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Abstract

Incomplete preferences admits noncomparable alternatives. This

paper advances the proposition that choice among such alternatives is

inherently random and proposes a random choice model, to describe

random binary choices and random choice functions depicting random

choices from sets of alterantives. Representation of the random-choice

behavior and are characterized. Experiments designed to test the

model in the context of multi-prior expected mult-utility model and

the special case of Knightian uncertainty are described and analyized.
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1 Introduction

In many situations requiring a choice among feasible alternatives, decision

makers find the alternatives difficult, if not impossible, to compare. De-

pending on the context, this difficulty may be due to complexity of the al-

ternatives, or lack of experience that makes it impossible to assess their,

possibly long run, consequences. This fact was recognized by von Neumann

and Morgenstern, who admitted that “it is conceivable—and even in a way

more realistic—to allow for cases where the individual is neither able to state

which of two alternatives he prefers nor that they are equally desirable.” (von

Neumann and Morgenstern [1947]).

The appropriateness of the completeness postulate was broached by Leonard

Savage in a letter to Karl Popper, dated March 25, 1958, in which Savage

discusses his work on the choice-based foundations of subjective probabili-

ties. Savage wrote: “There is, though, a postulate that insists that economic

situations can be ranked in a linear order by the subject, and I freely admit

that this seems to me to be a source of much difficulty in my theory. This

stringent postulate is in conflict with the common experience of vagueness

and indecision, and if I knew a good way to make a mathematical model of

those phenomena, I would adopt it, but I despair of finding one.”1

Robert Aumann questioned not only the descriptive validity of the com-

pleteness axiom but also its normative justification. “Of all the axioms of

utility theory,” he wrote, “the completeness axiom is perhaps the most ques-

tionable. Like others of the axioms, it is inaccurate as a description of real

life; but unlike them, we find it hard to accept even from the normative

viewpoint” (Aumann [1962]).

Evidence of the prevalence of incomplete preferences in experimental

settings is provided Danan and Ziegelmeyer (2006), Sautua (2017), Costa-

Gomez, et. al (2019), and Cettolin and Riedl (2019).

Yet, with few exceptions, the theories of individual decision making,

whether under certainty, risk, or uncertainty, presume that the preference

relations describing individual choice behavior are complete. When the pref-

erence relation is complete, all alternatives are comparable and decision mak-

ers exhibit resolute choice behavior, except when the alternatives belong to

the same indifference class. When the preference relation is incomplete, deci-

1This correspondence is reproduces by Carlo Zappia form Leonard Jimmy Savage Pa-

pers, archived at the Manuscript and Archives Department of Yale University Library as

MS 695, Box 25, Folder 622.
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sion makers irresolute choice behavior extends to noncomparable alternatives

and the existing models provide no guidance insofar as predicting the choice

among such alternatives.2 The purpose of this work is to fill this lacuna by

proposing a model that departs form the completeness postulate and depicts

choice behavior among noncomparable alternatives.

The main idea is that when having to decide among noncomparable al-

ternatives, a decision maker’s choices are triggered by impulses, or signals,

that are themselves random or look like such to an observer that is not privy

to the working of the decision maker’s mind. In either case, insofar as the

observer is concerned, the decision maker’s choices are inherently random.

In the proposed model the impulses, or signals, are “mental decoys,” invoked

randomly, and aid decision makers “to make up their minds” and resolve

their indecisiveness. The model has predictable probabilistic choice behav-

ior. In other words, given a menu of noncomparable alternatives, the model

predicts the probabilities of the different alternatives being selected.

The behavioral manifestations of incomplete preferences are inertia and

unpredictability. Inertia describes the lack of response to exogenous changes

in the relevant environment caused by the decision maker’s inability to com-

pare the status quo, or default, alternative with new feasible alternatives.

Unpredictability expresses the fact that when new feasible alternatives dom-

inate the status quo but are noncomparable among themselves, the decision

maker’s choice among such alternatives is random.

Despite growing interest, in recent years, in modeling and studying ran-

dom choice behavior, there is no systematic evidence attributing such behav-

ior specifically to preference incompleteness.3 This lack of evidence reflects

the absence of experimental designs that would allow the identification of

random choice behavior restricted to noncomparable alternatives. A contri-

bution of this paper is novel experimental designs that allow the empirical

study of random choice behavior in the presence of incomplete preferences.

At the heart of these designs are incentive-compatible mechanisms by which

the range of incompleteness and decision makers’ perceived likelihoods of

their eventually choosing the various noncomparable alternatives are elicited.

Given these parameters, the model yields predictions that are testable against

the decision makers’ actual choices.

2Ok and Tserenjigmidz (2020) is an exception. Their work is discussed in the next and

the concluding sections.
3A brief review of the relevant literature appears in the concluding section.
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For lack of systematic evidence to provide the scaffolding for the con-

struction of a theory by induction, the proposed model is arrived at based

on logical considerations. Methodologically, this approach is consistent with

Einstein’s view of the role of theory. According to Einstein “on principle, it

is quite wrong to try founding a theory on observable magnitudes alone. In

reality the very opposite happens. It is the theory which decides what we can

observe.”4 Using the proposed model as a guide to what can be observed, and

the experimental designs that would allow its testing, this paper advances a

meaningful theory of random choice behavior that is attributed to preference

incompleteness.

The rest of the paper is organized as follows. Section 2 presents the

model. Section 3 applies the model to subjective expected utility theory.

Section 4 describes the experiments designed to test the model in the context

of subjective expected utility theory. Concluding remarks and a brief review

of the relevant literature appear in Section 5. The proofs are collected in

Section 6.

2 A Model of Random Choice Behavior

The proposed model applies to decision making under certainty, under risk,

and under uncertainty.

2.1 The analytical framework

Let the choice set,  be a topological space whose elements are alternatives.

Denote by Â a binary relation on  that is a continuous strict partial order

dubbed a preference relation. Formally, Â is irreflexive and transitive and,

for all  ∈  the sets {0 ∈  | 0 Â } and {0 ∈  |  Â 0} are open. I
assume throughout that Â6= ∅ For any alternatives  0 ∈   Â 0 has
the usual interpretation that  is strictly preferred over 0  which is taken to
mean that a decision maker, whose preference relation is Â facing a choice
between these two alternatives will choose the alternative  The relation

¬ ( Â 0) is reflexive but not necessarily transitive (i.e., it is not necessarily
a preorder).

4This is a quote from a conversation with Werner Heisenberg. Einstein’s General

Relativity is a prime example of this deductive methodology.
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The strict preference relation, Â induces three derived relations on .

For all  0 ∈  the induced weak preference relation, 3, is defined by:
 3 0 if, for all 00 ∈   00 Â  implies that 00 Â 0; the induced indifference
relation, ∼ is defined by  ∼ 0 if  3 0 and 0 3 ; and the noncomparability

relation , defined by:   0 if ¬ ( 3 0) and ¬ (0 3 ) 5

It is natural to suppose that if presented with a choice between two alter-

natives,  and 0, a decision maker would choose the former act if  3 0 and
¬ (0 3 )  However, if   0 or 0 ∼ , then the preference relation does

not single out an alternative that will be chosen.

In what follows I propose to model irresolute choice behavior as a set {D|
 ∈ [0 1]} of binary relations on  dubbed random choice relations. Given

any  0 ∈  the interpretation of  D 0 is that, facing a choice between
 and 0,  is chosen with probability  Clearly,  Â 0 implies  D1 0 and,
jointly,  3 0 and ¬ (0 3 ) if and only if  D1 0

2.2 The Random Choice Model

Facing a choice between alternatives that are ranked by the strict preference

relation, the decision maker chooses the preferred alternative with probability

one. Otherwise, facing a choice between two alternatives, say  and 0
a third alternative, 00 ∈ , dubbed mental decoy, is randomly selected.

This alternative serves as a reference that the decision maker relies upon to

resolve his indecision. If the third alternative is weakly inferior to  and is

noncomparable to 0 then the decision maker chooses the alternative  and
if it is inferior to 0 and noncomparable to  then the decision maker chooses
0 Otherwise, the decision maker procrastinates while waiting for another
mental decoy to be randomly selected that would allow him to resolves the

indecision along the lines indicated above.6 The mental decoy formalizes the

5It is customary to define weak preference relations as the negation of the strict pref-

erence relation Â. Formally, given a binary relation Â on  define a binary relation <
on  by  < 0 if ¬ (0 Â ). Eliaz and Ok (2006) study the distinction between non-

comparability and indifference. The weak preference relation defined here was introduced

in Galaabaatar and Karni (2013). Its significance and implications were investigated and

discussed in Karni (2011). In particular, Karni showed that the weak preference relations

< and 3 agree if and only if Â is negatively transitive and 3 is complete. Note that Â is
not the asymmetric part of 3. The indifference relation defined here, was introduced in
Galaabaatar and Karni (2013), is equivalent to that of Eliaz and Ok (2006).

6Equivalently, if the third alternative is weakly preferred to 0 and is non-comparable
to  then the decision maker chooses the alternative . More on this in the concluding
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idea of a random signal generated by unspecified mental or exogenous process

that determined the choice.

Intuitive support to the reasoning underlying the mental decoy idea is

provided by the well-known “decoy effect” in consumer decisions. The de-

coy effect pertains to a pattern of choice behavior according to which, when

facing a choice between two products that have multiple attributes, but are

noncomparable in the sense that neither product has more of all the desirable

attributes than the other, the introduction of a third product that is domi-

nated (in the sense of having less of the desirable attributes) by one of the

existing products but not by another, tilts the consumer choice towards the

dominating product. A third alternative dominated by both products does

not affect the choice behavior and does not produce significant shift in mar-

ket share.7 The mental decoy captures the same idea with strict preference

instead of attribute-wise domination and random selection of the decoy al-

ternative. Henceforth, I refer to the stochastic process of choosing the decoy

alternative as the mental decoy process.

To formalize this idea, let B denote the Borel − algebra on  and  a
probability measure on the measurable space (B). For any given  0 ∈ 

define

Ψ (m 0) = {00 ∈  |  3 00 and 0  00} (1)

Obviously, if  ∼ 0 then Ψ (m 0) = Ψ (0 m ) = ∅
Define a function  : ×→ [0 1] by:

 ( 0) =
 (Ψ (m 0))

 (Ψ (m 0) ∪Ψ (0 m ))
if ¬ ( ∼ 0) (2)

 ( 0) ∈ [0 1] if  ∼ 0 (3)

Given a choice between  and 0 is  ( 0) is the probability that a third
alternative is selected that would lead the decision maker to choose  from

the set { 0}, as opposed to procrastination.
The random choice model, or RCM for short, maintains that, facing a

choice between  and 0, a decision maker characterized by (Â  ), chooses
 with probability  ( 0) and 0 with probability 1−  ( 0)  Formally, for
all  0 ∈   D(0) 0 It is easy to verify that if  Â 0 then  ( 0) = 1

section.
7See Huber et al. (1982). For a more recent discussion in Ok, Ortoleva and Riella

(2015).
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and  3 0 and ¬ (0 3 ) if and only if  ( 0) = 1 If  ∼ 0 then the model
is agnostic insofar as the prediction of the probabilistic choice is concerned.

2.3 Representation of the RCM

The RCM is quite general and applies to decision making under certainty,

under risk, and under uncertainty. To begin with, I study the representation

of model as it applies to general continuous preference relations that admit

multi-utility representation.8 Assume that  is locally compact Hausdorff

space that is also -compact, and that Â is a continuous strict partial order
on 9 Then, it follows from Evren and Ok (2011) Theorem 1, that there is

a set, V, of continuous real-valued functions on  such that, for all  0 ∈ 

 3 0 ⇐⇒  () ≥  (0)  ∀ ∈ V, (4)

 ∼ 0 ⇐⇒  () =  (0)  ∀ ∈ V (5)

  0 ⇐⇒ ∃ ̂ ∈ V such that  ()   (0) and ̂ ()  ̂ (0)  (6)

Let V be endowed with the product topology and denote by BV the Borel
− algebra on V . Let (VBV  ) be a probability space For every given
 0 ∈  let V ( 0) := { ∈ V |  () ≥  (0) } the set of utility functions
according to which  is weakly preferred to 0 Then V ( 0) ∈ BV and
the probability that, facing a choice between  and 0, a decision maker
characterized by a preference relation Â on  and the probability measure 
on V chooses  is  (V ( 0)). The intuitive idea underlying this assertion is
that a utility function is drawn at random from the set V according to the
probability measure  and the alternative that is ranked higher according

to this utility function is chosen.10

Definition: The choice relation {D(V(0))|  0 ∈ } represents the
RCM if  ( 0) =  (V ( 0))  for all  0 ∈ 

Given  ∈ V the equivalence class of  ∈  is defined by  ( | ) = {0 ∈
 |  () =  (0)  For all  0 ∈  let Γ ( 0 | ) :=  (0 | ) ∩ Ψ (m 0) 

8See Ok (2002) and Evren and Ok (2011) for axiomatic characterizations of multi-utility

representations.
9A topological space is locally compact if every point in it has an open neighborhood

with compact closure. It is -compact if it can be written as a union of countably many

of its compact subsets.

10In social choice theory the same idea is captured by the random dictator mechanism.
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Then, P ( 0) := {Γ ( 0 | ) |  ∈ V ( 0)} is a partition of Ψ (m 0).
Define Γ ( 0 | V ( 0)) = ∪∈V(0)Γ ( 0 | )  for all  0 ∈ 

The following Theorem is a representation of the RCM {D(0)|  0 ∈
} in terms of the multi-utility representation of the preference relation, Â 

Theorem 1: If 3 on  is represented by (4) then {D(V(0))|  0 ∈ }
represents the random choice model {D(0)|  0 ∈ } if and only if

 (Γ ( 0 | V ( 0)))
 (Γ ( 0 | V ( 0)) ∪ Γ (0  | V (0 ))) =  (V ( 0))  ∀ 0 ∈  (7)

2.4 Stochastic choice functions

The RCM is based on pairwise, or binary, choices. Many situations of inter-

est, however, require a choice from menus, or budget sets, that include more

than two alternatives. Formally, a menu  ⊂  is a nonempty compact

subset of alternatives LetM denote the set of menus. To apply the RCM

to these type of decision problems, I extend it to include (stochastic) choices

from menus.

Following Ok and Tserenjigmidz (2020), a stochastic choice function is

a map  :  × M→ [0 1] such that Σ∈ () = 1 and  (0) =
0 for every  ∈ M and 0 ∈ \ For every  ∈ M and  ∈ 

let  (Â) := {0 ∈  | ∃ ∈  ,  Â 0} be the set of dominated
alternatives in the menu  according to Â and max (Â) :=\ (Â)
the subset of  that consists of undominated alternatives according to Â.
Clearly, max (Â) is either a singleton or it consists of noncomparable
and/or indifferent alternatives.11

Ok and Tserenjigmidz (2020) characterized stochastic choice functions

induced by lack of strict preference. To depict their result in terms of the

notations and the definitions of this paper, a preorder < on  is said to

be regular if the symmetric part of < agrees with the indifference relation

induced by 3  A stochastic choice function  on  is said to be induced

by lack of strict preference if there exists a regular preorder < on  such

that (;)  0 if and only if  ∈ max (<) for every  ∈M. Ok and

Tserenjigmidz showed that a stochastic choice function  on M is induced

by lack of strict preference if, and only if, it satisfies the Stochastic Chernoff

axiom (i.e., ∀ 0 ∈M with  ⊆  0 and  ∈  ,  ( 0)  0 implies

11That max (Â) 6= ∅ is an implication of the compactness of  and continuity of

Â 
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 ()  0) and Stochastic Condorcet axiom (i.e., ∀ ∈M and  ∈  ,

 ( { 0})  0 ∀0 ∈ with  (0)  0 implies  ()  0).
The stochastic choice function induced by lack of strict preference, pre-

dicts that only alternatives in the undominated set be chosen with positive

probabilities. It is silent insofar as the assignment of probabilities to the

different alternatives in the set is concerned. I show next that a stochastic

choice function induced by lack of strict preference that is based on the RCM

(i.e., induced by the mental decoy process) predicts the probabilities that the

different elements of the undominated set be chosen.

Define

Ψ (m) = {00 ∈  |  3 00 and 0  00, ∀0 ∈ max (Â) } (8)

Clearly, Ψ (m) = ∩0∈Ψ (m 0)  If |  | 2 and ¬( ∼ 0, ∀ 0 ∈
max (Â)) then  ∼ 0 for some  0 ∈ max (Â) implies Ψ (m) =

Ψ (0 m)  If  ∼ 0, for all  0 ∈ max (Â) then Ψ (m) = ∅ for
all  ∈ max (Â) 
Define a stochastic choice function  as follows: If  ¿ 0 for all  0 ∈

max (Â) (i.e., no two undominated alternatives are indifferent to one an-
other) then

 () =
 (Ψ (m))

 (∪0∈Ψ (0 m))
,∀ ∈ max (Â) . (9)

If  ∼ 0 for all  0 ∈ max (Â) then

 () ∈ [0 1]  (10)

If there is a proper subset ̂ ⊂ max (Â) such that ̂ ∼ ̂0 for all ̂ ̂0 ∈ ̂

then


³
 ̂

´
∈ [0 

¡∪̂∈̂Ψ (̂m)
¢

 (∪0∈Ψ (0 m))
] and 

³
\̂

´
=

 (Ψ (m))

 (∪0∈Ψ (0 m))


(11)

If  ∈ max (Â) then

 () = 0  (12)

The interpretation of  () extends that of the pairwise choices and

is as follows: Facing a choice from a menu  if it contains a unique un-

dominated alternative, the decision maker chooses it with probability one.
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Otherwise, (that is, the undominated set of alternatives in not a singleton)

a mental decoy, 00 ∈  is drawn at random. If 00 is weakly inferior to some
 ∈ and is noncomparable to all the other undominated alternatives in

then the decision maker chooses the alternative . If there is no alternative

in the menu that satisfies this condition, the decision maker procrastinates

and waits for another draw from . The process continues until a decision is

made. If all the undominated alternatives in are indifferent to one another,

then the model is agnostic regarding the probability that any particular alter-

native will be chosen. If a proper subset of the undominated alternatives are

indifferent to one another then if the decoy alternative is weakly inferior to

the indifferent alternatives and is noncomparable to the other undominated

alternatives then the prediction of the model is that one of the indifferent

alternatives in the undominated subset be chosen but is agnostic regarding

the probability that any particular alternative in the indifferent subset will

be chosen. Finally, the probability that a dominated alternative is chosen is

zero.

The random choice model maintains that, facing a choice from a menu

 , a decision maker characterized by (Â  ), chooses the alternative  with
probability  ()  Formally, for all () ∈ ×M  D() 

2.5 Representation of random choice functions

Define V () := ∩0∈max(Â)V ( 0)  For all  0 ∈  and  ∈M let

Γ ( 0 | V ()) := ∪∈V()Γ ( 
0 | ) 

and, for all () ∈ ×M let

Γ ( | V ()) := ∩0∈max(Â)Γ ( 
0 | V ()) 

Theorem 2: If 3 on  is represented by (4) then {D(V())| () ∈
×M} represents the random choice model {D()| () ∈ ×M} if
and only if

 (Γ ( | V ()))

¡∪0∈max(Â)Γ (0 | V (0))¢ =  (V ())  ∀ () ∈ ×M

(13)
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3 Random Choice under Uncertainty

For over half a century, subjective expected utility theory has been the dom-

inant model of decision making under uncertainty. Because of it prominent

role and rich analytical framework, I explore the application of the RCM to

subjective expected utility theory. For the purpose of exposition, I adopt

the model of Galaabaatar and Karni (2013). This model admits incomplete

beliefs and tastes, and includes Bewley’s Knigthian uncertainty model (i.e.,

complete tastes and incomplete beliefs), and the model of complete beliefs

and incomplete tastes as special cases.

3.1 The analytical framework and the RCM

Let  be a finite set of states. Subsets of  are events. Let  be a finite set

of outcomes and denote by ∆ () the set of all probability distributions on

 For each  0 ∈ ∆ () and  ∈ [0 1] define  + (1− ) 0 ∈ ∆ () by

(+ (1− ) 0) () =  () + (1− ) 0 ()  for all  ∈ 

Let  := ∆ ()

be the choice set Elements of  are referred to as

acts. For all  0 ∈  and  ∈ [0 1], define  + (1− )0 ∈  by

(+ (1− )0) () =  () + (1− )0 (). Under this definition  is

a convex subset of the linear space R||×||+  Denote by B the trace on  of

the the Borel − algebra on R||×||+  and let  be a probability measure on

the measurable space (B) 
LetÂ a strict partial order on and, for all   ∈  defineΨ ( m ) :=

{ ∈  |  3  and   } Then, Ψ ( m ),Ψ ( m ) ∈ B and, according
to the RCM,  D() where  ( ) =  (Ψ ( m ))  ( (Ψ ( m ) ∪Ψ ( l ))) 

3.2 Representation of random choice

The literature on decision making under uncertainty with incomplete prefer-

ences deals with axiomatic characterizations of multi-prior expected multi-

utility representation.12 For the present purpose I adopt the product repre-

12These contributions include Seidenfeld, Schervish, and Kadane. (1995), Nau (2006),

Ok, Ortoleva and Riella (2012), and Galaabaatar and Karni (2013). Bewley (2002) dealt

with the special case of multi-prior representation of incomplete beliefs. Expected multi-

utility representations were axiomatized by Shapley and Baucells (1998) and Dubra, Mac-

cheroni and Ok (2004). The former is a special case of Galaabaatar and Karni (2013).

The latter is a special case of Ok et. al (2012).
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sentation of the weak preference relation of Galaabaatar and Karni (2013).

Let ∆ () be a set of probability distributions (priors) on  and Π ⊂
∆ ()  Let U be a set of real-valued functions on  and let Φ := Π × U .
Since  ∈ R||+ and  ∈ R||, ( ) is a vector in R||×||+ and Φ ⊂ R||×||+ 

Denote by hbΦi the closure of the convex cone in R||·|| generated by Φ.

Then, for all   ∈ 

 3  ⇔
X
∈

 ()

ÃX
∈

( )()

!
≥
X
∈

 ()

ÃX
∈

( )()

!
 ∀ ( ) ∈ Φ

(14)

Moreover, if Φ0 = Π0 × U 0 represents Â in the sense of (14), then h bΦ0i = hbΦi
and  ()  0 for all  ∈ .

To simplify the notations, when there is no risk of confusion, I denote

 ( () ;) = Σ∈( )() and  ( : ( )) = Σ∈ () ( () ;) 
Let

Φ ( ) := {( ) ∈ Φ |  ( : ( )) ≥  ( : ( ))} (15)

Suppose that, when facing a choice between  and  a probability-utility

pair, (e e)  is randomly drawn from Φ  and  is chosen over  if and only

if (e e) ∈ Φ ( ). Denote by BΦ the trace on Φ of the Borel −algebra on
R||×||+ and let  be a probability measure on the measurable set (ΦBΦ) 
Then Φ ( ) ∈ BΦ and the probability that, facing a choice between  and

, a decision maker characterized by a preference relation Â on  and the

probability measure  on Φ chooses  is  (Φ ( )).

The multi-prior expected multi-utility representation is a special case of

the representation (4) in which preferences are represented by multiple linear

utility functions over acts. Formally, substituting  for  Φ for V and

Φ ( ) for V ( )  and applying Theorem 1 we get:

Corollary 1: If 3 on  is represented by (14) then {D(Φ())|   ∈
} represents the random choice model {D()|   ∈ } if and only if

 (Γ (  | Φ ( )))
 (Γ (  | Φ ( )) ∪ Γ (  | Φ ( ))) =  (Φ ( ))  ∀  ∈  (16)

3.3 Special cases

Knightian uncertainty (Bewley 2002) pertains to the case of complete tastes

(i.e., on the subset of constant acts the preference relation Â on  is transi-
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tive, irreflexive and negatively transitive) and attributes the incompleteness

of the preference relation solely to incomplete beliefs. This is a special case

in which, in the representation (14), Φ = {} × Π Applying our definition

to this case, let Π ( ) := { ∈ Π |  ( : ( )) ≥  ( : ( ))}then
Φ ( ) = {} × Π ( ) and  (Φ ( )) =  (Π ( )), for all   ∈  De-

note by  D(Π())  the choice relation that selects  form the set { }
with probability  (Π ( ))  Then, an immediate implication of Corollary 1

is the following, (where Π ( ) stands for {} ×Π ( )):

Corollary 2: If 3 on  displays Knightian uncertainty and is repre-

sented by (14) then D(Π()) represents the random choice model if and only

if, for all   ∈ 

 (Γ (  | Π ( )))
 (Γ (  | Π ( )) ∪ Γ (  | Π ( ))) =  (Π ( ))  (17)

The other special case is that of complete beliefs (see Galaabaatar and

Karni [2013]). In this case, we have expected multi-utility representation

according to which (14) holds with Φ = {} × U  Let U ( ) := { ∈
U |  ( : ( )) ≥  ( : ( ))} then, Φ ( ) = {} × U ( ) and
 (Φ ( )) =  (U ( )), for all   ∈  Denote by  D(U())  the

choice relation that selects  form the set { } with probability  (U ( )) 
Then, an immediate implication of Corollary 1 is the following (where U ( )
stands for {} × U ( )):
Corollary 3: If 3 on  displays Knightian uncertainty and is repre-

sented by (14) then D(U())represents the random choice model if and only

if, for all   ∈ 

 (Γ (  | U ( )))
 (Γ (  | U ( )) ∪ Γ (  | U ( ))) =  (U ( ))  (18)

All these results can be extended to stochastic choice functions in a

straightforward manner.

4 Experimental Tests

Any meaningful theory that purports to describe natural or social phenomena

must be accompanied by clear testable implications. A theory of choice

behavior is no exception. To render the proposed RCM meaningful, I discuss
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next experiments designed to test it in the context of decision making under

uncertainty and under risk. Generally speaking, testing the proposed RCM

requires that acts, in the case of uncertainty, and lotteries, in the case of risk,

that the decision maker considers to be noncomparable be identified, and the

agreement between the observed choices among such acts and the random

choices predicted by the model evaluated.

There is an analogy between the theory of risk-aversion and the RCM

that is useful to keep in mind when considering their behavioral implica-

tions. In both instances the structure of the underlying preference relations

imposes some strictures on the predictable choice behavior and, at the same

time, leaves room for personal variations that are due to distinct individual

risk attitudes in the former case, and to idiosyncratic incompleteness and

the mental decoy process in the latter case. Monotonicity with respect to

first-order stochastic dominance, implied by the preference structure, is a

property that transcends individual risk attitudes and idiosyncratic mental

decoy processes. Consequently, the multi-prior expected multi-utility model

with incomplete preferences displays probabilistic choice monotonicity with

respect to first-order stochastic dominance. Formally, if an act  first-order

stochastically dominates an act  and  in noncomparable to either  or 

then the probability that  is selected from the pair ( ) is greater than the

probability that it is selected from the pair ( ).

I describe below experiments designed to test the RCM. These, include

the probabilistic choice monotonicity and the hypothesis that decision makers

entertain probabilistic beliefs about the stochastic selection of the mental

decoys which are manifested in their random choice behavior.

4.1 Probabilistic choice monotonicity

The degree of incompleteness, of a decision maker’s preference relation is

a personal characteristic. Therefore, to obtain testable implications of the

RCM, we need formal measures of the degree of incompleteness and an elici-

tation scheme by which it is possible to determine the individual degree of in-

completeness. Karni and Vierø (2021) introduced such measures and also an

incentive compatible mechanisms by which the incompleteness displayed by

a preference relation may be elicited. Specifically, let  ⊆  be an event and

denote by  the act that pays off $ if  ∈  and $ if  ∈ \. If    I

refer to the act  as bet on  Consider a subject characterized by a prefer-

ence relation Â on  Given a bet  let ̄(;Â) := inf{ ∈ R |  Â }
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and (;Â) := sup{ ∈ R |  Â }  where  denotes the constant act
that pays off $ Then the range of sure payoffs to which  is noncom-

parable is [(;Â) ̄(;Â)]  Let Φ (Â) be the set of probability-utility
pairs in (14) that represent Â. Given ( ) ∈ Φ (Â)  define the certainty
equivalent,  (( ) ;)  of  corresponding to ( ) by:

 ( (( ) ;)) =  () () + (1−  ()) () 

Then ̄(;Â) = sup()∈Φ{ (( ) ;)} and (;Â) = inf()∈Φ{ (( ) ;)}
The experimental test of the probabilistic choice monotonicity hypothesis

consists of two parts. In the first part the experimenter elicits the subjects

degrees of incompleteness. In the second part the subjects are asked to choose

among noncomparable bets. Specifically,

Part I - The elicitation of the degree of incompleteness:13 Fix a

bet  on  and   0 At time  = 0 the subject is asked to report num-

bers,  (; )  ̄ (; ) ∈ [ ] such that  (; ) ≤ ̄ (; ). Then

a random number, , is drawn from a uniform distribution on [ ] In the

interim period,  = 1 the subject is awarded the bet  if    (; )

and the outcome  if  ≥ ̄ (; )  If  (; )  ̄ (; ) and  ∈
[ (; )  ̄ (; )) then the subject is allowed to choose between the bet

(− )( − ) and the outcome  − . In the last period,  = 2 after it is

verified whether or not the event  obtained, all payments are made. Denote

this mechanism Λ

Theorem (Karni and Vierø [2021]) Given the mechanism Λ there is

  0 such that, for all  ∈ [0 ), the subject’s unique dominant strategy is
to report  (; ) = (;Â) and ̄(; ) = ̄(;Â).
Given a bet  the set of constant acts that are noncomparable to 

are:  ∈ [(;Â) ̄(;Â))
Part II - Observations of choice behavior- Two methods are possi-

ble for generating observations by which the model may be tested: Repeated

choices by the same subject and single choices by a group of subjects. In

both instances, a set  = {1  } of subjects is recruited for the experi-
ment and the aforementioned scheme is implemented to elicit the range of

incompleteness at ,  (; )  ̄ (; )   ∈  .

In the repeated choices experiment each subject,  ∈  is presented with

repeated choices between the bet  and a sure payoffs  ∈ [ (; )  ̄ (; ))
13This elicitation scheme was introduced in Karni and Vierø (2021).
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 = 1  The prediction of the RCM is that the frequency of choosing the

bet decreases monotonically with the values of 
14

In the single choice experiment the subjects are divided, randomly, into

two groups 1 = {1  } and 2 = { + 1  } Subjects belonging to 1
are asked to choose between the bet  and a sure outcome 1 and subjects

belonging to 2 are asked to choose between the bet  and a sure outcome

2 where 1 2 ∈ ∩∈ [ (; )  ̄ (; )) 2  1 The prediction of

the RCM, based on the assumption that the measures of incompleteness,

[ (; )  ̄ (; )) are equally distributed in the two groups, is that

the proportion of subjects from 1 that choose the bet is smaller than that

in 2

These predictions of the RCM are derive from the probabilistic choice

monotonicity with respect to first-order stochastic dominance.

Knightian uncertainty: In the case of Knightian uncertainty, Φ :=

{}×Π in the representation (14) attributes the incompleteness of the pref-

erence relation entirely to the incompleteness of the subject’s beliefs, repre-

sented by a set, Π. Since we are interested in the probabilities of the event 

and its complement, Π is depicted by an interval, [() ̄()] ⊆ [0 1]  where
 ∈ [() ̄()] denotes the subjective probability of the event  In this
case, Karni’s (2020) modified proper scoring rule can be invoked for the elic-

itation of the range, [() ̄()] of the probabilities of an event  Accord-

ing to Karni’s scheme, at time  = 0 the subject is asked to report numbers,

 ( )  ̄ ( ) ∈ [0 1] with  ( )  ̄ ( ). Then a random number, 

is drawn from a uniform distribution on [0 1] In the interim period,  = 1

the subject is awarded the bet  if    ( ) and if  ≥ ̄ ( )  the

subject is awarded the right for a lottery (; ) that pays the $ with

probability  and $ with probability (1− )  If  ∈ [ ( )  ̄ ( )) the
subject is allowed to choose between the bet (− )(− ) and the lottery

(; −   − ) where   0. In the last period,  = 2 after it is veri-

fied whether or not the event  obtained and the outcome of the lottery is

revealed, all payments are made. Denote this mechanism Λ

Karni (2020) proves an elicitation theorem that implies the following re-

sult:

Theorem (Karni [2020]) Given the mechanism Λ there is   0 such

14This method is discussed in Loomes and Sugden (1998) and was implemented in

a study by Loomes, Moffatt, and Robert Sugden (2002). To incetivize the subject to

consider the choice seriously, one of the subject’s choices is selected, at random, and the

subject is rewarded according to the outcome of the selecte bet.
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that, for all  ∈ [0 ), the subject’s unique dominant strategy is to report
(; ) = () and ̄(; ) = ̄ ().

The experiment consists of the elicitation of the range of incomplete be-

liefs [(),̄ ()]. In the repeated choices experiment, the subject is pre-

sented, repeatedly, with choices between the bet  and lotteries (; )

 ∈ [ (; )  ̄ (; ))   = 1  The prediction of the RCM is that the

frequency of choosing the bet decreases monotonically with the values of 

In the single choice experiment the subject are divided, randomly. into

two groups 1 = {1  } and 2 = {+1  } Subjects belonging to 1 are
asked to choose between the bet  and the lottery (1; ) and subjects

belonging to 2 are asked to choose between the bet  and the lottery

(2; ) where 1 2 ∈ ∩∈ [ (;  )  ̄ (; )] and 2  1 Assuming

that the ranges of incompleteness are equally distributed in the two groups,

the prediction of the RCM is that the proportion of subjects from 1 that

choose the bet is smaller than that in 2

Complete beliefs: In the case of complete beliefs, Φ = U × {} Let
 = (1 1;   ) ∈ ∆ (), where 0    +1  = 1   − 1 and
define ̄ () = inf{ ∈ R |  Â } and  () = sup{ ∈ R |  Â } 
where  ∈ ∆ () assigns  the unit probability mass. The elicitation scheme

is designed to identify the the range [ ()  ̄ ()] of sure outcomes that are

noncomparable to  It requires the subject to report, at time  = 0 numbers,

 (; )  ̄ (; ) ∈ [1 ] such that  (; ) ≤ ̄ (; ). A random number, ,

is drawn from a uniform distribution on [1 ] In the interim period,  = 1

the subject is awarded the lottery  if    (; ) and the outcome  if

 ≥ ̄ (; )  If  ∈ [ (; )  ̄ (; )) then the subject is allowed to choose
between the lottery 0 = (1 −  1;   −  ) and the outcome  − ,

where  ∈ (0 1). In the last period, the outcome of the lottery is revealed,
and all payments are made. Denote this mechanism Λ

Theorem (Karni and Vierø [2021]). Given Λ, there is   0 such

that, for all  ∈ [0 ), the subject’s unique dominant strategy is to report
 (; ) = () and ̄ (; ) = ̄ ().

The experiment consists of the elicitation of the range of incomplete risk

attitudes [ (; )  ̄ (; )]. In the repeated choices experiment the subject

is presented, repeatedly, with choices between the lottery  and sure payoffs

 ∈ [ (; )  ̄ (; ))  = 1  The prediction of the RCM is that the

frequency of choosing the lottery decreases monotonically with the values of


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In the single choice experiment the subject are randomly divided into

two groups 1 = {1  } and 2 = { + 1  } Subjects belonging to 1
are asked to choose between the lottery  and an outcome 1 and subjects

belonging to 2 are asked to choose between  and the outcome 2 where

1 2 ∈ ∩∈ [ (; )  ̄ (; )] and 2  1 The prediction of the RCM is

that the proportion of subjects from 1 that choose the lottery is smaller

than that in 2

4.2 Probabilistic choice hypotheses

The experiments described above are designed to test a qualitative property

of the RCM, namely, probabilistic choice monotonicity that transcends the

idiosyncratic variations of individual stochastic decoy processes. They are

not designed to quantify the change in the probabilistic choice behavior in re-

sponse to variations in the alternatives. Quantifying these responses requires

knowledge of the probability measure  For example, hypothesizing that 

is the Labesgue measure on R||×|| the RCM predicts that, facing a choice

between  and a sure outcome,  ∈ [(; ) ̄(; )) the probability
that a decision maker chooses  is ( − (; ))  (̄(;Â)− (; )) 

Similarly, under Knightian uncertainty, hypothesizing that  is the Labesgue

measure on [0 1]  the RCM predicts that the probability that  is chosen

is ( − (; ))  (̄(; )− (; ))  Thus, the proposed experiments may be

used to test alternative hypotheses regarding the probability measure 

Another possible interpretation of the probability measure  in RCM

model is that it quantifies the decision makers’ subjective beliefs about the

likely realizations of mental decoys that triggers their choices. To test this

hypothesis, it is necessary to elicit  jointly with the range of incompleteness

that determines its support.15 I describe below an experiment designed to

test this hypothesis in the case of Knightian uncertainty. Again, the exper-

iment consists of two parts. In the first part the experimenter elicits the

probability measure  on Π dubbed second-order beliefs. In the second part,

the experimenter presents the subjects with choices between bets and com-

pares their responses to the predictions of the RCM parametrized by the

information generated in the first part.

Part I - The elicitation of the range of second-order beliefs : I

15Karni and Safra (2016) characterized decision makers’ perceptions underlying their

subjective probability measure 
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describe next an incentive compatible mechanism for the elicitation of the

subject’s probability measure of his priors regarding the likelihood of an

event  In the case of Knightian uncertainty, the probabilities depicting the

subject’s beliefs of the event  are represented by an interval, [()  ()] ⊆
[0 1]  Denote by BΠ the Borel − algebra on [()  ()] 
In the first part of the experiment, the mechanism of Karni’s (2020) is im-

plemented to elicit of the subject’s second-order beliefs,  on of his first-order

subjective probabilities of the event . In the second part, to generate the

observations, a bet  is fixed the subjects are offered a choice between the

bet and a lottery  () = ( ;  (1− )   ∈ [()  ()]  The prediction
of the RCM is that the bet is selected with probability  [− ()] 

Part II - The generate observations - Implementing the repeated

individual choices method, each subject  ∈   is offered choices between

the bet  and lotteries form the set,  := { () := ( ;  (1− ) |
 ∈

£
() ̄ ()

¤
  = 1  } These lotteries that are noncomparable to

 according to subject  whose elicited second-order belief is  Denote

by  the number of times the subject is offered the choice between the

bet and the lottery  () and let  ( ()) denote the number of times the

bet is chosenThe hypothesis to be statistically tested is that  ( ())  =

 [ − ]  The agreement between the prediction and the empirical obser-

vations is measured by the Euclidean metric k [ − ] −  ( ()) k
The implementation of the single choice method requires that ∩∈

£
()  ()

¤ 6=
∅. Fix  ∈ ∩∈

£
()  ()

¤
and present each subject with a single

choice between  () and . Let  () ⊆   = 1   denote the

subsets on  that contain  subjects that chose the bet and, for each  =

1  !! (− )! denote by  () the different compositions of the sub-

jects in  (). The model predicts that the expected number of subjects that

choose the bet is: Σ
=1 () where  () = Σ

!!(−)!
=1

¡
Π∈()

£
− ()

¤¢×¡
Π∈\() [̄ ()− ]

¢
 Let  () denoted the number of subjects that

chose the bet The hypothesis to be tested is that  () = Σ
=1 () 

5 Concluding Remarks

I conclude by pointing out two equivalent formulations of the RCM and a

brief review of the related literature.

19



5.1 Equivalent formulations of the random choice model

Two equivalent formulations of the RCM extends the set of alternatives that

may play the role of mental decoy. As in the case of the RCM of Section 2,

facing a choice between noncomparable alternatives,  and 0 the decision
maker receives a signal in the form of a third alternative, 00.
According to the first alternative formulation, the decision maker chooses

the alternative  if the third alternative, 00 is weakly preferred to 0 and is
noncomparable to . In that case,

Ψ0 (m 0) := {00 ∈  | 00 3 0 and   00} (19)

The second alternative formulation combines the two possibilities. More

explicitly, the decision maker chooses the alternative  if the third alternative

is either weakly inferior to  and is noncomparable to 0, or if it is weakly
preferred to 0 and is noncomparable to . Hence, for any  0 ∈ 

Ψ̂ (m 0) := {00 ∈  |  3 00 and 0  00}∪{00 ∈  | 00 3 0 and   00}
(20)

In either case,  ( 0) = 
³
Ψ̂ (m 0)

´

³
Ψ̂ (m 0) ∪ Ψ̂ (0 m )

´


The equivalence among the three formulations follows from Theorem 1

and the fact that in all of these cases, for all  0 ∈  the probability that

 is chosen from that set { 0} is  (V ( 0)) 
The alternative formulations yield the same probabilistic choice behavior

but have distinct implications insofar as the procrastination is concerned.

In particular, the second alternative formulation admit larger set of de-

coy alternatives that resolve the indecision. Therefore, the probability of

making a decision at each stage of the mental decoy process is larger (i.e.,


³
Ψ̂ (m 0) ∪ Ψ̂ (0 m )

´
  (Ψ (m 0) ∪Ψ (0 m ))  Supposing that the

time elapsed between consecutive draws of the mental decoys is the same,

the expected delay due to procrastination is shorter according to this formu-

lation.

5.2 Related literature

The recognition that, in many settings, observed choices display stochastic

behavior lead to increase interest, in recent years, in modeling and testing
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stochastic choice behavior.16 However, as was mentioned before, except of

Ok and Tserenjigmidz (2020), these studies do not attribute this behavior

specifically to preference incompleteness.

Ok and Tserenjigmidz (2020) model random choice behavior as random

choice functions, which they define and characterize for stochastic choices

induced by indifference, indecisiveness, and experimentation. The former

two are closely related to the present work. In particular, as was shown in

Section 2, the random choice function induced by RCM, is consistent with Ok

and Tserenjigmidz’s axiomatic characterization of stochastic choice functions

induced by lack of strict preference. However, unlike Ok and Tserenjigmidz,

the random choice function induced by RCM advances a testable hypothesis

that quantify probabilistic choice behavior rather than merely asserting that

the maximal elements of the menu will be chosen with positive probability.

Karni and Safra (2016) study stochastic choice under risk and under un-

certainty based on the notion that decision makers’ actual choices are gov-

erned by randomly selected states of mind. They provide axiomatic char-

acterization of the representation of decision makers’ perceptions of the sto-

chastic process underlying the selection of their state of mind. In the context

of decision making under uncertainty with incomplete preferences, the states

of mind are probability-utility pairs in the set Φ and the stochastic choice

process correspond the subjective measure of the sets Φ ( )    ∈ 17

Hence, their work can be regarded as providing axiomatic foundations of

representation of the the states of mind by the probability measure,  and

the hypothesis that the probability of choosing  out of the set { } is
 (Φ ( )) as depicted by the RCM.

6 Proofs

6.1 Proof of Theorem 1

We need to show that  ( 0) =  (V ( 0)) or, equivalently, that  (Ψ (m 0)) =
 (Γ ( 0 | V ( 0))), for all  0 ∈  Given  0 ∈  such that   0,
define

V (m 0) = { ∈ V | ∃00 ∈  s.t.  () ≥  (00) and  (0) =  (00)} (21)
16See Luce (1959), Gul et. al (2014), Fudenberg, et. al (2015).
17In the special cases of multi-prior expected multi-utility, Knightian uncertainty and

complete beliefs, the sets of states of mind are Φ Π and U , respectively.
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Given  0 ∈   define a mapping Υ : V (m 0)→ P ( 0) by: Υ () =
Γ ( 0 | )  By the uniqueness of V, Υ is well-defined. Let Γ ( 0 | ) ∈
P ( 0) then, by definition,  () ≥  (00) and  (0) =  (00)  for all 00 ∈
 (0 | )  Hence,  ( | ) ∩Ψ (m 0) = Υ−1 ()  Thus, Υ is a bijection.

Since P ( 0) is a partition of Ψ (m 0)  we have:

Υ (V (m 0)) := ∪∈V(m0)Υ () = ∪∈V(m0)Γ ( 0 | ) := Γ ( 0 | V (m 0)) = Ψ (m 0) 
(22)

Hence, Υ (V (m 0)) = Ψ (m 0)  Note that V (m 0) ∪ V (0 m ) = V
Moreover, by the representation (4), the bijection Υ is continuous. Since

Ψ (m 0) ∈ B , we have that Υ−1 (Ψ (m 0)) ∈ BV  ∀ 0 ∈ 

I show next that V (m 0) = V ( 0)  Let  ∈ V (m 0)  Then, by
definition, there is 00 ∈  such that  () ≥  (00) and  (0) =  (00) 
Hence,  () ≥  (0)  Thus,  ∈ V ( 0)  If  ∈ V ( 0) then  () ≥  (0) 
For all 00 ∈  (0 | ),  (0) =  (00)  Hence,  () ≥  (00)  Consequently,
 ∈ V (m 0)  Thus, V (m 0) = V ( 0) 
Substituting V ( 0) for V (m 0) in (22) we get that

Γ ( 0 | V ( 0)) = Γ ( 0 | V (m 0)) = Ψ (m 0)  (23)

Thus,

 (Γ ( 0 | V ( 0)))
 (Γ ( 0 | V ( 0)) ∪ Γ (0  | V (0 ))) =

 (Ψ (m 0))
 (Ψ (m 0) ∪Ψ (m 0))



(24)

Since  (V) = 1, we have  (V ( 0)) =  (V (m 0))  (V)  Hence, by (24),
for all  0 ∈ 

 (V ( 0)) =  (Γ ( 0 | V ( 0)))
 (Γ ( 0 | V ( 0)) ∪ Γ (0  | V (0 ))) (25)

if and only if

 (V ( 0)) =  (Ψ (m 0))
 (Ψ (m 0) ∪Ψ (0 m ))

=  ( 0)  (26)

Thus, D(0)=D(V(0)) for all  0 ∈  if and only if (7). ¥
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6.2 Proof of Theorem 2

By the proof of Theorem 1, Γ ( 0 | V ( 0)) = Ψ (m 0)  Thus, for all
() ∈ ×M,

Γ ( | V ()) = ∩0∈max(Â)Γ ( 
0 | V ( 0)) = ∩0∈max(Â)Ψ (m 0) 

Moreover, for all  0 ∈ max (Â) 

 (V ( 0)) =  (Γ ( 0 | V ( 0)))
 (Γ ( 0 | V ( 0)) ∪ Γ (0  | V (0 ))) 

But V () = ∩0∈max(Â)V ( 0)  Hence,

 (V ()) = 
¡∩0∈max(Â)V ( 0)

¢
=


¡∩0∈max(Â)Γ ( 0 | V ( 0))

¢

¡∪0∈max(Â)[∩00∈max(Â)Γ (0 00 | V (0 00))]

¢ =  (Γ ( | V ()))

¡∪0∈max(Â)Γ (0 | V (0))¢

if and only if

 (V ()) = 
¡∩0∈max(Â)Ψ (m 0)

¢

¡∪0∈max(Â)

£∩00∈max(Â)Ψ (0 m 00)
¤¢ 

for all () ∈ ×M. But Ψ (m) = ∩0∈max(Â)Ψ (m 0). Hence,

 (V ()) =  (Ψ (m))

 (∪0∈Ψ (0 m))
=  ()

for all  ∈ M and  ∈ max (Â). Thus, D()=D(V()) for all

() ∈ × if and only if (13). ¥
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