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Abstract

This paper presents an axiomatic model of medical decision making and discusses its

potential applications. The medical decision problems envisioned concern the choice of

a medical treatment following a diagnosis in situations in which data allow construction

of an empirical distribution over the potential outcomes associated with the alternative

treatments. In its descriptive interpretation, the model is an hypothesis about the pa-

tient’s choice behavior. The theory also aims to aid physicians recommend treatments

in a coherent manner.
∗I benefited from comments of Ani Guerdjikova, Moshe Leshno, Marzena Rostek, Marie-Louise Viero,

and Peter Wakker.
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1 Introduction

For the purpose of this paper, the term medical decision making refers to the choice of a

course of action (action, for short) following a diagnosis of a patient’s condition. An action

consists of the medical treatment itself; the facility in which it is to be administered; and,

if perceived relevant, the individuals who administer it. Consider, for example, a patient

diagnosed with prostate cancer. Given his specific personal characteristics (medical history,

age, physical condition, and so forth), the patient must choose among various treatments

(surgery, radiation therapy); the medical facilities in which he is to be treated (the local

hospital, a medical center in another city); and the physician who performs the surgery or

administers the therapy of choice. The consequences consist of the patient’s post-treatment

state of health, including the side effects of treatment; the associated pain and inconvenience;

the direct monetary expenses; and the potential loss of income.

In many situations involving medical decision making, the empirical probability (that is,

the relative frequency) of the different outcomes conditional on the treatments, characteristics

of the patient, and choice of hospital and physician are known. The question is, how does

(or how should) an informed patient choose among the possible courses of action?

In this paper I propose a theory of medical decision making in which the patient’s pref-

erences are represented by an outcome-dependent expected utility function. More formally,

let a denote an action and denote by c a vector of the patient’s characteristics (medical his-

tory, age, gender, race, profession, family situation, physical state, and any other personal
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attributes that may bear on the outcome of the medical treatments under consideration). I

examine the structure of a preference relation, <, on the set of actions that is necessary and

sufficient for the following representation:

(a, c) 7→ λ (a)
X
ω∈Ω

U (f (ω; a, c) , ω) p (ω | a, c) + v (a) ,

where U is the utility function; ω denotes the post-treatment health state (or outcome); Ω

is the set of all outcomes associated with a given diagnosis; f (ω; a, c) denotes the financial

consequence associated with the outcome ω conditional on the patient’s characteristics and

the action; p (· | a, c) is the probability distribution on Ω conditional on the action and the

patient’s personal characteristics; and λ and v represent the “utility cost,” including the

pain or discomfort associated with different actions. Note that the patient’s risk attitudes,

captured by the utility functions of money, U (·, ω) , ω ∈ Ω, are outcome dependent but not

action dependent.

The application of this model to medical decision making requires the elicitation of the

utility functions U (·, ω) , ω ∈ Ω; their alignment; and the elicitation of the coefficients

λ (a) , v (a) for all actions, a. Because the model is preference based, the information needed

to implement it is, in principle, obtainable from the patient’s expressed preferences over

conceivable actions and payoff functions f .

The next section presents the theory. Section 3 examines the issues involved in imple-

menting this model. Concluding remarks appear in Section 4. The proof of the main result

is given in the appendix.
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2 A Model of Medical Decision Making

2.1 The analytical framework

Let Θ denote a finite set whose elements are health diagnoses.1 For every θ ∈ Θ let A (θ)

denote a finite set of actions, that is, descriptions of the medical aspects of the procedures

in all their relevant aspects.2 For instance, when the diagnosis calls for surgery, an action

includes specification of the surgical procedure itself, the facility in which the operation is

to take place, the surgeon who is to perform the surgery, the hospitalization and medical

follow-up. Let Ωa (θ) denote the finite set of possible outcomes that might result when the

diagnosis is θ and the action taken is a ∈ A (θ) , and let Ω (θ) = ∪a∈A(θ)Ωa (θ).

Denote by P (θ) the set of all probability distributions on Ω (θ) and assume that it is

endowed with the R|Ω(θ)| topology. Clearly, P (θ) contains the set of {pθ (· | a) | a ∈ A (θ)} of

probability distributions on Ω (θ) conditional on the available actions. For each ω ∈ Ω (θ) ,

let Iω be a closed and bounded interval in R. A bet, f, is an element of the product set

F (θ) := Πω∈Ω(θ)Iω, representing outcome-contingent monetary payoffs. For instance, one

may bet on the outcome of a bypass surgery according to which he wins x dollars if he

survives the opration and losses y dollars if he does not, to be paid by his estate. Assume

1In view of our definition of medical decision problems, the interpretation of θ is the doctor’s diagnosis

rather than the patient’s true state of health.
2The specifications of the actions do not include the financial dimentions of the medical procedure, which

is handled separately.
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that F (θ) is endowed with the R|Ω(θ)| topology. (Note that a pair (p, f) defines a lottery

that, for every ω ∈ Ω, assigns the probability p (ω) to the monetary prize f (ω)).

For every θ, the patient is supposed to be able to conceive of having to choose among

elements of C (θ) := A (θ) × P (θ) × F (θ) consisting of an action in A (θ) , a probability

in P (θ) , and a bet in F (θ) . Then C (θ) is the conceivable choice set . Since a medical

decision problem always begins with a diagnosis which is then fixed, to simplify the notation,

henceforth I suppress the diagnosis θ.

A preference relation º on C is a binary relation that has the following interpretation:

(a, p, f) º (a0, p0, f 0) means that if the patient were in a position that requires him to choose

between (a, p, f) and (a0, p0, f 0) , he would choose (a, p, f) or be indifferent between the two

alternatives. The induced strict preference relation, Â, and indifference relation, ∼, are

defined as usual and have the usual interpretation.

I assume throughout that º is a weak order, that is,

(A.1) º is complete and transitive.

To describe the structure of the preference relation, it is convenient to dissect it and

examine each of its components separately.
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2.2 Treatment-contingent preferences

For each action, a, define a conditional preference relation ºa on P × F by (p, f) ºa (p
0, f 0)

if (a, p, f) º (a, p0, f 0) . By definition and (A.1), ºa is a weak order.

For the conditional preferences ºa, I adopt the structure of Karni and Safra (2000).

Specifically, I assume that the conditional preference relations in the set {ºa| a ∈ A} satisfy

the following axioms:

(A.2) Continuity - For all (p, f) ∈ P ×F the sets {(p0, f) | (p0, f) ºa (p, f)} and {(p0, f) |

(p, f) ºa (p
0, f)} are closed in the product topology.

The second axiom requires that every outcome matters. Formally, let eω be the ω−th

unit vector in R|Ω| (that is, eω ∈ P is the degenerate probability distribution that assigns

the unit probability mass to ω) then,

(A.3) Coordinate Essentiality - For all ω ∈ Ω, there are f, f 0 ∈ F such that (eω, f) Âa

(eω, f 0) .

The next axiom requires that the evaluation of outcome-contingent payoffs be inde-

pendent in the sense that preferences among alternatives of the form (eω, (r, f−ω)), where

(r, f−ω) := (f (ω1) , ..., f (ωi−1) , r, f (ωi+1) , ..., f (ωn)) , depend solely on the payoff of the bet

f if the outcome ω obtains. Formally,
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(A.4) Certainty Principle - For all f, f 0, f 00, f 000 ∈ F, (eω, (x, f−ω)) ºa (e
ω, (y, f 0−ω)) if

and only if (eω, (x, f 00−ω)) ºa (e
ω, (y, f 000−ω)).

Define the partial mixture operation on P × F as follows: for every given f ∈ F,

(p, f) , (p0, f) and α ∈ [0, 1] , α (p, f) + (1− α) (p0, f) = (αp+ (1− α) p0, f) . This may be in-

terpreted as a two-stage lottery in which, in the first stage, the alternatives (p, f) and (p0, f)

obtain with probabilities α and (1− α) , respectively. In the second stage, the payoff of f is

determined by the lottery, p or p0, that was chosen in the first stage. With this interpre-

tation in mind, assume that the decision maker prefers (p, f) over (p0, f 0) and (q, f) over

(q0, f 0). Moreover, assume that if a decision maker faces a choice between the alternatives

L = (αp+ (1− α)q, f) and L0 = (αp0 + (1− α)q0, f 0) he reasons as follows: if the event

whose probability is α is realized, he participates in the lottery (p, f) if he has chosen L

and in the lottery (p0,f 0) if he has chosen L0. Conditional on the realization of this event,

he is better off with L. By the same logic, he would also prefer L over L0 conditional on

the realization of the event whose probability is 1 − α. Consequently, he prefers L over L0

unconditionally. Formally,

(A.5) Constrained Independence - For all (p, f), (q, f), (p0, f 0), (q0, f 0) in P × F and

α ∈ [0, 1) if (p, f) ∼a (p
0, f 0) then (q, f) ºa (q

0, f 0) if and only if (αp+ (1− α)q, f) ºa

(αp0 + (1− α)q0, f 0) .

A real valued function Va on P×F is said to represent ºa if, for all (p, f) and (p0, f 0) in P×

F, (p, f) ºa (p
0, f 0) if and only if Va (p, f) ≥ Va (p

0, f 0) . If Va (p, f) :=
P

ω∈Ω p (ω)Ua(f (ω) , ω)
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for some functions, Ua(·, ω) : R → R, ω ∈ Ω, it is a linear representation of ºa. LetP
ω∈Ω p (ω)Ua(f (ω) , ω) represent ºa. The functions Ua (·, ω) , ω ∈ Ω are said to be unique

up to uniform positive linear transformation if, for any other linear representation of ºa,P
ω∈Ω p (ω) Û(f (ω) , ω), Û(·, ω) = βU(·, ω) + γ, β > 0, for all ω ∈ Ω.

The next theorem restates, in the terminology of this paper, Theorem 2 of Karni and

Safra (2000).

Theorem 1: Let ºa be a binary relation on P × F. Then the following conditions are

equivalent:

(a) ºa is a weak order satisfying (A.2) — (A.5).

(b) There exist continuous, non-constant, functions Va : P ×F → R and Ua (·, ω) : R→ R,

ω ∈ Ω, such that Va represents ºa and, for all (p, f) ∈ P × F,

Va (p, f) =
X
ω∈Ω

p (ω)Ua(f (ω) , ω).

Moreover, the functions Ua (·, ω) , ω ∈ Ω (θ) , are unique up to uniform positive linear

transformation.

The proof is given in Karni and Safra (2000).3

3The uniqueness part of the theorem in Karni and Safra (2000) states that Ua (·, ω) are unique up to the

following transformations: βUa (·, ω)+ γ (ω) , β > 0 and
P

ω∈Ω γ (ω) = γ. This is a mistake. The uniqueness

requires that γ (ω) = γ for all ω ∈ Ω, hence the uniformity.
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2.3 Action-independent risk attitudes and the representation of

º

Medical treatments are costly in terms of time and discomfort. These are temporary, how-

ever, and unlikely to alter the patient’s risk attitudes. To capture this aspect of the patient’s

preferences, the next axiom asserts that the risk attitudes are action independent.

(A.6) Action-independent risk attitudes - For all a, a0 ∈ A, ºa=ºa0 .

A certain richness of the choice space is necessary to link distinct action-contingent

preferences. Specifically, there must be some staggered utility overlap among the actions.

Formalizing this idea, it is useful to use the following additional terminology: two actions,

a and a0, are said to be elementarily linked at f ∈ F if there are p̄, p, p̄0, p0 ∈ P satisfying

(p̄, f) Âa

¡
p, f

¢
such that (a, p̄, f) ∼ (a0, p̄0, f) and

¡
a, p, f

¢
∼
¡
a0, p0, f

¢
. (Note that, by

transitivity, (p̄0, f) Âa0
¡
p0, f

¢
). The treatments a and a0 are linked if there is a sequence of

actions a1, ..., an such that a = a1, a
0 = an and the actions ai and ai+1 are elementarily linked

at fi ∈ F, i = 1, ..., n− 1. The set of actions is linked if all its elements are linked.

The next theorem is the main result.

Theorem 2: Let º be a preference relation on C and denote by {ºa| a ∈ A} the induced

action-contingent preference relations on P × F. If A is linked, then the following

conditions are equivalent:
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(a) º is a weak order and the induced preference relations {ºa| a ∈ A} satisfy (A.2) —

(A.6).

(b) There exist continuous nonconstant functions V : C → R, U (·, ω) : Iω → R, ω ∈ Ω,

λ : A→ R++ and v : A→ R such that V represents º and for all (a, p, f) ∈ C,

V (a, p, f) = λ (a)
X
ω∈Ω

p (ω)U(f (ω) , ω) + v (a) .

Moreover, the functions U (·, ω) , ω ∈ Ω are unique up to a uniform positive linear transfor-

mation and, given U (·, ω) , ω ∈ Ω, λ and v are unique.

2.4 Medical decision making

The probabilities and the financial consequences of the different outcomes contingent on

patient characteristics and available actions are determined by the “state of the art,” or

technology. Formally, a technology is a function t : C × A (θ) → P (θ) × F (θ) that asso-

ciates with each vector of personal characteristics and action a probability distribution on

Ω (θ) and a bet in F (θ) depicting the financial consequences associated with the different

outcomes. These consequences depend on the patient’s health, disability, and life insurance

coverage and occupation which, in turn, determine the potential loss of income. A medical

decision entails a choice among alternatives in A (θ) . Given the patient’s characteristics,

c, and the technology, t, define a preference relation on A (θ) by a <c a0 if and only if

(a, t (a; c)) := (a, p (a; c) , f (a; c)) º (a0, p (a0, c) , f (a, c)) := (a0, t (a0; c)) . Thus, given the
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patient characteristics and technology, the application of Theorem 2 implies that, for all

a, a0 ∈ A (θ) , a <c a
0 if and only if

λ (a)
X

ω∈Ω(θ)

p (ω; a, c)U(f (ω; a, c) , ω)+v (a) ≥ λ (a0)
X

ω∈Ω(θ)

p (ω; a0, c)U(f (ω; a0, c) , ω)+v (a0) .

(1)

Note that the choice of a affects the patient’s well-being in two distinct ways. First, as

already mentioned, the alternatives actions may involve different degrees of pain, suffering,

and inconvenience. This aspect of the choice of action is captured by the functions λ and

v. Second, the patient’s insurance may cover some alternatives fully and some others only

partially or not at all and, in addition, depending on his occupation, the various outcomes

may have distinct financial implications. These financial aspects of the decision is captured

by the dependence of f (·; a, c) on a. For instance, if the patient’s insurance fully covers the

medical costs of the action a then f (·; a, c) = f (·; c) , where f (·; c) depicts the contingent

loss of income (uncovered by insurance). If the medical costs of some actions are coinsured

(for instance, under coinsurance, only x percent of the cost of a is covered) then f (·; a, c) =

f (·; c)− (1− x)g (a) , where g (a) denotes the full financial cost of a.
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3 Application

3.1 Outline of the procedures

The most important and immediate application of this model is helping physicians and pa-

tients decide which course of action is most appropriate in a given situation. Such decisions

are based on information from two sources: (a) medical information, provided by the physi-

cian, specifying the set of outcomes Ω and the probabilities {p (·, a, c) | a ∈ A} conditional

on the action and patient’s characteristics, and (b) personal information, provided by the

patient, concerning his characteristics and preferences, on the basis of which the relevant

utility functions U, λ and v are to be chosen.

The elicitation of the subjective “parameters,” (that is, the outcome-dependent utility

functions and action-dependent cost coefficients) involves three distinct procedures. First,

for every given outcome, it is necessary to elicit the outcome-dependent utility function

(that is, for all ω ∈ Ω, the functions U (·, ω) must be determined). Second, the outcome-

dependent utility functions need to be aligned, so that they agree on the evaluation of the

monetary payoff across outcomes. Third, the expected utilities of the distinct actions must

be calibrated to allow comparisons among them.
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3.2 Elicitation of the patient’s risk attitudes

The elicitation of von Neumann-Morgenstern utility functions can be done using distinct

methods. A well-known method is based on the elicitation the certainty equivalents of lot-

teries, using direct comparisons (see Abdellaoui et al. [2007]) or a technique introduced by

Becker, DeGroot, and Marchak (1964), according to which, under expected utility prefer-

ences, true revelation of certainty equivalent is incentive compatible. Repeated elicitations

of certainty equivalents of lotteries allow the construction of a utility function.

The economic and financial literature pays special attention to certain parametric families

of utility functions, including the power family; the exponential family; the expo-power family

(due to Saha [1993]); and the hyperbolic absolute risk aversion family (HARA), introduced by

Merton (1971).4 From an empirical point of view, the use of parametric utility functions offers

a reasonable trade-off between generality and economy of observations. This is especially

true when one is interested in local approximations.

Arrow (1965) advocates the use of utility functions displaying decreasing absolute risk

aversion and increasing relative risk aversion. More recently, experimental studies of risk

attitudes by Holt and Laury (2002) and Abdellaoui et al. (2007) argue in favor of using

variations of the expo-power family. Holt and Laury (2002) lend support to a parametric

4Abdellaoui et al. (2007) introduce and used a special, one-parameter, variation of the expo-power family.

Holt and Laury (2002) used the expo-power family of Saha (1993) to study the nature of risk aversion and

its dependence on the stakes.

13



family of utility functions that take the form

u (w) =
1− exp (−αw1−r)

α
, (2)

where w denotes the decision maker’s wealth; α ≥ 0 and 1 ≥ r ≥ 0. In the limit, as α tends

to zero, this utility function becomes linear in w. The de Finetti (1952), Arrow (1965) and

Pratt (1964) measure of relative risk aversion for this family of utility functions is

−u
00 (w)w

u0 (w)
= r + α (1− r)w1−r. (3)

Hence, the utility function displays constant relative risk aversion, r, when α = 0 and

constant absolute risk aversion when r = 0. When both α > 0 and r > 0, the utility

functions display decreasing absolute risk aversion and increasing relative risk aversion. Holt

and Laury (2002) estimate r = 0.269 and α = 0.029.

Abdellaoui et al. (2007) one-parameter version of the expo-power family is

u (w) = − exp (−wr/r) , for r 6= 0 and u (w) = −1/w for r = 0. (4)

For r ∈ [0, 1] , this function displays decreasing absolute and increasing relative risk aversion.

Using the trade-off elicitation procedure in an experimental setting, their estimate of r based

on group average is r = 1.242. This implies a utility function that is slightly convex at low

levels of wealth and slightly concave at high levels of wealth.

Adopting the expo-power parametric family of utility functions to the present context,

the outcome dependence of the preference relation requires that the parameter values depend

on the outcomes. In the two-parameter case, for instance, this amounts to specifying utility
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functions as follows,

U (w, ω) =
1− exp

¡
−α (ω)w1−r(ω)

¢
α (ω)

, ω ∈ Ω. (5)

The corresponding outcome-dependent degrees of relative risk aversion are given by

−U
00 (w,ω)w

U 0 (w,ω)
= r (ω) + α (ω) (1− r (ω))w1−r(ω), ω ∈ Ω. (6)

To apply this model, it is necessary to estimate the parameter values {α (ω) , r (ω) |

ω ∈ Ω}, which raises a methodological issue. The elicitation of an outcome-independent von

Neumann-Morgenstern utility function requires that the decision maker choose among lotter-

ies and evaluates their payoffs from “where he stands.” The elicitation of outcome-dependent

von Neumann-Morgenstern utility functions requires that the decision maker evaluate the

lottery payoffs contingent on outcomes not yet experienced by him. For example, a patient

who needs to undergo prostate cancer surgery that may result in incontinence must evaluate

lottery payoffs conditional on physical conditions which are not part of his experience, and

in some sense, are “life-changin”. It is possible that the ex ante perceived and ex post actual

evaluations differ.5 If the relevant valuation is the ex post one and if it depends on per-

5See for instance Brickman, Coates and Janoff-Bulman (1978) for a study showing that the ex-post level

of happiness reported by lottery winners and accident victims were not markedly different from that of a

individuals belonging to randomly selected control group. According to these authors their findings suggest

that “we tend to overestimate the magnitude, generality, and the duration of people feelings.” (Brickman

et. al. (1978) p. 926). This tendency is related to pheomenon, reported in Deutch (1960) and Andrew

and Withey (1976), of observers who see actors as more distress by their misfortune than the actors see

themselves.
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sonal characteristics such as age, gender, marital status, number of children, education, and

profession, it may be possible to elicit the utility functions of individuals with the relevant

health condition and ascribe the resulting utility to individuals with similar characteristics.

3.3 Alignment of the utility functions

Suppose that the estimated parameter values of the utility functions in (5) are obtained.

For every given outcome, ω, the elicited utility function is unique up to a positive linear

transformation. The next step requires aligning the utility functions across outcomes. This

involves a simple procedure. Fix ω0 and w0 > w, and set U (w0, ω0) = 1, U (w, ω0) = 0. For

each ω ∈ Ω− {ω0}, let the decision maker indicate the wealth levels w (ω) and w0 (ω) that

would leave him indifferent between the payoff-outcome pairs (w (ω) , ω) and (w,ω0) and

between the payoff-outcome pairs (w0 (ω) , ω) and (w0, ω0). Formally, let w (ω) and w0 (ω)

be defined by δ(w(ω),ω) ∼ δ(w,ω0) and δ(w0(ω),ω) ∼ δ(w0,ω0). By (A.6), this indifference relation

is independent of the action. For each ω ∈ Ω, let b (ω) and a (ω) be the solution to the

equations
b (ω)

h
1− exp

³
−α (ω) (w0)1−r(ω)

´i
α (ω)

+ a (ω) = 1 (7)

and

b (ω)
£
1− exp

¡
−α (ω)w1−r(ω)

¢¤
α (ω)

+ a (ω) = 0. (8)

For every w ∈ Iω and ω ∈ Ω, let

U (w,ω) :=
b (ω)

£
1− exp

¡
−α (ω)w1−r(ω)

¢¤
α (ω)

+ a (ω) . (9)
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3.4 Calibration of utility across actions

With the utility functions given in equations (9) and invoking the linkage of the set of ac-

tions, arrange A in a sequence, a1, ..., an, such that ai and ai+1 are elementarily linked. For

every i = 1, ..., n − 1, choose fi ∈ F and p̄i, pi, p̄i+1, pi+1
∈ P such that (p̄i, fi) Âai

³
p
i
, fi
´
,

(ai, p̄i, fi) ∼ (ai+1, p̄i+1, fi) and
³
ai, pi, fi

´
∼
³
ai+1, pi+1, fi

´
. To simplify the notation let

ζ̄ (ai) :=
P

ω∈Ω(θ) p̄i (ω; ai, c)U(fi (ω; ai, c) , ω) and ζ (ai) :=
P

ω∈Ω(θ) pi (ω; ai, c)U(fi (ω; ai, c) , ω).

Setting λ (a1) = 1 and v (a1) = 0 and invoking Theorem 2 and equation (1), solve

sequentially for λ (ai) and v (ai) , i = 2, ..., n, using, at each stage, the pairs of equations

λ (ai) ζ̄ (ai) + v (ai) = λ (ai) ζ̄ (ai+1) + v (ai+1) (10)

and

λ (ai) ζ (ai) + v (ai) = λ (ai) ζ (ai+1) + v (ai+1) . (11)

The estimation of the utility of action coefficients, λ and v, relies on the patient’s assessment

of the pain and discomfort associated with procedures that he may have never experienced

before. However, unlike with the estimation of the outcome-dependent utility, the discomfort

is not a “life-changing” event, which may affect his long-term well-being and attitudes. In

this respect, the estimation of these coefficients is more like the estimation of a consumer’s

utility function over regions of the commodity space that, because of budget constraints, he

never experienced.
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4 Concluding Remarks

The model presented here can be interpreted as an hypothesis about decision makers’ choice

behavior in situations requiring medical decision making. The decision makers are patients

(or their guardians where patients are unable to make decisions themselves). The decision

makers are supposed to be informed about the diagnosis, the available courses of actions,

their consequences, and the probabilities of the associated outcomes.

It often happens that, upon receiving a diagnosis, the informed decision maker asks the

physician to recommend a course of action. Such a recommendation entails a normative

judgment, involving an assessment of the implications of the alternative actions on the pa-

tient’s well-being, presumably incorporating his or her personal characteristics and values.

In such cases, the use of the expected utility model, whose axiomatic foundations are norma-

tively compelling, seems appropriate. The model thus help physicians identify, organize, and

integrate the relevant data to attain consistency and coherence in their recommendations.

The model presented here applies to medical decision problems for which the data may

be summarized in the form of empirical distributions over outcomes conditional on actions

and patients’ characteristics. Medical decision problems in which such data are not available

require different treatment. In particular, they require the parallel assessments of the sub-

jective probabilities of the physician making the recommendation and the patient’s valuation

of outcomes, which are then integrated to construct a decision criterion. The modeling of

the physician’s subjective beliefs regarding the likely realization of the alternative outcomes
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following each treatment can be developed along the lines explore in Karni (2006, 2007).

Treatment of this important subject is beyond the scope of this paper.
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APPENDIX

Proof of Theorem 2: (a)⇒ (b). By Theorem 1, ºa is represented by

Va (p, f) =
X
ω∈Ω

p (ω)Ua(f (ω) , ω). (12)

Action-independent risk attitudes, (A.6), and the uniqueness part of Theorem 1 imply that

for all a, a0 ∈ A, Ua (·, ω) and Ua0 (·, ω) are linear transformations of one another. Fix a0 and

let U (·, ω) := Ua0 (·, ω) for all ω ∈ Ω. Then

Ua (f (ω) , ω) = λ(a)U (f (ω) , ω) + v (a) , for all a ∈ A, f ∈ F and ω ∈ Ω. (13)

Let a0, a ∈ A be elementarily linked, and define λ (a) and v (a) by the unique solution to

the following equations:

λ (a)
X
ω∈Ω

p̄ (ω)U(f (ω) , ω) + v (a) =
X
ω∈Ω

p̄0 (ω)U(f (ω) , ω) (14)

and

λ (a)
X
ω∈Ω

p (ω)U(f (ω) , ω) + v (a) =
X
ω∈Ω

p0 (ω)U(f (ω) , ω). (15)

Let a and a0 be elementarily linked, and define λ (a0) and v (a0) by the unique solution to the

equations

λ (a0)
X
ω∈Ω

p̄0 (ω)U(f 0 (ω) , ω) + v (a0) = λ (a)
X
ω∈Ω

p̄ (ω)U(f 0 (ω) , ω) + v (a) (16)

and

λ (a0)
X
ω∈Ω

p0 (ω)U(f 0 (ω) , ω) + v (a0) = λ (a)
X
ω∈Ω

p (ω)U(f 0 (ω) , ω) + v (a) . (17)
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Because A is finite and linked, repeating this process, it is possible to solve (λ (a) , v (a)) for

all a ∈ A.

For every a ∈ A, define:

Ba = {(p, f) ∈ P × F | (p, f) ºa (p
0, f 0) ∀ (p0, f 0) ∈ P × F}

and

Wa = {(p, f) ∈ P × F | (p0, f 0) ºa (p, f) ∀ (p0, f 0) ∈ P × F}.

By the compactness of P ×F and continuity of ºa, the sets Ba and Wa are closed and non-

empty. Moreover, since (p, f) = (Σω∈Ωp (ω) e
ω, f) , constraint independence and transitivity

imply that there are ω, ω0 ∈ Ω such that (eω, f) ∈ Ba and
¡
eω

0
, f 0
¢
∈Wa. Define

B0
a = {(p, f) ∈ Ba | p = eω for some ω ∈ Ω}

and

W 0
a = {(p, f) ∈Wa | p = eω for some ω ∈ Ω}.

By coordinate essentiality, B0
a ∩W 0

a 6= ∅ for all a ∈ A.

ByTheorem 1 Va (eω, f) = Ua (f (ω) , ω) , for all a ∈ A, and, by equation (13), Ua (f (ω) , ω) =

λ(a)U (f (ω) , ω)+v (a) ,where λ(a) > 0. Similarly, Va
¡
eω

0
, f 0
¢
= Ua (f

0 (ω0) , ω0) = λ(a)U (f 0 (ω0) , ω0)+

v (a) . Consequently, (eω, f) ∈ B0
a and

¡
eω

0
, f 0
¢
∈ W 0

a if and only if (e
ω, f) ∈ B0

a0 and¡
eω

0
, f 0
¢
∈ W 0

a0 , for all a, a
0 ∈ A. Given (eω, f) ∈ B0

a, let j > i if (aj, eω, f) Â (ai, eω, f) . (If

(aj, e
ω, f) ∼ (ai, eω, f) , then the order is arbitrary.) Hence A can be written as an n−tuple

(a1, ..., an) , and ai and ai+1 are elementarily linked, i = 1, ..., n− 1.
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Let f, f 0 ∈ F and ω,ω0 ∈ Ω be such that (eω, f) ∈ B0
a and

¡
eω

0
, f 0
¢
∈ W 0

a . Define

f̂ =
¡
f (ω) , (f 0 (ω0) , f−ω0)−ω

¢
. Because f (ω) is the ω−th coordinate of both f and f̂ , and

f 0 (ω0) is the ω0−th coordinate of both f 0 and f̂ , applying the certainty principle with x = y,

f = f 00 and f 0 = f 000,
³
eω, f̂

´
∈ B0

a and
³
eω

0
, f̂
´
∈W 0

a .

Let a and a0 be elementarily linked at f∗ ∈ F with p̄, p, p̄0, p0 ∈ P satisfying (p̄, f∗) Âa¡
p, f∗

¢
such that (a, p̄, f∗) ∼ (a0, p̄0, f∗) and

¡
a, p, f∗

¢
∼
¡
a0, p0, f∗

¢
.There are then ᾱa, αa, ᾱa0 , αa0 ∈

[0, 1] such that (p̄, f∗) ∼a (
¡
ᾱae

ω + (1− ᾱa) e
ω0
¢
, f̂),

¡
p, f∗

¢
∼a (

¡
αae

ω + (1− αa) e
ω0
¢
, f̂),

(p̄0, f∗) ∼a0 (
¡
ᾱa0e

ω + (1− ᾱa0) e
ω0
¢
, f̂), and

¡
p0, f∗

¢
∼a0 (

¡
αa0e

ω + (1− αa0) e
ω0
¢
, f̂). By tran-

sitivity

(a,
³
ᾱae

ω + (1− ᾱa) e
ω0
´
, f̂) ∼ (a0,

³
ᾱa0e

ω + (1− ᾱa0) e
ω0
´
, f̂) (18)

and

(a0,
³
αae

ω + (1− αa) e
ω0
´
, f̂) ∼ (a0,

³
αa0e

ω + (1− αa0) e
ω0
´
, f̂). (19)

To simplify the notation, let
¡
αeω + (1− α) eω

0¢ ≡ q̂ (α) . Then, by (18) and (19), a and a0

are elementarily linked with f̂ ∈ F and q̂ (ᾱa) , q̂ (αa) , q̂ (ᾱa0) , q̂ (αa0) ∈ P.

Consider next (a, p, f) . By definition
³
a, eω, f̂

´
º (a, p, f) º

³
a, eω

0
, f̂
´
. Thus, by (A.2)

and (A.5), there is a unique αp such that (a, p, f) ∼
³
a, q (αp) , f̂

´
.

Consider the alternatives (a, p, f) and (a0, p0, f 0) and, without loss of generality, suppose

that (a0, p0, f 0) º (a, p, f). Three cases need to be considered:

Case 1: (a0, p0, f 0) º
³
a, eω, f̂

´
. Then Va0 (p

0, f 0) ≥ Ua

³
f̂ (ω) , ω

´
≥ Va (p, f) .
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Case 2:
³
a0, eω

0
, f̂
´
º (a, p, f) . Then Va0 (p

0, f 0) ≥ Ua0

³
f̂ (ω0) , ω0

´
≥ Va (p, f) .

Case 3:
³
a0, eω, f̂

´
Â (a0, p0, f 0) º (a, p, f) Â

³
a0, eω

0
, f̂
´
. Then, by (A.2) and (A.5),

there are unique q̂ (αp0) and q̂ (αp) such that (a0, p0, f 0) ∼
³
a0, q̂ (αp0) , f̂

´
and (a, p, f) ∼³

a0, q̂
¡
α0p
¢
, f̂
´
, respectively. Moreover, by the same argument, there is a unique q̂ (αa)

satisfying (a, p, f) ∼
³
a, q̂ (αp) , f̂

´
. By transitivity,

³
a0, q̂

¡
α0p
¢
, f̂
´
∼
³
a, q̂ (αp) , f̂

´
. Hence,

by transitivity,

(a0, p0, f 0) ∼
³
a0, q̂ (αp0) , f̂

´
º
³
a, q̂

¡
α0p
¢
, f̂
´
∼
³
a, q̂ (αp) , f̂

´
∼ (a, p, f) . (20)

By equation (12),

Va0 (p
0, f 0) = Va0

³
q̂ (αp0) , f̂

´
=

λ (a0) [αp0U(f (ω) , ω) + (1− αp0)U(f (ω
0) , ω0)] + v (a0) ≥ (21)

λ (a)
£
α0pU(f (ω) , ω) +

¡
1− α0p

¢
U(f (ω0) , ω0)

¤
+ v (a) =

λ (a) [αpU(f (ω) , ω) + (1− αp)U(f (ω
0) , ω0)] + v (a) =

Va
³
q̂ (αp) , f̂

´
= Va (p, f)

Thus, by Theorem 1 and equations (16) and (17),

λ (a0)
X
ω∈Ω

p0 (ω)U(f 0 (ω) , ω) + v (a0) ≥ λ (a)
X
ω∈Ω

p (ω)U(f (ω) , ω) + v (a) . ((5))

If a and a0 are not elementarily linked, then, a and a0 are linked since A is linked. Define

α1, ..., αn−1 by
³
ai, αip̄i + (1− αi) pi, f

∗
´
∼
³
ai+1, αip̄

0
i + (1− αi) p

0
i
, f∗
´
, where a = a1 and

a0 = an−1. The conclusion follows by repeated application of the representation.
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(b)⇒ (a) . That (b) implies (A.1) — (A.5) is an implication of Theorem 1. That it implies

(A.6) is immediate.

To prove the uniqueness part, note that, by Theorem 1, the functions U(·, ω), ω ∈ Ω, are

unique up to a uniform positive linear transformation. Given U(·, ω), ω ∈ Ω, the uniqueness

of λ (·) and v (·) follow from equations (14) — (17).¥
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