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Abstract

The paper proposes a theory-based model of decision making under uncertainty

whose main premise is that predictions of the outcomes of acts are derived from the-

ories. Realized act-outcome pairs provide information on the basis of which decision-

makers update their beliefs regarding the validity of the theories. Consequently, acts

are, simultaneously, initiatives that have material consequences and information gener-

ating experiments. Pure experiments (that is, information generating acts of no direct

material consequences), are characterized and the value of information they generate

is defined. An incentive-compatible mechanism is introduced, by which the beliefs that

decision-makers holds regarding the validity of the theories are elicited.
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“On principle, it is quite wrong to try founding a theory on observable magnitudes

alone. In reality the very opposite happens. It is the theory which decides what we can

observe.” — Albert Einstein in a conversation with Werner Heisenberg.

1 Introduction

The objective of this paper is twofold: First, to develop a theory-based decision model

and to analyze its implications for individual choice under uncertainty. Second, develop a

theory of choice of experiments. Two traits of human nature are pertinent for this purpose.

The first is the inclination to distill, in the form of general laws, regularities in empirical

observations and to invoke these laws when predicting the consequences of alternative

actions. The second is the curiosity-driven desire to the explore, by means of observation

and experimentation, the physical, biological and social environments.

In the context of decision making under uncertainty, theories, a term that I use in-

terchangeably with hypotheses or propositions, are general laws that decision makers use,

explicitly or implicitly, to make sense of alternative courses of action and predict their out-

comes. Popper (2002) distinguishes between two kinds of predictions, prophecy, refers to

forecasting an event which one can do nothing to prevent (e.g., the coming of a typhoon)

and technological predictions which intimate the steps one may take to achieve certain

outcomes.1 Theories of decision making under uncertainty based on the analytical frame-

work of Savage (1954) presume that decision makers predict the results of their actions

by assigning consequences to events (i.e., subsets of state space) and attributing a subjec-

tive probabilities to these events. In other words, in these theories decision makers choice

behavior is governed by unspecified combination of prophetic and technological predictions.

The main premise of this paper is that, in many situations involving decision making

under uncertainty, decision makers invoke formal theories, or hypotheses, to predict the

outcomes of the alternative courses of action and choose among feasible actions on the basis

of these predictions. Put differently, this works assumes that decision makers’ assessment

1According to Popper “The distinction between these two sorts of predictions roughly coincides with

the lesser or greater importance of the part played by designed experiment, as opposed to mere patient

observation, in the science concerned. The typical experimental sciences are capable of making technological

predictions, while those employing mainly non-experimental observations produce prophecies.” [Popper

(2002) pp. 38-39].
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of the courses of action in the choice set is based on the predictions of theories rather than

intuition alone. In situations that admit competing theories that yield distinct prophecies

and technological predictions, decision makers weight these predictions by their beliefs in

the validity of these theories.2 Observations, in this context, consist of action-outcome pairs

and are used to update the decision makers’ beliefs. Theories are modified or discarded

when they are falsified by observations. In other words, a theory is falsified when an action

results in an outcome that is outside the set of outcomes that, according to the theory,

are feasible given the action. Observations that are consistent with the existing theories

induce the updating of the beliefs of the decision makers in the truth of the theories.

It is common to distinguish between acts and experiments. Acts are commonly per-

ceived as initiatives that have material consequences and no informational content, while

experiments are perceived as information-generating devices of no direct material implica-

tions. This dichotomy is an idealized simplification. In reality, acts result in outcomes that

inform decision makers about the validity of the theories and are, therefore, also kind of

experiments. Experiments may have material implications (e.g., cost) and are, therefore,

kind of acts. In this paper, I develop a general theory of choice that amalgamates the ma-

terial and informational aspects of acts and consider the choice of experiments as a special

case of this theory.

Unlike Savage’s vision of a grand world theory of personal probability and utility that

applies to a large class of decision problems, I propose a context-dependent approach to

modeling choice behavior. According to this approach, it is the context determines the

relevant theories. For instance, in the context of medical decisions, the relevant theories

predict the probable states of health (i.e., outcomes) that would result from alternative

treatments (i.e., acts). In the context of financial decision, the relevant theories are mod-

els of the financial markets that predict the probable values (i.e., outcomes) of different

portfolios positions (i.e., acts).

To grasp the ideas to be explored, consider the following simple example. An urn

is known to contain 100 balls 50 of which are red and 50 are black. Balls are drawn

sequentially, at random, and their colors observed. A decision maker can place a bet on

the event  (e.g., all the balls are of the same color), or on any other color combination.

The decision maker entertains two hypotheses regarding the random process generating

2 In this sense, this paper extends Ramsey’s (1926) pioneering essay “Truth and Probabilities,” which

explored the choice-based foundations of the degrees of belief in the truth of propositions.
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the outcomes. Hypothesis  is that the draws are with replacement; hypothesis  is that

the draws are without replacement. The two hypotheses imply distinct distributions on

the various events. If, for example, two balls are drawn then according to hypothesis ,

the event  and its complement,  are equally probable; according to hypothesis , the

probability of event  is 4999 and that of  is 5099. In this scenario, the stochastic

process takes place behind a “veil of ignorance” and decision makers get to observe only

the colors of the balls. Acts are sequences of random draws of balls and outcomes are the

resulting color combinations.

A focal issue in the theory of decision making under uncertainty is the existence and

elicitation of decision makers’ subjective probabilities of events, such as  and . In this

example, these probabilities are induced by underlying (prior) beliefs regarding the validity

of the two hypotheses. Suppose that these beliefs are quantifiable by probabilities and let

 and 1−  denote the probabilities of hypotheses  and , respectively.

Consider betting on the color combinations of the balls. Following Borel (1924) and

Ramsey (1927) the acceptable odds in such bets allow an observer to infer a decision maker’s

beliefs regarding the likely realization of events, such as  and  and quantify those beliefs

by probabilities. The question I seek to answer here is whether an observer can recover from

the betting odds the probabilities the decision maker assigns the underlying hypotheses.

For example, suppose that implementing one of the available elicitation schemes (e.g.,

Karni [2009]), the observer concludes that the decision maker’s subjective probability of

the event  is 0496. The observer can recover the probabilities  by solving the equation

[99+ (1− ) 98] 198 = 04963

The following examples serve to set the stage and buttress the argument in favor of the

proposed model.

Education signals: An employer who regularly hires employees is interested in their

productivity. Employees’ productivity is idiosyncratic and cannot be ascertained except by

actually employing them. Suppose, for simplicity, that the employer entertains alternative

hypotheses regarding the relationship between employees’ productivity and their education

3Applying Bayes’ rule to obtain the posterior beliefs regarding the validity of hypoteses  and , it is

possible to predict the posterior probabilities that a Bayesian decision maker assings to the events  and

 and the odds he will accept to bet on these events Eliciting the posterior probabilities of these events

and comparing them to the predictions is a test of Bayesianism. A more general treatment of the elicitation

issue is provided in Section 5, below.
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levels. Distinct hypotheses maintain that the employees’ education levels and productivity

are positively correlated but to different degrees. The employer holds a prior belief about

the validity of the alternative hypotheses, based on which she decides to required a certain

level of education to fill job vacancies. After having observed the productivity of the

employees, the employer updates her beliefs about the validity of the underlying hypotheses,

which she than relies upon the next time she looks to fill a job vacancy.

Medical decisions: A patient showing certain symptoms seeks medical treatment.

The attending physician may entertain different hypotheses regarding the possible un-

derlying affliction, which she holds with different degrees of confidence. Each hypothesis

predicts distinct probable outcomes of the available treatments. Once a treatment is ad-

ministered, its outcome provides information regarding the possible underlying afflictions

and may be used to update the physician’s belief about the likely affliction that is the cause

of the symptoms.

Monetary policy: To reduce the unemployment rate, the central bank considers

quantitative easing to inflate the prices. Competing theories regarding the effect of such

policies on unemployment vary from the Phillips curve model that predicts persistent

negative correlation between the rate of inflation and the rate of unemployment, to the

long-run Phillips curve model that predicts that a higher rate of inflation may reduce the

rate of unemployment temporarily, however, once inflationary expectations are formed the

rate of unemployment attains its natural level at the higher inflation rate. The monetary

authority may entertain probabilistic beliefs about the validity of these models and, based

on these beliefs, implements a policy. Once the effects of the policy are observed and

analyzed, the central bank updates its beliefs regarding the validity of the alternative

models and invokes its posterior beliefs the next time it is called upon to intervene.

In these examples, the hypotheses do not necessarily assign the available courses of

action unique outcomes. Rather, they predict a distribution on a set of possible outcomes,

where the randomness may be due to factors that are either unobserved or have not been

properly accounted for by the hypotheses.

The rest of the paper is organized as follows. The next section describes the analytical

framework. Section 3 depicts the properties of the preference relations and their represen-

tations. Section 4 models experiments and discusses the value of information. Section 5

introduces a novel, incentive compatible, mechanism designed to elicit the decision maker’s

subjective degrees of beliefs in the truth of theories. Section 6 includes further discussion
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of the model and a reviews the related literature. Section 7 provides the proofs.

2 The Analytical Framework

2.1 Theories, observations, and decision models

Theories depict the causal relationships between acts and outcomes. Consequently, theories

constitute the basis for predicting the likelihoods of the outcomes that follow from each

act. To formalize this idea I introduce two primitives a set  of acts and a finite set,

 = {1  }, of outcomes. In general, theoretical predictions of the outcomes of acts
include a stochastic component, reflecting the fact that factors not accounted for be a

theory may play a role in determining the outcomes. Formally, let Ω be the unit interval

and B the Borel sigma-algebra on Ω. Then the set of acts  takes the formal meaning of

B—measurable functions on Ω taking values in  I denote by ∆ the simplex in R whose

elements represent probability distributions on 

A theory is a mapping  :  → ∆ defined by  () () = 
¡
−1 ()

¢
 for all  ∈

  where  is a probability measure on (ΩB)  In other words,  () is the prediction of
theory  of the likelihoods of the outcomes of the act  . Let  = {1  } denote the
(finite) set of theories

For each  ∈  and  ∈  define  () () = 
¡
−1 ()

¢
 for all  ∈  Un-

der this definition  is identified with (∆) 4 For all   0 ∈  and  ∈ [0 1] define
( + (1− )  0) ∈  by:¡

 + (1− )  0
¢
() () = 

¡
−1 ()

¢
+ (1− )

¡
 0−1 ()

¢
, ∀ ( ) ∈  ×

Thus,  is a convex set in R|×|

Observations are act-outcome pairs ( ) ∈  ×. For every  ∈  and  ∈  the

support of  () is the set  ( ) := { ∈  | 
¡
−1 ()

¢
 0} An observation, ( ) is

consistent with theory  if  ∈  ( )  If ( ) is inconsistent with a theory  (that is,

 ∈  ( )) then the theory  is said to be falsified by the observation ( ).

A decision model is a set { (ΩB )∈}
The analytical framework includes two layers of randomness. The first layer, modeled

by (ΩB )  formalizes the randomness inherent in the predictions due to presence of
4Alternatively, one may think of  as a × left-stochastic matrix.
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factors not explicitly accounted for by the theories. The second layer concerns the decision

maker’s subjective uncertainty regarding the validity, or truth, of the theories themselves.

2.2 The choice set and preference relations

Decisions are choices of sequences of acts. To simplify the exposition I model decisions

as two-stage dynamic processes. In the first stage, the decision maker chooses an act,

 ∈  , and obtains an outcome,  ∈  In the second stage the decision maker chooses the

subsequent act contingent on the observations. Formally, let Z := { :  × → } the
set of mappings representing choices of the second stage acts contingent on the first-stage

observations For each  ∈  let Z () := { () :  →  |  ∈ Z}
The choice set is C := {(  ()) ∈  × Z ()}, whose generic element consists of

an act  ∈  and a plan for choosing a second-stage act  ( ) ∈   ∈ . For all

(  ()) 
¡
 0  0 ( 0)

¢ ∈ C and  ∈ [0 1] define the convex operation

 (  ()) + (1− )
¡
 0  0

¡
 0
¢¢
=
¡
 + (1− )  0  () + (1− )  0

¡
 0
¢¢


where

 () + (1− )  0
¡
 0
¢
:=
¡
 ( ) + (1− )  0

¡
 0 

¢¢
∈ 

then C is a convex set in a linear space.

A preference relation < on C is a binary relation that has the following interpretation.
For all (  ()) 

¡
 0  0 ( 0)

¢ ∈ C, (  ()) < ¡ 0  0 ( 0)¢ means that choosing the act  in
the first stage followed by the implementation of the contingent plan  () in the second is at

least as preferred as choosing the act  0 in the first stage followed by the implementation

of the contingent plan  0 ( 0) in the second. The strict preference relation, Â and the
indifference relation, ∼ are the asymmetric and symmetric parts of < respectively. A
preference relation, <, is nontrivial if the corresponding strict preference relation is non-
empty. I assume throughout that the preference relations being considered are nontrivial.

The two components of C are essential if ¬ ¡(  ()) ∼ ¡  0 ()¢ ∀ ()   0 () ∈ 
¢

and ¬ (  ()) ∼ ¡ 0  0 ( 0)¢ ∀  0 ∈  and  ()   0 ( 0) ∈  such that  () =  0 ( 0) 
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3 Preference Relations: Structures and Representation

3.1 The axiomatic structure

The first two axioms are standard and require no elaboration.

(A.1) (Weak Order) < on C is complete and transitive.
(A.2) (Archimedean) For each (  ()) 

¡
 0  0 ( 0)

¢

¡
 00  00 ( 00)

¢ ∈ C such that

(  ()) Â ¡
 0  0 ( 0)

¢ Â ¡
 00  00 ( 00)

¢
there are   ∈ (0 1) such that  (  ()) +

(1− )
¡
 00  00 ( 00)

¢ Â ¡ 0  0 ( 0)¢ Â  (  ()) + (1− )
¡
 00  00 ( 00)

¢


The third axiom is the independence axiom of expected utility theory applied to C. It

has the usual separability justification, namely, that the preference between two probability

mixtures of act-contingent-plan pairs, is independent of the pair that is common to the two

mixtures.

(A.3) (Independence) For all (  ()) 
¡
 0  0 ( 0)

¢

¡
 00  00 ( 00)

¢ ∈ C and  ∈ (0 1] (  ()) <¡
 0  0 ( 0)

¢
if and only if  (  ())+(1− )

¡
 00  00 ( 00)

¢
< 

¡
 0  0 ( 0)

¢
+(1− )

¡
 00  00 ( 00)

¢


In particular, for all (  ()) 
¡
  0 ()

¢

¡
  00 ()

¢ ∈ C and  ∈ (0 1] (  ()) <¡
  0 ()

¢
if and only if (  ()) + (1− )  00 ()) <

¡
  0 ()

¢
+ (1− )  00 ()) and for

all (  ()) 
¡
 0  0 ( 0)

¢

¡
 00  00 ( 00)

¢ ∈ C such that  () =  0 ( 0) =  00 ( 00) = ̂ and

 ∈ (0 1]
³
 ̂
´
<
³
 0 ̂

´
if and only if

³
 + (1− )  00 ̂

´
< ( 0 + (1− )  00 ̂)

Thus, independence holds for each component separably.

The next axiom asserts that theories, being abstract ideas, inform the decision making

process by predicting the outcomes of acts but do not impact the decision maker’s well-

being directly. To state this formally, I introduce the following additional notations: Given

   0 ∈  , let (− 0) ∈  be defined by: (− 0) (0) =  (0) if 0 ∈ \{} and (− 0) (0) =
 0 () if 0 =  Similarly, given  ()   0 () ∈ Z (), let  ()−  0 () ∈ Z () be defined
by
¡
 ()− 

0 ()
¢
(0) =  () if 0 ∈ \{} and ¡ ()−  0 ()¢ (0) =  0 () (0) if 0 =  A

theory  is ex-ante irrelevant if (− 0  (− 0)) ∼
¡
(− 00)   0 (− 00)

¢
 for all   0  00 ∈

 and  (− 0)   0 (− 00) such that  (− 0 ) =  0 (− 00 )  for all  ∈ . A theory,

 is ex-post irrelevant if it is ex-ante irrelevant or if ( ) ∈  ( ) and is ex-post relevant

if ( ) ∈  ( ).5

5 In the theory of decision making under uncertainty the same condition applied to events indicates that

the decision maker believes that the event to be null. In the present context it means that the decision maker

believes that the theory is invalid and, consequently, insofar as the evaluation of the acts and contingent

plans is concerned, is irrelevant.
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(A.4) (Theory-independence) (a) For all   0  00 ∈    0 ∈ Z and ex-ante relevant
 0 ∈  if  (− 0) =  0 (− 00) and  (−0 0) =  0 (−0 00) then (− 0  (− 0)) <¡
− 00  0 (− 00)

¢
if and only if (−0  (−0 0)) <

¡
−0 00  0 (−0 00)

¢
 (b) For all  ∈ 

and   0 ∈ Z , and ex-post relevant  0 ∈ 
¡
  ( )− 

0 ( )
¢
<
¡
  ( )− 

0 ( )
¢

if and only if
¡
  ( )−0 

0 ( )
¢
<
¡
  ( )−0 

0 ( )
¢
 for all  ∈ 

3.2 Representation

The first result characterizes the existence and uniqueness of subjective expected utility

representation of < on C. The subjectivity is due to decision makers’ idiosyncratic valua-
tions of the sequences of outcomes and their personal beliefs regarding the validity of the

theories.

Theorem 1: A preference relation < on C is nontrivial, Archimedean, weak or-

der satisfying independence and theory-independence if and only if there is nonconstant

function  :  ×  → R and a probability distribution  on  such that, for all

(  ()),( 0  0 ( 0)) ∈ C,

(  ()) < ( 0  0
¡
 0
¢
)⇔  (  ()) ≥ ( 0  0

¡
 0
¢
)

where

 (  ()) := Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )
i
Σ∈

¡
−1 ()

¢
 () 

Moreover,  is unique up to positive affine transformation and  is unique.

The representation in Theorem 1 may be reformulated as follows: Let

Pr(0 | ( )) := Σ∈
³
 ( )−1

¡
0
¢´

 ( |  )  ∀ ( ) ∈  ×

and

Pr ( | ) := Σ∈
¡
−1 ()

¢
 () 

Then the joint probability distribution on  × induced by (  ()) is:

Pr
¡
 0 | (  ())¢ = Pr ¡0 |  ( )¢Pr ( | ) 

The representation may be expressed as follows:

(  ()) 7→ Σ∈Σ0∈
¡
 0

¢
Pr( 0 |  ()
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Dissecting the representation we observe that the subjective probabilities of the theories

in the second-stage decisions are conditional on the observations generated by the first-stage

decision. The decision maker is Bayesian if the second-stage conditional probabilities are

 ( |  ) = 
¡
−1 ()

¢
 () Σ0∈0

¡
−1 ()

¢
 (0)  for all ( ) ∈  × and  ∈ 

In particular, () = 0 if and only if  is ex-ante irrelevant and  ( |  ) = 0 if and only
if  is either ex-ante or ex-poste irrelevant.

In general, decisions involve trade-offs between material benefits and information ac-

quisition. The model described here allows for an act to be chosen that foregoes imminent

material benefits if it generates information that improves the subsequent choices.

4 Experiments

4.1 Preferences and representation

Experiments are acts whose outcomes are dubbed signals Experiments are free if they are

devoid of material implications (that is, they have no direct impact insofar as the decision

maker’s well-being is concerned) and whose sole significance resides in their informational

content. Formally, experiments are random variables, e, on a measurable space (ΩB)
taking values in a set of signals,  . Let E denote the set of experiments, then E ⊂ 

Let Z:= { : E ×  → } be sets of mappings representing strategies of choosing acts
contingent on the observations6 Let Z (e) := { (e) :  →  |  ∈ Z} then the choice set
is C := {(e  (e)) ∈ ×Z (e)}, whose generic element, (e  (e))  is an experiment-strategy
pair.

A central tenet of the subjective expected utility theory is that information affects

the decision makers beliefs while leaving their tastes intact. To formalize this premise I

propose a variation of the model of the preceding section in which the first-stage decision is

a choice of an experiment, e ∈ E  to be followed, in the second stage, by a choice of an act
contingent on the observations (e ) ∈ E ×  . The idea is that, based on the observation

obtained in the first stage, the decision maker updates his beliefs about the validity the

underlying theories and, consequently, his preferences over the second-stage acts.

The next axiom formalizes the idea that neither the experiment itself nor its signals

affect the decision-maker well-being except through the update of his beliefs about the

6Since E ⊂  and Y ⊂  we have that Y ⊂ Z.
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likely outcomes of the second-stage acts. To formalize this idea it is necessary to separate

the informational effects of experiments from potential signal effects on the decision maker’s

well-being. To achieve this separation, I introduce the notion of uninformative experiments.

Formally, an experiment e ∈ E is uninformative if the distribution on the set of signals
is theory-independent. For example, a single random draw from the urn described in

the introduction has the same probability of resulting in a red ball (or black ball) under

the two hypotheses. Hence, insofar as the two hypotheses are concerned, one draw is

an uninformative experiment. Another example is the education signals mentioned in

the introduction. Consider the experiment of hiring an employee who was deprived of

the opportunity of acquiring education. Observing the productivity of this employee is

uninformative since its distribution is the same under both hypotheses (i.e., it is the prior

distribution of productivity in the population). Formally an experiment e is uninformative
if 

¡e−1 ()¢ = 0
¡e−1 ()¢  for all  ∈  and  0 ∈  The next axiom captures that

idea that experiments are valuable only in as much as they are informative. It asserts that

if the experiment is uninformative then decision makers are indifferent among strategies

involving exchangeability of acts across signals.

(A.4) (Signals exchangeability) For every uninformative experiment e for all  0 ∈
 and   0 ∈ 

³e  (e)− −0 0´ ∼ ³e  (e)−  0−0´ 
The next Theorem characterizes the representation of preference ranking of experi-

ments.

Theorem 2: Let < on C be preference relation then < is nontrivial, Archimedean, weak
order satisfying independence, theory-independence, and signals exchangeability if and only

if there is a non-constant function  :  → R and probability distribution  on  such

that for all (e  (e))  ¡e0  0 (e0)¢ ∈ C,
(e  (e)) < ¡e0  0 ¡e0¢¢⇔  (e  (e)) ≥ 

¡e0  0 ¡e0¢¢ 
where, for all (e  (e)) ∈ C,
 (e  (e)) = Σ∈ hΣ∈ ()Σ∈ ³ (e )−1 ()´ ( | e )iΣ∈ ¡e−1 ()¢ () 
Moreover,  is unique up to positive affine transformation and  is unique.
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4.2 Comparison of experiments

Experiments are valuable because the information they produce allow decision makers to

improve their choices of acts. Distinct experiments may be more or less valuable depending

on the information they generate. To compare experiments in terms of their values we need

to define their informational advantage they confer.

Given a nonempty set  ⊂  of feasible acts, the value of an experiment, e, is the
maximal expected utility of a contingent plan  (e) ∈  . Formally, given a utility function

 :  → R and a subjective prior distribution  on  define a value function () :

E × 2 → R by:

() (e) = Σ∈ ∙max
∈

Σ∈ ()Σ∈
¡
−1 ()

¢
 ( | e )¸Σ∈ ¡e−1 ()¢ () 

Then () (e) represents the decision maker’s expected utility if the experiment e is
chosen in the first stage and followed, in the second stage, by a contingent plan ∗ (e | )
that is observation-wise optimal given the  and the information acquired. Formally, givene ∈ E , for every  ∈  ∗ (e  | ) ∈ argmax Σ∈ ()Σ∈ ¡−1 ()¢ ( | e ) 

The decision maker’s problem is: Given nonempty  ∈ 2 choose e ∈ E so as to
maximize () (e)  Assuming that it exists, let ∗() (e | ) denote the solution to the
decision maker’s problem. Define the value of e conditional on  by:

 ∗() (e | ) = Σ∈ [Σ∈ ()Σ∈ ³∗() (e  | )−1 ()´ ( | (e ))]Σ∈ ¡e−1 ()¢ () 
Let P := { ∈ [0 1]| | | Σ∈  () = 1} and U := R 

Definitions: An experiment e is more informative than an experiment e0 from the

viewpoint of ( ) ∈ U × P if  ∗
()

(e | ) ≥  ∗
()

(e0 | ) for all nonempty  ∈ 2  An
experiment e is more informative than an experiment e0 if it is more informative from the

viewpoint of ( )  for all ( ) ∈ U × P.
Corresponding to every e ∈ E there is a |  | × |  | left-stochastic matrix,  (e) 

dubbed information structure, whose ( ) entry, 
¡e−1 ()¢, is the probability that the

signal  is generated by the experiment e conditional on theory  being true LetM denote

the set of all |  | × |  |Markov matrices. By Blackwell’s (1951) theorem an experiment e
is more informative than e0 if and only if there is ∈M such that  (e0) = (e) . Thus,
Blackwell’s characterization of an experiment e is more informative than e0 is sufficient but
not necessary for condition for e to more informative than e0 from the viewpoint of ( ) 
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Given nonempty  ∈ 2 , the informational value-added of e over e0 from the viewpoint
of ( ) is:  ∗

()
(e | ) −  ∗

()
(e0 | )  Because the set of feasible actions limits the

opportunities to exploit the information generated by the experiments, the informational

value-added depends on this set. For instance, if  is a singleton set then the informational

value-added is zero.

4.3 The value of information

The choice of an act in the first stage and contingent plan for the second stage may

require trading off material benefits in the first stage in exchange for valuable information.

Accordingly costly experimentation is justified if the informational value added exceeds its

cost.

Denote by  (e) ≥ 0 monetary cost of the experiment e Then, the set of outcomes
in the first stage of the decision process is {(  (e)) |  ∈  }  Not experimenting is
informationally equivalent to conducting a non-informative experiment, denoted by e∅ ∈ E 
Assume that not experimenting is costless (i.e.,  (e∅) = 0). Then, letting
 ∗() (e |   (e)) := Σ∈Σ∈ (− (e)  ) hΣ∈ ³∗() (e  | )−1 ()´ ( | e )iΣ∈ ¡e−1 ()¢ ()
By Theorem 1, we get that e is worthwhile form the viewpoint of ( ) given the feasible

set of acts,  if and only if

 ∗() (e |   (e)) ≥  ∗() (e∅ | ) 
where  ∗

()
(e∅ | ) = max∈ Σ∈ ()Σ∈

¡
−1 ()

¢
 ()  The monetary value of

the information produced by an experiment is given by the solution () (e | ) of the
equation  ∗

()
(e |  ) =  ∗

()
(e∅ | ) 

5 Elicitation of the Subjective Probabilities

5.1 The elicitation problem

Incentive compatible mechanisms designed to elicit subjective probabilities on a state space

have been studied for more than half a century. Pioneered by the works of Brier (1950)

and Good (1952) these studies include Savage (1971), Grether (1981), Kadane and Winkler

(1988), and Karni (2009).7 A common feature of these elicitation schemes is the condition-

7For a recent comprehensive review, see Chambers and Lambert (2020).
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ing of the subject’s reward on the events of interest. This conditioning requires that the

occurrence of the events of interest be observable and verifiable. Because, in general, theo-

ries are neither observable nor verifiable, these mechanisms do not apply to the elicitation

of a subject’s prior beliefs about the truth of theories.

Prelec (2004), Chambers and Lambert (2015, 2021), and Karni (2020) proposed elic-

itation mechanisms designed to elicit subjective probabilities on events that are private

information and, consequently, unverifiable. However, the working of these mechanisms

hinges on the presumption that the subject discovers, for himself, the truth of the unob-

servable event of interest. Because the uncertainty about the truth of theories may not

dissipate in the subject’s own mind, these mechanisms too do not apply to the elicitation

problem with which we are concerned.

I propose next a new, indirect, incentive compatible scheme designed to elicit the sub-

jective probabilities representing the subject’s degree of belief in the truth of the theories

and examine the conditions under which it yields the desired outcome. The proposed

scheme invokes the observability of the signals of experiments.

5.2 The elicitation mechanism

To describe the mechanism assume, provisionally, that there is an experiment e ∈ E , whose
support, (that is, the set  (e) := { ∈  | Σ∈

¡e−1 ()¢ ()  0}) has cardinality that
is at least as great as that of the set of theories,  (i.e.,|  (e) |≥ ) Let Υ (e) = (1  )
be a partition the set  and denote by Υ the set of all −elements partitions of  .8

Since the signals are observable and verifiable it is possible to apply one of the existing

schemes (e.g., Karni [2009]) to elicit the subject’s subjective probabilities of the cells of

the partition,  ()   = 1  and let  (e) := ( (1)   ())  By Theorem 2, for

all  ∈ Υ  () = ∪∈Σ∈
¡e−1 ()¢ () 

For each  ∈ Υ (e) and  ∈  define  () = ∪∈
¡e−1 ()¢  Let μ (Υ (e)) :=

( (1 | Υ (e))    ( | Υ (e)))  then μ (Υ (e)) = ( (1)   (−1) 1)  where the
8 If |  () |=  then cells of the partition (1  )  are singlton sets, each containing an element of

the support of 
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superscript  is the transpose and  is the × matrix given by:

 =

⎡⎢⎢⎢⎢⎢⎣
1 (1) · ·  (1)

· ·
1

³
| |−1

´
· · 

¡
| |−1

¢
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦  (1)

The following proposition is immediate:

Proposition: The probability distribution μ (Υ (e)) on  exists and is unique if and

only if there is an experiment e ∈ E and a partition of  (e) such that the corresponding
matrix  is nonsingular.

Assume that, for every Υ ∈ Υ μ (Υ (e)) exists. A prior probability distribution μ

on  is said to represesnt a decision maker’s beliefs if and only if μ (Υ (e)) = μ (Υ0 (e)) =
μ (Υ (e0)) = μ (Υ0 (e0)) = μ for all Υ (e) Υ0 (e) Υ (e0) Υ0 (e0) ∈ Υ and e e0 ∈ E 

Note that this elicitation mechanism may not work if it is applied to general acts rather

than to experiments. The reason is that the in general, the valuations of the payoffs

in all the known schemes designed elicit the probabilities  () := ( (1)   ())

of a partition of the set of outcomes  may not be outcome-independent. Therefore, the

elicitation mechanism may fail to produce reliable values of the probabilities of the elements

of the partition.9

If no single experiment has support that includes larger number of observations than

there are theories (that is, the case in which, for no e ∈ E  |  (e) |≥ ) but | ∪∈E (e) |≥
, it is possible to apply a modified version of the mechanism described above. To simplify

the exposition, without loss of generality, let there be  experiments, {e1  e} Let
 :=|  (e) |  = 1  and suppose that Σ=1 = 10 Denote by 

¡e−1 ()
¢
the

probability, according to the theory   of observing the signal  if the experiment e is
implemented.

The mechanism requires that the experiments {e1  e} are implements and, for each
experiment the vector  (e) := ( (1)   ()) is elicited using one of the standard
procedures Consider the system of equations ̂π = ̂   where

̂ := ( (11)   (1 1−1)   (1)   (−1) 1)
9This is a version of the familiar state-dependent problem with the known elicitations procedures.
10 If Σ

=1 |  | then, for some experiments, create partitions as necessary so that the probability
vector defined below have the dimention |  | 

15



and

̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
¡e−11 (11)

¢ · · · | |

¡e−11 (11)
¢

· · · · ·
1
¡e−11 (11−1)

¢ · · · | |

¡e−11 (11−1)
¢

1
¡e−12 (21)

¢ · · · | |

¡e−12 (21)
¢

· · · · ·
1
¡e−12 (22−1)

¢ · · · | |

¡e−12 (22−1)
¢

· · · · ·
1
¡e−1 (−1)

¢ · · · | |

¡e−1 (−1)
¢

1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then, the subjective probability μ on  exists and is unique if and only if the matrix ̂ is

nonsingular. It is given by the solution to the system of equations ̂μ = ̂  

6 Discussion

6.1 States and consequences

Perhaps the simplest way to explain the distinction between the traditional analytical

framework employed in the theories of decision making under uncertainty and the one

proposed here is by reviewing the similarities and differences with the model of Anscombe

and Aumann (1963). The apparent similarity is due to the fact that because the theory-

dependent consequences of acts are distributions on  (that is, 
¡
−1 (·)¢ ∈ ∆ for

all ( ) ∈  ×  ) it may seem as if the decision model in this paper is analogous to

that of Anscombe and Aumann with theories replacing the states. This conclusion is

wrong for several reasons. Most importantly, in the Anscombe-Aumann model states

are directly observable while theories are not. In other words, the Anscombe-Aumann

states, whether they are the outcomes of actions, as in the case of running a horse race,

or naturally occurring, as in the case of the weather, are verifiable independently of the

acts.11 By contrast, the truth of theories is not directly observable and their validity may

not be verified except through the acts or experiments. Furthermore, because the same

observations may be consistent with distinct theories, in general, observing act-outcome

pairs is not sufficient to identify, indirectly, which of the underlying theories is true. Another

11This is a necessary condition for the payoffs of the acts to be effectuated.
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difference has to do with the interpretation of the subjective probabilities. Unlike the

Anscombe-Aumann model in which a decision makers’ entertain beliefs, represented by

subjective probabilities, on the states (i.e., the outcomes of a horse race or the weather),

in model of this paper, the probabilities of the outcomes of a horse race are objective

forecasts of “horse-race theories” or weather-forecasts models. By contrast, decision makers’

entertain beliefs, represented by subjective probabilities, in the truth of the alternative

“horse-race theories” or weather-forecasts models. Finally, according to Anscombe and

Aumann, running a horse race is an action that determines the relevant state space while,

in the present model, it is an experiment and its possible outcomes (i.e., the Anscombe-

Aumann states) are signals that inform about the “horse-race theories” on the basis of

which the likely outcomes are forecasted.

An important shortcoming of the traditional analytical framework is that the notion

of states and consequences may be confounded. This problem was exemplified in several

scenarios described by Aumann and in a correspondence with Savage.12 One of these

scenarios depicts a man who loves his wife to the point that his life without her would

be “less ‘worth living.’” The wife falls ill and, to survive, she must undergo a routine but

dangerous operation. The husband is offered a choice between betting $100 on his wife’s

survival and on the outcome of a flip of a fair coin. According to Aumann, even supposing

that the husband believes that his wife has an even chance of surviving the operation,

he still rather bet on her survival. This is because winning the bet on the outcome of a

coin flip, the husband the reward in the event that the wife does not survive is “somehow

worthless.”

In his response, Savage admits that the difficulty Aumann identifies is indeed serious.

In defense of his model, Savage writes, “The theory of personal probability and utility is,

as I see it, a sort of framework into which I hope to fit a large class of decision problems.

In this process, a certain amount of pushing, pulling, and departure from common sense

may be acceptable and even advisable.... To some—perhaps to you—it will seem grotesque

if I say that I should not mind being hung so long as it be done without damage to my

health or reputation, but I think it desirable to adopt such language so that the danger of

being hung can be contemplated in this framework.” (Drèze 1987, p. 78). Cast in terms of

the present model, the issue raised by Aumann can be addressed without having to resort

12The correspondence is reproduced in Drèze (1987) and in the collected works of Aumann (2000).

17



to the convoluted reasoning of Savage. To begin with, in terms of the model of this paper,

the results of the surgery are outcomes, not states. The way the situation is depicted the

diagnosis is correct. This does not rule out, however, the realistic possibility of choosing

the hospital or the surgeon to perform the operation. In terms of the present model, these

options correspond to distinct acts. There are alternative hypotheses regarding the effect

on the probability of success of the surgeon performing the operation and the hospital in

which it is performed. In particular, surgeons that preform the operation frequently and

hospitals in which such operations are routine have better chance of success. Alternative

theories may weigh these factors differently and, accordingly, assign the operation at a

specific hospital by a particular surgeon different chances of success.

Ultimately, the husband belief about his wife’s chance of survival depends on his sub-

jective beliefs regarding the validity of the different theories. Seen in this way, a choice

of where to perform the surgery and by whom, may be regarded as a choice of a lottery

with two outcomes, life,  and death, . Presumably decision makers is capable choosing

among such feasible acts. We can now analyze the husbands behavior using the present

model. Let  denotes the husband’s wealth, than choosing a hospital and a surgeon to

perform the operation, the husband’s subjective expected utility is:

 ()Σ∈
¡
−1 ()

¢
 () +  ()Σ∈

¡
−1 ()

¢
 () 

The probability of the wife’s survival, Σ∈
¡
−1 ()

¢
 ()  depends on the husband’s

belief, quantified by  regarding the likely validity of the theories and  the choice of a

surgeon and hospital in which to perform the operation.

Given the act  let  ( ) = −1()
0 where   0  0 denote a bet on the survival

of the wife conditional on  being implemented. Thus, the bet  ( ) pays off  dollars

in the event, −1 ()  that the wife survived, and 0 dollars otherwise Such a bet yields

the expected utility payoff

 ( + ) Pr () + 
¡
 + 0

¢
(1− Pr ())

where Pr () = Σ∈
¡
−1 ()

¢
 () 

Let  be the act of flipping a fair coin. Then a  () = −1()
0 denotes the

bet on heads up on a flip of a fair coin. Thus,  () pay off  dollars in the event

heads up, −1 () and 0 dollars in the complementary event, −1 ( )  Assuming, that the

husband believes that the coin is fair means, the probability of  = 12 Supposing that
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the outcomes of the surgery and the coin flip are stochastically independent, the expected

utility of betting on the heads up is:

[ ( + ) Pr () +  ( + ) (1− Pr ())] 2 +£

¡
 + 0

¢
Pr () + 

¡
 + 0

¢
(1− Pr ())¤ 2

In Aumann’s example the choice of  is such that Pr () = 12 Hence, the expected

utility of betting on heads up in the coin flip is:£
 ( + ) +  ( + ) + 

¡
 + 0

¢
+ 

¡
 + 0

¢¤
4

and the expected utility of betting on the survival of the wife is [ ( + ) +  ( + 0)] 2.

According to the scenario described by Aumann, presumably  ( + )  [ ( + ) +  ( + )] 2

and  ( + 0)  [ ( + 0) +  ( + 0)] 2 Hence, the husband’s strict prefer-

ence for betting on his wife’s survival is consistent with his beliefs. More importantly,

there is no confounding of states and consequences. The outcomes of the surgery and the

payoffs of the bets are clearly consequences. The underlying states (that is, elements of Ω)

representing factors that impact the outcomes but are not accountable by the theories are

implicit. The utility functions that figure in the representation are state-independent.

A theory, as defined in this work, is an abstract idea that, if true, resolves the uncer-

tainty associated with the outcomes of all acts up to unaccountable factors. According to

this interpretation, ( ) ∈  × Ω may be regarded as a state in the framework of Savage
(1954) and  ∈  may be regarded as analogous to a state in the Anscombe-Aumann (1963)

model. There are, however, important differences between theories and Anscombe-Aumann

states. First, being an abstract idea, theories, unlike states, are not susceptible to be con-

founded with outcomes. More specifically, Anscombe-Aumann states (e.g., the results of

a horse race or states of health) are outcomes in the theory-based model of this paper.

Second, unlike states which are verifiable and, therefore, it is possible to bet on them, in

general the truth of theories may not be verifiable. Finally, predicting the outcomes of acts

on the basis of laws that capture the regularity of the relation between acts and outcomes

seems to conform to the way we think and with the scientific method, according to which

general laws are parsimonious and efficient mean (i.e., demanding less effort) of describing

the environment relevant to a decision problem.
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6.2 Related literature

Several ingredients of the analytical framework of this paper appear in Karni (2011). Specif-

ically, the set of contingent plans and set of outcomes in the present analytical framework

correspond, respectively, to the sets of strategies and the set of effects in Karni (2011). Sig-

nals are also an ingredients of both models. However, whereas in Karni (2011) the signals

are exogenous to the decision making process, in this paper the acquisition information is

done by experimentation and, as such, the production of signals is an endogenous aspect

of the decision making process. More importantly, unlike the probabilities on the states

(that is, the mappings from the set of strategies to the set of consequences) that quantify

the decision maker’s beliefs about the occurrence of one time events, the probabilities of

the theories in the present paper depict the decision maker’s beliefs about the processes

that determine these events.

The issue of experimentation as an information acquisition process that precedes the

decision is discussed, rather informally, in Savage (1954). According to Savage observations

generated by experiments allow the decision maker to determine, in advance, which event in

a partition of the state space contains the true state and, consequently, choose the act that

yields the highest expected utility conditional on that event. In terms of the present model,

the events of the partition are the inverse images of the signals under the experiments, whose

probability is predicted by the underlying theories. Savage’s notion of experiment and the

one advanced here seem to correspond to Popper’s (2002) distinction between the term

experiment that is synonymous with an action whose outcome is uncertain as opposed to

experiment which is a terms that denotes a means of acquiring knowledge, by comparing

results obtained with results expected.

The choice of experiment is itself a decision problem, that amalgamates the value of

information and the cost of the experiment. What is described here as experiment is

what Savage refers to as free observations. Observations that are not free correspond to

first-stage acts. The upshot of this brief discussion is that this paper presents a theory of

experiments that may, with appropriate reinterpretation, formalizes Savage’s ideas.

Hyogo (2007) proposes a different decision theoretical model of experimentation whose

focal point is the subjective interpretation of relation between experiments and the distri-

bution of signals. Decisions in Hyogo’s model span two periods. In the first period the

decision maker is supposed to choose an action and a subset of Anscombe-Aumann acts
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that is referred to as menu. The action generates a signal which is used by the decision

maker to update her beliefs about the likelihoods of the states. In the second period, the

decision maker chooses an Anscombe-Aumann act from the chosen menu. An experiment

is a pair ( )  where  :  ×  → ∆ is a function,  is the set of actions,  is the set

of states of the world, and ∆ is the set of distributions on a set,  of signals. The main

objective Hyogo’s model is “... to make the pair ( )  in addition to the prior, subjective.”

(Hyogo (2007), p. 317).

Hyogo’s approach is fundamentally different from that of this paper in several important

respects. To begin with, the modeling and definition of experiments. The analogue of

states of the world in Hyogo’s model are theories and that of actions are random variables

on an abstract measure space taking their values in a signal space. However, unlike in

Hyogo’s model, the mapping of theories-experiment pairs to distribution of signals and the

set of signals itself are objectively given. This is because, by definition, a theory generates

predictions of the outcomes of experiments. Consequently, the objective of Hyogo’s analysis

has no counterpart in the present study in which focus is on the subjective degrees of belief

of the decision maker in the truth of the theories. The different objectives require distinct

analytical frameworks. Thus, in Hyogo’s model elements of choice set in the first period

are pairs, consisting of an action and a menu of acts, and that of the second period are acts

from the menu that was selected in the first period. In the present model the elements of the

choice set consist of experiment and plans of choosing acts contingent on the experiment-

generated signals. Finally, the preference structures and their representations of the two

models are different, reflecting the distinct objectives and analytical frameworks.

7 Proofs

7.1 Proof of theorem 1

(Sufficiency) By the von Neumann-Morgenstern theorem < is an Archimedean weak order
satisfying independence if and only if there is an affine, real-valued, function  on C such

that, for all (  ()),( 0  0 ( 0)) ∈ C,

(  ()) < ( 0  0
¡
 0
¢
)⇔  (  ()) ≥ ( 0  0

¡
 0
¢
)

Fix ∗ ∈  and, for any  ∈  and   0  00 ∈ Z such that  () =  0 (∗) =  00
¡
∗−

¢
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(that is,  ( ) =  0 (∗ ) =  00
¡
∗− 

¢
for all  ∈ ) by definition,

1


(  ()) +

− 1


¡
∗  0 (∗)

¢
=
1


Σ∈

¡
∗− 

00 ¡∗−¢¢ 
By the affinity of 

1


 (  ()) +

− 1


 (∗ ∗ (∗)) =
1


Σ∈

¡
∗− 

00 ¡∗−¢¢ 
For each  ∈  let  () () := ( ( 1) ()    ( ) ()) ∈ (∆) and define a

function  :  ×∆ × (∆) → R by:

 (  )) = 
¡¡
∗−

¢
  00

¡
∗−

¢¢− − 1



¡
∗ ()   0 (∗)

¢


where  =
¡
∗−

¢
() and  =  00

¡
∗−

¢
() =  0 (∗) ()  Thus,

1


Σ∈ ( ()  () ()) =

1


Σ∈

¡¡
∗−

¢
()   00

¡
∗−

¢
()
¢−− 1



¡
∗ ()   0 (∗) ()

¢


Hence,

 (  ()) = Σ∈ (  ()   () ()) 

By the affinity of   ( · ·) is affine in its second and third arguments.
By theory-independence, for all ex-ante relevant  0 ∈  and   0 ∈  and all

  0  00  000 ∈ Z ,  ¡∗− 0¢ =  0
¡
∗− 0

¢
and  00

¡
∗−0

¢
=  000

¡
∗−0

0¢ 
¡
∗− 

¡
∗−

¢¢
<
¡
∗−

0  0
¡
∗−

0¢¢
if and only if

¡
∗−0 

00 ¡∗−0¢¢ < ¡∗− 0  000 ¡∗−0 0¢¢ 
Then, by the additivity of  across theories, for all ex-ante relevant  0 ∈ 

 (  ()   () ()) ≥
¡
  0 ()   0

¡
 0
¢
()
¢

if and only if


¡
0 

¡
0
¢
  00 ()

¡
0
¢¢ ≥

¡
0  0

¡
0
¢
  000

¡
 0
¢ ¡
0
¢¢


Define  (· ·) : ∆ × (∆) → R by  (· ·) = (1 · ·) 
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Then, the uniqueness of the affine utility representation on ∆, implies that, for every

 ∈ (∆) 
 ( · ) =  (· ) + 

where   0 for all ex-ante relevant  ∈  and  = 0 for all ex-ante irrelevant  ∈  . By

nontriviality, Σ0∈ 0  0. Define  () = Σ0∈ 0  for all  ∈  then

 (  ()) = (Σ0∈ 0)Σ∈ () ( ()   () ()) + Σ∈

Thus,

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈ () ( ()   () ()) ≥ Σ∈ ()
¡
 0 ()   0

¡
 0
¢
()
¢
 (2)

Define  ∈  by Σ∈
¡
−1 (0)

¢
 () = 1 if 0 =  and Σ∈

¡
−1 (0)

¢
 () = 0,

otherwise Define a function ̂ :  ×  → R by ̂
¡
 

¡
−1

¢¢
= 

¡
 

¡
−1

¢¢
 for all

 ∈ Z. By the affinity of  and induction on the size the support (see Kreps (1988) p. 50)
we have

 ( ()   () ()) = Σ∈̂
¡
 

¡
−1  

¢¢

¡
−1 ()

¢


Hence, by (2),

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈̂ (  ( ))Σ∈
¡
−1 ()

¢
 () ≥ Σ∈̂

¡
  0

¡
 0 

¢¢
Σ∈

¡
 0−1 ()

¢
 () 

(3)

Consider next the function ̂ (  ( 0 ))  Fix ∗ ∈ Z and ( ) ∈  ×  define¡
∗ ( )−  ( )

¢
(0) = ∗ ( ) (0) if 0 ∈ \{} and ¡∗ ( )−  ( )¢ (0) =  ( ) (0) 

otherwise. Then, by the same argument as above

1


(  ( )) +

− 1


( ∗ ( )) =
1


Σ∈ ( ∗ ( )−( )) 

Thus, by (3) and the affinity of ̂ ( ·) 
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Σ∈

∙
1


̂ (  ( )) +

− 1


̂ (  ( ))

¸
Σ∈

¡
−1 ()

¢
 ()

=
1


Σ0∈

h
Σ∈̂ ( ∗ ( )−0( ))Σ∈

¡
−1 ()

¢
 ()

i


Define a function  :  × ×∆ → R by:

 (  ) = ̂ ( ∗ ( )−0( ))− − 1


( ∗ ( )) 

Then, by the same argument as above,

̂ (  ( )) = Σ∈ (   ( ) ())  (4)

For all ex-post relevant  0 ∈  and   0 ∈ Z by theory independence, for every given
( ) ∈  ×

¡
 ∗ ( )−  ( )

¢
<
¡
 ∗ ( )− 

0 ( )
¢

if and only if, ¡
 ∗ ( )−0  ( )

¢
<
¡
 ∗ ( )−0 

0 ( )
¢


Hence, by (4),

Σ∈ (   ( ) ())Σ∈
¡
−1 ()

¢
 () ≥ Σ∈

¡
   0 ( ) ()

¢
Σ∈

¡
−1 ()

¢
 ()

if and only if

Σ∈
¡
0   ( ) ()

¢
Σ∈

¡
−1 ()

¢
 () ≥ Σ∈

¡
0   0 ( ) ()

¢
Σ∈

¡
−1 ()

¢
 () 

Let  ( ) :=  (1  ) for all ( ) ∈ ×∆ then, by the uniqueness of the affine

representation, for all  ∈ 

 (   ( ) ()) = ̂ ( ) (  ( ) ()) + ̂ ( )

By nontriviality, Σ∈ ̂ ( )  0 Let  ( |  ) := ̂ ( ) Σ0∈ ̂0 ( )  Define  :

 ×  → R by  ( 0) =  (  (0  
0)). Then, by the affinity of  ( ·)  we have

 (  ( ) ()) = Σ0∈ ( 0)
³
 ( )−1 (0)

´
and, by (4),
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̂ (  ( )) = Σ0∈ ̂0 ( )Σ0∈
¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )+Σ∈̂ ( )
(5)

Combining (3) and (5) we obtain:

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )
i
Σ∈

¡
−1 ()

¢
 ()

≥ Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 0
¡
 0 

¢−1 ¡
0
¢´

 ( |  )
i
Σ∈

¡
 0−1 ()

¢
 () 

(Necessity) The necessity of weak order, Archimedean and independence forllow from

the von Neumann-Morgenstern theorem. The necessity of theory-independece is immedi-

ate.

The uniqueness part follows form the uniqueness of  . ¥

7.2 Proof of theorem 2

Proof. By Theorem 1, a preference relation < on C is nontrivial, continuous weak order sat-
isfying independence and theory- independence if and only if it admits the representation:

(e  (e)) 7→  (e  (e))  where
 (e  (e)) = Σ∈ hΣ0∈ ( )Σ∈ ³ (e )−1 ¡0¢´ ( | e )iΣ∈ ¡e−1 ()¢ () 

Let e be uninformative then,  ¡e−1 ()¢ = 
¡e−1 (0)¢  for all  0 ∈  Hence,

 ( | e ) =  ( | e 0)  for all  0 ∈  where  ( | e ) = 
¡e−1 ()¢ Σ0∈0 ¡e−1 ()¢ 

Let Pr ( |  e ) := Σ∈ ¡−1 ()¢ ( | e )  for all  ∈  then, by signal exchange-

ability,


³e  (e)− −0 0´ = Σ∈ ( ) Pr ( |  e ) + Σ∈ ¡0 ¢Pr ¡ |  0 e 0¢ =
Σ∈( ) Pr

¡
 |  0 e ¢+Σ∈ ¡0 ¢Pr ¡ |  e 0¢ = 

³e  (e)−  0−0´ 
But 

¡
−1 (·)¢ 6= 

¡
 0−1 (·)¢ for some   0 ∈  imply that

Σ∈ () Pr ( |  e ) 6= Σ∈ () Pr ¡ |  0 e 0¢ 
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Hence, the equalities above imply that  ( ) =  (0 ) =  ()  for all  ∈  Therefore,

 (e  (e)) = Σ∈ hΣ∈ ()Σ∈ ³ (e )−1 ()´ ( | e )iΣ∈ ¡e−1 ()¢ () 
To show the necessity of signal exchangeability is strightforward.

The uniqueness follows from Theorem 1. ¥
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