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1 Introduction

Karni and Vierø (2013) provides an approach to modelling increasing awareness of a decision

maker. The approach allows for the decision maker’s state space to expand as she becomes

aware of new possible actions and consequences. They named their approach to modelling

increasing awareness “reverse Bayesianism,” motivated by a consistency property of the

decision maker’s beliefs over the state spaces before and after the expansion of her awareness.

Under reverse Bayesianism the likelihood ratios between originally non-null states remain

unchanged upon the discovery of new consequences and the subsequent expansion of the

state space.

Karni and Vierø (2013) implicitly assumes that any state that was non-null before the

increase in awareness resulting from the discovery of a new consequence had to remain non-

null after the discovery. Under monotonicity this is equivalent to assuming that the prior set

of non-null states – what Karni and Vierø (2013) calls the feasible state space – is included

in the posterior feasible state space. However, there are important situations in which such

inclusion is violated. For example, situations of scientific discoveries that falsify prior beliefs.

To illustrate, consider the famous Michelson–Morley experiment. The experiment compared

the velocity of light traveling in perpendicular directions in an attempt to detect difference

in the return time that would indicate motion of matter through the substance aether, which

was hypothesized to fill empty space. The failure to detect such difference provided strong

evidence against the aether theory, contradicted the predictions of Newtonian mechanics,

and prompted research that eventually led to Einstein’s special relativity theory.

In terms of reverse Bayesianism, the a-priori (i.e. before the Michelson–Morley experi-

ment) feasible state-space includes states in which the velocity of light obeys the of rules

of Newtonian mechanics. The Michelson-Morley experiment resulted in a consequence that

required a revision of the Newtonian outlook. This revision nullified some of the a-priori

feasible states simultaneous to an expansion of the conceivable state space. The present note

modifies the axiomatization of Karni and Vierø (2013) so as to allow some states that were

non-null before the discovery of new consequences to become null after it.

2 The Main Result

2.1 Preliminaries

We briefly restate the framework of Karni and Vierø (2013). Let F be a finite, nonempty set

of feasible acts, and C be a finite, nonempty set of feasible consequences. Together these sets

determine a conceivable state space, CF , whose elements depict the resolutions of uncertainty.
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On this conceivable state space, we define what we refer to as conceivable acts. Formally,

F̂ := {f : CF → ∆(C)}, (1)

where ∆(C) is the set of all lotteries over C. As is usually done, we abuse notation and use

p to also denote the constant act that returns the lottery p in each state. We use both c

and δc to denote the lottery that returns consequence c with probability 1, depending on the

context.

Discovery of new consequences expands the conceivable state space. Let C denote the

initial set of consequences and suppose that a new consequence, c̄, is discovered. The set of

consequences of which the decision maker is aware then expands to C ′ = C∪{c̄}. We denote

by F ∗ the set of feasible acts with range C ′. Using these notations, the expanded conceivable

state space is (C ′)F
∗
. The corresponding expanded set of conceivable acts is given by

F̂ ∗ := {f : (C ′)
F ∗ → ∆ (C ′)}. (2)

We consider a decision maker whose choice behavior is characterized by a preference

relation <F̂ on the set of conceivable acts F̂ . We denote by �F̂ and ∼F̂ the asymmetric

and symmetric parts of <F̂ , with the interpretations of strict preference and indifference,

respectively. For any f ∈ F̂ , p ∈ ∆ (C) , and s ∈ CF , let psf be the act in F̂ obtained from

f by replacing its s− th coordinate with p. A state s ∈ CF is said to be null if psf ∼F̂ qsf
for all p, q ∈ ∆(C). A state is said to be nonnull if it is not null. Denote by EN the set of

null states and let S(F,C) = CF − EN be the set of all nonnull states. Henceforth we refer

to S(F,C) as the feasible state space.

When the state space expands, so does the set of conceivable acts, which means that

the preference relations must be redefined on the extended domain. Specifically, if F̂ ∗ is

the expanded set of conceivable acts in the wake of discoveries of new feasible consequences,

then the corresponding preference relation is denoted by <F̂ ∗ . Let F be a family of sets of

conceivable acts corresponding to increasing awareness of consequences.1

In Karni and Vierø (2013) it was implicitly assumed that upon the expansion of the

state space following the discovery of a new consequence, non-null states remain non-null.

Formally, for all f ∈ F̂ and f ′ ∈ F̂ ∗, if psf �F̂ qsf then psf
′ �F̂ ∗ qsf ′, for all s ∈ S(F,C).

Under monotonicity this is equivalent to assuming that S(F,C) ⊆ S(F ∗, C ′). However, as

we discussed in the introduction, there are important situations in which such inclusion is

violated.

For each F̂ ∈ F , f, g ∈ F̂ , and α ∈ [0, 1] define the convex combination αf+(1− α) g ∈ F̂
by: (αf + (1− α) g) (s) = αf (s) + (1− α) g (s) , for all s ∈ CF . Then, F̂ is a convex subset

1For the preference relation <F̂∗as well as for preference relations associated with any other awareness

levels, we make the corresponding definitions to those stated in the previous paragraph.
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in a linear space.2 We assume that, for each F̂ ∈ F , <F̂ abides by the axioms of Anscombe

and Aumann (1963). Formally,

(A.1) (Weak order) For all F̂ ∈ F , the preference relation <F̂ is transitive and complete.

(A.2) (Archimedean) For all F̂ ∈ F and f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h then

αf + (1− α)h �F̂ g and g �F̂ βf + (1− β)h, for some α, β ∈ (0, 1).

(A.3) (Independence) For all F̂ ∈ F , f, g, h ∈ F̂ , and α ∈ (0, 1], f <F̂ g if and only if

αf + (1− α)h <F̂ αg + (1− α)h.

(A.4) (Monotonicity) For all F̂ ∈ F , f ∈ F̂ , p, q ∈ ∆ (C) and nonnull event E ⊆ CF ,

f−Ep <F̂ f−Eq if and only if p <F̂ q.

(A.5) (Nontriviality) For all F̂ ∈ F , �F̂ 6= ∅.

Karni and Vierø (2013) postulated the following awareness consistency axiom to charac-

terize the decision maker’s reaction to expansion in his awareness of consequences:

(A.7) (Awareness consistency) For every given F , for all C,C ′ with C ⊂ C ′, S(F,C) ⊆
S(F ∗, C ′), f, g ∈ F̂ , and f ′, g′ ∈ F̂ ∗, such that f ′ = f and g′ = g on S (F,C) and

f ′ = g′ on S (F ∗, C ′)− S (F,C) it holds that f <F̂ g if and only if f ′ <F̂ ∗ g
′.

To allow for the possibility that some non-null states do become null upon the discovery

of new consequences, the awareness consistency axiom (A.7) above should be modified as

follows:

(A.7r) (Revised awareness consistency) For every given F , for all C,C ′ with C ⊂ C ′,

and for f, g ∈ F̂ , and f ′, g′ ∈ F̂ ∗, such that f ′ = f and g′ = g on S(F,C) ∩
S(F ∗, C ′), f = g on S(F,C) − [S(F,C) ∩ S(F ∗, C ′)] and f ′ = g′ on S(F ∗, C ′) −
[S(F,C) ∩ S(F ∗, C ′)] it holds that f <F̂ g if and only if f ′ <F̂ ∗ g

′.

To grasp the nature of the extension of the “Reverse Bayesianism” result, consider the

awareness consistency axiom (A.7). Like axiom (A.7r) it implies that the evaluation of acts

is separable across nonnull events. However, it is more restrictive in the sense that it requires

that equalities f ′ = f and g′ = g hold on the set S(F,C) while (A.7r) requires that these

equalities only hold on the event S(F ∗, C ′) ∩ S(F,C). This difference is significant because

if, in (A.7r), we do not insist that f = g on S(F,C) − [S(F,C) ∩ S(F ∗, C ′)] , there could

arise a preference reversal g �F̂ f and f ′ <F̂ ∗ g
′. This reversal reflects the fact that the

2Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). Accord-

ing to this formulation, mixed acts, (that is, αf + (1− α) g) are, by definition, conceivable acts.
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decision maker initially believes that all the states in S(F,C) are nonnull, and following

the revision of her beliefs in the wake of the discovery of new consequences, some states in

S(F,C) become null. Hence, it is possible that initially g �F̂ f because the payoffs of g in

the states that would later become null make it more attractive than f but once these states

are nullified, f dominates g. The awareness consistency axiom (A.7) is compelling if none of

the states in S(F,C) becomes null after the new consequences are discovered.

2.2 Representation theorem

Dominiak and Tserenjigmid (2018) have shown that the invariant risk preferences axiom

(A.6) in Karni and Vierø (2013) is redundant. Therefore, in addition to invoking the revised

awareness consistency axiom, we state and prove the theorem below without the invariant

risk preferences axiom. Since the proof in Dominiak and Tserenjigmid (2018) was based on

the awareness consistency axiom, the revised awareness consistency axiom requires a proof of

the below theorem that differs from the proofs in both Karni and Vierø (2013) and Dominiak

and Tserenjigmid (2018).

Theorem. For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂ ∗ ∈ F , the

following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) in Karni and Vierø (2013) and, jointly, <F̂ and <F̂ ∗
satisfy (A.7r).

(ii) There exist real-valued, non-constant, affine functions, U on ∆(C) and U∗ on ∆(C ′),

and for any two F̂ , F̂ ∗ ∈ F , there are probability measures, πF̂ on CF and πF̂ ∗ on (C ′)F
∗
,

such that for all f, g ∈ F̂ ,

f <F̂ g ⇔
∑
s∈CF

U (f(s))πF̂ (s) ≥
∑
s∈CF

U (g(s))πF̂ (s). (3)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U∗ (f ′(s))πF̂ ∗(s) ≥
∑

s∈(C′)F∗
U∗ (g′(s))πF̂ ∗(s). (4)

Moreover, U and U∗ are unique up to positive linear transformations, and there exists

such transformations for which U(p) = U∗(p) for all p ∈ ∆(C). The probability distributions

πF̂ and πF̂ ∗ are unique, πF̂ (S(F,C)) = πF̂ ∗ (S(F ∗, C ′)) = 1, and

πF̂ (s)

πF̂ (s′)
=
πF̂ ∗(s)

πF̂ ∗(s
′)
, (5)

for all s, s′ ∈ S(F,C) ∩ S(F ∗, C ′).
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Note that if S(F,C) ⊆ S(F ∗, C ′), then S(F,C) ∩ S(F ∗, C ′) = S(F,C), and we have the

result in Theorem 1 in Karni and Vierø (2013).

The generalization in the theorem allows for a wider range of applications of reverse

Bayesianism than Karni and Vierø (2013). The generalization permits a particular type of

belief revision on the prior feasible state space, namely extreme belief revision in which a

state is nullified. For prior feasible states that are still considered feasible after the expansion

in awareness, beliefs are updated according to reverse Bayesianism. This can be justified

from a philosophical viewpoint. It is possible to falsify a hypothesis, but one can only gain

statistical evidence that supports that something is true. Therefore, it is reasonable that

one would nullify a state when presented with evidence that falsifies what is called a link

in Karni and Vierø (2013), but that with other types of evidence one maintains the relative

beliefs.

It is worth mentioning that with a strengthening of axiom (A.7r), (see (A.7r’) below) in

conjunction with monotonicity, nullification of prior feasible states will not occur.

(A.7r’) For every given F , for all C,C ′ with C ⊂ C ′, f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗, such that

f ′ = f and g′ = g on S(F ∗, C ′)∩S(F,C) and f ′ = g′ on S(F ∗, C ′)−[S(F,C)∩S(F ∗, C ′)]

it holds that f <F̂ g if and only if f ′ <F̂ ∗ g
′.

Proposition 1 If <F̂ and <F̂ ∗ satisfy axioms (A.7r’) and (A.4) then S(F,C) ⊆ S(F ∗, C ′).

The difference between axioms (A.7r) and (A.7r’) is that axiom (A.7r) allows for pref-

erence reversals for acts that differ on S(F,C)− [S(F ∗, C ′) ∩ S(F,C)], while axiom (A.7r’)

does not. By forcing the prior and posterior preference relations to agree on the ranking of

acts, even if the acts differ in that event, axiom (A.7r’) together with monotonicity, has the

implication that S(F,C)− S(F ∗, C ′) must be null under the posterior preference relation.

Karni and Vierø (2013) allows for the possibility of states that were previously conceivable

but null to become feasible upon the discovery of new consequences. The following revision

of (A7r’) rules out such belief revisions. That is, it implies that prior conceivable but null

states remain null. In this case the likelihood ratios of all original conceivable states remain

unchanged when beliefs are updated according to reverse Bayesianism.

(A.7r”) For every given F , for all C,C ′ with C ⊂ C ′, f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗, such that

f ′ = f and g′ = g on S(F ∗, C ′) ∩ CF and f ′ = g′ on S(F ∗, C ′)− [S(F ∗, C ′) ∩ S(F,C)]

it holds that f %F̂ g if and only if f ′ %F̂ ∗ g
′.

Proposition 2 Let C ⊂ C ′, then (A.7r”) and (A.4) imply that S(F ∗, C ′) ∩ CF = S(F,C).
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3 Proofs

3.1 Proof of Theorem:

(Sufficiency) Fix F and C. By (A.1) - (A.5), the theorem of Anscombe and Aumann (1963)

and the von Neumann-Morgenstern expected utility theorem, there exists a real-valued,

non-constant, function uF̂ on C such that for all p, q ∈ ∆(C)

p <F̂ q ⇔
∑

c∈Supp(p)

uF̂ (c)p(c) ≥
∑

c∈Supp(q)

uF̂ (c)q(c). (6)

Let C ′ ⊃ C and F̂ ∗ ∈ F . Then, by the same argument as above, there exists a real-valued

function uF̂ ∗ on C ′ such that for all p′, q′ ∈ ∆(C ′)

p′ <F̂ ∗ q
′ ⇔

∑
c∈Supp(p′)

uF̂ ∗(c)p
′(c) ≥

∑
c∈Supp(q′)

uF̂ ∗(c)q
′(c). (7)

The functions uF̂ and uF̂ ∗ are unique up to positive linear transformations. Define

U(f(s)) :=
∑

c∈Supp(f(s)) uF̂ (c)f(s)(c), for all f ∈ F̂ and s ∈ S(F̂ , C) and define U∗(f(s)) :=∑
c∈Supp(f(s)) uF̂ ∗(c)f(s)(c), for all f ∈ F̂ ∗ and s ∈ S(F̂ ∗, C ′).

Let b and w be a best and worst consequence in C, respectively. Without loss of generality,

normalize uF̂ (b) = uF̂ ∗(b) = 1 and uF̂ (w) = uF̂ ∗(w) = 0.

Take any lottery q ∈ ∆(C) and acts f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗ such that f ′ = f and

g′ = g = q on S (F,C) ∩ S(F ∗, C ′), f = g = δw on S(F,C) − [S (F,C) ∩ S(F ∗, C ′)] and

f ′ = g′ = δw on S (F ∗, C ′) − [S (F,C) ∩ S(F ∗, C ′)]. Then, by axiom (A.7r), we have that

f <F̂ g if and only if f ′ <F̂ ∗ g
′, which implies that∑

s∈S(F,C)∩S(F ∗,C′)

U(f(s))πF̂ (s) = U(q)πF̂ (S (F,C) ∩ S(F ∗, C ′))

⇔
∑

s∈S(F,C)∩S(F ∗,C′)

U∗(f(s))πF̂ ∗(s) = U∗(q)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)) (8)

The next step will show that beliefs are updated according to reverse Bayesianism for all

states in S (F,C)∩S(F ∗, C ′). For any s ∈ S (F,C)∩S(F ∗, C ′), let f(s) = δc for some c ∈ C
and f(s̃) = δw for all s̃ 6= s. Let q =

πF̂ (s)

πF̂ (S(F,C)∩S(F ∗,C′))δc + (1 − πF̂ (s)

πF̂ (S(F,C)∩S(F ∗,C′)))δw. Then

the utility of f is given by ∑
s∈S(F,C)

U(f(s))πF̂ (s) = πF̂ (s)U(δc) (9)

while the utility of g is given by∑
s∈S(F,C)

U(g(s))πF̂ (s) =
πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U(δc)πF̂ (S (F,C) ∩ S(F ∗, C ′)). (10)
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Equations (9) and (10) imply that f ∼F̂ g.

The utility of f ′ is given by∑
s∈S(F ∗,C′)

U∗(f ′(s))πF̂ ∗(s) = πF̂ (s)U∗(c) (11)

while the utility of g′ is given by∑
s∈S(F ∗,C′)

U∗(g′(s))πF̂ (s) =
πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U∗(δc)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)). (12)

By axiom (A.7r), f ′ ∼F̂ ∗ g′, since f ∼F̂ g. Hence, (8) implies that

πF̂ ∗(s)U
∗(δc) =

πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U∗(δc)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)). (13)

Equivalently,
πF̂ ∗(s)

πF̂ ∗(S (F,C) ∩ S(F ∗, C ′))
=

πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
(14)

Next we show that under the normalization of the utility functions uF̂ and uF̂ ∗ it holds

that U∗(δc) = U(δc) for all c ∈ C. For any c ∈ C and s ∈ S (F,C) ∩ S(F ∗, C ′)), let

f(s) = αδc + (1 − α)δw and f(s̃) = δw for all s̃ 6= s. Let q = βδb + (1 − β)δw. By the

normalization, U(δb) = U∗(δb) = 1. Hence, (8) implies that

αU(δc)πF̂ (s) = βπF̂ (S (F,C) ∩ S(F ∗, C ′))) (15)

⇔πF̂ ∗(s)αU
∗(δc) = πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)))β (16)

Equations (14), (15), and (16) now imply that U∗(δc) = U(δc) for all c ∈ ∆(C).

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.7r) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability in

Anscombe and Aumann (1963). �

3.2 Proof of Proposition 1:

Suppose there exists s such that s ∈ S(F,C), s 6∈ S(F ∗, C ′). Let p, q ∈ ∆(C) be such that

p �F̂ q (Note that if no such p, q exist then by Monotonicity S(F,C) = ∅, so the result

is trivial). Define the conceivable acts f, g, and f ′, g′ as follows: f = g on S(F,C) \ s,
f(s) = p, g(s) = q. Furthermore f ′ = f , g′ = g on S(F,C), and f ′ = g′ on S(F ∗, C ′) −
[S(F ∗, C ′) ∩ S(F,C)]. Note that f ′ and g′ coincide exactly on S(F ∗, C ′), so f ′ ∼F̂ ∗ g.

Moreover, by Monotonicity f �F̂ g′. Since f, g, f ′, g′ satisfy the conditions of (A.7r’) we

have a contradiction. �
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3.3 Proof of proposition 2

First show S(F ∗, C ′)∩CF ⊆ S(F,C). Suppose there exists s such that s ∈ S(F ∗, C ′)∩CF , s 6∈
S(F,C). Let p, q ∈ ∆(C) be such that p �F̂ ∗ q (if no such p, q exist then, by (A.4),

S(F ∗, C ′) = ∅, so the result is trivial). Define the conceivable acts f, g, and f ′, g′ as follows:

f = g on CF \ s, f(s) = p, g(s) = q. Furthermore f ′ = f , g′ = g on S(F ∗, C ′) ∩ CF , and

f ′ = g′ on S(F ∗, C ′)− [S(F ∗, C ′)∩CF ]. But f and g coincide on S(F,C),hence, f ∼F̂ g. By

(A.4) f ′ �F̂ ∗ g′. Since f, g, f ′, g′ satisfy the conditions of (A.7r”) we have a contradiction.

For the reverse direction, suppose there exists s such that s ∈ S(F,C), s 6∈ S(F ∗, C ′).

Let p, q ∈ ∆(C) be such that p �F̂ q (if no such p, q exist then by (A.4) S(F,C) = ∅,

so the result is trivial). Define the conceivable acts f, g, and f ′, g′ as follows: f = g on

S(F,C) \ s, f(s) = p, g(s) = q. Furthermore f ′ = f , g′ = g on S(F,C), and f ′ = g′ on

S(F ∗, C ′)− [S(F ∗, C ′) ∩ S(F,C)]. But f ′ and g′ coincide on S(F ∗, C ′), hence f ′ ∼F̂ ∗ g. By

(A.4) f �F̂ g′. Since f, g, f ′, g′ satisfy the conditions of (A.7r”) we have a contradiction. �
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