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1 Introduction

It is standard practice in economics and decision theory to depict individual

choice behavior by rational (i.e., transitive) preference relations on sets of al-

ternatives whose interpretations are context dependent.1 Formally speaking,

a preference relation is a transitive and irreflexive binary relation, denoted

by Â, on a set  of alternatives, where  Â 0 means that the alternative 
is strictly preferred to 0
The exact meaning of the last statement is open to interpretation. One

interpretation is that the preference relation captures intrinsic characteristics

of the decision maker that govern his choice behavior and make him choose

the alternative  whenever facing a choice between  and 0 An alternative
interpretation takes the same statement to parsimoniously summarize the

decision maker’s revealed choices. According to this interpretation  Â 0

means that, other things being the same, facing the need to choose between

the alternatives  and 0 repeatedly, the decision maker consistently chooses


Underlying both interpretations is the notion described by Block and

Marschak (1960) as “absolute consistency of choices.” Absolute consistency

may depict accurately choice behavior in some situations (e.g., when the

choice is between bets ranked by pointwise first-order stochastic dominance).

However, in many situations (e.g., choice between dining in Chinese or Indian

restaurants), repeated choices reveal that different alternatives are chosen

on occasion, producing a pattern depicted by stable frequency distribution.

Such behavior may be described by Block and Marschak (1960) as “stochas-

tic consistency of choices.” The stochastic pattern may be the manifestation

of the effects of factors not captured by the primitives  and Â . The

neglected factors may include unobserved psychological processes, such as

boredom, variations in mood, changing needs, or inability to compare the al-

ternatives that is resolved by deliberate randomization; by exogenous stimuli

(e.g., imitation of others); or by subconscious neurological process (e.g., drift

diffusion). To an observer, the decision maker’s choice behavior appears to

be stochastic.

Whatever the underlying causes, what one observes are the inputs (the

1Sometimes included in the definition of rational preference relation the condition of

completeness (e.g., Mas-Collel, Whinston, and Green [1995]). However, there is nothing

irrational in finding some alternatives noncomparable and exhibiting incomplete prefer-

ences.

2



sets of feasible alternatives) and the outputs (the alternatives chosen). Lack-

ing the ability to discern what is going on in the decision maker’s mind, one

must, provisionally, settle on models that make sense of the observed choice

patterns and derive their implications.2

In Karni (2022), I proposed a theory, dubbed irresolute choice model,

in which stochastic choice is expressed by a set of transitive and irreflexive

binary relations Â on , referred to as random or probabilistic choice re-

lations, where  Â 0 is interpreted to mean that, ceteris paribus, facing
repeated choices from the set { 0}, the relative frequency with which a de-
cision maker chooses alternative  is at least  More generally, according to

the irresolute choice model, repeated choices under similar conditions from

a feasible set of alternatives reveal that distinct alternatives are chosen with

stable frequencies.

A stochastic choice function assigns to every element in every feasible set

of alternatives a probability of being selected. Stochastic choice functions

are formal summaries of the relationships between the inputs and outputs

that are constituents primitives of the model. The main purpose of this

paper is to characterize the stochastic choice functions that are rationalizable

as reflecting the choices depicted by the random choice relations and are

represented by irresolute choice models.

The contribution of this work to the literature dealing with the modelling

and analysis of stochastic choice behavior is better understood after the ideas

and results of this work are presented. I therefore relegate the discussion of

the related literature to the concluding section.

The paper is organized as follows. The next section introduces the sto-

chastic choice functions and the irresolute choice model. Section 3 analyzes

the relationships between stochastic choice functions and irresolute choice be-

havior. Section 4 discusses the representations of stochastic choice functions.

Section 5 applies the irresolute choice model to the theories of consumer de-

mand and portfolio selection. Section 6 discusses the related literature and

offers some concluding remarks.

2Improved understanding of the way the brain works may one day allow researchers to

model the decision-making process at the neurological level.
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2 Stochastic Choice Functions and the Irres-

olute Choice Model

2.1 Stochastic choice functions

Let  denote an arbitrary set with |  |≥ 2, referred to as the choice set.
Elements of  are alternatives. Denote by A the set of all nonempty finite

subsets of  Elements of A, dubbed menus, represent potential feasible sets
of mutually exclusive alternatives that a decision maker may have to choose

form.

A stochastic choice function (SCF) is a mapping  : ×A→ [0 1] such
that

Σ∈ () = 1 for every  ∈ A
and

 (0) = 0 for every 0 ∈ \3

I consider SCFs that feature two attributes. The first attribute, regularity,

asserts that the probability of choosing an alternative from amenu is (weakly)

smaller the more inclusive the menu.4 This property restricts the structure of

the SCF across menus in the spirit of the weak axiom of revealed preference.

In particular, it asserts that if an alternative  is revealed to be chosen from

a menu  0 with certain frequency, then it is revealed to be chosen from a

submenu  ⊂ 0 at lease as frequently. Formally,
(A.1) Regularity: For all  ,  0 ∈ A such that  ⊂  0 and  ∈ 

 ( 0) ≤  () 5

The second attribute requires that the restriction of the probabilistic

choice relation depicted by SCF to be binary menus be stochastically tran-

sitive. Formally,

(A.2) Stochastic Transitivity (ST): For all  0 00 ∈  and  ∈ [0 1]
 ( { 0})   and  (0 {0 00})   imply  ( { 00})  

The literature dealing with stochastic choice behavior contains distinct

conceptions of stochastic choice transitivity6 One such concept is Partial

Stochastic Transitivity (PST). Formally, for all  0 00 ∈   ( { 0}) 
3See Ok and Tserenjigmid (2021).
4See Block and Marschak (1960).
5The axiom may be stated as follow: For all  ,  0 ∈ A and  ∈  ∩  0

max{ ()   ( 0)} ≤  ( ∩ 0) 
6See Fishburn (1973) for a discussion of different notions of stochastic transitivities.
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12 and  (0 {0 00})  12 implies  ( { 00}) ≥ min{ ( { 0}) 
 (0 {0 00})}.7
The strict version of ST is stronger than PST. Formally,

Proposition: Strict ST ⇒ PST.

Proof. Let  0 00 ∈, be such that  ( { 0})  12 and  (0 {0 00}) 
12. By ST, for all  ∈ { ∈ [12 1] |  ( { 0})  } ∩ { ∈ [12 1] |
 (0 {0 00})  } it holds that  ( { 00})   Hence,

 ( { 00}) ≥ sup{ ∈ [12 1] |  ( { 0})  }∩{ ∈ [12 1] |  (0 {0 00})  }

But

sup{ ∈ [12 1] |  ( { 0})  }∩{ ∈ [12 1] |  (0 {0 00})  } = min{ ( { 0})   (0

Hence,  ( { 00}) ≥ min{ ( { 0})   (0 {0 00})} ¤

2.2 Irresolute choice model

An irresolute choice model (ICM) is a set, {Â|  ∈ [0 1]} of binary relations
on  referred to as probabilistic choice relations, each of which is transitive

and irreflexive and jointly they satisfy set-inclusion monotonicity (i.e., for

all  0 ∈ [0 1], if 0 ≤  then Â⊆Â0).8 For each  ∈ [0 1]  the derived
relations 3∼  and < are defined as follows:  3 0 if, for all 00 ∈  

00 Â  implies that 00 Â 0;  ∼ 0 if  3 0 and 0 3 ;   0 if
¬ ( 3 0) and ¬ (0 3 ) ;  < 0 if ¬ (0 Â ) 

Given any  0 ∈  the interpretation of  Â 0 is as follows: Facing a
choice from the menu { 0}, alternative  is strictly preferred and, hence,
chosen, over 0 with probability that is at least  Thus, for all 0    Â 0

implies that  Â0 0 Moreover, if  3 0 then, for all 0    Â0 0

7Another concept, Moderate Stochastic Transitivity, is obtained from PST by replacing

the strict inequalities in the hypothesis with weak inequalities. He and Natenzon (2022)

show that a version of Moderate Stochastic Transitivity is necessary and sufficient for a

binary stochastic choice rule, , to have a moderate utility representations proposed by

Halff (1976).
8Robert (1971) studied the relations between nested semiorders and the family {Â|

 ∈ [12 1)} induced by  (i.e.,  Â 0 if and only if  ( {00})  ) .
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Given any  0 ∈  such that ¬ (0 ∼1 )  let ̄ ( 0) := sup{ ∈ [0 1] |
 Â 0}9 Then,  3̄(0) 0 implies that ̄ ( 0) is the exact probabil-
ity that  is chosen from the set { 0}, and 0 is chosen with probability
1 − ̄ ( 0)  Consistent with the interpretation of the probabilistic choice
relations,  31 0 and ¬ (0 31 ) imply that  is chosen from the set { 0}
with a probability that is at least and, therefore, equal to, one.10 If  ∼1 0
then, insofar as the probability of  chosen over 0 is concerned, the model is
silent. By definition, for all  ∈  and  ∈ [0 1]   3  and  3  implying

that  ∼ 

3 The Relationship between the ICM and SCF

3.1 Two questions

The depictions of the input (i.e.,  ∈ A) - output (i.e.,  ∈) patterns by

the ICM and SCFmodels raises two questions about the relationship between

them:

(a) If a decision maker’s choice behavior is described by an ICM, do his

choices from menus necessarily generate an SCF that satisfies regularity and

stochastic transitivity?

(b) If a decision maker’s choice behavior for a family of menus A is cap-
tured by an SCF that satisfies stochastic transitivity and regularity is there

an ICM that generates his choices?

To answer these questions, I introduce the following additional definitions

and notations. An alternative  ∈  ∈ A is said to be dominated if, for

no  ∈ [0 1]  it holds that  3 0 ∀0 ∈ \{} Let () denote the
subset of dominated alternatives in  and let  () =\ () denote
the subset of undominated alternatives in  . Formally,  () = { ∈
 | ∃ ∈ [0 1], s.t.  3 0 ∀0 ∈ }. Note that  () is not empty.
For each  ∈ A and  ∈  I write  3  if and only if  3 0, for all
0 ∈

Let  () = {1  } and, for each  ∈  () define Λ () =

9That the supremum exists follows from the fact that the set is bounded and that

¬ ¡0 ∼1 ¢ implies that there is 0 ∈ [0 1] such that  Â0 0 Hence, the set is nonempty.
Note that 0 ∼1  implies that  ∼ 0 for all  ∈ [0 1] 
10In terms of the ICM  Â1 0 is what is usually meant by the strict preference for 

over 0.

6



{ ∈ [0 1] |  3 0 ∀0 ∈  ()}. In words, Λ () is the set of

indices designating the random choice relations that rank the alternative
(weakly) higher than any other undominated alternative in the menu  .

Define  () = inf Λ () and ̄ () = supΛ () 
11 By definition,

 (;) and ̄ (;) are the indices of the probabilistic choice relations

such that 3̄(;)⊆3⊆3(;) for all  ∈ Λ ().

Without loss of generality and invoking set-inclusion monotonicity, re-

arrange the elements of  () in a ascending order of set inclusion (i.e.,

3(1;)⊆3(2;)⊆ ⊆3(;)) Define  () = [ ()  ̄ ())

 = 1 2  Then, J () := {1 ()    ()} is a partition of the
unit interval.

3.2 SCFs generated by ICM

Given an ICM {Â|  ∈ [0 1]} define a stochastic choice function  :

×A→ [0 1] by

 () =

∙
̄ (;)−  (;) if  ∈  ()

0 if  ∈  ()

¸
 (1)

The SCF  () so defined is said to be generated by an ICM. Note that for

binary menus,  = { 0} if 3(;{0})⊆3(0;{0}) then  (; { 0}) = 0
Hence, by definition,  ( { 0}) =  if and only if  3 0 and ¬ ( Â 0) 
The following theorem asserts that the answer to the first question posed

in the preceding section is affirmative.

Theorem 1. A stochastic choice function  on ×A generated by an

irresolute choice model satisfies regularity and stochastic transitivity.

Proof. Given a ICM {Â|  ∈ [0 1]} let  on  × A be defined in

(1). Then  3  for all  ∈ ̄ ()  where ̄ () is the closure of

 ()  Let  ⊂  0 and denote by J () and J ( 0) the corresponding
partitions of the unit interval. Then, for all  ∈  ( 0),  ( 0) =
̄ (;

0)−  (;
0)  and  3  0 for all  ∈ ̄ (

0) 
If  ( 0) =  () then J () = J ( 0) and  ( 0) =  () 

for all  ∈  If  ( 0) 6=  () then either  ∈  () ∩ ( 0) 
or  ∈  () ∩  ( 0)  In the former case  ( 0) = 0 ≤  ()

11That the infimum and supremum exist follows from the facts that the set Λ () is

bounded and, because  is undominated, Λ () nonempty.
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and, in the latter case,  3  0 for all  ∈ ̄ (
0)  But ̄ ( 0) ⊆ ̄ () 

Hence

 () = ̄ (;)− (;) ≥ ̄ (;
0)− (; 0) =  (

0)  (2)

Thus,  () satisfies regularity.

By definition, for all binary menus, { 0} ∈ A if 3(;{0})⊆3(0;{0})

then  ( { 0}) = 0Hence,  Â 0 if and only if  ( { 0}) = ̄ (; { 0}) 
 Let  0 00 ∈  and consider the binary menus { 0} {0 00} and { 00}
Suppose that  ( { 0})   and  (0 {0 00})  . Hence,

min{̄ ( { 0})  ̄ (0 {0 00})}   (3)

Without loss of generality letmin{̄ ( { 0})  ̄ (0 {0 00})} = ̄ (0 {0 00}) then

sup{0 ∈ [0 1] |  Â0 0 and 0 Â0 00} = ̄ (0 {0 00})   (4)

By the transitivity of the probabilistic choce relations, Â  Â0 0 and
0 Â0 00 imply  Â0 00 Thus,

sup{0 ∈ [0 1] |  Â0 00} ≥ sup{0 ∈ [0 1] |  Â0 0 and 0 Â0 00}

Hence, by (4),

sup{0 ∈ [0 1] |  Â0 00} ≥ ̄ ( { 00})   (5)

By definition,  ( { 00}) = ̄ ( { 00})  Thus,  is stochastically tran-

sitive. ¥

3.3 Rationalizable SCF

The next theorem asserts that the answer to the second question posed in

the preceding section is affirmative, and that the generating ICM is unique.

An SCF  ∗ on  × A is said to be rationalized by an ICM if  ∗ () =
 ()  for all  ∈ A and  ∈ where  is generated by an ICM.

Theorem 2. If  ∗ : ×A→ [0 1] is an SCF satisfying regularity and

stochastic transitivity then there is a unique ICM that rationalizes it.

Proof. Let  ∗ on  × A be a stochastically transitive SCF satisfying

regularity We need to show that there exists an ICM {Â|  ∈ [0 1]} such
that Â are transitive, irreflexive, and satisfy set-inclusion monotonicity, and
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that the SCF  the ICM generates satisfies  () =  ∗ ()  for all
 ∈ A and  ∈ .

For every  ∈ [0 1]  define a binary relation Â on  by  Â 0 if
 ∗ ( { 0})   Let  0 ∈ [0 1] be such that 0 ≤  If  Â 0 then,
by definition,  ∗ ( { 0})   Hence,  ∗ ( { 0})  0 Thus, by de-
finition,  Â0 0 Consequently, Â⊆Â0  Thus, {Â|  ∈ [0 1]} satisfies
set-inclusion monotonicity.

Let  0 00 ∈  and suppose that  Â 0 and 0 Â 00. By defini-
tion  ∗ ( { 0})   and  ∗ (0 {0 00})  . By stochastic transitivity

 ∗ ( { 00})  . Hence, by definition,  Â 00 Thus, Â is transitive.

For all binary menus { 0}  ∗ ( { 0}) +  ∗ (0 { 0}) = 1 Hence,
 ∗ ( { })   if and only if  ∗ ( { })  1 −  Thus, by definition,

for all  ∈ [0 1]   Â  if and only if ¬ ( Â1− )  If   05  1−  then

 Â  and ¬ ( Â1− ) contradic set-inclusion monotonicity. If   05 

1 −  then, by set-inclusion monotonicity,  Â  implies that  Â1− , a

contradiction. Hence, Â is irreflexive.

Let  be generated by the ICM defined above. Then  is given by (1)

and, by Theorem 1, it is stochastically transitive and satisfies regularity.

Then  ∗ (), the probability of the event “ is chosen from the menu”

is the intersection of the events “ is chosen from the binary menus { 0}
for all 0 ∈ ” By definition of Â  is chosen from the binary menus

{ 0} for all  ∈ [0 1] if  Â 0 Thus,

 ∗ () = Pr∩0∈{ ∈ [0 1] |  Â 0} (6)

But, by (1),  () = Pr∩0∈{ ∈ [0 1] |  Â 0} Hence,  () =
 ∗ () 
To establish uniqueness, it suffices to observe that, because A contains all

the binary menus { 0} the SCF  ∗ fully characterizes the binary relations
Â  ∈ [0 1]  of the rationalizing ICM and that the ICM so characterized

defines, by (1), a unique SCF  ¥
Corresponding to J  define choice function induced by ICM as follows:

Let  : A→ A be a function defined by  () = { (1)    ()}
where  () = { ∈  |  3  ∀ ∈ } Then, Pr{ ()} =
 ()  where the SCF  is generated by the ICM as in (1).
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4 Representations and the Canonical Signal

Spaces

4.1 Representations

In Karni (2022), I showed that the ICM in conjunction with the existing

models of decision making under certainty, under risk, and under uncertainty

are represented by sets of utility functions (in the cases of decision making

under certainty and under risk) and sets of utility-probability pairs (in the

case of decision making under uncertainty). To grasp this point, consider the

case of decision making under certainty.

Let the choice set  be a nonempty topological space. A nonempty set U
of real-valued functions on  is said to represent a transitive and irreflexive

binary relation B on  if, for all  0 ∈   B 0 if and only if ()  (0),
for all  ∈ U  The following is a corollary of Theorem 1 in Karni (2022).

Corollary: Let  be a locally compact separable metric space and {Â|
 ∈ [0 1]} an ICM, where Âare continuous, then there exists a collection

{U |  ∈ [0 1]} of real-valued, continuous, strictly Â −increasing, func-
tions such that, for every  ∈ [0 1]  U represents Â, and  ≥ 0 if and
only if U ⊇ U0 

The uniqueness of the representation is as follows: Given any nonempty

subset U of R, define the map ΥU :  → RU


by ΥU () () := ().

Two nonempty subsets U and V of continuous real-valued functions on 

represent the same preorder if, and only if, there exists an  : ΥU()→ ΥV
such that () ΥV =  (ΥU); and () for every   ∈ ΥU(),    if and

only if ()  ()12

4.2 Canonical signal spaces

The premise underlying the stochastic choice behavior depicted by the ICM

is that choices are governed by unspecified random signal—generating process.

Consider the choice between two alternatives, say  and 0 such that ¬( ∼
12See Evren and Ok (2011). Note that, in general, for arbitrary multi-utility represen-

tations, V and V0 , of two preorders, < and <0 , such that <⊂<0 does not imply

that V ⊃ V0 . Given < and facing a choice from a binary set { 0}, the probability
that the decision maker chooses the alternative  is independent of the representation. In

other words, if U and V are two representations of < then the functions in V are
given by the uniqueness of the representation.
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0) Then  ( { 0}) = ̄ ( 0) may be interpreted as the probability of a
signal that would resolve the indecision in favor of  By Theorem 1 and the

Corollary, this is the case if and only if ()  (0) for all  ∈ U ̄(0)

Given SCF  ∗ let {Â|  ∈ [0 1]} be the ICM that rationalizes it. Define

a probability measure  : 2U\∅→ [0 1] as follows: For  ∈ [0 1]  (U) =

 Then  ∗ ( { 0}) = 
¡U ̄(0)

¢
 for all  0 ∈  In other words, facing

a choice between two alternatives,  and 0 that are not indifferent to one
another, the decision maker behaves as if a function  is selected from U1
according to a probability measure  and  is chosen if  ∈ U ̄(0) and 0

is chosen if  ∈ U1\U ̄(0). Therefore, the set U1 may be taken to be the
canonical signal space.

4.3 Representation of the SCF

Corresponding to the partition J () of [0 1]  define a partition of U1 as
follows: For each  ∈ let

 ( ) := { ∈ U1 |  ()   (0) ∀0 ∈\{}} (7)

Then,  ∈ Λ () if and only if  ∈  ()  Since U1

is the canonical signal

space, the probability of the signal  ∈  () is  ()  Consequently,

given an SCF  ∗ rationalized by a ICM we have

 ∗ () =  ( ( ))  ∀0 ∈ (8)

Thus, the random choice behavior depicted by an SCF  ∗ may be interpreted
as follows: When facing a choice from a menu , the decision maker behaves

as if a utility function  ∈ U1 is selected according to the probability measure
 and  ∈ is chosen if  ∈  () 

5 Stochastic Demand and Portfolio Choice

Theories

5.1 Stochastic demand functions

The application of the ICM to the theory of market demand is based on

the following idea. When a consumer faces a menu consisting of commodity

bundles, a utility function is selected at random from the canonical signal
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space according to some implicit probability measure and the commodity

bundle that maximizes this utility function is chosen. In this context the

two questions of section 3.1 correspond to two issues concerning stochastic

demand. First, what is the nature of the stochastic individual and market

demands induced by irresolute choice behavior? Second, can the data induced

by stochastic individual and market demands, be rationalized by irresolute

choice behavior?

To model market demand, let  = {1 } be the set of individuals in
the market, and let R

+ denote the set of alternatives representing commodity

bundles. Menus are feasible budget sets,  ( ) = { ∈ R
+ |  ·  ≤ } 

where  = (1  ) ∈ R
++ denotes the price vector and  the income of

individual . Denote by B the set of budget sets. Assuming non-satiation,
the undominated subset of  ( ) ∈ B is  ( ) = { ∈ R

+ | · = }
To answer the first question, let U 1

 denotes the canonical signal space

corresponding to an ICM depicting the behavior of individual . Then, given

a budget set  ( ) the realization of the random demands e ( ) may
be described as follows: For each  ∈ U 1

  let 
∗ (  ) be the solution to

the program

max () subject to  ∈  ( ) 

and denote by ∗ (  ) its  −  entry. Then the stochastic commodity

demands are driven by the random selection of a function  ∈ U 1

 Denote by

 the probability measure on U 1

 representing the stochastic choice behavior

of individual  and let e be the corresponding random utility function. Then,e ( ) = ∗ (  e) is the observed random demands.

For every  ( ) ∈ B and  ∈  ( )  let  () = { ∈ U1

 |  () ≥
 (0) ∀0 ∈  ( )}. The revealed stochastic demand is an SCF  :

R
+ ×B→ [0 1] given by

 ( ( )) =  ( ())  (9)

The random demand for commodity  by individual  e ( )  whose
support is [0 ]  is 

∗
 (  e). Thus, given the budget set  ( ) the

probability that the individual  chooses  is Pr
¡
   ( )

¢
= 

¡
  ( )

¢
.

Given an income profile  = (1  ) and a price vector  the market sto-

chastic demand function for commodity  is: e ( ) = Σ
=1e ( ).

It is standard practice in economics to treat individual demands as in-

dependent variables.13 The analogous assumption in the present context

13This assumption is reasonable when applied to commodities such as milk and gas; it
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maintains that individual demands are stochastically independent random

variables.14 If e ( ),  ∈   are stochastically independent, then the dis-

tribution,  of the market demand for commodity , e ( )  is given by the

convolution  =  (1   ( 1)) ∗  (2   ( 2)) ∗  ∗ 
¡
   ( )

¢


Expected demand is given by


h e ( )

i
= Σ

=1

Z
(∗ ())

∗ (  )  ()  (10)

Its variance is

 
³ e ( )

´
= Σ

=1

Z
(∗ ())

[∗ (  )−
h e ( )

i
]2 () 

(11)

Standard practice notwithstanding, in many markets individual demands

are correlated, possibly because of implicit social effects such as conformism

and status seeking. For instance, the demand for clothes is affected by fash-

ion, the demand for vacation spots may be affected by the anticipated com-

position of the clientele, and demand for stocks may respond to information

shared by many investors that respond to it in similar way. In these cases, the

linearity of expectations implies that 

h e ( )
i
= Σ

=1

¡e ( )¢ 
The variance of market demand, however, depends on the correlations among

the individual demands and takes the form

 
³ e ( )

´
= Σ

=1 
¡e ( )¢+ 2Σ

¡e ( )  e ( )¢ 
(12)

In commodity markets in which individual demands are positively correlated,

the individual stochastic choice behavior implied by the ICM induces greater

demand fluctuation.

If the data summarizing individual demand behavior constitute SCFs

satisfying regularity and stochastic transitivity, then by Theorem 2, it is

ratioanlizable by ICMs.

5.2 Comparative statics

Consider next the consequences of income and price variations on market

demands. Suppose that, ceteris paribus, the income of individual  increases

is much less compelling when applied to other commodities.
14A collection of random avriables is said to be independent if every finite subcollection

is independent.
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form  to  0 The supports of the random demands increase to [0  0] 
 = 1   For each  ∈ U  the optimal bundle changes from ∗ (  )
to ∗ (  0 )  and the corresponding change in the demand for commod-
ity  is from ∗ (  ) to ∗ ( 

0
 )  For, each  ∈ U , ∗ (  ) ∈

argmax∈()  () and ∗ (  0 ) ∈ argmax
∈(0)  (), (9) implies

that

Pr(∗ ( 
0
 )) = Pr(

∗
 (  )) =  () 

The change in the demand distribution of commodity  depends on the income

effects implies by the utility functions in the canonical signal space.

Similar considerations apply to relative price variations. Suppose that the

price of commodity  increases from  to 
0
. Denote the new price vector by

0 Let ∗ (0  ) denote the optimal bundle given the budget set  (0 )
corresponding to  ∈ U and let ∗ (0  ) denote its  entry. Then by the
same argument as above,

Pr(∗ (  )) = Pr(
∗
 (

0  )) =  () 

The change in the market demand for commodity  is a random variable

given by e (
0 )− e ( ) = Σ

=1

£e (0 )− e ( )¤ 
Example: Consider the case in which the set of utility functions of indi-

vidual  consists of Cobb-Douglas utility functions (i.e., U = {11 
2
2 


 |

 ∈
h


 ̄

i
 


≥ 0Σ

=1 = 1}) Let  := 
1
1 

2
2 


 and denote by 

the joint probability distribution function on
h


 ̄

i
Then, ∗ (  ) =

,  = 1   The stochastic demand for commodity  by individual

 e ( ) is depicted by  . Formally, let ̄ () denote the marginal

distribution of  then

Pr{e ( ) = ∗ (  )} = ̄ ()  (13)

If the income of individual  increases from  to 
0
 then the demand in-

creases proportionally, (i.e.,for all  = 1  , ∗ ( 
0
 ) = (

0
)

∗
 ( ;))

and Pr (( 0)
∗
 (  )) = Pr (

∗
 (  )) = ̄ ()  Similarly, if the

price of commodity  increase to 0 then the demand decreases proportionally
(i.e., ∗ (

0
 ;) = (

0
)

∗
 ( ;)) and Pr ((

0
)

∗
 ( ;)) =

Pr (∗ ( ;)) = ̄ () 

If the utility functions of all individuals are Cobb-Douglas functions, then

their demands are independent random variables. Consequently, given an
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income profile  and price vector  the distribution of the market demande ( ) is the convolution of the distributions ̄  = 1 

Let  0 be another income profile. Then the change in the expected market
demand is

Σ
=1

£


¡e (  0)¢−

¡e ( )¢¤ = Σ
=1 [(

0
)− 1]

¡e ( )¢ 
(14)

where 

¡e ( )¢ = R ̄


∗ ( ;) ̄ ()  The variance of individ-

ual demands increases by a factor ( 0)
2
(i.e.,  

¡e (  0)¢ = ( 0)2   ¡e ( )¢)
5.3 Stochastic portfolio choice

Consider next the application of the ICM to the theories of portfolio choice

and financial markets. Let  = {1  } be a finite state space, and
denote by {1  } the corresponding set of Arrow securities.15 The set of
alternatives, R are portfolios of Arrow securities (i.e., portfolio is  ∈ R

where  denotes the number of Arrow securities of type 
 in the portfolio).

Denote by ̄ = (1  1) the portfolio that consists of one Arrow security of

each state. Then ̄ is a unit of a riskless asset. Let  = (1  ) denote the

vector of prices of the Arrow securities then the price of ̄ is ̄ = Σ
=1.

Let ̄ denote the initial endowment of riskless asset of individual  whose

value is  = ̄ · ̄. Then the budget set of individual  is  ( ) = { ∈
R |  ·  = } where  is the transposed of 
Denote by Π a set of subjective probability distributions on  repre-

senting the possible beliefs of individual  about the likely realizations of

the states, and let  be a real-valued function on R, representing the in-
dividual’s risk-attitudes. A preference relation, Â of individual  is said

to exhibit Knightian uncertainty if, for all  0 ∈ R,  Â 0 if and only
if Σ

=1 () ()  Σ
=1 (

0
) ()  for all  ∈ Π.

16 Note that, in this

instance, Π the individual ’s canonical signal space corresponding to the

ICM Let V := {Σ
=1 () () |  ∈ Π} with generic element 

Let  denote a probability measure on Π induced by the ICM {Â
 |

 ∈ [0 1]} Define
Π () = { ∈ Π |  () ·  ≥  (

0) · ∀0 ∈  ( )} (15)

15An Arrow security  = (0 0  1 0 0) pays off $1 in the state  and nothing

otherwise.
16See Bewley (2002) and Galaabaatar and Karni (2013).
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The the optimal portfolios of Arrow securities of individual  corresponding

to  ∈ Π is

e ( ) () = (e ( )   e ( ) () = arg max
∈()

 () ·  (16)

Then e ( ) is a random variable whose distribution (and that of e ( ))

induced by  Formally, Pr{e ( ) = } = {Π ()} Then the SCF
induced by the ICM that represent the random portfolio choices of individual

 is:

 ( ( )) = {Π ()}. (17)

Clearly,  (  ( )) =  ( ( ))  The market demand for Ar-

row security  is the sum of individual demands, whose distribution is the

convolution of the distributions of the individual demands.

6 Related Literature and Concluding Remarks

6.1 Related literature

Luce (1959) pioneered the study of random choice behavior. As in this paper,

a primitive of Luce’s model is a stochastic choice function summarizing the

observed frequencies of choice of alternatives in the feasible sets in a variety

of situations encountered in psychology and economics. Luce explored (suf-

ficient) conditions on the choice probabilities that admit a numerical scale

that represents individual stochastic choice behavior. Invoking the notations

of this paper, for a finite set of alternatives, say  = {1  }, Luce’s pro-
posed structure of the stochastic choice function is represented by (strictly

positive) utility vector, unique up to positive scalar multiplication, such that

 () =  () Σ∈ ()  for all nonempty  ⊆  and  ∈

Luce’s model implies (and is implied by) a constancy of probability ratios

condition. Formally,  (;)  0 for every  ∈ and, for every   ∈ 

the ratio  ()  () is constant over all menus  ⊆  that contain

 and  Neither of these conditions seems natural, nor are they intuitively

compelling.17 Therefore it is worth underscoring that neither of these con-

ditions is required by the ICM and the corresponding SCFs. According to

the ICM  (;) = 0 for all  ∈  (), and while adding alternatives

17Recent research including Ahumada and Ulku (2018), Echenique and Saito (2019),

and Horan (2021) extend Luce’s seminal work to address these weaknesses of the model.
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to a menu may decrease the probabilities of choosing existing alternatives,

the decreases are not necessarily equiproportional. Consequently, the ICM

induces and can rationalize a richer set of SCF (i.e. richer set of random

choice behaviors) that Luce’s model.

The notion of random choice governed by random selection of utility

functions was explored by Block and Marschak (1960). In particular, Block

and Marschak address the possibility of estimating a probability distribution

on the space of random utility functions using the (estimated) probabili-

ties  ()  More specifically, Block and Marschak treat the (finite) set of

utilities as primitive and postulate the existence of a random utility vector

 = ( (1)  ()) (unique up to increasing monotone transformation)

which induces random rankings of the elements of the alternatives such that,

for all  ∈   () is equal to the probability of the set of rankings

whose elements rank  above every other alternative in the menu  . They

show that this condition requires that no two alternatives can be assigned

the same rank. Formally, for all  6=  Pr{ () =  ()} = 0 They

also show that the existence of probability distribution on rankings consis-

tent with the probabilities  () implies regularity. Unlike the random

utility model of Block and Marschak (1960) in which the utility functions are

primitives, the utility functions that constitute the signal space in the ICM

model are derived from the underlying set of probabilistic choice relations,

and the regularity condition is derived from the set inclusion monotonicity

of the ICM. Moreover, the ICM admits infinite sets of utility functions and

does not require that distinct alternatives are assigned the different utilities.

The problem of revealed stochastic preference deals with a similar ques-

tion — namely — whether the distribution of observed choices from variety

of feasible sets of alternatives is consistent with preference maximization.

Applied to a population, the distributions of observed choices arise because

of heterogeneity of tastes and/or beliefs. Applied to individuals, the dis-

tribution is a reflection of stochastic variables underlying individual pref-

erences. McFadden and Richter (1971, 1990), Falmagne (1978), Fishburn

(1978), Stoye (2019) addressed the question of consistency of the distribution

of observed choices with optimizing behavior.18 The ICMmay be regarded as

a contribution to the part of this literature that deals with individual stochas-

tic choice behavior. However, unlike the literature on stochastic preference

18McFadden (2005) synthesizes and extends the literature on stochastic preference. He

also provides an extensive reference list to this literature.
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in which the set of utility functions is a primitive ingredient of the models,

the primitive of the ICM is a set of incomplete probabilistic choice relations,

that admit random utility representation. This difference is reflected in the

axiomatic structures of the models. Recently, there has been a revival of

interest in random utility models of choice and random choice behavior that

reflects preference for deliberated randomization.19

The ICM model is closely related to Roberts (1971) analysis of homoge-

neous families of semiorders.20 Roberts considers a set of binary relations

{Â|  ∈ Λ} where Λ is an index set (e.g., Λ = [0 12]) on a set  of

alternatives induced by a binary probability function  : ×→ [0 1] that

satisfies  ( 0) +  (0 ) = 1 for all  0 ∈ . Formally,  Â 0 is defined
by  ( 0)  . Roberts (Theorem 4) shows that, for  finite, {Â|  ∈ Λ}
is induced by binary choice probabilities if and only if it satisfies the follow-

ing axioms: For all  0 ∈  and  0 ∈ Λ (a)  Â 0 implies ¬(0 Â0 )

(b) Either Â⊆Â0or Â0⊆Â  Roberts main result is the identification of

conditions required for {Â|  ∈ Λ} to be induced by binary choice prob-
abilities that satisfy Strong Stochastic Transitivity (in the notations of this

paper, for all  0 00 ∈   ( { 0}) ≥ 12 and  (0 {0 00}) ≥ 12

implies  ( { 00}) ≥ max{ ( { 0})   (0 {0 00})).21 In particular,
each of the relations in {Â|  ∈ Λ} is a semiorder and the set itself must be
homogeneous in the sense that a common weak order on  underlies (i.e., is

compatible with) every semiorder. Strong Stochastic Transitivity is distinct

from ST and the set of binary relations of ICM is not required to be homo-

geneous. Roberts (1971) investigates conditions of probabilistic consistency

in data that consists of the function  By contrast, a main objective of this

paper is study of the axiomatic foundations that rationalizes the revealed

probabilistic choice behavior depicted by stochastic choice functions.

At the individual level, random choice behavior may reflect the decision

maker’s indifference among feasible alternatives or his inability to compare

them because of their complexity or the lack of familiarity with their con-

sequences, which makes them difficult to evaluate. Ok and Tserenjigmid

(2020) model these aspects of random choice behaviors by stochastic choice

19Various aspects of random utility models of choice behavior have been studies by Gul,

Natenzon, and Pesendorfer (2014), Fudenberg, Iijima, and Strzalecki (2015), and Frick,

Iijima, and Strzalecki (2019). Danan (2010), Agranov and Ortoleva (2017), and Cettolin

and Riedl (2019) examined random choice based on deliberate randomization.
20See also Fishburn (1973).
21See also Block and Marschak (1960).
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functions. They characterize stochastic choice functions that assign positive

probabilities solely to alternatives that constitute maximal elements of the

feasible sets. They do not study the probability distributions on the sets of

maximal elements.

Karni (2022) introduced and studied the ICM and the notion of canonical

signal space that constitutes the foundation of the SCF. Karni and Safra

(2016) axiomatized the representation of decision makers’ perceptions of the

stochastic process underlying the selection of their state of mind which, in

turn, govern their choice behavior. This work may be regarded as providing

axiomatic foundations of a probability measure  on the canonical signal

space based on the decision makers’ introspections.

Becker (1962) argued that some economic theorems, such as the law of

demand, do not depend on agents in the market behaving rationally. He

showed that even if consumers choose their consumption bundles without

attempting to optimize of some objective function, the change in the bud-

get set caused by the relative price changes will force them to respond in a

way that, in the aggregate, produces a downward-slopping demand functions.

In Becker’s analysis, households’ choices may be irrational but not stochas-

tic. Consequently, unlike in the market demand theory implied by the ICM,

market demand is nonstochastic.

6.2 Consistency with violations of the weak axiom of

revealed preference

According to the revealed preference approach, stochastic choice functions

are empirical manifestations of random choice behavior that may be governed

by decision makers’ indifference among feasible alternatives, their inability

to compare and rank the alternatives, variations in their moods, and/or

changing needs. Whatever the underlaying motivations, the reasons for the

observed stochastic choice may not be directly observable to an outsider; if

they are driven by subconscious impulses they may not be accessible even

to the decision maker. It is necessary in such cases to build theories that

make sense of observations that consist of feasible alternatives and actual

choices. The irresolute choice model is a way of making sense of observed

random choices in repeated decision situations involving the same feasible

set of alternatives summarized by stochastic choice functions.

The model is also consistent with some violations of the weak axiom of
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revealed preference (WARP).22 To see why, let 0 ∈ R
+ denote the initial

endowment of a decision makers commodities. Let  and 0 be two price
vectors and consider the budget sets  ( 0 · ) and  (0 0 · 0)  The cor-
responding undominated sets are


¡

¡
 0 · ¢¢ = { ∈ 

¡
 0 · ¢ | ∃ ∈ U s.t.  () ≥  (0) ∀0 ∈ 

¡
 0 · ¢}

and


¡

¡
0 0 · 0¢¢ = { ∈ 

¡
0 0 · 0¢ | ∃ ∈ U s.t.  () ≥  (0) ∀0 ∈ 

¡
0 0 · 0¢}

If 0 ∈  ( ( 0 · )) ∩  ( (0 0 · 0)) then  ( ( 0 · )) ∩
 (0 0 · 0) and  ( (0 0 · 0)) ∩  ( 0 · ) are nonempty.23 Let

∗ ∈  ( ( 0 · )) ∩  (0 0 · 0) and ∗∗ ∈  ( (0 0 · 0)) ∩
 ( 0 · ) then the choices ∗ from (0 0 · 0) and ∗∗ from ( 0 · )
constitute a violation of WARP.24 Such choice is consistent with the irresolute

choice model.

22I am grateful to Yujian Chen for calling my attention to this point.
23

¡
 0 · ¢ and  ¡0 0 · 0¢ are the interiors of the corresponding budget sets

in the R topology.
24In the case of complete preferences, U is a singleton set.
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