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Abstract

This paper proposes a theory-based model of decision-making under uncertainty

the main premise of which is that predictions of the outcomes of acts are derived from

theories. Realized act-outcome pairs provide information on the basis of which decision

makers update their beliefs regarding the validity of the underlying theories. Conse-

quently, acts are, simultaneously, information—generating initiatives, or experiments,

that have material consequences. Experiments, that is, information—generating initia-

tives of no direct material consequences, are characterized and the value of information

they generate defined. An incentive-compatible mechanism is introduced by which the

beliefs decision-makers holds regarding the validity of the theories are elicited.
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1 Introduction

The objective of this paper is twofold. It develops a theory-based decision model and an-

alyzes its implications for individual choice under uncertainty, and it develops a theory of

choice of experiments. Two traits of human nature are pertinent for this purpose. The

first is the desire to explore, by means of observation and experimentation, the physical,

biological, and social environments and to distill — in the form of general laws — regular-

ities in empirical observations. The second, is to invoke these laws when predicting the

consequences of alternative courses of action.

In the context of decision making under uncertainty, theories — a term I use interchange-

ably with hypotheses or models — are general laws that decision-makers invoke, explicitly

or implicitly, to make sense of alternative actions and predict their outcomes. Theories

of decision making under uncertainty based on the analytical framework of Savage (1954)

presume that decision-makers predict the results of their actions by assigning consequences

to events (i.e., subsets of the state space) and attributing subjective probabilities to these

events. In these theories, decision-makers’ choice behavior is governed by an unspecified

combination of prophetic and technological predictions.1

The main premise of this paper is that, in many situations involving decision making

under uncertainty, decision-makers invoke formal theories, or statistical models, to predict

the outcomes of alternative actions and choose among feasible actions on the basis of these

predictions.2 In situations that admit competing theories that yield distinct predictions,

decision-makers weight these predictions by their beliefs in the validity of the underlying

theories. In these contexts, observations, consisting of action-outcome pairs, are used to

update decision-makers’ beliefs in the validity of the underlying theories. A theory is

falsified when an action results in an outcome that is outside the set of outcomes that,

according to the theory, are feasible given the action. Observations that are consistent

with the existing theories induce the updating of the beliefs of the decision-makers in the

truth of the theories.

It is common to distinguish acts from experiments. Acts are initiatives that have ma-

1Following Popper (2002), prophetic predictions refers to forecasting an event one can do nothing to

prevent (e.g., the coming of a typhoon); technological predictions intimate the steps one may take to

achieve certain outcomes.
2Another possible interpretation replaces theories by experts, or consultants, who use different models

to predict the outcomes of the actions.
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terial consequences and no informational content; experiments are information-generating

initiatives with no direct material implications. This dichotomy is an idealized simplifi-

cation. In reality, acts result in material consequences that also inform decision-makers

about the validity of the theories and are, therefore, a kind of experiment. In addition to

their informative value, experiments may have, material implications (e.g., cost) and are,

therefore, a kind of acts.

In this paper, I develop a general theory of choice that amalgamates the material and

informational aspects of acts and considers the choice of experiments as a special case of

this theory. In the proposed model, the choice of acts may involve a trade-off between

exploitation (i.e., taking the action that yields the best material payoff) and exploration

(i.e., trying actions to improve the understanding of their uncertain consequences).

In this respect, the model has features of multi-armed bandit models.3 In particular,

actions correspond to the bandit’s arms, and the decision problem requires sequential

choices from a finite set of possible actions. The choice of an action results in a material

outcome that constitutes the decision maker’s reward and an observation, consisting of

action-outcome pair, that provides valuable information the choice of future actions. Facing

a multi-armed bandit problem, decision-makers seek to maximize the expected utility of

the sequence of material rewards. Yet, the model presented in this paper does not have the

distinguishing feature of bandit problem, namely, “that the distribution of returns from

one arm only changes when this arm is chosen,” (Bargemann and Välimäki [2008]). In

this model, observations provide information about the validity of the underlying theories.

Consequently, they alter the distributions of the returns of all actions, not just the action

taken. This difference in the learning process is the critical distinction between the model of

this paper and the standard bandit problem.4 In addition, unlike bandit problems in which

the payoffs are evaluated according to their discounted expected value, the model of this

paper admits utility evaluation of the payoffs that is not necessarily separately additive.

The more general formulation allows the payoffs in one period to affect the evaluation of

the payoffs in subsequent periods. For example, a big monetary gain in one period may

affect the willingness to take financial risks when it is time to choose the next action.

3For a review of the multi-armed bandit models and their application in economics see Bergemann and

Välimäki (2008).
4This property implies that, unlike in the standard bandit problem, the alternatives are not stochastically

independent.
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Because the relevant theories are determined by the context (unlike in Savage’s grand-

world vision of decision making under uncertainty), the proposed decision model is context-

dependent. In the context of medical decisions, for instance, the relevant theories predict

the probable states of health (i.e., outcomes) that would result from alternative treatments

(i.e., acts). In the context of financial decisions, the relevant theories are models of financial

markets that predict the probable values (i.e., outcomes) of different portfolio positions (i.e.,

acts).

To grasp the ideas to be explored, consider the following simple example. An urn

is known to contain 100 balls, 50 of which are red and 50 are black. Balls are drawn

sequentially, at random, and their colors observed. A decision-maker can place a bet on

the event  (e.g., all the balls are of the same color) or on any other color combination.

The decision-maker entertains two hypotheses regarding the random process generating

the outcomes. Hypothesis  is that the draws are with replacement; hypothesis  is that

the draws are without replacement. The two hypotheses imply distinct distributions on

the various events. If, for example, two balls are drawn, then according to hypothesis ,

the event  and its complement,  are equally probable. According to hypothesis ,

the probability of event  is 4999 and that of  is 5099. In this scenario, the stochastic

process takes place behind a “veil of ignorance” and decision-makers get to observe only

the colors of the balls. Acts are sequences of random draws of balls, and outcomes are the

resulting color combinations.

A focal issue in the theory of decision making under uncertainty is the existence and

elicitation of decision-makers’ subjective probabilities of events, such as  and . In this

example, these probabilities are induced by underlying (prior) beliefs regarding the validity

of the two hypotheses.

Suppose that these beliefs are quantifiable by probabilities and let  and 1− denote the
probabilities of hypotheses  and , respectively. Consider betting on the color combina-

tions of the balls. Following Borel (1924) and Ramsey (1926), the acceptable odds in such

bets allow an observer to infer a decision-maker’s beliefs regarding the likely realization of

events, such as  and  and quantify those beliefs by probabilities. The question I seek

to answer here is whether an observer can recover from the betting odds the probabilities

the decision-maker assigns the underlying hypotheses. For example, suppose that imple-

menting one of the available elicitation schemes (e.g., Karni [2009]), the observer concludes

that the decision-maker’s subjective probability of the event  is 0496. The observer can
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recover the probabilities  by solving the equation [99+ (1− ) 98] 198 = 04965

The following examples set the stage and buttress the argument in favor of the proposed

model.

COVID-19: The decision problem facing the policy makers in charge of combating a

new variant of COVID-19 has the features of the proposed model. The novelty and the

lack of familiarity with the way it spreads give rise to alternative hypotheses predicting

the evolution and dynamic of the pandemic. These hypotheses incorporate factors such

as the transmission modes (e.g., aerosol and/or fomite) the infectious period (e.g., how

long a person is contagious before showing symptoms) the effectiveness of the existing vac-

cines in preventing infection and the need for hospitalization. Implementation of a policy,

such as restrictions on gathering in closed places, has immediate economic and health care

consequences. Reflecting the diversity of policy makers’ beliefs (and other political consid-

erations), different countries adopted distinct policies, ranging from complete lockdown to

taking no measures at all. Evidence regarding the efficacity of the different policies is used

to update the beliefs in the validity of the alternative models and revise the policies.

Education signals: An employer who regularly hires employees is interested in their

productivity. Productivity is idiosyncratic and cannot be ascertained except by actually

employing a worker. Suppose, for simplicity, that the employer entertains alternative

hypotheses regarding the relationship between employees’ productivity and their education

levels. Distinct hypotheses maintain that the employees’ education levels and productivity

are positively correlated but to different degrees. The employer holds a prior belief about

the validity of the alternative hypotheses, based on which she decides to require a certain

level of education to fill job vacancies. After having observed the productivity of the

employees, the employer updates her beliefs about the validity of the underlying hypotheses,

which she then relies upon the next time she looks to fill a job vacancy.

Medical decisions: A patient showing certain symptoms seeks medical treatment.

The attending physician may entertain different hypotheses regarding the underlying cause,

which she holds with different degrees of confidence. Each hypothesis predicts distinct

5Applying Bayes’ rule to obtain the posterior beliefs regarding the validity of hypoteses  and , it is

possible to predict the posterior probabilities that a Bayesian decision maker assigns to events  and 

and the odds he will accept to bet on these events Eliciting the posterior probabilities of these events and

comparing them to the predictions is a test of Bayesianism. Section 5 providesa a more general treatment

of the elicitation issue.
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probable outcomes of the available treatments. Once a treatment is administered, its

outcome provides information regarding the possible underlying illness and may be used

to update the physician’s belief about the likely cause of the symptoms.

Monetary policy: To reduce the unemployment rate, the central bank considers

quantitative easing to inflate prices. Competing theories regarding the effect of such policies

on unemployment range from the Phillips curve model, which predicts a persistent negative

correlation between the rate of inflation and the rate of unemployment, to the long-run

Phillips curve model, which predicts that a higher rate of inflation may reduce the rate

of unemployment temporarily but that, once inflationary expectations are formed, the

rate of unemployment reaches its natural level at the higher inflation rate. The monetary

authority entertains probabilistic beliefs about the validity of these models and, based on

those beliefs, implements a policy. Once the effects of the policy are observed and analyzed,

the central bank updates its beliefs regarding the validity of the alternative models and

invokes its posterior beliefs the next time it is called upon to intervene.

In these examples, the theoretical or statistical models do not necessarily assign the

acts unique outcomes. Rather, they predict a distribution on a set of possible outcomes the

randomness of which be from factors that are either unobserved or have not been properly

accounted for by these models.

The rest of the paper is organized as follows. The next section describes the analytical

framework. Section 3 depicts the properties of the preference relations and their represen-

tations. Section 4 models experiments and discusses the value of information. Section 5

introduces a novel, incentive-compatible mechanism designed to elicit the decision-maker’s

subjective degrees of beliefs in the truth of the relevant theories. Section 6 includes further

discussion of the model and a review the related literature. Section 7 provides the proofs.

2 The Analytical Framework

2.1 Theories, observations, and decision models

Theories are laws depicting the causal relationships between acts and outcomes on the basis

of which decision-makers predict the consequences of their actions. In general, theoretical

predictions include a stochastic component, reflecting the fact that factors not accounted

for by a theory may play a role in determining the action’s outcomes. To formalize this
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idea, I introduce three primitives: a finite set,  = {1  } of theories; a finite set,
 = {1  }, of outcomes; and a set  of acts, whose elements are mappings from

the set of theories to the set of Borel-measurable functions on the unit interval, Ω taking

values in  Formally, for each  ∈  and  ∈  let  () () := 
¡
−1 ()

¢
 for all  ∈ ,

where  is a Borel probability measure on Ω representing the probability that theory 

assigns to the event −1 (). Under this definition,  is identified with (∆)  where ∆

denotes the simplex in R

For all   0 ∈  and  ∈ [0 1]  define ( + (1− )  0) ∈  by:¡
 + (1− )  0

¢
() () = 

¡
−1 ()

¢
+ (1− )

¡
 0−1 ()

¢
, ∀ ( ) ∈  ×

Thus,  is a convex set in R|×|

Observations are act-outcome pairs ( ) ∈  ×. For every  ∈  and  ∈  the

support of  () is the set  ( ) := { ∈  | 
¡
−1 ()

¢
 0} An observation ( )

is consistent with theory  if  ∈  ( )  If ( ) is inconsistent with theory  (that is,

 ∈  ( )), then theory  is said to be falsified by the observation ( ).

A decision model is a triplet { } whose acts, outcome and theories are context
specific. Decision models encompasses two layers of randomness. The first layer, modeled

by ( |  ∈  )  represents the objective randomness inherent in the predictions of the

theories. The second layer is the decision-maker’s subjective uncertainty regarding the

truth of the theories.

2.2 The choice set and preference relations

Decisions are choices of finite sequences of acts. To simplify the exposition, without es-

sential loss of generality, I model decisions as two-stage dynamic processes.6 In the first

stage, the decision-maker chooses an act,  ∈  , and obtains an outcome,  ∈  In the

second stage, the decision-maker chooses the subsequent act contingent on the observa-

tions. Formally, let Z := { :  ×  → } the set of mappings representing choices of
the second-stage acts contingent on the first-stage observations For each  ∈  let Z ()
denote the set of contingent plans based on the observations that are obtainable once the

6Extension to finite sequences complicates the analysis without offering new insights, because, at each

stage, the decision maker accumulates a finite history of observations describing the actions chosen and

outcomes obtained in the preceding stages, the sequence of posterior distributions on the set of theories

evolve as a function of these histories.
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first-stage act is chosen. Formally, Z () := { () :  →  |  ∈ Z} For every given 

the constant contingent plan  ( ) =  ( 0)  for all  0 ∈  is denoted by ̄ () ∈ 

The choice set is C := {(  ()) ∈  × Z ()}, the generic element of which consists
of an act  and a plan for choosing a second-stage act  ( ) contingent on the outcome

 ∈ . For all (  ()) 
¡
 0  0 ( 0)

¢ ∈ C and  ∈ [0 1] define the convex operation

 (  ()) + (1− )
¡
 0  0

¡
 0
¢¢
=
¡
 + (1− )  0  () + (1− )  0

¡
 0
¢¢


where  () + (1− )  0 ( 0) :=
¡
 ( ) + (1− )  0 ( 0 )

¢
∈  Then C is a convex set

in a linear space.

A preference relation < on C is a binary relation that has the following interpretation.
For all (  ()) 

¡
 0  0 ( 0)

¢ ∈ C, (  ()) < ¡ 0  0 ( 0)¢ means that choosing the act  in
the first stage followed by implementation of the contingent plan  () in the second is at

least as preferred as choosing the act  0 in the first stage followed by the implementation of

the contingent plan  0 ( 0) in the second. The strict preference relation, Â and the indiffer-
ence relation, ∼ are the asymmetric and symmetric parts of < respectively. A preference
relation, <, is nontrivial if the corresponding strict preference relation is non-empty. I
assume throughout that the preference relations being considered are nontrivial. The two

components of C are essential if ¬ ¡(  ()) ∼ ¡  0 ()¢ ∀ ()   0 () ∈  and  ∈ 
¢

and ¬(¡ ̄ ()¢ ∼ ³ 0 ̄ 0 ( 0)´ ∀  0 ∈  such that ̄ () = ̄
0
( 0))

3 Preference Relations: Structures and Representation

3.1 The axiomatic structure

The first two axioms are standard and require no elaboration.

(A.1) (Weak Order) < on C is complete and transitive.
(A.2) (Archimedean) For each (  ()) 

¡
 0  0 ( 0)

¢

¡
 00  00 ( 00)

¢ ∈ C such that

(  ()) Â ¡
 0  0 ( 0)

¢ Â ¡
 00  00 ( 00)

¢
there are   ∈ (0 1) such that  (  ()) +

(1− )
¡
 00  00 ( 00)

¢ Â ¡ 0  0 ( 0)¢ Â  (  ()) + (1− )
¡
 00  00 ( 00)

¢


The third axiom is the independence axiom of expected utility theory applied to C. It

asserts the separability inherent in a preference relation that ranks two mixtures of act-

contingent-plan pairs, independently of act-contingent-plan pair that is common in the two

mixtures.
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(A.3) (Independence) For all (  ()) 
¡
 0  0 ( 0)

¢

¡
 00  00 ( 00)

¢ ∈ C and  ∈ (0 1] (  ()) <¡
 0  0 ( 0)

¢
if and only if  (  ())+(1− )

¡
 00  00 ( 00)

¢
< 

¡
 0  0 ( 0)

¢
+(1− )

¡
 00  00 ( 00)

¢


Independence holds for each component separably.7

The next axiom formalizes the idea that theories, being abstract ideas, inform the

decision-making process by predicting the outcomes of acts but do not affect the decision-

maker’s well-being directly. To state this idea formally, it is necessary to introduce addi-

tional notation and definitions.

Given any two acts,  and  0 let the act (− 0) be constructed by replacing the

−th coordinate of  by that of  0 Formally, given   0 ∈  , define (− 0) ∈  as fol-

lows: (− 0) (0) =  (0) if 0 ∈ \{} and (− 0) (0) =  0 () if 0 =  Similarly, given

 ()   0 () ∈ Z (), let  ()−  0 () ∈ Z () be the contingent plan obtained by replacing
the −th coordinate of the contingent plan  () by that of  0 ()  Formally, for every given
 ()   0 () ∈ Z () and  ∈ 

¡
 ( )− 

0 ( )
¢
(0) =  ( ) (0) if 0 ∈ \{} and¡

 ( )− 
0 ( )

¢
(0) =  0 ( ) (0) if 0 = 

A theory is irrelevant if the decision-maker believes that the theory is invalid and,

consequently, insofar as the evaluation of the acts and contingent plans is concerned,

may be disregarded. Formally, a theory  is ex ante irrelevant if, for all   0  00 ∈ 

(− 0  (− 0)) ∼
¡
− 00  0 (− 00)

¢
for all  (− 0)   0 (− 00) such that  (− 0 ) =

 0 (− 00 )  for all  ∈ . A theory,  is ex post irrelevant if it is ex ante irrelevant or if

 ∈  ( ) and is ex post relevant if  ∈  ( ).8

Two acts,   0 ∈  are said to agree outside  if − =  0− Similarly, two contingent

plans  ()   0 () ∈ Z () are said to agree outside  if  ( )− =  0 ( )−, for all  ∈ 

The next axiom asserts that if the predictions of any two relevant theories are the same,

then the preference ranking of any two alternatives in C that agree outside one of these

theories is the same as that of any two alternatives that agree outside the other theory.

This assertion is formulated separately for ex ante and ex post relevant theories. Formally,

(A.4) (Theory-independence) (a) For all   0  00 ∈    0 ∈ Z and ex ante rele-

vant  0 ∈  if  0 () =  0 (0)   00 () =  00 (0)   (− 0) =  0 (− 00) and  (−0 0) =
7 Independence implies that, for all (  ())  ( 0 ())  ( 00 ()) ∈ C and  ∈ (0 1] (  ()) <

( 0 ()) if and only if (  ()) + (1− ) 00 ()) < ( 0 ()) + (1− ) 00 ()) and for all
 ̄ ()




 0 ̄

0
( 0)




 00 ̄

00
( 00)


∈ C such that ̄ () = ̄

0
( 0) = ̄

00
( 00) = ̂ and  ∈ (0 1]


 ̂


<

 0 ̂

if and only if


 + (1− )  00 ̂


< ( 0 + (1− )  00 ̂)

8This is analogous to the notion of null events in the theory of decision making under uncertainty.

9



 0 (−0 00) then (− 0  (− 0)) <
¡
− 00  0 (− 00)

¢
if and only if (−0 0  (−0 0)) <¡

−0 00  0 (−0 00)
¢
 (b) For all  ∈  and   0 ∈ Z , and ex post relevant  0 ∈


¡
  ( )− 

0 ( )
¢
<
¡
  ( )− 

0 ( )
¢
if and only if

¡
  ( )−0 

0 ( )
¢
<¡

  ( )−0 
0 ( )

¢
 for all  ∈ 

3.2 Representation

The first result characterizes the existence and uniqueness of subjective expected utility

representation of < on C. The subjectivity is the decision-makers’ idiosyncratic valuations
of the sequences of outcomes and their evolving personal beliefs regarding the validity of

the theories. The joint probability on the sequences of outcomes is induced by the prior

and posterior subjective probabilities on the set of theories.

Theorem 1: A preference relation < on C is nontrivial Archimedean weak order satis-
fying independence and theory-independence if and only if there is nonconstant function  :

× → R and a probability distribution  on  such that, for all (  ()),( 0  0 ( 0)) ∈
C,

(  ()) < ( 0  0
¡
 0
¢
)

if and only if

Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )
i
Σ∈

¡
−1 ()

¢
 () (1)

≥ Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 0
¡
 0 

¢−1 ¡
0
¢´


¡
 |  0 ¢iΣ∈ ¡ 0−1 ()¢  () 

Moreover,  is unique up to positive affine transformation, and  is unique.

The representation in Theorem 1 may be reformulated as follows: Let Pr ( | ) and
Pr(0 | ( )) denote the prior distribution of  given  and the posterior distribution

on  given the observation ( ) respectively. Formally,

Pr ( | ) := Σ∈
¡
−1 ()

¢
 () (2)

and

Pr(0 | ( )) := Σ∈
³
 ( )−1

¡
0
¢´

 ( |  )  ∀ ( ) ∈  × (3)

Then the joint probability distribution on  × induced by (  ()) is:

Pr
¡
 0 | (  ())¢ = Pr ¡0 |  ( )¢Pr ( | )  (4)
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The representation may be expressed as follows:

(  ()) 7→ Σ∈Σ0∈
¡
 0

¢
Pr( 0 |  ()) (5)

The decision-maker is Bayesian if the second-stage conditional probabilities are  ( |  ) =

¡
−1 ()

¢
 () Σ0∈0

¡
−1 ()

¢
 (0)  for all ( ) ∈  × and  ∈  In particular,

() = 0 if and only if  is ex-ante irrelevant and  ( |  ) = 0 if and only if  is ex poste
irrelevant.

A special case of the representation Theorem 1 is the additive representation. To obtain

such representation, recall that  and Z () are convex sets in R|×| and be R|××|
respectively. Suppose that they are endowed with the the topology of R and the choice

set, C, is endowed with the product topology.

Assume that the two components of C are essential and that the preference relation <
on C satisfies the following, well-known, hexagon condition.

(A.5) (Hexagon condition): For all   0  00 ∈  and   0  00 ∈ Z ¡
  0 ()

¢ ∼
( 0  ( 0)) and

¡
  00 ()

¢ ∼ ¡ 0  0 ( 0)¢ ∼ ( 00  ( 00)) then ¡ 0  00 ( 0)¢ ∼ ¡ 00  0 ( 0)¢ 
The preference relation is continuous if the upper and lower contour sets, {( 0  ( 0)) ∈

C | ( 0  ( 0)) < (  ())} and {( 0  ( 0)) ∈ C | (  ()) < ( 0  ( 0))} are closed for all
(  ()) ∈ C. A pair of functions, (1 2) are jointly cardinal representation of < if the

class of all such pairs (1 2) that represent < satisfy:  =  +    0,  = 1 2

With this in mind we can state the following result:

Theorem 2: A preference relation < on C is a nontrivial continuous weak order

satisfying independence, theory-independence, and the hexagon condition if and only if

there are nonconstant, real-valued functions 1 and 2 on  and a probability distribution

 on  such that, for all (  ()),( 0  0 ( 0)) ∈ C,

(  ()) < ( 0  0
¡
 0
¢
)

if and only if

Σ∈1 () Pr ( | ) + Σ0∈2
¡
0
¢
Σ∈ Pr(0 | ( )) Pr ( | ) ≥

Σ∈1 () Pr ( | ) +Σ0∈2
¡
0
¢
Σ∈ Pr(0 | ( )) Pr ( | ) 

Moreover, 1 and 2 are jointly cardinal and  is unique.
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In general, decisions involve trade-offs between material benefits and information ac-

quisition. The model described here allows for an act to be chosen that foregos imminent

material benefits if it generates information that improves the subsequent choices. This

point is illustrated by the following example.

Exploitation-exploration trade-off: Consider the urn example described in the

introduction. There are two hypotheses regarding the process. According to hypothesis 

balls are drawn with replacement and according to hypothesis  balls are drawn without

replacement Let the set of payoffs be  = {$0 $ $̂} and consider a choice between two
acts 1 is a bet on the outcome of a draw of two balls from the urn that pays  dollars

if the two balls are of the same color and zero dollars otherwise, and 2 is a bet on the

outcome of a draw of three balls from the urn that pays ̂ dollars if they are of the same

color and zero otherwise. Assume that the payoffs,   0 and ̂  0 are such that

Pr ( | 1) = ̂Pr (̂ | 2)  (6)

where

Pr ( | 1) = 
¡
−11 ()

¢
 () + 

¡
−11 ()

¢
 ()

and

Pr (̂ | 2) = 
¡
−12 (̂)

¢
 () + 

¡
−12 (̂)

¢
 () 

Suppose that the utility function is  ( 0) =  + 0 Denote by ∗( ) the solution

to

max
∈{12}

Σ0∈{̂0}
0 Pr(0 |  )  ∈ {0 }

Then the representation (5) implies that choosing 1 in the first stage and proceeding

optimally yields

Pr ( | 1) +Σ∈{0}Σ0∈{̂0}0 Pr(0 | ∗(1 )) Pr ( | 1) 

and choosing 2 in the first stage and proceeding optimally yields

̂Pr (̂ | 2) +Σ∈{̂0}Σ0∈{̂0}0 Pr(0 | ∗(2 )) Pr ( | 2) 

By (6), the exploitation value (i.e., the first-stage expected payoff) is the same under

the two acts. However, according to the definition of Blackwell (1951), 2 is sufficient of
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1
9 Hence, by Blackwell’s (1951) theorem 2 is more informative, that is:

Σ∈{̂0}Σ0∈{̂0}
0 Pr(0 | ∗(2 )) Pr ( | 2)  Σ∈{0}Σ0∈{̂0}0 Pr(0 | ∗(1 )) Pr ( | 1) 

Consequently, 2 has a higher exploration value.

Thus, choicing 2 in the first stage and proceeding optimally is preferred over choosing

1 in the first stage and proceeding optimally from there. By continuity of the first stage

expected payoff, for   0 sufficiently small, an increase from  to +  makes 1 strictly

better than 2 from the exploitation viewpoint but does not reverse the preference ranking

(that is, (2 
∗ (2)) is strictly preferred over (1 ∗ (1))).

4 Experiments

4.1 Preliminaries

Experiments are acts the outcomes of which, dubbed signals, are devoid of material impli-

cations. Formally, experiments are random variables, e, on the Borel-measurable space Ω
taking values in a set of signals,  ⊂ . Thus, the set E of experiments is a subset of 
Let Z = { : E ×  → } be sets of mappings representing contingent plans of choosing
acts contingent on the observations Let Z (e) := { (e) :  →  |  ∈ Z} Then the choice
set is C := {(e  (e)) ∈ E × Z (e)}

A central tenet of the subjective expected utility theory is that information affects

decision-makers’ beliefs while leaving their tastes intact. To formalize this premise, I pro-

pose a variation of the model of the preceding section in which the first-stage decision is a

choice of an experiment, e followed, in the second stage, by a choice of an act contingent
on the observations (e ) ∈ E ×  . The idea is that, based on the observation obtained

in the first stage, the decision-maker updates his beliefs about the validity the underlying

theories and, consequently, his preferences over the second-stage acts.

To formalize the idea that neither the experiment itself nor its signals affects the

decision-maker’s well-being except through the update of his beliefs about the likely out-

9To see this, let the information structures corresponding to 1 and 2 be given by the right stochastic

matices 1 =


12 12

4999 5099


and 2 =


14 34

49× 4899× 98 1− 49× 4899× 98




Then 2 = 1 where the garbling matrix  is:


5199 4899

4999 5099



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comes of the second-stage acts, it is necessary to separate the informational effects of

experiments from potential signal effects on the decision-maker’s well-being.

4.2 Preferences and representation

The idea that decision-makers regard experiments as valuable only inasmuch as they are

informative, is captured by requirement that information that is not exploitable is valueless

and, consequently, the experiments that generate it belong to the same indifference class.

For instance, if the feasible set of acts is a singleton (i.e., there is no choice to speak of),

then experimentation is useless and all experiments are equally (non)valuable.

The next axiom states this assertion formally. It requires that all experiments followed

by contingent plans that do not permit the exploitation of information, are indifferent to

one another. Stating the axiom formally requires the following additional notation and

definitions: For each e ∈ E the support of e is  (e) = { ∈  | Σ∈
¡e−1 ()¢  ()  0}

For every e ∈ E , a constant contingent plan is  (e) ∈ Z (e) such that  (e ) =  (e 0) 
for all  0 ∈  (e). The set of the constant contingent plans is identified with  Invoking

this identification, the axiom asserts that (e ) ∼ (e0 )  for all e e0 ∈ E and  ∈ 

(A.6) (Signal-independence) For all e e0 ∈ E and constant contingent plans  (e) =
 =  (e0)  (e ) ∼ (e0 ).

The next theorem characterizes the representation of preference ranking of experiments.

It is obtained from Theorem 1 by restricting choice space to alternatives that are devoid

of material consequences and amending the structure of preference relation with signal-

independence. Unlike Theorem 1, according to which the ranking of alternatives in C is

based on their exploitation and exploration values, the ranking of experiments is motivated

solely by their exploration values.

Theorem 3: A binary relation < on C is a nontrivial, Archimedean, weak order sat-
isfying independence, theory-independence, and signal-independence if and only if there is

a non-constant function  :  → R and probability distribution  on  such that for all

(e  (e))  ¡e0  0 (e0)¢ ∈ C,
(e  (e)) < ¡e0  0 ¡e0¢¢
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if and only if

Σ∈
h
Σ∈ ()Σ∈

³
 (e )−1 ()´  ( | e )iΣ∈ ¡e−1 ()¢  ()

≥ Σ∈ 0
h
Σ∈ ()Σ∈0

³
 0
¡e0 ¢−1 ()´ 0 ¡ | e0 ¢iΣ∈ ¡e0−1 ()¢ 0 () 

Moreover,  is unique up to positive affine transformation, and  is unique.

5 Elicitation of the Subjective Probabilities

5.1 The elicitation problem

Incentive-compatible mechanisms designed to elicit subjective probabilities on a state space

have been studied for more than half a century. Pioneered by the works of Brier (1950)

and Good (1952), these studies include Savage (1971), Grether (1981), Kadane and Win-

kler (1988), and Karni (2009).10 A common feature of these elicitation schemes is the

conditioning of the subject’s reward on the events of interest. This conditioning requires

that the occurrence of the events of interest be verifiable. Because, in general, theories are

not verifiable, these mechanisms do not apply to the elicitation of a subject’s prior beliefs

about the truth of theories.

Prelec (2004); Chambers and Lambert (2015, 2021); and Karni (2020) proposed incentive-

compatible mechanisms designed to elicit subjective probabilities of events the occurrence

of which is private information and, consequently, unverifiable. However, the working of

these mechanisms hinges on the presumption that the subject discovers, for himself, the

truth of the unobservable event of interest. Because the uncertainty about the truth of

theories may not dissipate in the subject’s own mind, these mechanisms do not apply to

the elicitation problem with which we are concerned.

Invokes the observability of the signals of experiments, I propose next a new, indirect,

incentive-compatible scheme designed to elicit the subjective probabilities representing the

subject’s degree of belief in the truth of the theories and examine the conditions under

which it yields the desired outcome.

10For a recent comprehensive review, see Chambers and Lambert (2020).
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5.2 The elicitation mechanism

Consider an experiment e ∈ E whose support,  (e)  has cardinality that is at least as
great as that of the set of theories,  Let Υ (e) = ¡

1  | |
¢
be a partition of the set

 (e) and denote by Υ| | the set of all partitions of  (e) that have |  | cells.11
Fix Υ (e) ∈ Υ| |. Since the signals are verifiable, it is possible to apply one of the

existing schemes (e.g., Karni [2009]) to elicit the subject’s subjective probabilities of the

cells of the partition,  ()   = 1  |  |  By Theorem 3, for all  ∈ Υ (e)   () =
∪∈Σ∈

¡e−1 ()¢  () 
For each  ∈ Υ (e) and  ∈  let  () := ∪∈

¡e−1 ()¢ (i.e.,  () denotes
the probability that the theory  assigns to the set of signals  conditional on the ex-

periment e). Define (Υ (e)) = ¡
 (1 | Υ (e))    ¡| | | Υ (e)¢¢  Then  (Υ (e)) =¡

 (1)   (| |−1) 1
¢

 where the superscript  is the transpose and  is the |  | × |  |
matrix given by:

 =

⎡⎢⎢⎢⎢⎢⎣
1 (1) · · | | (1)

· ·
1

³
| |−1

´
· · | |

¡
| |−1

¢
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦  (7)

The following proposition is immediate:

Proposition: The probability distribution (Υ (e)) on  exists and is unique if and

only if there is an experiment e ∈ E and a partition of  (e) such that the corresponding
matrix  is nonsingular.

Assume that for every Υ (e) ∈ Υ| | (Υ (e)) exists. A prior probability distribution 

on  is said to represent a decision-maker’s beliefs if and only if

η (Υ (e)) = η
¡
Υ0 (e)¢ = η

¡
Υ
¡e0¢¢ = η

¡
Υ0
¡e0¢¢ = η

for all Υ (e) Υ0 (e) Υ (e0) Υ0 (e0) ∈ Υ| | and e e0 ∈ E 12
11 If |  () |= |  | then cells of the partition are singlton sets, each containing an element of the support

of 
12 If no single experiment has support whose cardinality is at least as great as that of the set of relevant

theories but Σ∈E |  () |≥|  | it is possible to run a number of experiments, partition the sets of signals
so that the total number of cells is equal to |  | and elicited the coresponding vectors of probabilities, ̂ .
A unique subjective probability  on  is given by the solution to the system of equations ̂ = ̂  if and

only if the matrix ̂ whose columns are the probabilities assigned by the different theories to the cells of
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It is important to underscore that the proposed elicitation mechanism may not work

if it is applied to general acts, because the valuations of the payoffs are not generally

outcome-independent. Consequently, the elicitation mechanisms fail to produce reliable

values of the probabilities of the cells of the partition of the set of outcomes.13

6 Discussion

6.1 States and consequences

Perhaps the simplest way to explain the distinction between the traditional analytical

framework employed in the theories of decision making under uncertainty and the one

proposed here is by reviewing the similarities to and differences with the model of Anscombe

and Aumann (1963). Because the theory-dependent consequences of acts are distributions

on  the decision model of this paper may seem analogous to that of Anscombe and

Aumann with theories replacing the states. In particular, like the states in the framework of

Anscombe and Aumann, theories are exogenously given. However, unlike in the Anscombe-

Aumann model, in which states are verifiable, in general, theories are not. In other words,

the Anscombe-Aumann states — whether they are the outcomes of actions, as in the case

of running a horse race, or occur naturally, as in the case of the weather — are verifiable

independently of the acts.14 By contrast, because observations may be consistent with

distinct theories, in general observing an act-outcome pair may be sufficient to invalidate

a theory but not sufficient to validate it.15

Another difference has to do with the interpretation of the subjective probabilities.

Unlike the Anscombe-Aumann model — in which decision-makers entertain beliefs, rep-

resented by subjective probabilities, on the likelihoods of states (e.g., the outcomes of a

horse race or the weather) — in the model of this paper, these states are outcomes, and their

probabilities are objective forecasts of the underlying theories (e.g., “horse race theories”

or weather forecast models). Instead of beliefs on states, decision-makers’ entertain beliefs

about the truth of the alternative theories.

the partition is nonsingular.
13This is a version of the familiar state-dependent problem with the known elicitations procedures.
14This is a necessary condition for the payoffs of the acts to be effectuated.
15One may bet on the falsification of a theory by observations. One may not bet, however, on a theory

being proved to be true.
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6.2 Related literature

Predicting the outcomes of acts on the basis of laws that capture the regularity of the

relation between acts and outcomes seems to conform to the way we think and with the

scientific method, according to which general laws are a parsimonious and efficient means

of describing the environment relevant to a decision problem. The notion that choice under

uncertainty is based on laws that assign probability distributions on the state space was

suggested by Klibanoff, Marinacci, and Mukerji (2005) and was adopted by Denti and

Pomatto (2021). In both cases, this notion is offered as a possible interpretation of the

elements of the set of priors that figure in their respective models of smooth ambiguity.

Cerreia-Vioglio et al. (2021) employ a similar idea, suggesting that decision-makers invoke

“structured models” to assess the uncertainty induced by model misspecification. However,

apart from this feature, the models of smooth ambiguity and model misspecification and

the model of this paper are different in their objectives and, consequently, the analytical

frameworks they employ and the structures of the preference relations. Perhaps the most

important difference is that the aforementioned models do no include the dynamics that

are at the core of the exploitation-exploration process modeled in this paper.

Hyogo (2007) proposes a different decision theoretical model of experimentation, the

focal point of which is the subjective interpretation of relation between experiments and the

distribution of signals. Decisions in Hyogo’s model span two periods. In the first period,

the decision-maker is supposed to choose an action and a subset of Anscombe-Aumann acts

that is referred to as a menu. The action generates a signal, which the decision-maker uses

to update her beliefs about the likelihoods of the states. In the second period, the decision-

maker chooses an Anscombe-Aumann act from the predetermined menu. An experiment

is a pair ( )  where  :  ×  → ∆ is a function,  is the set of actions,  is the set

of states of the world, and ∆ is the set of distributions on a set,  of signals. The main

objective of Hyogo’s model is “to make the pair ( )  in addition to the prior, subjective”

(Hyogo [2007], p. 317).

Hyogo’s approach is fundamentally different from the one proposed in this paper in

several important respects. The first is the modeling and definition of experiments. The

analogue of states of the world in Hyogo’s model are theories and that of actions are random

variables on an abstract measure space taking their values in a signal space. However, unlike

in Hyogo’s model, the mapping of theory-experiment pairs to the distribution of signals
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and the set of signals itself are objectively given, because, by definition, a theory generates

predictions of the outcomes of experiments. Consequently, the objective of Hyogo’s analysis

has no counterpart in the present study, which focuses on the subjective degrees of belief

of the decision-maker in the truth of the theories. The different objectives require distinct

analytical frameworks. Thus, in Hyogo’s model, elements of choice set in the first period are

pairs, consisting of an action and a menu of acts, and that of the second period are acts from

the menu that was selected in the first period. In the present model, the elements of the

choice set consist of experiments and plans of choosing acts contingent on the experiment-

generated signals. Finally, the preference structures and their representations of the two

models are different, reflecting the distinct objectives and analytical frameworks.

7 Proofs

7.1 Proof of theorem 1

(Sufficiency) By the von Neumann-Morgenstern theorem, < is an Archimedean weak order
satisfying independence if and only if there is an affine, real-valued, function  on C such

that, for all (  ()),( 0  0 ( 0)) ∈ C,

(  ()) < ( 0  0
¡
 0
¢
)⇔  (  ()) ≥ ( 0  0

¡
 0
¢
)

Fix ∗ ∈  and, for any  ∈  and  ∗ ∈ Z. By definition,
1


(  ()) +

− 1


(∗ ∗ (∗)) =
1


Σ∈

¡
∗− ()  

∗ (∗)−  () ()
¢


where  () () = ( ( 1) ()    ( ) ()) ∈ ∆ (). By the affinity of 
1


 (  ()) +

− 1


 (∗ ∗ (∗)) =
1


Σ∈

¡
∗− ()  

∗ (∗)−  () ()
¢


Define a function  :  ×∆ × (∆) → R by:

 (  ()   () ()) = 
¡¡
∗− ()

¢

¡
∗ (∗)−  () ()

¢¢− − 1


 (∗ ∗ (∗)) 

Thus,

1


Σ∈ ( ()  () ()) =

1


Σ∈

¡¡
∗− ()

¢

¡
∗ (∗)−  () ()

¢¢−− 1


 (∗ ()  ∗ (∗) ()) 
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Hence,

 (  ()) = Σ∈ (  ()   () ()) 

By the affinity of   ( · ·) is affine.
By theory-independence, for all ex-ante relevant  0 ∈  and   0 ∈ 

¡
∗− ()  

∗ (∗)−  () ()
¢
<
¡
∗−

0 ()  ∗ (∗)− 
¡
 0
¢
()
¢

if and only if

¡
∗−0() 

∗ (∗)−0  () ()
¢
<
¡
∗−

0 ()  ∗ (∗)−0 
¡
 0
¢
()
¢

Then, by the additivity of  across theories, for all ex-ante relevant  0 ∈ 

 (  ()   () ()) ≥
¡
  0 ()  

¡
 0
¢
()
¢

if and only if


¡
0  ()   () ()

¢ ≥
³
0 

0
()  

¡
 0
¢
()
´


Define  (· ·) : ∆ × (∆) → R by  (· ·) = (1 · ·) 
Then, the uniqueness of the affine utility representation

 ( · ·) =  (· ·) + 

where   0 for all ex-ante relevant  ∈  and  = 0 for all ex-ante irrelevant  ∈  . By

nontriviality, Σ0∈ 0  0. Define  () = Σ0∈ 0  for all  ∈  then

 (  ()) = (Σ0∈ 0)Σ∈ () ( ()   () ()) +Σ∈

Thus,

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈ () ( ()   () ()) ≥ Σ∈ ()
¡
 0 ()   0

¡
 0
¢
()
¢
 (8)

Let  ∈  assign the outcome  the unit probability mass. Then −1 = Ω and

 () ∈  . Define a function ̂ :  ×  → R by ̂ (  ()) =  (  ())  for all
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 ∈ Z. By the affinity of  and induction on the size the support (see Kreps (1988) p. 50)
we have

 ( ()   () ()) = Σ∈̂ (  ( ) ())
¡
−1 ()

¢


Hence, by (8),

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈̂ (  ( ) ())Σ∈
¡
−1 ()

¢
 () ≥ Σ∈̂

¡
  0

¡
 0 

¢
()
¢
Σ∈

¡
 0−1 ()

¢
 () 

(9)

Consider next the function ̂ (  ( ) ())  Fix ∗ ∈ Z . Then, by the same argument
as above,

1


(  ()) +

− 1


( ∗ ()) =
1


Σ∈

¡
 ∗ ()−  () ()

¢


Thus, by (9) and the affinity of ̂ ( ·) 

Σ∈

∙
1


̂ (  ( )) +

− 1


̂ ( ∗ ( ))
¸
Σ∈

¡
−1 ()

¢
 ()

= Σ∈

∙
1


Σ0∈ ̂

¡
 ∗ ( )−0( )

¡
0
¢¢¸
Σ∈

¡
−1 ()

¢
 () 

Define a function  :  × ×∆ → R by:

 (  ( )) = ̂ ( ∗ ( )−( ) ())− − 1


̂ ( ∗ ( )) 

Then, by the same argument as above,

̂ (  ( )) = Σ∈ (   ( ) ())  (10)

By theory independence, for all ex-post relevant  0 ∈  and   0 ∈ Z and for every
given ( ) ∈  ×

¡
 ∗ ( )−  ( )

¢
<
¡
 ∗ ( )− 

0 ( )
¢

if and only if, ¡
 ∗ ( )−0  ( )

¢
<
¡
 ∗ ( )−0 

0 ( )
¢


21



Hence, by (10),

Σ∈ (   ( ) ())Σ∈
¡
−1 ()

¢
 () ≥ Σ∈

¡
   0 ( ) ()

¢
Σ∈

¡
−1 ()

¢
 ()

if and only if

Σ∈
¡
0   ( ) ()

¢
Σ∈

¡
−1 ()

¢
 () ≥ Σ∈

¡
0   0 ( ) ()

¢
Σ∈

¡
−1 ()

¢
 () 

Define  ( ·) =  (1  ·)  then, by the uniqueness of the affine representation, for all
 ∈ 

 (   ( ) ()) = ̂ ( ) (  ( ) ()) + ̂ ( )

By nontriviality, Σ∈ ̂ ( )  0 Let  ( |  ) := ̂ ( ) Σ0∈ ̂0 ( ) 

Let  () =  for all  ∈  and define  :  × → R by  ( 0) =  (  (0)).

Then, by the affinity of  ( ·)  we have  (  ( ) ()) = Σ0∈ ( 0)
³
 ( )−1 (0)

´
and, by (10),

̂ (  ( )) = Σ0∈ ̂0 ( )Σ0∈
¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )+Σ∈̂ ( )
(11)

Combining (9) and (11) yields:

 (  ()) ≥ ( 0  0
¡
 0
¢
)

if and only if

Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )
i
Σ∈

¡
−1 ()

¢
 ()

≥ Σ∈
h
Σ0∈

¡
 0

¢
Σ∈

³
 0
¡
 0 

¢−1 ¡
0
¢´

 ( |  )
i
Σ∈

¡
 0−1 ()

¢
 () 

(Necessity) The necessity of weak order, Archimedean, and independence follow from

the von Neumann-Morgenstern theorem. The necessity of theory independence is immedi-

ate.

The uniqueness part follows form the uniqueness of  . ¥

7.2 Proof of theorem 2

The necessity is immediate, so I prove the sufficiency part.
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Recall that the sets  and Z ()   ∈  are connected separable topological spaces, the

choice set C is endowed with the product topology, and both components of the elements

of C are essential. Hence, by Wakker (1989) Theorem III.4.1, < is continuous weak order
on C satisfying the hexagon condition then there exist jointly cardinal, continuous additive

representation

(  ()) 7→ 1 () + 2 ( ())

By independence and theory independence, we have:

1 () = Σ∈1 ()Σ∈
¡
−1 ()

¢
 () 

and

2 ( ()) = Σ0∈2
¡
0
¢
Σ∈Σ∈

³
 ( )−1

¡
0
¢´

 ( |  )Σ∈
¡
−1 ()

¢
 () 

By (2) and (3) Σ∈
¡
−1 ()

¢
 () = Pr ( | ) and Pr(0 | ( )) := Σ∈

³
 ( )−1 (0)

´
 ( |  ).

Hence,

1 () = Σ∈1 () Pr ( | )
and

2 ( ()) = Σ0∈2
¡
0
¢
Σ∈ Pr(0 | ( )) Pr ( | ) 

The joint cardinality of 1 and 2 is an implication of the joint cardinality of the additive

representation. ¥

7.3 Proof of theorem 3

Proof. By Theorem 1, a preference relation < on C is nontrivial, continuous weak order sat-
isfying independence and theory- independence if and only if it admits the representation:

(e  (e)) 7→  (e  (e))  where
 (e  (e)) = Σ∈ hΣ∈ ( )Σ∈ ³ (e )−1 ()´  ( | e )iΣ∈ ¡e−1 ()¢  () 
I show next that signal-independence is necessary and sufficient condition for  to be

independent of the signal, .

Suppose that  ( ) =  (0 ) =  () for all  0 ∈  then, for every e ∈ E and
constant contingent plans  (e) =  , it holds that
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 (e ) = Σ∈ ()Σ∈ ¡−1 ()¢Σ∈  ( | e )Σ∈ ¡e−1 ()¢  ()  (12)

But Σ∈  ( | e )Σ∈ ¡e−1 ()¢  () = Σ∈  ( | e ) Pr ( | e) =  ()  Hence,

 (e ) = Σ∈ ()Σ∈ ¡−1 ()¢  () 
The last expression is independent of e Thus,  (e ) =  (e0 )  for all e e0 ∈ E and
 ∈  Therefore, by the representation, (e ) ∼ (e0 ), for all e e0 ∈ E and  ∈  Hence,

signal independence holds.

Suppose that, for some  0 ∈   ( ·) 6=  (0 ·)  Fix  ∈  then Σ∈
¡
−1 ()

¢
Σ∈  ( | e ) =

Pr ( | )  for all e e0 ∈ E . Moreover, for all e ∈ E , Σ∈ ¡e−1 ()¢  () = Pr ( | e)  Let
̄ ( | ) = Σ∈ ( ) Pr ( | ) then, by (12),

 (e )− 
¡e0 ¢ = Σ∈ ̄ ( | ) £Pr ( | e)− Pr ¡ | e0¢¤ 

But, by the supposition, ̄ ( | ) is not a constant function. Hence, there are e e0 ∈ E such
that  (e )−  (e0 ) 6= 0 By the representation, ¬ ((e ) ∼ (e0 ))  which contradicts
signal-independence. Thus,  ( ·) 6=  (0 ·) for all  0 ∈  .

The uniqueness follows from Theorem 1. ¥
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