of the estimation suggest that variation in private infor-
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mation accounts for only 34.4% of the bid variation. While comparing these results to the

results obtained under alternative assumptions of IPV and APV, I find that the bid strategies

recovered under alternative assumptions tend to overestimate the mark-up over bidders’ cost

relative to the estimates obtained under the assumption of unobserved auction heterogeneity.

I also find that the distributions of bidders’ costs recovered under alternative assumptions

tend to have lower means and higher variances compared to the estimates obtained under

unobserved heterogeneity. In particular, I find that the average mark-up estimated under the

unobserved heterogeneity assumption is 8.4%, whereas the average mark-up is 14% for the

affiliated private values assumption and 19% for the independent values assumption. The

variance of the estimated costs distribution is 18% and 22% higher under these alternative

assumptions relative to the variance of the costs distribution estimated under unobserved

auction heterogeneity.

I use three sets of estimates to derive an optimal reserve price that minimizes pro-

curement costs. I find that the reserve price chosen on the basis of IPV or APV estimates

leads to significantly higher costs of procurement than the reserve price chosen on the basis

of the estimates that account for the presence of unobserved auction heterogeneity. This

result holds both in the case where the reserve price is derived as a function of a specific

realization of unobserved heterogeneity and in the case where a single reserve price is chosen

in such a way as to minimize the average cost of procurement where the average is computed

with respect to the distribution of unobserved heterogeneity. In the latter case, the average

cost of the procurement is about 9% - 19% lower than the average cost achieved when the

reserve price based on either IPV or APV estimates is used.

This paper contributes to the literature on the estimation of auction models that

aims to uncover the distribution of bidders’ private information from the submitted bids. In

particular, Donald and Paarsch (1993, 1996) and Laffont, Ossard and Vuong (1995) develop

parametric methods to recover the distribution of costs from the observed distribution of

bids. Elyakime, Laffont, Loisel and Vuong (1994, 1997) propose a nonparametric method to

estimate the distribution of costs. Guerre, Perrigne and Vuong (2000) study identification

of the first price auction model with symmetric bidders and propose a uniformly consistent

estimation procedure. Li, Perrigne and Vuong (2000, 2002) extend the result to the affiliated

private values and the conditionally independent private values models. Campo, Perrigne and

Vuong (2003) prove identification and develop a uniformly consistent estimation procedure

for first price auctions with asymmetric bidders and affiliated private values. These papers

rely on the assumption of no unobserved auction heterogeneity; i.e., they explicitly use a one-
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to-one mapping between the distribution of bidders’ costs and the distribution of observed

bids that arises in such environments.

The paper by Li, Perrigne and Vuong (2000), LPV hereafter, also uses the methods

of multi-factor measurement error analysis. LPV consider the model with conditionally

independent private values. They assume that variation in bids is generated by variation

in observable factors and private information only, so that their model does not allow for

unobserved auction heterogeneity. The innovation in LPV is to allow for bidders’ costs to be

composed of common and individual factors. Thus, the structure of costs is similar to the

one in my paper. However, unlike the environment with unobserved auction heterogeneity

studied in my paper, in LPV the common factor is part of the private information of the

bidder. Moreover, the bidder himself does not observe the realization of the common factor

separately from the entire realization of his costs (his private information). He only knows the

draw of his private information that is composed of common and individual factors. This

implies that standard methods (that do not distinguish between common and individual

factors) are still fully applicable in this environment. Having estimated the distribution of

private information, LPV apply the multi-factor decomposition, a result from a measurement

error literature, in order to understand correlation patterns in bidders’ private information.

The few papers that address the issue of unobserved auction heterogeneity include

Campo, Perrigne, and Vuong (2003), Bajari and Ye (2003), Haile, Hong and Shum (2003),

Hong and Shum (2002), Athey and Haile (2000) and Chakraborty and Deltas (1998). The

first two papers rely on the assumption that the number of bidders can serve as a sufficient

statistic for the unobserved auction heterogeneity. Haile, Hong and Shum (2003) appeal to

the instrumental variables approach to control for the variation generated by unobserved

factors. More recently, Guerre, Perrigne, and Voung (2009) build on this methodology to

identify the model with unobserved heterogeneity based on exclusion restrictions derived

from bidders’ endogeneous participation. Hong and Shum (2002) account for unobserved

auction heterogeneity by modeling the median of the bid distribution as a normal random

variable with a mean that depends on the number of bidders. Athey and Haile (2000) study

identification of auction models with unobserved auction heterogeneity in the context of

Second Price and English auctions. Chakraborty and Deltas (1998) assume that the dis-

tribution of bidders’ valuations belongs to a two-parameter distribution family. They use

this assumption to derive small sample estimates for the corresponding parameters of the

auction-specific valuation distributions. The estimates are later regressed on observable auc-

tion characteristics to determine the percentage of values variation that is due to unobserved
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auction heterogeneity.

Highway procurement auctions have been extensively studied in the literature. Porter

and Zona (1993) find evidence of collusion in Long Island highway procurement auctions.

Bajari and Ye (2003) reject the hypothesis of collusive behavior in procurement auctions

conducted in Minnesota, North Dakota, and South Dakota. Jofre-Bonet and Pesendorfer

(2003) find evidence of capacity constraints in California highway procurement auctions.

Hong and Shum (2002) find some evidence of common values in bidders’ costs in the case of

New Jersey highway construction auctions. Bajari and Tadelis (2001) and Bajari, Houghton

and Tadelis (2004) study the implications of the incompleteness of procurement contracts.

The paper proceeds as follows. Section 2 describes the model. Section 3 discusses

identification and testable implications of the model. Section 4 details the estimation proce-

dure and summarizes results of the simulation study. Section 5 presents results of estimation

and section 6 concludes.

2 The Model

This section describes the first price auction model under unobserved auction heterogeneity

and summarizes properties of the equilibrium bidding strategies.

The seller offers a single project for sale to 𝑚 bidders. Bidder 𝑖′𝑠 cost is equal to the

product of two components: one is common and known to all bidders; the other is individual

and the private information of firm 𝑖. Both the common and the individual cost components

are random variables, and they are denoted by the capital letters 𝑌 and 𝑋, respectively.

The small letters 𝑦 and 𝑥 denote realizations of the common component and the vector of

individual components. The two random variables (𝑌 , 𝑋) are distributed on [𝑦, 𝑦]× [𝑥, 𝑥]𝑚,

𝑦 > 0, 𝑥 > 0, according to the probability distribution function 𝐹,

Pr(𝑌 ≤ 𝑦0, 𝑋 ≤ 𝑥0) = 𝐹 (𝑦0, 𝑥0).

Asymmetries between bidders: I assume that there are two groups of bidders: 𝑚1

bidders are from group 1, and 𝑚2 bidders, 𝑚2 = (𝑚 − 𝑚1), are from group 2. Thus, the

vector of independent cost components is given by 𝑋 = (𝑋11, .., 𝑋1𝑚1 , 𝑋2(𝑚1+1), .., 𝑋2𝑚). The

model and all the results can easily be extended to the case of 𝑚 groups. I focus on the case

of two groups for the sake of expositional clarity. Groups are defined from the observable
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characteristics of bidders.

Assumptions (𝐷1)− (𝐷4) are maintained throughout the paper.

(𝐷1) 𝑌 and 𝑋𝑗 ’s are mutually independent and distributed according to

𝐹 (𝑦0, 𝑥10, .., 𝑥𝑚0) = 𝐹𝑌 (𝑦0)

𝑗=𝑚1∏
𝑗=1

𝐹𝑋1(𝑥𝑗0)

𝑗=𝑚∏
𝑗=𝑚1+1

𝐹𝑋2(𝑥𝑗0),

where 𝐹𝑌 , 𝐹𝑋1 , and 𝐹𝑋2 are marginal distribution functions of 𝑌 ,𝑋1𝑗 , and𝑋2𝑗 respectively.The

supports of 𝐹𝑌 and 𝐹𝑋𝑘
are given by 𝑆(𝐹𝑌 ) = [𝑦, 𝑦], 𝑦 > 0, 𝑦 ≤ 𝑦; 𝑆(𝐹𝑘) = [𝑥, 𝑥], 0 < 𝑥 < ∞,

𝑥 ≤ 𝑥, for 𝑘 ∈ {1, 2}.
(𝐷2) The probability density functions of the individual cost components, 𝑓𝑋1 and

𝑓𝑋2 , are continuously differentiable and strictly positive on the interior of (𝑥, 𝑥).

(𝐷3) 𝐸𝑋1𝑗 = 1.

(𝐷4) The number of bidders is common knowledge. There is no binding reservation

price.

Assumption (𝐷2) ensures the existence and uniqueness of equilibrium.
1 The identi-

fication result relies on assumptions (𝐷1) and (𝐷3). In particular, assumption (𝐷3) is used

to fix the scale of one of the cost components.2 (𝐷4) summarizes miscellaneous assumptions

about the auction environment.

The auction environment can be described as a collection of auction games indexed

by the different values of the common component. An auction game corresponding to the

common component equal to 𝑦, 𝑦 ∈ [𝑦, 𝑦], is analyzed below.
The cost realization of bidder 𝑖 is equal to 𝑥𝑖 ∗ 𝑦, where 𝑥𝑖 is the realization of the

individual cost component. The information set of bidder 𝑖 is given by 𝑃𝑦𝑖 = {𝑦, 𝑥𝑖∣𝑥𝑖 ∈
[𝑥, 𝑥]}. A bidding strategy of bidder 𝑖 is a real-valued function defined on [𝑥, 𝑥]

𝛽𝑦𝑖 : [𝑥, 𝑥]→ [0,∞].

I use a small Greek letter 𝛽 with subscript 𝑦𝑖 to denote the strategy of bidder 𝑖 as a

1These conditions are not necessary for the existence of the equilibrium. They are convenient because
they guarantee good properties of the estimators proposed later in the paper.

2There are several assumptions that would serve the same purpose; e.g., 𝐸[𝑌 ] = 1 is one of them. My
choice of normalization is motivated by application.
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function of the individual cost components and a small Roman letter 𝑏 to denote the value

of this function at a particular realization 𝑥.

Expected profit. The profit realization of bidder 𝑖, 𝜋𝑦𝑖(𝑏𝑖, 𝑏−𝑖, 𝑥𝑖), equals (𝑏𝑖−𝑥𝑖 ∗ 𝑦) if

bidder 𝑖 wins the project and zero if he loses. The symbol 𝑏𝑖 denotes the bid submitted by

bidder 𝑖, and the symbol 𝑏−𝑖 denotes the vector of bids submitted by bidders other than 𝑖.

At the time of bidding, bidder 𝑖 knows 𝑦 and 𝑥𝑖 but not 𝑏−𝑖. The bidder who submits the

lowest bid wins the project. The interim expected profit of bidder 𝑖 is given by

𝐸[𝜋𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑌 = 𝑦] = (𝑏𝑖 − 𝑥𝑖 ∗ 𝑦) ∗ Pr(𝑏𝑖 ≤ 𝑏𝑗 , ∀𝑗 ∕= 𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑌 = 𝑦).

A Bayesian Nash equilibrium is then characterized by a vector of functions 𝛽𝑦 =

{𝛽𝑦1, ..., 𝛽𝑦𝑚} such that 𝑏𝑦𝑖 = 𝛽𝑦𝑖(𝑥𝑖) maximizes 𝐸[𝜋𝑖∣𝑋 = 𝑥𝑖, 𝑌 = 𝑦], when 𝑏𝑗 = 𝛽𝑦𝑗(𝑥𝑗),

𝑗 ∕= 𝑖, 𝑗 = 1, .., 𝑚; for every 𝑖 = 1, .., 𝑚 and for every realization of 𝑋𝑖.

McAdams (2003) and others establish that, under assumptions (𝐷1)− (𝐷2), a vector

of equilibrium bidding strategies 𝛽𝑦 = {𝛽𝑦1, ..., 𝛽𝑦𝑚} exists and is unique. The strategies are
strictly monotone and differentiable.

Next, I characterize a simple property of the equilibrium bidding strategies.

Proposition 1

If (𝛼1(.), ..., 𝛼𝑚(.)) is a vector of equilibrium bidding strategies in the game with 𝑦 = 1,

then the vector of equilibrium bidding strategies in the game with 𝑦, 𝑦 ∈ [𝑦, 𝑦], is given by

𝛽𝑦 = {𝛽𝑦1, ..., 𝛽𝑦𝑚}, such that 𝛽𝑦𝑖(𝑥𝑖) = 𝑦𝛼𝑖(𝑥𝑖), 𝑖 = 1, ..., 𝑚.

The proposition3 shows that the bid function is multiplicatively separable into a

common and an individual bid component, where the individual bid component is given

by 𝛼𝑖(.). The proof of this proposition is based on the comparison of the two sets of first-

order conditions and follows immediately from the assumption that costs are multiplicatively

separable, and that the common component is known to all bidders.

Next, I characterize the necessary first-order conditions for the set of equilibrium

strategies when 𝑦 = 1. Note that 𝛼𝑖(.) denotes a strategy of bidder 𝑖 as a function of the

individual cost component and 𝑎𝑖 the value of this function for a particular realization of 𝑋𝑖.

3This property for the case of symmetric bidders and additive cost components is established in Haile,
Hong and Shum (2003). Proposition 1, as well as the rest of the analysis in the paper, holds for additive
cost components.
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The equilibrium inverse individual bid function for a group 𝑘 bidders is denoted by 𝜉𝑘. Since

the function 𝛼𝑘(.) is strictly monotone and differentiable, the function 𝜉𝑘(.) is well-defined

and differentiable.

The probability of winning in this game can be expressed as

Pr(𝑎𝑗 ≥ 𝑎𝑖, ∀𝑗 ∕= 𝑖) = [(1− 𝐹𝑋𝑘(𝑖)
(𝜉𝑘(𝑖)(𝑎𝑖)))]

(𝑚𝑘(𝑖)−1)[(1− 𝐹𝑋−𝑘(𝑖)
(𝜉−𝑘(𝑖)(𝑎𝑖)))]𝑚−𝑘(𝑖) .

Here 𝑘(𝑖) denotes bidder 𝑖′𝑠 group and “ − 𝑘(𝑖)” denotes the complementary group. The

necessary first-order conditions are then given by

1

𝑎 − 𝜉𝑘(𝑖)(𝑎)
= (𝑚𝑘(𝑖) − 1)

𝑓𝑋𝑘(𝑖)
(𝜉𝑘(𝑖)(𝑎))𝜉

′
𝑘(𝑖)(𝑎)

1− 𝐹𝑋𝑘(𝑖)
(𝜉𝑘(𝑖)(𝑎))

+𝑚−𝑘(𝑖)
𝑓𝑋−𝑘(𝑖)

(𝜉−𝑘(𝑖)(𝑎))𝜉′−𝑘(𝑖)(𝑎)

1− 𝐹𝑋−𝑘(𝑖)
(𝜉−𝑘(𝑖)(𝑎))

. (1)

Here 𝜉′𝑘(.) denotes the derivative of 𝜉𝑘(.).

Equation (1) characterizes the equilibrium inverse individual bid function when 𝑦 = 1.

It describes the trade-off the bidder faces when choosing a bid: an increase in the mark-up

over the cost may lead to a higher ex-post profit if bidder 𝑖 wins, but it reduces the probability

of winning. The bid 𝑎 is chosen in such a way that the marginal effects of an infinitesimal

change in a bid on the winner’s profit and the probability of winning sum to zero.

The next section uses properties of the equilibrium bidding functions to show how

the primitives of the first price auction model can be recovered from the submitted bids in

the presence of unobserved auction heterogeneity.

3 Identification and Testable Implications

The first part of this section formulates an identification problem and provides conditions

under which a first price auction model with unobserved auction heterogeneity is identified.

The second part describes the restrictions this model imposes on the data. The third part

discusses possible extensions.
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3.1 Identification

I assume that the econometrician has access to bid data, based on 𝑛 independent draws

from the joint distribution of (𝑌,𝑋). The observable data are in the form {𝑏𝑖𝑗}, where 𝑖

denotes the identity of the bidder, 𝑖 = 1, .., 𝑚; and 𝑗 denotes project, 𝑗 = 1, ..., 𝑛. If the data

represent equilibrium outcomes of the model with unobserved auction heterogeneity, then

𝑏𝑖𝑗 = 𝛽𝑦𝑗𝑘(𝑖)(𝑥𝑖𝑗) (2)

(i.e., 𝑏𝑖𝑗 is a value of bidder 𝑖’s equilibrium bidding strategy corresponding to 𝑦𝑗 evaluated

at the point 𝑥𝑖𝑗).

As was shown in the previous section, 𝑏𝑖𝑗 depends on the realizations of the common

and individual components as well as on the joint distribution of the individual cost compo-

nents. This section examines what properties of available data guarantee that there exists a

unique triple {{𝑥𝑖𝑗}, 𝐹𝑌 , 𝐹𝑋} that satisfies (2), i.e., under what conditions the model from a

previous section is identified.

Guerre, Perrigne, and Vuong (2000) obtain an identification result by transforming the

first-order conditions for optimal bids to express a bidder’s cost as an explicit function of the

submitted bid, the bid probability density function, and the bid distribution function. Under

unobserved auction heterogeneity, the necessary first-order condition yields an expression

for 𝑥𝑖𝑗 ⋅ 𝑦𝑗 as a function of 𝑏𝑖𝑗 and the conditional bid probability density function and the

conditional bid distribution function conditional on 𝑌 = 𝑦𝑗. The econometrician does not

observe the realization of 𝑌 and, consequently, does not know the conditional distribution

of bids for 𝑌 = 𝑦𝑗 . Hence, it is not possible to establish identification based on the above

first-order conditions.

The idea of my approach is to focus on the joint distributions of bids submitted in

the same auction instead of the marginal bid distributions in order to identify the model

with unobserved auction heterogeneity.

I use 𝐵𝑖 to denote the random variable that describes the bid of bidder 𝑖 of group 𝑘(𝑖)

with distribution function 𝐺𝐵𝑘(𝑖)
(.) and the associated probability density function 𝑔𝐵𝑘(𝑖)

(.);

𝑏𝑖𝑗 denotes the realization of this variable in auction 𝑗. The econometrician observes the

joint distribution function of (𝐵𝑖1 , .., 𝐵𝑖𝑙) for all subsets (𝑖1, ..., 𝑖𝑙) of (1, ..., 𝑚).
4

4In fact, it is not necessary to observe the joint distribution for all subsets. For details, see the formulation
of Theorem 1.
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Proposition 1 establishes that

𝑏𝑖𝑗 = 𝑦𝑗𝑎𝑖𝑗 ,

where 𝑎𝑖𝑗 is a hypothetical bid that would have been submitted by bidder 𝑖 if 𝑦 were equal

to one. I use 𝐴𝑖 to denote the random variable with realizations equal to 𝑎𝑖𝑗 . The as-

sociated distribution function is denoted by 𝐺𝐴𝑘(𝑖)
(.) with the probability density function

𝑔𝐴𝑘(𝑖)
(.). Notice that the econometrician does not observe 𝑦𝑗 and neither, therefore, 𝑎𝑖𝑗 . The

distribution of 𝐴𝑖 is latent.

The identification result is established in two steps. First, it is shown that the prob-

ability density function of 𝑌 can be uniquely determined from the joint distribution of two

bids that share the same cost component. Further, it is shown that the probability density

function of 𝐴𝑘 can also be uniquely determined if the joint distribution is for two bids such

that at least one of them corresponds to a bidder of group 𝑘. Second, monotonicity of the

inverse bid function is used to establish identification of the cumulative density functions

𝐹𝑋1 and 𝐹𝑋2 from the distributions of the individual bid components, 𝐺𝐴1 and 𝐺𝐴2
.

The following theorem is the main result of this section. It formulates sufficient

identification conditions for the model with unobserved heterogeneity.

Theorem 1

If conditions (𝐷1) − (𝐷4) are satisfied, then the probability density function 𝑓𝑌 (.)

is identified from the joint distribution of (𝐵𝑖1, 𝐵𝑖2), where (𝑖1, 𝑖2) is any pair such that

𝑖1, 𝑖2 ∈ {1, .., 𝑚}. Further, 𝑓𝑋𝑘
(.) is identified from the joint distribution of (𝐵𝑖1, 𝐵𝑖2), if

either 𝑘(𝑖1) = 𝑘 or 𝑘(𝑖2) = 𝑘 or both.

Theorem 1 states that the distribution functions of cost components 𝑓𝑋𝑘
(.) and 𝑓𝑌 (.)

are identified. The proof of this theorem consists of two steps and is given in the Appendix.

In the first step, a statistical result by Kotlarski (1966)5 is applied to the log-transformed

random variables 𝐵𝑖1 and 𝐵𝑖2 given by

log(𝐵𝑖1) = log(𝑌 ) + log(𝐴𝑖1),

log(𝐵𝑖2) = log(𝑌 ) + log(𝐴𝑖2).

5See Rao (1992).
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Kotlarski’s result is based on the fact that the characteristic function of the sum of two

independent random variables is equal to the product of the characteristic functions of these

variables. This property allows us to find the characteristic functions of log(𝑌 ), log(𝐴𝑖1), and

log(𝐴𝑖2) from the joint characteristic function of (log(𝐵𝑖1), log(𝐵𝑖2)). Let Ψ(., .) and Ψ1(., .)

denote the joint characteristic function of (log(𝐵𝑖1), log(𝐵𝑖2)) and the partial derivative of this

characteristic function with respect to the first component, respectively. Also, let Φlog(𝑌 )(.),

Φlog(𝐴𝑘)(𝑡) denote characteristic functions of log(𝑌 ) and log(𝐴𝑘). Then,

Φlog(𝑌 )(𝑡) = exp(

𝑡∫
0

Ψ1(0, 𝑢2)

Ψ(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[log(𝐴1)]), (3)

Φlog(𝐴1)(𝑡) =
Ψ(𝑡, 0)

Φlog𝑌 (𝑡)
,

Φlog(𝐴2)(𝑡) =
Ψ(0, 𝑡)

Φlog𝑌 (𝑡)
.

Equations in (3) show that the characteristic functions of log(𝑌 ) and log(𝐴𝑘) are uniquely

determined once 𝐸[log(𝐴1)] is fixed. It is convenient to start with normalization 𝐸[log(𝐴1)] =

0 and then adjust recovered random variables 𝑌 , 𝐴1, 𝐴2 to achieve normalization in (𝐷3).

Since there is a one-to-one correspondence between the set of characteristic functions and

the set of probability density functions, the probability density functions of 𝑌 , 𝐴𝑖1 , 𝐴𝑖2 can

be uniquely deduced from the characteristic functions of log(𝑌 ), log(𝐴𝑖1), and log(𝐴𝑖2) since

log(.) is a strictly increasing function and 𝛼𝑘(.) ∈ (0,∞), 𝑘 = 1, 2. Notice that the marginal

distribution of a single bid per auction may not allow us to identify the distribution functions

of 𝑌 , 𝐴𝑖1 , 𝐴𝑖2 because there is no unique decomposition of the sum (or product) into its

components. The second step in the proof establishes that the distributions of the individual

cost components are identified with (possibly) asymmetric bidders and independent private

values. It is similar to the argument given in Laffont and Vuong (1996). Once the distribution

of 𝑋1, 𝐹𝑋1 that corresponds to 𝐸[log(𝐴1)] = 0 is identified, and given that expectation of

such 𝑋1 is equal to 𝑒1, then �̃�1 =
𝑋1

𝑒1
, �̃�2 =

𝑋2

𝑒1
, 𝑌 = 𝑒1𝑌 with 𝐹�̃�1

(𝑥) = 𝐹𝑋1(𝑒1𝑥), 𝐹�̃�2
(𝑥) =

𝐹𝑋2(𝑒1𝑥), 𝐹𝑌 (𝑥) = 𝐹𝑌 (
𝑥
𝑒1
) are unique random variables that correspond to normalization in

(𝐷3).

A related question concerns identification of specific realizations 𝑥𝑖𝑗 and 𝑦𝑗 corre-

sponding to a particular bid 𝑏𝑖𝑗 . In this case, the answer is negative: 𝑥𝑖𝑗 and 𝑦𝑗 cannot be sep-

arately identified. The reason is that we cannot solve for (𝑚+1) unknown {𝑦 : {𝑎𝑖𝑗}𝑖=1,..,𝑚}

11



from 𝑚 equations constructed on the basis of m bids submitted in a given auction.

Theorem 1 establishes that identification of the model with unobserved auction het-

erogeneity crucially relies on the assumption of independence of individual components across

bidders and from the common cost component. Next, we show how the validity of these

assumptions can be evaluated within a framework of the model with unobserved auction

heterogeneity.

3.2 Testable Implications

Notice that instead of log(𝐵𝑖1) and log(𝐵𝑖2), Kotlarski’s result can be applied to the variables

log(
𝐵𝑖1

𝐵𝑖3
) and log(

𝐵𝑖2

𝐵𝑖3
), since log(

𝐵𝑖1

𝐵𝑖3
) = log(𝐴𝑖1)− log(𝐴𝑖3) and log(𝐵𝑖2

𝐵𝑖3
) = log(𝐴𝑖2)− log(𝐴𝑖3).

Here log(𝐴𝑖3) plays the role of a common component, whereas log(𝐴𝑖1) and log(𝐴𝑖2) remain

individual components. If the individual cost components 𝑋𝑖1 , 𝑋𝑖2 and𝑋𝑖3 are independently

distributed, then so are log(𝐴𝑖1), log(𝐴𝑖2), and log(𝐴𝑖3). The characteristic functions of these

variables can be computed using the joint characteristic function of (log(
𝐵𝑖1

𝐵𝑖3
), log(

𝐵𝑖2

𝐵𝑖3
)), which

I denote by Θ(., .), according to a formula similar to equation (3).6 Specifically,

Λlog(𝐴𝑖3
)(−𝑡) = exp(

𝑡∫
0

Θ1(0, 𝑢2)

Θ(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[log(𝐴𝑖1)]) (4)

Λlog(𝐴𝑖1
)(𝑡) =

Θ(𝑡, 0)

Λlog(𝐴𝑖3
)(−𝑡)

.

Two observations can be made at this point. First, if 𝐵𝑖1 and 𝐵𝑖3 are submitted by

bidders of the same group and the assumption about independence of individual components

holds, then Λlog(𝐴𝑖3
)(𝑡) and Λlog(𝐴𝑖1

)(𝑡) should be equal.
7

Second, I have relied only on the functional form and the independence of the individ-

ual cost components assumptions to obtain Λlog(𝐴𝑖𝑘
)(.). The assumption of the independence

of 𝑌 and 𝑋 then implies that Λlog(𝐴𝑖3
)(.) and Λlog(𝐴𝑖1

)(.) have to coincide with the functions

given by (3) under normalization 𝐸[log(𝐴𝑖1)] = 0.8 These observations are summarized by

6The symbol Θ1(., .) denotes the partial derivative of Θ(., .) with respect to the first argument.
7Functions Λlog(𝐴𝑖1 )

(𝑡) and Λlog(𝐴𝑖3 )
(𝑡) can potentially differ by a multiplicative factor due to normaliza-

tion. Please read the proof of Proposition 2 for careful analysis of this detail.
8Please read the proof of Proposition 2 for a careful treatment of normalization.
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conditions (𝑊1) and (𝑊2).

(𝑊1) For any triple (𝑖1, 𝑖2, 𝑖3) such that {𝑖1 = 1, .., 𝑚1 𝑎𝑛𝑑 𝑖3 = 1, .., 𝑚1}, or { 𝑖1 =

𝑚1 + 1, .., 𝑚 and 𝑖3 = 𝑚1 + 1, .., 𝑚}, and 𝑖𝑘 ∕= 𝑖𝑙 for any 𝑘, 𝑙 ∈ {1, 2, 3}, 𝑘 ∕= 𝑙,

Λlog(𝐴𝑖1
)(𝑡) = Λlog(𝐴𝑖3

)(𝑡)

for every 𝑡 ∈ [−∞,∞] under normalization 𝐸[log(𝐴𝑖1)] = 0.
9

(𝑊2) For any triple (𝑖1, 𝑖2, 𝑖3), such that 𝑖𝑘 ∕= 𝑖𝑙 for any 𝑘, 𝑙 ∈ {1, 2, 3}, 𝑘 ∕= 𝑙,

Φlog(𝐴𝑖𝑘
)(𝑡) = Λlog(𝐴𝑖𝑘

)(𝑡)

for every 𝑡 ∈ [−∞,∞] under normalization 𝐸[log(𝐴𝑖1)] = 0.

Independence of individual cost components further implies condition (𝑊3).

(𝑊3) For any quadruple (𝑖1, 𝑖2, 𝑖3, 𝑖4) ⊂ {1, ..., 𝑚}, such that 𝑖𝑘 ∕= 𝑖𝑙 for any 𝑘, 𝑙 ∈
{1, 2, 3, 4}, 𝑘 ∕= 𝑙,

𝐵𝑖1

𝐵𝑖2
and

𝐵𝑖3

𝐵𝑖4
are independently distributed.

Proposition 2 describes the implications of the independence assumptions.

Proposition 2

Let bidder 𝑖’s cost for the project 𝑗 be given by 𝑐𝑖𝑗 = 𝑥𝑖𝑗𝑦𝑗.

(1) If the individual cost components are independent, then (𝑊1) has to be satisfied.

(2)If the individual cost components are independent, then (𝑊3) has to be satisfied.

(3) Further, if 𝑌 is independent of 𝑋, then 𝑊2 holds.

Note that (𝑊1) and (𝑊2) apply to samples with 𝑚 ≥ 3, whereas statement (𝑊3)

applies only to the samples with 𝑚 ≥ 4. The proof of proposition 2 is given in the Appendix.

More generally, conditions below describe a set of joint restrictions imposed on the

data by all the assumptions of the model with unobserved auction heterogeneity.

(𝑊4) For every pair (𝑖𝑙, 𝑖𝑝), 𝑖𝑙, 𝑖𝑝 = 1, ..., 𝑚, the functions Φlog(𝑌 )(.),Φlog(𝐴𝑖𝑙
)(.), Φlog(𝐴𝑖𝑝)(.)

9A similar relationship can be used to test for the presence of asymmetries. In particular, if bidders are
symmetric, then we should have

Λlog(𝐴𝑖1 )
(𝑡) = Λlog(𝐴𝑖3)

(𝑡)

for 𝑖1 ∈ {1, ..,𝑚1} and 𝑖3 ∈ {𝑚1 + 1, ...,𝑚}.
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given by (3) represent characteristic functions of real-valued variables. In particular, the ran-

dom variables that correspond to Φlog(𝐴𝑖𝑙
)(.), Φlog(𝐴𝑖𝑝 )

(.) should have the same support.

(𝑊5) The characteristic function Φlog(𝑌 )(.) does not depend on the pair of (𝑖𝑙, 𝑖𝑝),

𝑖𝑙, 𝑖𝑝 = 1, ..., 𝑚, which is used to derive it, and Φlog(𝐴𝑖𝑙
)(.) = Φlog(𝐴𝑖𝑟 )

(.),Φlog(𝐴𝑖𝑝 )
(.) =

Φlog(𝐴𝑖𝑞 )
(.) for (𝑖𝑟, 𝑖𝑞) such that 𝑘(𝑖𝑟) = 𝑘(𝑖𝑙), 𝑘(𝑖𝑞) = 𝑘(𝑖𝑝).

(𝑊6) The inverse bid functions

𝜉𝑘(𝑎) = 𝑎 − (1− 𝐺𝐴𝑘
(𝑎))(1− 𝐺𝐴−𝑘

(𝑎))

(𝑚𝑘 − 1)𝑔𝐴𝑘
(𝑎)(1− 𝐺𝐴−𝑘

(𝑎)) +𝑚−𝑘𝑔𝐴−𝑘
(𝑎)(1− 𝐺𝐴𝑘

(𝑎))
, 𝑘 = 1, 2,

are strictly increasing in 𝑎.10

Proposition 3 establishes necessary conditions for the model with unobserved auction

heterogeneity to be rationalizable11 by a given dataset.

Proposition 3

If a model with unobserved heterogeneity generated the data, then conditions (𝑊4)−
(𝑊6) must hold.

3.3 Distinguishing from the Model with Affiliated Private Values

Unobserved auction heterogeneity induces dependence between bids submitted in the same

auction. Within the private values framework a similar regularity pertains to models with

affiliated private values. Interestingly, it can be shown that the set of bid distributions that

can be rationalized by a model with affiliated private values does not coincide with the set

that can be rationalized by a model with unobserved auction heterogeneity.

Indeed, bids generated by a model with unobserved auction heterogeneity are condi-

tionally independent. On the other hand, the distributions of bids generated by models with

affiliated private values are affiliated. The results related to de Finetti theorem12 establish

that the set of affiliated distributions is larger than the set of conditionally independent

distributions. Therefore, there must exist bid distributions with dependent bids that could

10This testable implication of equilibrium bidding was first pointed out by Guerre, Perrigne, and Vuong
(2000) in the context of the first price auction with symmetric independent private values and without
unobserved auction heterogeneity.

11A model is rationalizable by a given dataset if it could have been generated by this model.
12Kingman (1978) or Kendall(1967) provide a useful discussion of these issues.
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not be generated by a model with unobserved auction heterogeneity.

Further, it is possible to construct a test that distinguishes the affiliated private values

setting from the unobserved auction heterogeneity setting in the data. As noted above, under

unobserved heterogeneity, for every quadruple of bids submitted in the same auction, the

pairwise ratios involving distinct bids are independent. This property, however, does not

hold for a large class of bid distributions generated by models with affiliated private values.

The proof of this statement is given in the Technical Appendix posted on the website of the

Review of Economic Studies. The pairwise ratio independence may hold for a small set of

affiliated distributions (the details are in the Technical Appendix). Therefore, this test has

no power against some alternatives. The Technical Appendix also provides several examples

of widely used affiliated distributions that fail the property of pairwise ratios independence.

Among others, it considers a truncated multivariate normal distribution and shows that it

fails the test for a large set of parameter values.

4 Estimation

This section describes the estimation method and derives properties of the estimators. Some

practical issues related to the estimation procedure are discussed in sections 7.2 and 7.3.

4.1 Estimation Method

The econometrician has data for 𝑛0 auctions. For each auction 𝑗, (𝑚𝑗 , {𝑏𝑖𝑗}𝑖=𝑚𝑗

𝑖=1 , 𝑧𝑗) are

observed, where 𝑚𝑗 is the number of bidders in the auction 𝑗, with 𝑚𝑗1 bidders of group 1

and 𝑚𝑗2 bidders of group 2; {𝑏𝑖𝑗}𝑖=𝑚𝑗

𝑖=1 is a vector of bids submitted in the auction 𝑗; and 𝑧𝑗

is a vector of auction characteristics. The estimation procedure is described for the case of

discrete covariates. It can be extended to the case of continuous 𝑧𝑗 .
13

The estimates are obtained conditional on the number of bidders, 𝑚𝑗 = 𝑚0, 𝑚1𝑗 =

𝑚01, and 𝑧𝑗 = 𝑧0. Let 𝑛 denote the number of auctions that satisfy these restrictions. The

estimation procedure closely follows the identification argument described in the proof of

Theorem 1. It consists of the following steps.14

13Estimation in the case of continuous 𝑧𝑗 requires smoothing over 𝑧𝑗 .
14The method is described for the data set where bids submitted by bidders from both groups are present.

It can be easily modified for the case where the distributions of individual cost components for different
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1. The log transformation of bid data is performed to obtain 𝐿𝐵𝑖𝑙𝑗 = log(𝐵𝑖𝑙𝑗) and

𝐿𝐵𝑖𝑝𝑗 = log(𝐵𝑖𝑝𝑗), where 𝑖𝑙 = 1, .., 𝑚01 and 𝑖𝑝 = 𝑚01 + 1, .., 𝑚0.

2. The joint characteristic function of an arbitrary pair (𝐿𝐵𝑖𝑙, 𝐿𝐵𝑖𝑝) is estimated by

Ψ̂𝑛(𝑡1, 𝑡2) =
1

𝑚01𝑚02

∑
1≤𝑙≤𝑚01,𝑚01+1≤𝑝≤𝑚0

1

𝑛

𝑛∑
𝑗=1

exp(𝑖𝑡1 ⋅ 𝐿𝐵𝑖𝑙𝑗 + 𝑖𝑡2 ⋅ 𝐿𝐵𝑖𝑝𝑗)

and the derivative of Ψ(., .) with respect to the first argument, Ψ1(., .), by

Ψ̂1,𝑛(𝑡1, 𝑡2) =
1

𝑚01𝑚02

∑
1≤𝑙≤𝑚01, 𝑚01+1≤𝑝≤𝑚0

1

𝑛

𝑛∑
𝑗=1

𝑖𝐿𝐵𝑖𝑙𝑗 exp(𝑖𝑡1 ⋅ 𝐿𝐵𝑖𝑙𝑗 + 𝑖𝑡2 ⋅ 𝐿𝐵𝑙𝑝𝑗).

I average over all possible pairs to enhance efficiency.

3. The characteristic functions of the log of individual bid components 𝐿𝐴𝑘, 𝑘 = 1, 2,

and the log of the common cost component 𝐿𝑌 are estimated as

Φ̂𝐿𝑌,𝑛(𝑡) = exp(

𝑡∫
0

Ψ̂1,𝑛(0, 𝑢2)

Ψ̂𝑛(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[log(𝐴1)]),

Φ̂𝐿𝐴1,𝑛(𝑡) =
Ψ̂𝑛(𝑡, 0)

Φ̂𝐿𝑌,𝑛(𝑡)
,

Φ̂𝐿𝐴2,𝑛(𝑡) =
Ψ̂𝑛(0, 𝑡)

Φ̂𝐿𝑌,𝑛(𝑡)
.

I first use the normalization 𝐸[log(𝐴1)] = 0.

4. The inversion formula is used to estimate densities 𝑔𝐿𝐴𝑘
, 𝑘 = 1, 2, and 𝑔𝐿𝑌 .

groups have to be recovered from different data subsets. To restore the normalization assumed in this
paper, the characteristic function of the log of the individual bid component for group 2 in step 3 should be
multiplied by exp(𝐸[log(𝐵𝑖𝑝)− log(𝐵𝑖𝑙)), 𝑖𝑙 = 1, ..,𝑚01, 𝑖𝑙 = 𝑚01 + 1, ...,𝑚0.
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𝑔𝐿𝐴𝑘,𝑛(𝑢1) =
1

2𝜋

𝑇∫
−𝑇

exp(−𝑖𝑡𝑢1)Φ̂𝐿𝐴𝑘 ,𝑛(𝑡)𝑑𝑡,

𝑓𝐿𝑌,𝑛(𝑢2) =
1

2𝜋

𝑇∫
−𝑇

exp(−𝑖𝑡𝑢2)Φ̂𝐿𝑌,𝑛(𝑡)𝑑𝑡

for 𝑢1 ∈ [log(𝑎), log(𝑎)], and 𝑢2 ∈ [log(𝑦), log(𝑦)], where 𝑇 is a smoothing parameter.

5. The densities of 𝐴𝑘 and 𝑌 are obtained as

𝑔𝐴𝑘,𝑛(𝑎) =
𝑔𝐿𝐴𝑘,𝑛(log(𝑎))

𝑎
,

𝑓𝑌,𝑛(𝑦) =
𝑓𝐿𝑌,𝑛(log(𝑦))

𝑦
,

for 𝑎 ∈ [𝑎, 𝑎], and 𝑦 ∈ [𝑦, 𝑦].15

6. The individual inverse bid function at a point 𝑎 ∈ [𝑎, 𝑎] is estimated as

𝜉𝑘,𝑛(𝑎) = 𝑎 − (1− �̃�𝐴1,𝑛(𝑎)) ⋅ (1− �̃�𝐴2,𝑛(𝑎))

(𝑚𝑘 − 1) ⋅ 𝑔𝐴𝑘,𝑛(𝑎) ⋅ (1− �̃�𝐴−𝑘,𝑛(𝑎)) +𝑚−𝑘 ⋅ 𝑔𝐴−𝑘,𝑛(𝑎) ⋅ (1− �̃�𝐴𝑘,𝑛(𝑎))

where

�̃�𝐴𝑘,𝑛(𝑎) =

𝑎∫
�̂�1𝑛

𝑔𝐴𝑘,𝑛(𝑧)𝑑𝑧

and �̂�1
𝑛 is an estimate of the lower bound of the support of 𝑔𝐴𝑘

(.) which corresponds to the

normalization 𝐸[log(𝐴1)] = 0 (see section 7.2 for discussion of the support estimation).

7. The individual bid function for a group 𝑘 at a point 𝑥 ∈ [𝑥,𝑥] is estimated as

�̂�𝑘,𝑛(𝑥) = 𝜉−1
𝑘,𝑛(𝑥) = 𝑎 such that 𝜉𝑘,𝑛(𝑎) = 𝑥.

8. The cumulative distribution function of the individual cost component is estimated

15Horowitz and Markatou (1996) suggest using a bias correction technique in this setting to obtain better
results in small samples.
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by substituting the corresponding estimated bid function into the estimated cumulative

distribution function of the individual bid component

𝐹𝑋𝑘,𝑛(𝑥) = �̃�𝐴𝑘,𝑛(𝜉
−1
𝑘,𝑛(𝑥)).

9. To arrive at the normalization in (𝐷3), compute 𝑒1 = 𝐸[𝑋1] =
∫ 𝑥
𝑥

𝑥𝑑𝐹𝑋1,𝑛 and

then perform the following adjustments: 𝑓𝑌,𝑛(𝑦) =
1
𝑒1

𝑓𝑌,𝑛(
𝑦
𝑒1
), 𝐹�̃�𝑘,𝑛

(𝑥) = 𝐹𝑋𝑘,𝑛(𝑒1𝑥).

10. I have also constructed an estimate of the total cost density function

𝑓𝐶𝑘,𝑛(𝑐) =

𝑦∫
𝑦

1

𝑦
𝑓𝑋𝑘,𝑛(

𝑐

𝑦
)𝑓𝑌,𝑛(𝑦)𝑑𝑦,

for 𝑐 ∈ [𝑥 ⋅ 𝑦, 𝑥 ⋅ 𝑦].
11. An expected inverse bid function16 is estimated as

𝜗𝑘,𝑛(𝑏) =

𝑦∫
𝑦

𝑦 ⋅ 𝜉𝑘,𝑛( 𝑏
𝑦
)𝑓𝑌,𝑛(𝑦∣𝑏)𝑑𝑦.

Here 𝑓𝑌,𝑛(𝑦∣𝑏) is given by

𝑓𝑌,𝑛(𝑦∣𝑏) = 𝑓𝑌,𝑛(𝑦)
𝑏
�̃�∫
𝑏

�̃�

𝑓𝑌,𝑛(𝑦)𝑑𝑦

if 𝑦 ∈ [ 𝑏
�̃�
, 𝑏
�̃�
] and 𝑓𝑌,𝑛(𝑦∣𝑏) = 0, otherwise.

4.2 Properties of the Estimator

This subsection shows that the estimation procedure yields uniformly consistent estimators

of the relevant distributions. This result is derived under the following restrictions on the

tail behavior of characteristic functions.

16I use 𝑓𝑌 (𝑦∣𝑏) because some values of 𝑦 are not consistent with a given 𝑏 due to finite supports of 𝑌 and
𝑋𝑘.
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(𝐷5) The characteristic functions Φ𝐿𝑌 (.) and Φ𝐿𝐴𝑘
(.) are ordinary smooth17 with ϰ > 1.

This property holds, for example, when cumulative probability functions of cost com-

ponents admit up to 𝑅, 𝑅 > 1, continuous derivatives on the support interior such that 𝑀 of

them, 1 ≤ 𝑀 ≤ 𝑅, can be continuously extended to the real line. The uniform consistency

of bid component estimators is used to establish the uniform consistency of the cumulative

distribution function estimator for the individual cost component.

Proposition 4 summarizes properties of the estimator.

Proposition 4

If conditions (𝐷1)-(𝐷5) are satisfied, then 𝐹𝑌 (.) and 𝐹𝑋𝑘
(.) are uniformly consistent

estimators of 𝐹𝑌 (.) and 𝐹𝑋𝑘
(.), 𝑘 = 1, 2, respectively.

The proof of Proposition 4 is given in the Appendix. Confidence intervals for the

estimates are obtained through a bootstrap procedure.

4.3 Monte Carlo Study

In this section, I present and discuss the results from the simulation study, which analyzes

the performance of the estimator in small samples.

The simulated data sets are generated as follows. The cost of bidder 𝑖 is set to be

equal to the product of common and individual cost components, 𝑐𝑖 = 𝑦𝑥𝑖. The data are

generated using random draws from distributions that are similar in shape to the estimated

distributions of cost components. To create a typical data set describing 𝑛 procurement

auctions with 𝑘1 and 𝑘2 bidders from groups 1 and 2 correspondingly, I take 𝑘1 ∗𝑛 and 𝑘2 ∗𝑛

independent draws from the distributions of the individual cost component for groups 1 and

2 and combine them with 𝑛 draws from the distribution of the common cost component,

such that

17Following Fan (1991),

Definition 1 The distribution of random variable 𝑍 is ordinary-smooth of order ϰ if its characteristic
function Φ𝑧(𝑡) satisfies

𝑑0∣𝑡∣−ϰ ≤ ∣Φ𝑧(𝑡)∣ ≤ 𝑑1∣𝑡∣−ϰ

as t→ ∞ for some positive constants 𝑑0,𝑑1,ϰ.
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{𝑐𝑖𝑗 , 𝑐𝑖𝑗 = 𝑦𝑗𝑥𝑖𝑗 , 𝑖 = 1, ., 𝑘1 + 𝑘2; 𝑗 = 1, .., 𝑛}
is a matrix of simulated costs. The matrix of associated bids is calculated according to the

equilibrium bid functions.

I set the value of 𝑘1 = 2 and 𝑘2 = 2 similar to the configuration in the data and

consider the data sets of progressively smaller sizes with n = 250, 200 and 150. Therefore,

individual cost components are estimates using 500, 400 and 300 bids, respectively.

[FIGURES 1, 2 and 3]

The results of this study are summarized in Figures 1, 2 and 3. Figure 1 presents

results for the common component, while Figures 2 and 3 describe the performance of the

estimators for the cumulative distribution and probability density functions of individual

components. These figures depict the original distributions of the individual and common

cost components used to generate the simulated data as well as the 5% and 95% quantiles

of the estimators.

Figures 1, 2 and 3 demonstrate that estimators perform well except for the smallest

data set where the quantile range becomes quite wide and does not contain small parts of

the underlying distribution functions.

5 Michigan Highway Procurement Auctions

This section describes characteristics of the Michigan highway procurement auctions. Sub-

sections 5.1 and 5.2 present the data and report some descriptive statistics. Subsection 5.2

also presents the results of specification tests. Subsection 5.3 describes the estimation re-

sults for the model with unobserved auction heterogeneity, compares them to the estimates

obtained under the assumption of independent and affiliated private values, performs reserve

price analysis under alternative specifications, and summarizes the tests’ outcomes for the

assumptions of the model with unobserved auction heterogeneity.

5.1 Market Description

The Michigan Department of Transportation (DoT) is responsible for construction and main-

tenance of most roads within Michigan. The Department of Transportation identifies work
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that has to be done and allocates it to companies in the form of projects through a first price

Sealed bid auction. The project usually involves a small number of tasks, such as resurfacing,

replacing the base, or filling in cracks.

Letting process. The Department of Transportation advertises projects 4 to 10 weeks

prior to the letting date. Advertisement usually consists of a short description of the project,

including the location, completion time, and a short list of the tasks involved. Companies

interested in the project can obtain a detailed description from the DoT.

Estimated cost. The DoT constructs a cost estimate for every project which is based

on the engineer’s assessment of the work required to perform each task and prices derived

from the winning bids for similar projects let in the past. The costs are then adjusted

through a price deflator.

Federal law requires that the winning bid should be lower than 110% of the engineer’s

estimate. If a state decides to accept a bid that is higher than this threshold, it has to justify

this action in writing. In this case the engineer’s estimate has to be revised and verified for

any possible mistake. In my data set, I observe a number of bids higher than 110% of the

engineer’s estimate. On multiple occasions, the winning bid is higher than this threshold.

These facts suggest that bidders consider the probability of an event when this restriction

comes into effect to be rather small. The assumption of no reserve price is justified in this

environment.

Number of bidders. It is unclear if the auction participants have a good idea about the

number of their competitors. The existing literature on highway procurement auctions tends

to argue that this is a small market where participants are well informed about each other

and can accurately predict the identities of auction participants.18 I follow this tradition and

assume that the number of actual bidders is known to auction participants.

5.2 Descriptive Statistics

I use data for the highway procurement auctions held by the Michigan Department of Trans-

portation (DoT) between February 1997 and December 2003. In particular, I focus on

highway maintenance projects with bituminous resurfacing as the main task. The data set

consists of a total of 3,947 projects. My information includes the letting date, the comple-

tion time, the location, the tasks involved, the identity of all the bidders, their bids, and an

18See, for example, Bajari and Ye (2003).
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engineer’s estimate.

My choice of the projects’ type is motivated by two objectives. First, I want to ensure

that the auction environment is characterized by private rather than common values. Second,

I am looking for an environment that is likely to have unobserved auction heterogeneity.

Highway maintenance projects are usually precisely specified and relatively simple. It is likely

that bidders can predict their own costs for the project quite well. The existing variation

in bids is, therefore, associated with variation in costs across firms, which is consistent with

the private values environment. This variation is generated by differences in opportunity

costs and input prices faced by different firms. Further, although highway maintenance

projects are rather simple, their costs can be substantially affected by local conditions such

as elevation and curvature of the road, traffic intensity, and age and quality of the existing

surface. Information about these features may not be available to the researcher. On the

other hand, firms’ representatives usually travel to the project site and, therefore, are likely to

collect this information and incorporate it into their bids. Hence, I expect to find unobserved

auction heterogeneity.

The paving companies participating in the maintenance auctions mostly differ by their

size (employment, number of locations). The differences in size may imply cost differences

if economies of scale are present. For example, larger companies are likely to own their

equipment instead of renting it, which may reduce cost. Since size is observable to all

market participants, it is important to allow for the possibility that market participants

have different beliefs about the distribution of costs for groups of companies that differ by

size. Therefore, I allow for asymmetries between bidders. In particular, I distinguish between

two types of bidders: regular (large) bidders and fringe bidders. The set of regular bidders

is defined to include companies that consistently won at least $10 million in projects during

each year in my data set and have at least 100 employees.19

In my data, the number of bidders per project varies between 1 and 11. More than

85% of projects attracted between 2 to 6 bidders, with the mean number of bidders equaling

3.4 and a standard deviation of 1.3. About 75% of the projects have an engineer’s esti-

mate ranging between $100,000 and $1,000,000; 5% are below $100,000 and 20% are above

$1,000,000.

Table 1 provides summary statistics of several important variables by the number

19This definition is consistent with the industry definition of the large bidder. For example, California
DoT uses this definition to determine which companies should qualify for the favorable treatment awarded
to small bidders.
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of bidders. It shows that the mean of the engineer’s estimate does not change significantly

across groups of projects that attracted different numbers of bidders. The tabulation of the

winning bid indicates that the difference between the engineer’s estimate and the winning

bid is positive and that it increases with the number of bidders. An important statistic of

the data is “money left on the table” as represented by the difference between the lowest and

second-to-lowest bid normalized by the engineer’s estimate. This variable is usually taken

to indicate the extent of uncertainty present in the market. “Money left on the table” is, on

average, equal to 7% of the engineer’s estimate and decreases with the number of bidders.

The magnitude of the “money left on the table”variable is similar to the findings of other

studies.20 It indicates that cost uncertainty may be substantial. Table 1 also shows that the

number of regular bidders is usually between 1 and 3 and increases only slightly with the

total number of bidders.

[TABLE 1]

Next, I explore if there is scope for unobserved auction heterogeneity in my data.

I implement the specification tests outlined in section 3.4. More specifically, I test for

(1) conditional independence of a pair of bids submitted in the same auction (𝐻0 : IPV

vs. 𝐻1 : unobserved auction heterogeneity), and for (2) conditional independence of two

ratios of bids using four different bids submitted in the same auction (𝐻0 : unobserved

auction heterogeneity vs. 𝐻1 : APV). I condition on a linear index of observable auction

characteristics such as the engineer’s estimate and time to complete the project (duration),

type of highway, year and month dummies, district dummies, and total number of tasks. The

index is estimated through an OLS regression. The tests are performed conditional on the

main task of the project and the number of bidders. The testing procedure I use is explained

in the Appendix. For bituminous resurfacing projects with four regular bidders, the p-value

for the first test statistics is equal to 0.03 and the p-value for the second test statistics is

0.52.21 Therefore, the null hypothesis of independent private values can be rejected against

the alternative of unobserved auction heterogeneity at the 5% significance level. At the same

time, the null hypothesis of unobserved auction heterogeneity cannot be rejected against the

alternative of affiliated private values.

[TABLES 2 AND 3]

I interpret the correlation between bids submitted in the same auction as evidence

20See, for example, Jofre-Bonnet and Pesendorfer (2003).
21The data set for which test is performed consists of 370 auctions with an engineer’s estimate between

$350,000 and $750,000. The coefficients of the linear index are reported in Table 2.
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of unobserved auction heterogeneity. It is possible, however, that the correlation between

bids is generated through some other mechanism. For example, it may arise if the auction

environment has common values features. It may also arise if participating companies are

systematically engaged in collusive behavior. I deal with the first issue by restricting my

attention to maintenance projects that are unlikely to have any project-related uncertainty

that could lead to a common values effect. It is much harder to reject a possibility of

collusion, since all the tests proposed in the literature depend on the particular collusion

scheme employed. I use the test proposed by Porter and Zona (1993), which is based on

the assumption that if there is a collusion scheme, then only the winning bid corresponds

to a real cost realization, and all other bids are ”phony,” i.e., unsubstantiated by any cost

realization. I use a procedure described in Athey and Haile (2002) to recover the distribution

of regular and fringe bids from the distribution of the winning bid. I then compare these

distributions to the ones estimated from the losing bids. Distributions estimated through

these two procedures appear to be similar, which gives me confidence that the data do not

reflect the outcome of collusive behavior.

Thus, I find evidence in favor of unobserved auction heterogeneity in Michigan high-

way procurement auctions. I estimate the distributions of cost components using the es-

timation method outlined in section 4 to evaluate the relative importance of different cost

components.

5.3 Estimation Results

The estimation results presented below correspond to the set of projects with an engineer’s

estimate between $300,000 and $580,000 and the time to completion between 3 and 6 months

that attracted two regular and two fringe bidders. This set consists of 226 projects. The

results for different values of engineer’s estimate, duration, and the number of bidders are

qualitatively similar.

I use projects that are quite similar in estimation. However, the data set still con-

tains some residual variation in observable auction characteristics. I use a homogenization

procedure to eliminate the variation in observable factors. To arrive at homogenized bids, I

estimate the mean of log(bid) as a linear function of observable characteristics, eliminate the

estimated mean from the bids and use the residuals in the estimation; I add the estimated

mean back in when evaluating the importance of private information, and for comparison
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to alternative models.22 The mean of log(bid) is assumed to be a linear function of the

engineer’s estimate, duration, type of highway, year and month dummies, district dummies,

and total number of tasks.

In the estimation, the mean of the regular type is normalized to be equal to one. Fig-

ure 4 presents estimated distributions of the unobserved auction heterogeneity component

and individual cost components. The common cost component is a product of the com-

mon observable component (extracted through homogenization procedure) and unobserved

heterogeneity component. The recovered distribution of the unobserved heterogeneity com-

ponent has a mean of 0.98 and a standard devistion of 0.204 whereas the mean and standard

deviation of the common component are equal to $392, 000 and $78, 890 respectively. The

recovered distributions of individual components for regular and fringe groups are similar.

The individual cost component of the fringe type has a higher mean but lower variance than

the individual cost component of the regular type. The mean of the fringe type distribution

is 1.06. Standard deviations of the regular and fringe type distributions are 0.14 and 0.13,

respectively. I also perform a test of the equality of individual cost component distribu-

tions.23 The distribution of the test statistic is computed both through sub-sampling24 and

bootstrap procedures. The p-value of the test statistic is 0.69. Therefore, I can formally

reject equality at the 10% significance level.

[FIGURE 4]

Variance decomposition. Recall that bidder 𝑖′𝑠 cost for project 𝑗 is given by 𝑐𝑖𝑗 =

𝑦𝑗 ∗ 𝑥𝑖𝑗 . A Taylor approximation applied to 𝐶(., .) as a function of 𝑋 and 𝑌 allows us to

approximate the variance of 𝐶 in the following way:

𝑉 𝑎𝑟(𝑐) ≃ (𝐸𝑌 )2𝑉 𝑎𝑟(𝑋) + (𝐸𝑋)2𝑉 𝑎𝑟(𝑌 ).

If (𝐸𝑌 )2𝑉 𝑎𝑟(𝑋) and (𝐸𝑋)2𝑉 𝑎𝑟(𝑌 ) are taken to represent parts of the cost variation gen-

erated by the variation in the individual cost and unobserved heterogeneity components,

22Effectively, I assume that 𝑐𝑖𝑗 = 𝑒𝑥𝑝(𝑧𝑗𝛼)𝑦𝑗𝑥𝑖𝑗 . Here 𝑧𝑗 denotes the vector of project 𝑗’s observable char-
acteristics. The homogemization procedure is used by Haile, Hong and Shum (2003) and Bajari, Houghton
and Tadelis (2004). The coefficients of the observable “scaling factor” are reported in table 2.

23I do not have access to random samples drawn from these distributions, which is a standard requirement
in most statistical procedures testing for the equality of two distributions (e.g., Kolmogorov-Smirnov tests).
Therefore, I perform this test as a test for the equality of two functions. The description of the test procedure
is given in the Appendix.

24This procedure is valid, since the rate of the convergence of estimators is known; see Politis, Romano
and Wolf (1999).
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respectively, then it can be calculated that the individual cost component accounts for al-

most 31% of variation in the homogenized costs.25,26,27

Mark-ups over the bidders’ costs. The estimated inverse bid functions are used to

compute mark-ups over the bidders’ costs. The normalized mark-up, 𝑏−𝑐
𝑐
= 𝑎−𝑥

𝑥
, 𝑥 = 𝜉(𝑎),

ranges from 0.1% to 25% and, on average, is equal to 8.4% for the regular bidder. Mark-ups

for the fringe type bidders range between 0.1% to 18% and, on average, are equal to 6.1%.

Inefficient outcomes. When bidders are asymmetric, it is possible that the project

is not awarded to the lowest cost bidder; i.e., the auction outcome is not efficient. To

compute the probability of such an event for the selected set of projects, I use the estimated

distributions of cost components to create a pseudo-sample of bidders’ costs for a set of 250

auctions with three bidders each. Then, for each cost draw, I calculate the bid value from

the estimated bid function. Finally, the fraction of the auctions in which the lowest bid does

not correspond to the lowest cost is computed. This exercise is repeated 1000 times. I find

that the estimated probability of an inefficient outcome is, on average, equal to 5% with a

95% quantile range given by [3.6, 6.2]. This corresponds to an estimated 2% increase in the

cost of the procurement; the 95% quantile range is given by [1.3, 2.8].

Comparison to alternative auction models. Figure 5 compares the average bid func-

tion estimated under the assumption of unobserved auction heterogeneity to the bid function

recovered under the affiliated private values (APV) and independent private values (IPV)

assumptions, respectively.28 Both the IPV and APV procedures estimate the total costs

that are substantially lower than the average costs estimated under the unobserved auction

heterogeneity assumptions both for regular and fringe bidders. In particular, the model with

unobserved auction heterogeneity implies an average mark-up over the bidders’ costs to be

8.4% (6.1% for fringe bidders), whereas the model with affiliated private values predicts a

mark-up of 14% (12.2%), and the model with independent private values predicts a mark-up

of 19% (16.5%). In each case, confidence intervals for the IPV and APV estimates intersect

the confidence interval constructed under the unobserved heterogeneity assumption only for

25Note that this decomposition does not depend on the choice of a mean normalization.
26The exact expression for the variance of costs is given by

𝑉 𝑎𝑟(𝑐) = (𝐸𝑌 )2𝑉 𝑎𝑟(𝑋) + (𝐸𝑋)2𝑉 𝑎𝑟(𝑌 ) + 𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )

The term (𝐸𝑌 )2𝑉 𝑎𝑟(𝑋) accounts for 31.3% of 𝑉 𝑎𝑟(𝑐) computed according to the formula above.
27Variance decomposition can also be performed for the total costs, 𝑐𝑖𝑗 = exp(𝑧𝑗𝛼)𝑦𝑗𝑥𝑖𝑗 . It can be

calculated that (𝐸[exp(𝑍𝛼)𝑌 ])2𝑉 𝑎𝑟(𝑋) accounts for 34.4% of the variation in total costs.
28I follow the methodology described in Guerre, Perrigne and Vuong (2000) and Li, Perrigne and Vuong

(2002) for the estimation under IPV and APV assumptions correspondingly.
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a very small part near the upper end of the support.

[FIGURE 5 AND FIGURE 6]

Figure 6 compares the average density function of the cost distribution estimated

under the assumption of unobserved auction heterogeneity to the cost density functions

recovered under APV and IPV assumptions. The estimated density function for the IPV

and APV models are flatter relative to the density function estimated under the assumption

of unobserved auction heterogeneity. In both cases, confidence intervals for the IPV and APV

estimates intersect the confidence interval constructed under the assumption of unobserved

auction heterogeneity only for a very small part of the support. The variance of the cost

distribution estimated under the assumption of unobserved auction heterogeneity is about

18% lower than the variance of the cost distribution estimated under the assumption of

affiliated private values and 22% lower than the variance of the cost distribution estimated

under the assumption of independent private values.

Reserve price. I use the results of estimation to compute the optimal reserve price

in the environment with unobserved auction heterogeneity. I compare the performance of

this reserve price and of reserve prices derived from the estimates based on alternative

assumptions. To avoid theoretical complications unrelated to the subject of this paper, I

restrict my attention to the symmetric case in this section.

The government chooses a reserve price to minimize the expected cost of procurement,

which consists of two parts: the expected cost of not allocating the job today and the expected

cost at which work can be completed today given the reserve price 𝑟. Let us denote the first

component 𝑐0. It represents the sum of the cost of waiting another period and the expected

cost at which the project can be completed in the future. I do not have data on the magnitude

of 𝑐0. Therefore, I consider a range of possible values for 𝑐0 and derive an optimal reserve

price for each of them.

I compute a reserve price under four assumptions: (a) unobserved auction heterogene-

ity (realization of unobserved heterogeneity is known to the government); (b) unobserved

auction heterogeneity (realization of unobserved heterogeneity is unknown to the govern-

ment); (c) independent private values; and (d) affiliated private values. In (b) the reserve

price is derived to minimize the average cost of procurement, where the average is taken

with respect to the distribution of unobserved auction heterogeneity. While assumption (a)

describes the benchmark case, it may not be implementable in practice if the government

does not know the realization of unobserved auction heterogeneity. In this case, the reserve
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price derived in (b) can be used. I compare the performance of these four reserve prices on

the basis of an average cost of procurement29 achieved for a given reserve price. To perform

these computations, I use the results of the estimation for regular bidders only.

The results of the analysis are summarized in Table 4. The table records for every

reserve price candidate (1) an average probability with which a bid is submitted; (2) the

average cost of procurement as a percent of 𝑐0; and (3) the average cost of procurement as

a percent of the benchmark expected costs.

[TABLE 4]

The results of the computation show that the reserve price computed from the cost

distribution estimated under the IPV or APV assumption fares considerably worse in com-

parison to the benchmark case and to the reserve price derived from the average cost function

in (𝑏). In particular, the average expected cost achieved through the reserve price based on

IPV estimates is 9%-20% of 𝑐0 higher than the benchmark cost, whereas the reserve price

derived in (𝑏) is only about 1% of 𝑐0 higher. The results are even more drastic if we express

expected costs as a percent of benchmark costs. Then the reserve price in (𝑏) produces still

only a 1%-2% increase in costs relative to the benchmark case, whereas the IPV reserve price

leads to a 10%-35% increase in costs. The disparity is smallest when 𝑐0 is very close to the

mean cost, which is not very likely to happen in reality. In realistic cases of 𝑐0 equal to at

least 150% of the mean costs, the gain from using the cost distribution estimated under the

assumption of unobserved heterogeneity constitutes at least 16% of the benchmark costs.

This is a significant effect, especially since the bidders’ mark-up in this environment consti-

tutes only about 6%-8% of the costs. The discrepancy is much higher when the reserve price

is derived on the basis of APV estimates. Also, IPV and APV results imply a lower than

optimal probability to submit a bid.

Evaluating assumptions of the model. The identification and estimation of the model

with unobserved auction heterogeneity relies on the assumption that individual cost compo-

nents are independent from each other and from the common cost component. Proposition

2 from the identification section allows us to evaluate the validity of these assumptions in

the data.

Part (2) of Proposition 2 suggests a test of independence of individual components.

Implementation of this test is discussed in section 5.2. The results of the test are reported

in Table 3. They strongly suggest that the null hypothesis cannot be rejected.

29The average is taken with respect to the distribution of the unobserved auction heterogeneity.
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Part (3) of Proposition 2 allows us to test the assumption that the common component

is independent from the individual components. This test is performed as a test of the

equality of two functions. Both functions are estimated from the data. The testing procedure

is described in the Appendix. The p-value of the test statistic is 0.81. The null hypothesis,

therefore, cannot be rejected at any reasonable significance level.

I have also performed the test from part (1) of Proposition 2 following the same

procedure as above. The p-value of the test statistic is 0.63. It is, therefore, in line with the

results of the tests presented earlier.

Robustness check. The model of bidding behavior that I take to the data assumes

that firms’ bidding decisions are independent across auctions. This assumption may be

violated if bidders’ decisions are affected by dynamic considerations. In particular, when a

company is capacity-constrained, it has to take into account the effect of winning the project

today on its ability to explore profitable opportunities tomorrow. If dynamic links between

auctions are substantial in magnitude, our estimates of the characteristic function of the

joint distribution of two bids submitted in the same auction may be biased, which in turn

would lead to biased estimates for the distributions of cost components. To evaluate the

effect of dynamic links on the performance of the estimation procedure, I re-estimate the

model for the subset of projects, such that all regular firms bidding for the projects in this

subset have their backlog variable between 30% and 75% of the maximum of the backlog

variable for the firms observed in the data. Even though this exercise substantially reduces

the number of available projects and, therefore, leads to less precise estimates, they imply

similar results for the variance decomposition and the biases from misspecification.

6 Conclusion

This paper proposes a nonparametric procedure to recover the distribution of bidders’ private

information when unobserved auction heterogeneity is present. It derives sufficient conditions

under which the model is identified, and shows that the estimation procedure produces

uniformly consistent estimators of the distributions in question. The paper describes a

number of testable restrictions implied by the model with unobserved heterogeneity. It also

provides guidance on the practical implementation of the testing procedures that correspond

to these restrictions.

This methodology is applied to the data for highway maintenance projects collected
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by Michigan Department of Transportation. For this data set, private information is esti-

mated to explain only about 34.4% of the variation in a project’s costs. This estimate is

obtained while conditioning on the number of bidders, on the type of the project as defined

by the main task, and on the size and duration bracket. Results of the estimation reveal

that the estimation procedures that account for unobserved auction heterogeneity tend to

estimate higher average costs, lower variance of the cost distribution, and lower mark-ups

relative to the estimates obtained under the assumption of Independent or Affiliated Private

Values. Additionally, the reserve price chosen on the basis of IPV or APV estimates leads

to significantly higher costs of procurement than the reserve price chosen on the basis of

the estimates for the unobserved auction heterogeneity model. This result holds both in the

case where the reserve price is derived as a function of a specific realization of unobserved

heterogeneity, and in the case where a single reserve price is chosen in such a way as to

minimize the average cost of procurement where the average is taken with respect to the

distribution of unobserved heterogeneity. In the latter case, the average cost of the procure-

ment is 9%-19% lower than the average cost achieved when the reserve price based on either

IPV or APV estimates is used.

The methodology in this paper is developed for the case where a bidder’s cost of

completing the project equals the product of the common cost component and the individual

cost component. A somewhat more general model that allows for the common component

to have distinct effects on the mean and variance of the cost distribution is analyzed in

Krasnokutskaya (2009).
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7 Appendix

7.1 Proofs of Theoretical Results

Proof of Proposition 1:

The vector of equilibrium strategies in the game with 𝑦 = 1 satisfies the system of

differential equations

1

𝑎 − 𝑥
=

(𝑚𝑘 − 1)𝑓𝑋𝑘
(𝛼−1
𝑘1 (𝑎))

(1− 𝐹𝑋𝑘
(𝛼−1
𝑘1 (𝑎)))𝛼

′
𝑘1(𝛼

−1
𝑘1 (𝑎))

+
𝑚−𝑘𝑓𝑋𝑘

(𝛼−1
𝑘1 (𝑎))

(1− 𝐹𝑋𝑘
(𝛼−1
𝑘1 (𝑎)))𝛼

′
𝑘1(𝛼

−1
𝑘1 (𝑎))

(5)

with boundary conditions: (𝑎) 𝛼𝑘(𝑥) = 𝑥 and (𝑏) there exists 𝑑0 ∈ [𝑥, 𝑥] such that 𝛼𝑘(𝑥) = 𝑑0.

Define (𝛽1𝑦, 𝛽2𝑦), 𝛽𝑘𝑦 : [𝑦𝑥, 𝑦𝑥]→ (0,∞) such that

𝛽𝑘𝑦(𝑧) = 𝑦𝛼𝑘(
𝑧

𝑦
), (6)

𝛽𝑘𝑦(𝑦𝑥) = 𝑦𝑥,

𝛽𝑘𝑦(𝑦𝑥) = 𝑦𝑑0.

Substituting (6) into (5) obtains that 𝛽1𝑦, 𝛽2𝑦 satisfy the first-order conditions for the game

indexed by 𝑦. They also satisfy corresponding boundary conditions by definition. Therefore,

a vector (𝛽1𝑦, 𝛽2𝑦) constitutes the set of equilibrium functions.

Proof of Theorem 1:

(a) I start by establishing a statistical result that I use to prove Theorem 1. Namely,

Lemma 1.1

Let 𝑋 be a random variable with the probability density function 𝑓(.) and support

[𝑥, 𝑥], then the characteristic function of variable 𝑋,𝜑𝑋(𝑡), is non-vanishing; i.e., for every

𝑇 > 0 there is 𝑡 such that ∣𝑡∣ > 𝑇 and 𝜑𝑋(𝑡) ∕= 0.
Proof

The idea of a proof is to consider the extension of the characteristic function 𝜑𝑋(𝑡) =
𝑥∫
𝑥

𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥 to the complex domain. In particular, I consider function 𝜑𝑋(.) defined as

𝜑𝑋(𝑧) =
𝑥∫
𝑥

𝑒𝑖𝑧𝑥𝑓(𝑥)𝑑𝑥 at an arbitrary complex point 𝑧. It is straightforward to show that
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𝜑𝑋(.) is an entire function; i.e., it is infinitely complex differentiable at every finite point of

the complex plane. Therefore, it can only be equal to zero in a countable number of points.

Thus, the number of points where 𝜑𝑋(𝑡) is equal to zero cannot be more than countable,

which means that 𝜑𝑋(𝑡) is non-vanishing.

Finally, 𝜑𝑋(.) is an entire function because

𝜑
(𝑘)
𝑋 (𝑧) =

𝑥∫
𝑥

(𝑖𝑥)𝑘𝑒𝑖𝑧𝑥𝑓(𝑥)𝑑𝑥.

Notice that for every 𝑘, 𝜑
(𝑘)
𝑋 (𝑧) is well defined due to the boundedness of the 𝑋’

support. That concludes the proof of Lemma 1.1.

(b) Random variables 𝑌 , 𝐴𝑖, log(𝑌 ) and log(𝐴𝑖) have bounded supports and, there-

fore, have non-vanishing characteristic functions. The identification result follows from a

theorem by Kotlarski (1966)30 and results established by Laffont and Vuong (1996) as de-

scribed in section 3.1.

Proof of Proposition 2

(1) If 𝑋𝑖𝑘 ’s are independent, then so are log(𝑋𝑖𝑘). The structure of the bidder’s cost,

𝑐𝑖 = 𝑦𝑥𝑖, implies that log(
𝐵𝑖1

𝐵𝑖3
) = log(𝐴𝑖1) − log(𝐴𝑖3) and log(

𝐵𝑖2

𝐵𝑖3
) = log(𝐴𝑖2) − log(𝐴𝑖3).

Then, by Kotlarski’s (1966) theorem, the characteristic function of log(𝐴𝑖3) is given by

Λlog(𝐴𝑖3
)(−𝑡) = exp(

𝑡∫
0

Θ1(0, 𝑢2)

Θ(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[log(𝐴𝑖1)]),

and the characteristic function of log(𝐴𝑖1) by

Λlog(𝐴𝑖1
)(𝑡) =

Θ(𝑡, 0)

Λlog(𝐴𝑖3
)(−𝑡)

. (7)

If bidders 𝑖1 and 𝑖3 are from the same group, then the characteristic functions of log(𝐴𝑖1)

and log(𝐴𝑖3) should be the same up to a multiplicative factor determined by the difference

in means induced by normalization. Let us consider normalization 𝐸[log(𝐴𝑖1)] = 0. Then,

equation (7) implies that log(
𝐵𝑖2

𝐵𝑖3
) and −log(𝐴𝑖3) should have the same mean. However,

30See Rao (1992).
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𝑘(𝑖1) = 𝑘( 𝑖3) therefore 𝐸[log(
𝐵𝑖1

𝐵𝑖3
)] = 0. This implies 𝐸[log(𝐴𝑖3)] = = 𝐸[log(𝐴𝑖1)] = 0, and

hence

Λlog(𝐴𝑖1
)(𝑡) = Λlog(𝐴𝑖3

)(𝑡).

(2) The proof follows from the property of independent variables: if the random

variables 𝑍1 and 𝑍2 are independent, then so are 𝑓(𝑍1) and 𝑓(𝑍2), for any function 𝑓(.).

(3) If 𝑌 and𝑋𝑖’s are independent, the cost structure is given by 𝑐𝑖𝑗 = 𝑦𝑗𝑥𝑖𝑗 ; then, Kot-

larski’s (1966) theorem applied to (log(𝐵𝑖1), log(𝐵𝑖2)) implies that the characteristic function

of log(𝐴𝑖1) is given by the function Φlog(𝐴𝑖1
)(𝑡) defined by (3). Kotlarski’s (1966) theorem

applied to (log(
𝐵𝑖1

𝐵𝑖3
), log(

𝐵𝑖2

𝐵𝑖3
)) implies that the characteristic function of log(𝐴𝑖1) is given by

Λlog(𝐴𝑖1
)(𝑡) defined by (4). Thus, under normalization 𝐸[log(𝐴𝑖1)] = 0 the following equality

has to hold

Φlog(𝐴𝑖1
)(𝑡) = Λlog(𝐴𝑖1

)(𝑡).

A similar relationship holds for 𝑖3. This is obvious if 𝑖1 and 𝑖3 belong to the same group. If

they do not, then we have to make sure that normalization does not induce a shift of a random

variable, which corresponds to Λlog(𝐴𝑖3
)(𝑡) relative to the random variable, which corresponds

to Φlog(𝐴𝑖3
)(𝑡). It is easy to see, however, that the former represents a characteristic function

of a random variable with a mean equal to 𝐸[log(𝐵𝑖3)]−𝐸[log(𝐵𝑖1)]. The same is true of the

latter.

Proof of Proposition 3:

The “only-if”direction is a straightforward corollary of the identification argument

and the properties of the bidding strategies.

7.2 Estimation

I start by describing how the supports of the distributions of the individual bid and the

common cost components can be estimated. Then, I proceed to the proof of proposition 4.

Estimation of the support bounds

Strictly speaking, bounds of the support are recovered during the inversion procedure

when the density function of the distribution in question is computed. According to the

inversion formula, the density function recovered from the theoretical characteristic function
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should approach zero as the smoothing parameter T approaches infinity at every point outside

of the support. Therefore, the upper and lower bounds of the support are respectively

defined as lower and upper limits of the points where the density function is equal to zero.

In estimation, the density function recovered from the estimated characteristic function does

not, in general, equal zero outside of the support. An econometrician, therefore, has to

choose cut-off points that correspond to sufficiently low values of the estimated density

function. Unfortunately, econometric theory does not provide us with guidelines on how to

choose such cut-off points which is why I use a different approach in this paper. I estimate

bounds of the supports for the distributions of interest using restrictions imposed by the

model with unobserved auction heterogeneity. If the data are generated by the model with

unobserved auction heterogeneity, then this approach leads to consistent estimators of the

support bounds. The proof of this statement and the derivation of the rate of convergence are

given together with the proof of Proposition 6. Below I describe a procedure to estimate the

support bounds of the distributions of the individual bid and the common cost components.

Denote the support of the log of the common component by [𝑦, 𝑦] and the supports

of the log of the individual bid components by [𝑎, 𝑎]. Then the support of the log of bids

for group 1 is given by [𝑎 + 𝑦, 𝑎 + 𝑦], and the support of the differences in the logs of bids

is given by [𝑎 − 𝑎, 𝑎 − 𝑎]. Additionally, I start with the normalization 𝐸[log(𝐴1)] = 0.

Since the bounds of the supports can be estimated as [min(log(𝑏1𝑙𝑗)),max(log(𝑏1𝑙𝑗))] and

[min(log(𝑏1𝑙𝑗)− log(𝑏1𝑝𝑗)),max(log(𝑏1𝑙𝑗)− log(𝑏1𝑝𝑗))], I arrive at the system of equations

min(log(𝑏1𝑙𝑗)) = �̂�𝑛 + �̂�
𝑛
,

max(log(𝑏1𝑙𝑗)) = �̂�𝑛 + �̂�𝑛,

max(log(𝑏1𝑙𝑗)− log(𝑏1𝑝𝑗)) = �̂�𝑛 − �̂�𝑛,

�̂�𝑛∫
�̂�𝑛

𝑎𝑔𝐿𝐴,𝑛(𝑎)𝑑𝑎 = 0.

Therefore, I have a system of four equations in four unknowns. The population counterpart
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of this system is

𝑎+ 𝑦 = 𝑙𝑜𝑔(𝑏),

𝑎+ 𝑦 = 𝑙𝑜𝑔(𝑏),

𝑎 − 𝑎 = 𝑙𝑜𝑔(𝑏1)− 𝑙𝑜𝑔(𝑏2),
𝑎∫
𝑎

𝑎𝑔𝐿𝐴(𝑎)𝑑𝑎 = 0.

It is straightforward to establish that this system has a solution, and that this solution is

unique. First, notice that 𝑦, 𝑦 and 𝑎 can be expressed as functions of 𝑎 :

𝑦 = 𝑏 − 𝑎

𝑦 = 𝑏 − 𝑏1 − 𝑏2 − 𝑎

𝑎 = 𝑏1 − 𝑏2 + 𝑎.

Let us denote 𝑈1 = 𝑏, 𝑈2 = 𝑏, 𝑈3 = 𝑏1 − 𝑏2, then 𝑎 = 𝑈3+𝑎 and
𝑈3+𝑎∫
𝑎

𝑎𝑔𝐿𝐴(𝑎)𝑑𝑎 = 0. Second,

let us establish that −𝑈3 ≤ 𝑎 ≤ 0. Indeed, since 𝑔𝐿𝐴(𝑎) ≥ 0 and
𝑈3+𝑎∫
𝑎

𝑎ℎ𝐿𝐴(𝑎)𝑑𝑎 = 0, it must

follow that 𝑎 ≤ 0 and 𝑎 ≥ 0 or 𝑎 ≥ −𝑈3. Third, it is easy to show that 𝑓(𝑧) =
𝑈3+𝑧∫
𝑧

𝑎𝑔𝐿𝐴(𝑎)𝑑𝑎

is strictly increasing on (−𝑈3, 0) since 𝑔𝐿𝐴 (.) is positive on the interior of the log(𝐴) support.

Indeed, 𝑓 ′(𝑧) = (𝑈3 + 𝑧)𝑔𝐿𝐴(𝑈3 + 𝑧)− 𝑧𝑔𝐿𝐴(𝑧) > 0. If 𝑧 < 𝑎 then 𝑧𝑔𝐿𝐴(𝑧) = 0; at the same

time, 0 < 𝑈3+𝑧 ≤ 𝑈3+𝑎 = 𝑎 and, therefore, (𝑈3+𝑧)𝑔𝐿𝐴(𝑈3+𝑧) > 0. The argument is similar

when 𝑧 > 𝑎. We have two cases when 𝑧 = 𝑎 : (a) 𝑔𝐿𝐴(𝑎) ≥ 𝑔𝐿𝐴(𝑎); and (b) 𝑔𝐿𝐴(𝑎) < 𝑔𝐿𝐴(𝑎).

In (a), 𝑓 ′(𝑧) > 0 follows immediately. In (b) we have 𝑎𝑔𝐿𝐴(𝑎)−𝑎𝑔𝐿𝐴(𝑎) > (𝑎−𝑎)𝑔𝐿𝐴(𝑎) ≥ 0.

Finally, 𝑓(−𝑈3) < 0 whereas 𝑓(0) > 0. Therefore, the solution to
𝑈3+𝑎∫
𝑎

𝑎𝑔𝐿𝐴(𝑎)𝑑𝑎 = 0 must

exist and be unique.

Proof of Proposition 5:

The proof consists of several steps.

(1) First, I establish that the distribution function and the probability density func-

tions of the individual bid components inherit properties of the distribution function and

the probability density functions of the individual cost component. Namely,
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Lemma 5.1

Given 𝐷1 − 𝐷5, the distribution functions 𝐺𝐴𝑘
(.) satisfy:

(𝑖) Their supports 𝑆(𝐺𝐴𝑘
) are given by [𝑎, 𝑎] with 𝑎 = 𝑥 and 𝑎 > 0;

(𝑖𝑖) 𝐺𝐴𝑘
is continuously differentiable on the interior of 𝑆(𝐺𝐴𝑘

);

(𝑖𝑖𝑖) For every closed subset of the interior of 𝑆(𝐺𝐴𝑘
), there exists 𝑐𝑔 > 0 such that

∣𝑔𝐴𝑘
(𝑎)∣ ≥ 𝑐𝑔 > 0 on this subset.

(𝑖𝑣) For every closed subset of the interior of 𝑆(𝐺𝐴𝑘
), there exists 𝑐𝐺 > 0 such that

1− 𝐺𝐴𝑘
(𝑎) ≥ 𝑐𝐺 > 0 on this subset.

Proof

The point (𝑖) is established in section 2. To show that the points (𝑖𝑖), (𝑖𝑖𝑖) and

(𝑖𝑣) hold, I use the relationship between the distribution functions of the individual bid

components and the distribution functions of the individual cost components. Namely,

𝐺𝐴𝑘
(𝑎) = 𝐹𝑋𝑘

(𝜉𝑘(𝑎)),

where 𝜉𝑘(.) is the inverse individual bid function of the bidder of group 𝑘. Then,

𝑔𝐴𝑘
(𝑎) = 𝐺′

𝐴𝑘
(𝑎) = 𝑓𝑋𝑘

(𝜉𝑘(𝑎))𝜉
′
𝑘(𝑎).

From (𝐷2): 𝑓𝑋𝑘
(.) is continuously differentiable and for every closed subset of 𝑆(𝐺𝐴𝑘

), there

exists 𝑐𝑓 > 0 such that ∣𝑓𝑋𝑘
(.)∣ ≥ 𝑐𝑓 ; from equilibrium characterization: 𝜉𝑘(.) is continuously

differentiable and strictly increasing on 𝑆(𝐺𝐴𝑘
); therefore, for every closed subset of 𝑆(𝐺𝐴𝑘

),

there exists 𝑐0 > 0 such that ∣𝜉′𝑘(.)∣ ≥ 𝑐0. This implies (𝑖𝑖) and (𝑖𝑖𝑖) where 𝑐𝑔 is equal to

the product of corresponding 𝑐𝑓 and 𝑐0. Finally, (𝑖𝑖𝑖) implies that 𝐺𝐴𝑘
(𝑎) < 1 for any closed

subset of 𝑆(𝐺𝐴𝑘
), which obtains (𝑖𝑣).

(2) If the probability density functions of the cost components are ordinarily smooth

of order ϰ > 1, then Theorems 3.1- 3.2 in Li and Vuong (1998) apply; these theorems

establish the uniform consistency of the first-stage estimators. In particular, they establish
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that

sup
𝑦∈𝑆(𝐻𝐿𝑌 )

∣𝑓𝐿𝑌,𝑛(𝑦)− 𝑓𝐿𝑌 (𝑦)∣ = 𝑂(
𝑛

log log𝑛
)
−(2ϰ−1)
2(2+5ϰ)

sup
𝑎∈𝑆(𝐺𝐿𝐴𝑘

)

∣𝑔𝐿𝐴𝑘,𝑛(𝑎)− 𝑔𝐿𝐴𝑘
(𝑎)∣ = 𝑂(

𝑛

log log𝑛
)
−(2ϰ−1)
2(2+6ϰ) .

Since,

𝑓𝑌 (𝑦) =
𝑓𝐿𝑌 (log(𝑦))

𝑦
, 𝑓𝑌,𝑛(𝑦) =

𝑓𝐿𝑌,𝑛(log(𝑦))

𝑦

𝑓𝐴𝑘
(𝑎) =

𝑓𝐿𝐴𝑘
(log(𝑎))

𝑎
, 𝑓𝐴𝑘,𝑛(𝑎) =

𝑓𝐿𝐴𝑘,𝑛(log(𝑎))

𝑎

and 𝑎 ∈ [𝑎, 𝑎], 𝑎 > 𝑥 > 0, then

sup
𝑦∈𝑆(𝐻𝑌 )

∣𝑓𝑌,𝑛(𝑦)− 𝑓𝑌 (𝑦)∣ = 𝑂(
𝑛

log log𝑛
)
−(2ϰ−1)
2(2+5ϰ)

sup
𝑎∈𝑆(𝐺𝐴𝑘

)

∣𝑔𝐴𝑘,𝑛(𝑎)− 𝑔𝐴𝑘
(𝑎)∣ = 𝑂(

𝑛

log log𝑛
)
−(2ϰ−1)
2(2+6ϰ) .

(3) Next, I establish the uniform convergence of the individual bid function following

the logic of Proposition 3 and Theorem 3 of Guerre, Perrigne, and Vuong (2000).

(a) First, I derive the rate of convergence for the support bounds, 𝑎 and 𝑎. Recall that

the bounds of supports have been derived in several steps. First, supports of the distributions

of 𝐿𝐵1𝑖 and (𝐿𝐵1𝑖1 − 𝐿𝐵1𝑖2) have been estimated as

[min(log(𝑏1𝑙𝑗)),max(log(𝑏1𝑙𝑗))] = [𝑈1,𝑛, 𝑈2,𝑛]

[min(log(𝑏1𝑙𝑗)− log(𝑏1𝑝𝑗)),max(log(𝑏1𝑙𝑗)− log(𝑏1𝑝𝑗))] = [−𝑈3,𝑛, 𝑈3,𝑛].

These are maximum likelihood estimators for the support bounds of corresponding densities.

(They are well defined due to (v) of Lemma 6.1.) We know that they converge to the true

value of the support bounds at the rate of 𝑛.

�̂�𝑛(𝑧) = (

𝑈3,𝑛+𝑧∫
𝑧

𝑎𝑔𝐿𝐴1,𝑛(𝑎)𝑑𝑎)
2 = (

𝑈3,𝑛∫
0

𝑎𝑔𝐿𝐴1,𝑛(𝑎+ 𝑧)𝑑𝑎 + 𝑧)2.
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The usual results for extremum estimators apply. Notice that �̂�𝑛 → (
𝑈3∫
0

𝑎𝑔𝐿𝐴1(𝑎+𝑧)𝑑𝑎+𝑧)2 at

the same rate as 𝑔𝐿𝐴1,𝑛 converges to 𝑔𝐿𝐴1 .
31 Let us denote this rate by 𝑑𝑛. All the standard

conditions for the convergence of extremum estimators hold; therefore, �̂�𝑛 converges to 𝑎

uniformly at the rate 𝑑𝑛. Since, �̂�𝑛, �̂�
𝑛
, and �̂�𝑛 are linear combinations of 𝑈1,𝑛, 𝑈2,𝑛, 𝑈3,𝑛 and

�̂�𝑛, they converge uniformly to 𝑎, 𝑦, 𝑦 correspondingly at the rate 𝑑𝑛. The bounds of supports

for 𝐴𝑘 are estimated as �̂�1
𝑛 = 𝑒𝑥𝑝(�̂�𝑛) and �̂�

1

𝑛 = 𝑒𝑥𝑝(�̂�𝑛), respectively. The smoothness of the

exponential function ensures the consistency of these estimators. The delta method can be

used to show that the rate of convergence remains equal to 𝑑𝑛.

(b) The rate of convergence for 𝑔𝐴𝑘,𝑛(.) is established in Li and Vuong (1998). Recall

that here we denote it 𝑑𝑛. Now, we derive a rate of convergence for �̂�𝐴𝑘,𝑛. The estimator

for 𝐺𝐴𝑘
is defined as

�̂�𝐴𝑘,𝑛(𝑎) =

𝑎∫
�̂�𝑛

𝑔𝐴𝑘,𝑛(𝑎)𝑑𝑎.

To establish consistency we consider

∣∣∣�̂�𝐴𝑘,𝑛(𝑎)− 𝐺𝐴𝑘
(𝑎)

∣∣∣ ≤
∣∣∣∣∣∣∣
𝑎𝑘∫

�̂�𝑘,𝑛

𝑔𝐴𝑘,𝑛(𝑎)𝑑𝑎

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
𝑎∫

𝑎𝑘

(𝑔𝐴𝑘,𝑛(𝑎)− 𝑔𝐴𝑘
(𝑎))𝑑𝑎

∣∣∣∣∣∣∣ .
Since 𝑔𝐴𝑘

is a continuous function with bounded support, according to Lemma 6.1, (𝑖𝑖), then

𝑔𝐴𝑘
is a bounded function. For large enough 𝑛, 𝑔𝐴𝑘,𝑛 is also bounded a.s. due to the uniform

convergence of 𝑔𝐴𝑘,𝑛 to 𝑔𝐴𝑘
. Then, part (b) implies that the first summand converges to zero

at the rate 𝑑𝑛. The second summand also converges to zero at the rate 𝑑𝑛 since support of

𝑔𝐴𝑘
is bounded. Therefore, �̂�𝐴𝑘,𝑛 converges to 𝐺𝐴𝑘

at the rate 𝑑𝑛.

(c) Next, I prove the uniform consistency of the estimator for the individual inverse

bid function. The following argument holds for every closed subset of (𝑎, 𝑎). Notice that for

every 𝑎 ∈ (𝑎, 𝑎) corresponding 𝜉𝑘,𝑛(𝑎) is finite. It follows immediately since 𝑔𝐴𝑘,𝑛(𝑎) and

1 − �̂�𝐴𝑘,𝑛(𝑎) are positive on the interior of the support. Notice that 𝑔𝐴𝑘,𝑛(𝑎) ≥ 𝑐𝑔 > 0 and

(1− �̂�𝐴𝑘,𝑛(𝑎)) ≥ 𝑐𝐺 > 0 for some 𝑐𝑔 and 𝑐𝐺, since 𝑔𝐴𝑘,𝑛 and �̂�𝐴𝑘,𝑛 uniformly converge to 𝑔𝐴𝑘

31See Li and Vuong (1998) for an appropriate rate of convergence.
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and 𝐺𝐴𝑘
, respectively, and (𝑖𝑖𝑖), (𝑖𝑣) of Lemma 6.1. Let us denote

𝜉𝑘(𝑎) =
(1− 𝐺𝐴1(𝑎)) ⋅ (1− 𝐺𝐴2(𝑎))

(𝑚𝑘 − 1) ⋅ 𝑔𝐴𝑘
(𝑎) ⋅ (1− 𝐺𝐴−𝑘

(𝑎)) +𝑚−𝑘 ⋅ 𝑔𝐴−𝑘
(𝑎) ⋅ (1− 𝐺𝐴𝑘

(𝑎))
,

𝜉𝑘,𝑛(𝑎) =
(1− �̂�𝐴1,𝑛(𝑎)) ⋅ (1− �̂�𝐴2,𝑛(𝑎))

(𝑚𝑘 − 1) ⋅ 𝑔𝐴𝑘,𝑛(𝑎) ⋅ (1− �̂�𝐴−𝑘,𝑛(𝑎)) +𝑚−𝑘 ⋅ 𝑔𝐴−𝑘,𝑛(𝑎) ⋅ (1− �̂�𝐴𝑘,𝑛(𝑎))
,

𝜁𝑘(𝑎) = (𝑚𝑘 − 1) ⋅ 𝑔𝐴𝑘
(𝑎) ⋅ (1− 𝐺𝐴−𝑘

(𝑎)) +𝑚−𝑘 ⋅ 𝑔𝐴−𝑘
(𝑎) ⋅ (1− 𝐺𝐴𝑘

(𝑎)),

𝜁𝑘,𝑛(𝑎) = (𝑚𝑘 − 1) ⋅ 𝑔𝐴𝑘,𝑛(𝑎) ⋅ (1− �̂�𝐴−𝑘,𝑛(𝑎)) +𝑚−𝑘 ⋅ 𝑔𝐴−𝑘,𝑛(𝑎) ⋅ (1− �̂�𝐴𝑘,𝑛(𝑎)),

𝜀𝑘(𝑎) = (1− 𝐺𝐴𝑘
(𝑎)) ⋅ (1− 𝐺𝐴−𝑘

(𝑎)),

𝜀𝑘,𝑛(𝑎) = (1− �̂�𝐴𝑘,𝑛(𝑎)) ⋅ (1− �̂�𝐴−𝑘,𝑛(𝑎)).

Then, ∣∣∣𝜉𝑘,𝑛(𝑎)− 𝜉𝑘(𝑎)
∣∣∣ ≤ 1

𝐶2
1

∣∣∣𝜀𝑘,𝑛(𝑎)𝜁𝑘(𝑎)− 𝜀𝑘(𝑎)𝜁𝑘,𝑛(𝑎)
∣∣∣ , 𝐶1 = (𝑚𝑘 +𝑚−𝑘 − 1)𝑐𝑔𝑐𝐺∣∣∣𝜉𝑘,𝑛(𝑎)− 𝜉𝑘(𝑎)

∣∣∣ ≤ 1

𝐶2
1

(∣𝜀𝑘,𝑛(𝑎)− 𝜀𝑘(𝑎)∣ ⋅ ∣𝜁𝑘(𝑎)∣+
∣∣∣𝜁𝑘,𝑛(𝑎)− 𝜁𝑘(𝑎)

∣∣∣ ⋅ ∣𝜀𝑘(𝑎)∣),∣∣∣𝜉𝑘,𝑛(𝑎)− 𝜉𝑘(𝑎)
∣∣∣ ≤ 𝐶1

𝐶2
1

∣𝜀𝑘,𝑛(𝑎)− 𝜀𝑘(𝑎)∣+ �̃�2𝐺
𝐶2

1

∣∣∣𝜁𝑘,𝑛(𝑎)− 𝜁𝑘(𝑎)
∣∣∣ ,

where 𝐶1 = (𝑚1 +𝑚2 − 1)�̃�𝑔�̃�𝐺, �̃�𝑔 = max𝑎∈𝑆(𝐴𝑘)(𝑔𝐴𝑘
(𝑎)), and �̃�𝐺 = max𝑎∈𝑆(𝐴𝑘)(1−𝐺𝐴𝑘

(𝑎)).

The constants �̃�𝑔, and �̃�𝐺 are well defined because 𝑔𝐴𝑘
(.) and 𝐺𝐴𝑘

(.) are continuous functions,

and 𝑆(𝐴𝑘) is a compact set.

Point-wise application of the delta method and uniform convergence of 𝑔𝐴𝑘,𝑛 and

�̂�𝐴𝑘,𝑛 to 𝑔𝐴𝑘
and 𝐺𝐴𝑘

correspondingly allows us to conclude that

∣𝜀𝑘,𝑛(𝑎)− 𝜀𝑘(𝑎)∣ = 𝑂(𝑑𝑛), a.s.∣∣∣𝜁𝑘,𝑛(𝑎)− 𝜁𝑘(𝑎)
∣∣∣ = 𝑂(𝑑𝑛), a.s.∣∣∣𝜉𝑘,𝑛(𝑎)− 𝜉𝑘(𝑎)
∣∣∣ = 𝑂(𝑑𝑛), a.s..

(d) Next, I establish the uniform convergence of the individual bid function estimator.

For a given 𝑥 ∈ (𝑥, 𝑥) let us denote by 𝑎0 = 𝛼𝑘(𝑥) and by 𝑎𝑛 = �̂�𝑘,𝑛(𝑥). Here, 𝑎0 is some

number from (𝑎, 𝑎), and 𝑎𝑛 is a random variable with realizations in (𝑎, 𝑎) for large 𝑛. For
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every realization of 𝑎𝑛, there is a number 𝑎∗ such that

𝜉𝑘(𝑎0)− 𝜉𝑘(𝑎𝑛) = 𝜉
′
𝑘(𝑎

∗
𝑛)(𝑎0 − 𝑎𝑛), 𝑎∗

𝑛 ∈ [𝑎0, 𝑎𝑛]

since 𝜉𝑘(.) is continuously differentiable on the compact. Let us also denote by 𝑎∗
𝑛 a random

variable with realizations as above. Notice that if 𝑎0, 𝑎𝑛 always belong to the interior of

𝑆(𝐴𝑘), then 𝑎∗
𝑛 also always belongs to the interior of 𝑆(𝐴𝑘). Since 𝜉𝑘(.) is strictly increasing

on the compact, then
∥∥𝜉 ′
𝑘(𝑎

∗
𝑛)
∥∥ ≥ 𝑐𝜉 > 0 and, therefore,

∥𝑎0 − 𝑎𝑛∥ ≤ 1

𝑐𝜉
∥𝜉𝑘(𝑎0)− 𝜉𝑘(𝑎𝑛)∥ .

On the other hand,

𝜉𝑘(𝑎0)− 𝜉𝑘(𝑎𝑛) = 𝜉𝑘,𝑛(𝑎𝑛)− 𝜉𝑘(𝑎𝑛).

Since, as I have shown above, 𝜉𝑘,𝑛 converges uniformly to 𝜉𝑘, then

∥𝜉𝑘(𝑎0)− 𝜉𝑘(𝑎𝑛)∥ =
∥∥∥𝜉𝑘,𝑛(𝑎𝑛)− 𝜉𝑘(𝑎𝑛)

∥∥∥ = 𝑂(𝑑𝑛) a.s.

and

∥𝑎0 − 𝑎𝑛∥ = ∥�̂�𝑘,𝑛(𝑥)− 𝛼𝑘(𝑥)∥ = 𝑂(𝑑𝑛) a.s..

(e) Finally, I establish the uniform convergence of 𝐹𝑋𝑘,𝑛(𝑥).∥∥∥�̂�𝐴𝑘,𝑛(�̂�𝑘,𝑛(𝑥))− 𝐺𝐴𝑘
(𝛼𝑘(𝑥))

∥∥∥ ≤
∥∥∥�̂�𝐴𝑘,𝑛(�̂�𝑘,𝑛(𝑥))− 𝐺𝐴𝑘

(�̂�𝑘,𝑛(𝑥))
∥∥∥+∥𝐺𝐴𝑘

(�̂�𝑘,𝑛(𝑥))− 𝐺𝐴𝑘
(𝛼𝑘(𝑥))∥ .

Uniform convergence of �̂�𝐴𝑘,𝑛 and �̂�𝑘,𝑛(𝑥) and continuous differentiability of 𝐺𝐴𝑘
(.) obtain∥∥∥�̂�𝐴𝑘,𝑛(�̂�𝑘,𝑛(𝑥))− 𝐺𝐴𝑘

(𝛼𝑘(𝑥))
∥∥∥ = 𝑂(𝑑𝑛) a.s.

Practical Issues

As noted by Diggle and Hall (1993) and Li, Perrigne and Vuong (2000), the estimators

for 𝑓𝐿𝑌 (.) and 𝑔𝐿𝐴(.), which are obtained by truncated inverse Fourier transformation, may

have fluctuating tails.32 This feature can be alleviated by adding a damping factor to the

integrals in 𝑓𝐿𝑌 (.) and 𝑔𝐿𝐴(.). Following Diggle and Hall (1993) and Li, Perrigne and Vuong

(2000), I introduce a damping factor defined as

32Li, Perrigne and Vuong (2000) encountered this problem as well and dealt with it in a similar way.
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𝑑𝑇 (𝑡) =

{
1− ∣𝑡∣

𝑇
, 𝑖𝑓 ∣𝑡∣ ≤ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}
.

Thus, the estimators are generalized to

𝑔𝐿𝐴(𝑎) =
1

2𝜋

𝑇∫
−𝑇

𝑑𝑇 (𝑡) exp(−𝑖𝑡𝑎)Φ̂𝐿𝐴(𝑡)𝑑𝑡,

𝑓𝐿𝑌 (𝑦) =
1

2𝜋

𝑇∫
−𝑇

𝑑𝑇 (𝑡) exp(−𝑖𝑡𝑦)Φ̂𝐿𝑌 (𝑡)𝑑𝑡.

The smoothing parameter 𝑇 should be chosen to diverge slowly as 𝑛 → ∞, so as to

ensure the uniform consistency of the estimators. However, the actual choice of 𝑇 in finite

samples has not yet been addressed in the literature. I choose 𝑇 through a data-driven

criterion. In particular, I use the bid data to obtain estimates of the means and variances

for distributions33,34 of 𝐿𝑌 and 𝐿𝐴, 𝜇𝐿𝑌 , 𝜇𝐿𝐴1 = 0, 𝜇𝐿𝐴2, 𝜎2
𝐿𝑌 , 𝜎2

𝐿𝐴1
, 𝜎2
𝐿𝐴2

. These estimates

are then used to choose a value of 𝑇 . Specifically, I try different values of 𝑇 and obtain

estimates of 𝑓𝐿𝑌 (.) and 𝑔𝐿𝐴(.). From each estimated density I compute the means and

variances 𝜇𝐿𝑌 , 𝜇𝐿𝐴1, 𝜇𝐿𝐴2, 𝜎2
𝐿𝑌 , 𝜎2

𝐿𝐴1
, 𝜎2
𝐿𝐴2

, respectively. This gives goodness-of-fit criterion

∣𝜇𝐿𝑌 − 𝜇𝐿𝑌 ∣2 + ∣𝜎𝐿𝑌 − 𝜎𝐿𝑌 ∣2 for 𝐿𝑌 , and similarly for 𝐿𝐴𝑘. The value of 𝑇 that I choose

minimizes the sum of these errors in a percentage of 𝜎2
𝐿𝑌 and 𝜎2

𝐿𝐴𝑘
. In the estimation, the

optimal 𝑇 equals 50.

Finally, similar to Horowitz and Markatou (1996), I find that the bias correction tech-

nique described in their paper improves the performance of the estimator in small samples.

7.3 Summary of Testing Procedures

Section (a) describes the procedure to test the conditional independence of 𝑍1 and 𝑍2 condi-

tional on linear index variable 𝑋; section (b) outlines the procedure I use to test the equality

of two functions.

33Note that the estimation is performed under the assumption 𝐸[log(𝐴1)] = 0. The distributions are later
adjusted to satisfy normalization in (𝐷3).

34The estimates for the first two moments of the distributions of 𝐿𝑌 , 𝐿𝐴1 and 𝐿𝐴2 can be obtained

as follows: 𝜇𝐿𝑌 =
∑

𝑖1≤𝑚1
log(𝑏𝑖1 )

𝑛∗𝑚1
, 𝜇𝐿𝐴 = 0, 𝜇𝐿𝐴2 =

∑
𝑚1<𝑖2≤𝑚 log(𝑏𝑖2 )

𝑛∗(𝑚−𝑚1)
− 𝜇𝐿𝑌 , 𝜎

2
𝐿𝑌 = (𝜎2𝐿𝐵1

+ 𝜎2𝐿𝐵2
−

𝜎2𝐿𝐵1−𝐿𝐵2
)/2, 𝜎2𝐿𝐴1

= 𝜎2𝐿𝐵1
− 𝜎2𝐿𝑌 , 𝜎

2
𝐿𝐴2

= 𝜎2𝐿𝐵2
− 𝜎2𝐿𝑌 .
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(a) Test of conditional independence.35 The conditioning variable is assumed to be

given by a single index of the observable covariates, 𝜆𝜃(𝑋). The test statistic is based on the

monotonic transform of 𝜆𝜃(𝑋), 𝑈 = 𝐹0(𝜆𝜃(𝑋)), and Rosenblatt’s transforms
36 of 𝑍1 and 𝑍2,

𝑍1 = 𝐺𝑍1∣𝑈(𝑍1∣𝑈)
𝑍2 = 𝐺𝑍2∣𝑈(𝑍2∣𝑈).

Here, 𝑋 denotes the vector of project characteristics, 𝜃 is a vector of parameters, and 𝐹0(.)

is the cumulative distribution function of 𝜆𝜃(𝑋). The hypothesis tested is

𝐻0 : Pr(𝐺𝑍1
(𝑧1∣𝜆(𝑋), 𝑍2) = 𝐺𝑍1

(𝑧1), ∀ 𝑧1 ∈ [0, 1]) = 1 or
𝐻0 : Pr(𝐸[1(𝑍1 ≤ 𝑧1)∣𝜆(𝑋), 𝑍2] = 𝐸[𝑍1 ≤ 𝑧1], ∀ 𝑧1 ∈ [0, 1]) = 1.

The test statistic is given by

𝑇𝐾𝑆,𝑛 = sup
𝑟∈𝑆

∣∣∣𝜗𝑛(𝑟)∣∣∣ ,
where

𝜗𝑛(𝑟) =
1√
𝑛

𝑖=𝑛∑
𝑖=1

1(𝑈𝑖 ≤ 𝑢)(1(
ˆ̃
𝑍1𝑖 ≤ 𝑧1)− 𝑧1)(1(

ˆ̃
𝑍2𝑖 ≤ 𝑧2)− 𝑧2), 𝑟 = (𝑢, 𝑧1, 𝑧2), with

𝑈𝑖 = 𝐹𝑛,𝜃,𝑖(𝜆𝜃(𝑋)),
ˆ̃
𝑍1𝑖 = �̂�𝑍1∣𝑈,𝑖(𝑍1∣𝑈𝑖), ˆ̃

𝑍2𝑖 = �̂�𝑍2∣𝑈,𝑖(𝑍2∣𝑈𝑖)

where 𝐹𝑛,𝜃,𝑖(.), �̂�𝑍1∣𝑈,𝑖(.∣.), �̂�𝑍2∣𝑈,𝑖(.∣.) denote the empirical distribution function of
{
𝜆𝜃(𝑋𝑖)

}
𝑖=1,..,𝑛

and kernel estimators of 𝐺𝑍1∣𝑈,𝑖(.∣.), 𝐺𝑍2∣𝑈,𝑖(.∣.). All three objects are estimated with the
omission of the i-th data point. The test statistic above converges to a Gaussian process as

𝑛 → ∞. For more details see Song (2009). I compute the distribution of the test statistics

via a wild bootstrap procedure.

(b) Test of the equality of two functions. The null hypothesis is:

𝐻0 : 𝑓1(𝑡) = 𝑓2(𝑡) vs.

𝐻1 : 𝑓1(𝑡) ∕= 𝑓2(𝑡).

35This test is developed in Song (2007). An alternative approach to this test is presented in Su and White
(2008).

36See Rosenblatt (1952).
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The test statistic is defined as

𝑇𝑛 =
𝑖=𝑁∑
𝑖=1

𝑑2
𝑛(𝑓1,𝑛(𝑡𝑖)− 𝑓2,𝑛(𝑡𝑖))

2

where {𝑡𝑖}𝑖=1,..,𝑁 is a finite set of points from the real line. The asymptotic distribution of

this test statistic is unknown. Therefore, it is not clear whether a bootstrap procedure can

be used to compute the distribution of the test statistic. Instead, a subsampling procedure

can be used, since the rate of convergence is known.37 To ensure the power of the test, I use

re-centered test statistics following Hall and Horowitz (1996):

˜̂
𝑇 𝑛 =

𝑖=𝑁∑
𝑖=1

𝑑2
𝑛(𝑓0,𝑏(𝑡𝑖)− 𝑓0,𝑛(𝑡𝑖))

2

where 𝑓0,𝑏 = 𝑓1,𝑏−𝑓2,𝑏 is computed from a simulated sample and 𝑓0,𝑛 = 𝑓1,𝑛−𝑓2,𝑛 is computed

from the data.

37See Politis, Romano and Wolf (1999).
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7.4 Tables

Table 1: Descriptive Statistics

Number of Bidders overall 1 2 3 4 5 6

Number of observations 3,947 71 673 1126 1026 365 192
Engineer’s estimate (hdrds. th.) mean 1.175 12.80 10.27 12.60 13.90 12.90 16.40

std. dev. 4.660 2.35 1.41 3.02 2.26 1.79 3.39
Winning Bid (hdrds. th.) mean 1.175 11.10 10.00 11.80 12.90 11.80 15.20

std. dev. 4.660 2.32 1.50 2.89 2.25 1.66 3.35
Money Left on the Table mean 1.175 0.07 0.11 0.08 0.07 0.05 0.04

std. dev. 4.660 0.05 0.08 0.06 0.06 0.05 0.04
Number of Regular Bidders mean 1.175 1.92 1.43 1.65 2.07 2.16 2.29

std. dev. 1.175 1.06 0.62 0.72 0.98 1.21 1.32

Table 2: Regression Results

Variables Test Estimation
Subsample Subsample

Constant 0.375 0.327
(0.010) (0.012)

Engineer’s estimate 0.8413 0.8113
(0.028) (0.025)

Duration 0.0011 0.0015
(0.0013) (0.0011)

Tasks 0.0014 0.0012
(0.0007) (0.0009)

(𝑁𝑟𝑒𝑔𝑢𝑙𝑎𝑟, 𝑁𝑓𝑟𝑖𝑛𝑔𝑒) (4,0) (2,2)
Number of Projects 370 226

𝑅2 33% 17%
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Table 3: Results of Testing Procedures

Test p-value

1.
𝐵𝑖1
𝐵𝑖2

⊥𝐵𝑖3
𝐵𝑖4

Conditional Independence 0.52

2. 𝑋𝑖⊥𝑌 Bootstrap 0.81
Subsampling 0.75

3. 𝑋𝑖⊥𝑋𝑗 Bootstrap 0.43
Subsampling 0.63

Table 4: Reserve Price

Medium Projects: eng. est.=4.0(’00,000) unh unh, exp. ipv apv

1. Probability of Submitting a Bid 𝑐0 = 5 0.29 0.28 0.07 0.03
(expected) (0.26, 0.31) (0.25, 0.31) (0.05, 0.09) (0.02,0.06)

2. Expected Cost of Procurement 85.2 86.5 93.5 96.8
(as % of 𝑐0) (83, 87) (85, 88) (91, 95) (95,98)

3. Expected Cost of Procurement 101.4 109.7 113.6
(as % of unh)

1. Probability of Submitting a Bid 𝑐0 = 7 0.45 0.42 0.20 0.04
(expected) (0.43, 0.46) (0.40, 0.43) (0.18, 0.21) (0.03,0.05)

2. Expected Cost of Procurement 72.1 73.2 83.9 95.4
(as % of 𝑐0) (71.2, 73.5) (72.3, 75.1) (81.2, 84.7) (94.3,96.2)

3. Expected Cost of Procurement 101.6 116.4 132.4
(as % of unh)

1. Probability of Submitting a Bid 𝑐0 = 10 0.58 0.55 0.20 0.037
(expected) (0.56, 0.59) (0.54, 0.56) (0.18, 0.21) (0.03,0.04)

2. Expected Cost of Procurement 58.1 59.1 78.7 94.7
(as % of 𝑐0) (56.2, 59.5) (57.8, 60.1) (76.5, 79.7) (94.0,95.6)

3. Expected Cost of Procurement 101.6 135.5 163.0
(as % of unh)
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7.5 Figures

Figure 1: Unobserved Auction Heterogeneity Component
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This figure demonstrates the performance of the estimation procedure in the simulation study. Solid lines

depict the density of the unobserved auction heterogeneity component used to generate data. The dotted lines

show 5% and 95% pointwise quantiles of the estimated distributions. The figures correspond to simulated

data sets that include respectively (clockwise) 250, 200 and 150 auctions with 2 bidders from each group per

auction.
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Figure 2: Individual Cost Components: Regular Bidders
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𝑛 = 150
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This figure demonstrates the performance of the estimation procedure in the simulation study. The solid

lines depict the cumulative distribution functions (on the left) and the probability density functions (on the

right) for the individual cost component of the regular bidders used to generate data. The dotted lines show

5% and 95% pointwise quantiles of the estimated distributions. The figures correspond to simulated data

sets that include respectively 250, 200 and 150 auctions with 2 bidders from each group per auction.
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Figure 3: Individual Cost Components: Fringe Bidders
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This figure demonstrates the performance of the estimation procedure in the simulation study. The solid

lines depict the cumulative distribution functions (on the left) and the probability density functions (on the

right) for the individual cost component of fringe bidders used to generate data. The dotted lines show 5%

and 95% pointwise quantiles of the estimated distributions. The figures correspond to simulated data sets

that include respectively 250, 200 and 150 auctions with 2 bidders from each group per auction.
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Figure 4: The Estimated Distributions of Cost Components
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This figure depicts the estimated densities of the unobserved auction heterogeneity component and the

common cost component as well as the estimated cumulative distribution functions (on the left) and the

probability density functions (on the right) of the individual cost components. The dotted lines show

pointwise 95% confidence intervals estimated through a bootstrap procedure.
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Figure 5: The Expected Bid Functions
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This figure compares expected bid functions estimated from the model with unobserved heterogeneity and

alternative models (with affiliated private values and independent private values). In each case, the lowest

line shown is the diagonal. The dark solid lines correspond to the expected bid function estimated from

the model with unobserved heterogeneity and the expected bid function estimated under the alternative

model. In each case, a lower line corresponds to the bid function estimated from the model with unobserved

heterogeneity. The figure also shows pointwise 95% confidence intervals estimated through a bootstrap

procedure.
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Figure 6: The Expected Density of Total Costs
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This figure compares the expected density of the total costs estimated from the model with unobserved

heterogeneity and alternative models (with affiliated private values and independent private values). The

solid lines correspond to the expected densities. In each case, a tighter distribution corresponds to the density

estimated from the model with unobserved heterogeneity. The figure also shows pointwise 95% confidence

intervals estimated through a bootstrap procedure.
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