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Abstract

This paper proposes a model of irresolute choice rationalizing ran-

dom choice behavior and examines its applications to decision making

under certainty, uncertainty, and risk. Depending on the context, the

representations feature canonical signal spaces. Decisions are governed

by random draws of signals generating stochastic choice functions. Ap-

plication to portfolio selection and experimental testing are discussed.
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1 Introduction

Random choice behavior is the phenomena of decision makers, facing re-

peated decisions under similar conditions, display choice patterns that are

best depicted by probability distributions over the set of feasible alterna-

tives. Such behavior may reflect the decision makers incomplete preferences

due to lack of ability to compare the alternatives. According to von Neu-

mann and Morgenstern, (1947), “It is conceivable — and even in a way more

realistic — to allow for cases where the individual is neither able to state

which of two alternatives he prefers nor that they are equally desirable.”1

Depending on the context, this noncomparablity may be the due to the

complexity of the feasible alternatives or, for lack of experience, the inability

to assess their, potentially long-run, consequences. A topical example is the

decision whether or not to vaccinate against COVID-19, and whether, when

and how often to accept a booster shot.

Another source of incompleteness is variations in the decision maker’s

tastes or beliefs. Consider, for instance, a decision maker who faces repeated

choice between dinning in Indian and Chinese restaurants. It is conceivable

that, even if in every instance the alternatives are comparable and the de-

cision maker exhibits decisiveness, the observed pattern is that an Indian

restaurant was chosen 70% of the times and the Chinese restaurant 30% of

the times. This choice pattern may be accounted for by factors such as vari-

ations of taste for food that are not privy to an outside observer. If asked

to express preferences for dining on Indian or Chinese food a week away, a

decision maker may find it difficult to respond except probabilisticly, as the

choice depends on the taste for food when the time comes.

When the feasible alternatives that are noncomparable, decision mak-

ers display indecisiveness (e.g., procrastination, hesitation, and irresolute

1Leonard Savage broached the appropriateness of the postulate that all alternatives are

readily comparable in a letter to Karl Popper dated March 25, 1958, in which he discusses

his work on the choice-based foundations of subjective probabilities. “There is, though,”

Savage wrote “a postulate that insists that economic situations can be ranked in a linear

order by the subject, and I freely admit that this seems to me to be a source of much

difficulty in my theory. This stringent postulate is in conflict with the common experience

of vagueness and indecision, and if I knew a good way to make a mathematical model

of those phenomena, I would adopt it, but I despair of finding one.” (see Carlo Zappia

[2020]).

Danan and Ziegelmeyer (2006), Sautua (2017), and Cettolin and Riedl (2019) provide

evidence of the prevalence of incomplete preferences in experimental settings.
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choice). Alternative ideas have been proposed regarding the resolution of

the indecisiveness. Bewley (2002) suggests that if among the noncomparable

alternatives there is one that may be regarded as the status quo, or default,

alternative, it is chosen.2 Danan (2010) analyzes the implications of choice

behavior that invokes deliberate randomization.3 Evren et al. (2019) model

choice behavior based on secondary criterion of the top cycle among all un-

dominated alternatives in the feasible set relative to a complete and transitive

binary relation.

This paper addresses the same issue by proposing a new approach, dubbed

irresolute choice model (henceforth ICM). Taking preference relations on

choice sets as a primitive concept and departing from the completeness postu-

late, the model characterizes random choice behavior between noncomparable

alternatives by a collection of nested partial orders each depicting different

choice probabilities. The idea that stochastic choice is related to incomplete

preferences may be traced to Luce (1959). However, the ICM is very different

from, and may be regarded as an alternative to, Luce’s model.4

The literature offers a variety of axiomatic models characterizing the rep-

resentations of incomplete preferences under certainty (Ok [2002] Evren and

Ok [2011]); risk (Shapley and Baucells [1998] and Dubra et al. [2004]); and

uncertainty (Bewley [2002], Seidenfeld et al. [1995], Nau [2006], Ok et al.

[2012], Galaabaatar and Karni [2013], and Riella [2015]). Unlike the case

of complete preferences, in which representation characterizes choice behav-

ior (i.e., the alternative that commands the highest representation value is

chosen), in the case of incomplete preferences, the representations do not,

in general, characterize the choice behavior. The main objective of this pa-

per is to propose a model that connects the representations of incomplete

preferences to choice behavior.

The underlying premise of this work is that when facing a choice among

noncomparable alternatives, decision maker’s actions are triggered by im-

pulses, or signals, that are inherently random, or appear to be random to an

observer who is not privy to the workings of the decision maker’s mind. In

either case, insofar as the observer is concerned, the decision maker’s choices

appear to be random. Therefore, as in the Luce (1959) model, the primitive

2See also Masatlioglu and Ok (2005).
3Further discussion of Danan’s work appears in the concluding section.
4Further discussion of the relation between the model of this paper and Luce’s model

and its extensions will be easier to follow after the exposition of the ICM and is therefore

discussed in the concluding section.
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data to be rationalized are probability distributions over the sets of feasible

alternatives. I propose a general framework within which representations of

probabilistic choice behavior are obtained that depend on the context (i.e.,

whether the decision problem is under certainty, risk or uncertainty).

The main novelty of this work is the approach to modeling of random

choice behavior, which is more conceptual than technical. The incomplete-

ness of the preference relation is modeled as a continuum of strict partial or-

ders on the relevant choice sets depicting the binary relations “one alternative

is strictly preferred over another with probability that is at most  ∈ [0 1].”
These strict partial orders are linked by a monotonicity requirement. The

results are characterizations of probabilistic choice representations.

The rest of the paper is organized as follows. Section 2 describes the

model. Section 3 applies the model to decision making under certainty, em-

phasizing the methodological approach, and highlights the implication of ap-

plying the same methodology to decision making under uncertainty. Section

4 discusses some behavioral implications of the model. Section 5 provides

concluding remarks and a brief review of the relevant literature.

2 Irresolute Choice

2.1 Preliminaries

Let  denote a choice set. Elements of  are alternatives. Denote by Â
irreflexive and transitive binary relation on  dubbed strict preference rela-

tion. For any alternatives  0 ∈   Â 0 is the proposition that, facing a
choice between these two alternatives, a decision maker characterized by Â
chooses the alternative  always This behavior has the usual interpretation

that  is strictly preferred over 0 or, equivalently, that 0 is dominated by 
I assume throughout that Â on  is nonempty.

The strict preference relation, Â induces the following derived binary
relations on . For all  0 ∈ 

(a) The weak preference relation, 3, is defined by:  3 0 if, for all 00 ∈  

00 Â  implies that 00 Â 0.5 This is interpreted to mean that 0 is weakly
dominated by 

(b) The indifference relation, ∼ is defined by  ∼ 0 if  3 0 and 0 3 

This is interpreted to mean that 0 is weakly dominated by  and  is weakly

5Clearly,  Â 0 implies that  3 0.
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dominated by 0
(c) The noncomparability relation , is defined by:   0 if ¬ ( 3 0)

and ¬ (0 3 )  This is interpreted to mean that neither 0 is weakly domi-
nated by  nor  is weakly dominated by 0
(d) The negation of Â, denoted <, is defined by  < 0 if ¬ (0 Â ).6

This is interpreted to mean that  is not dominated by 0
It is natural to suppose that if presented with a choice between two alter-

natives,  and 0, a decision maker would choose the former act if  3 0 and
¬ (0 3 )  However, if   0 or 0 ∼ , then the preference relation does

not indicate which of the two alternatives will be chosen. Moreover, since

<⊇ ∪ ∼  < 0 does not imply that  will be chosen form the subset

{ 0}

2.2 Irresolute choice model

The basic premise of this work is that, facing a choice between noncomparable

or indifferent alternatives, the decision maker behaves as if he is awaiting a

signal that would resolve his indecision and, thereby, determine his choice.

The signal is presumed to be generated by a stochastic process whose nature

is not specified extraneously but has the following behavioral expression.

The decision maker procrastinates while waiting for the arrival of a signal

and then choose in a manner that reflects the underlying randomness of the

signal-generating process.

For example, the underlying process may have the structure of the drift-

diffusion model, in which procrastination is measured by the response time.7

Another example, that I refer to as mental decoy, maintains that facing a

choice between noncomparable, say  and 0 the decision maker behaves “as
if” a third alternative, 00 ∈ , is randomly selected and serves as a reference

point to resolve his indecision. If the third alternative is weakly inferior to

 and is noncomparable or weakly preferred to 0 then the decision maker
chooses the alternative 0 and if it is inferior to 0 and noncomparable or

6Note that < is reflexive but not necessarily transitive. The weak preference relation

defined here was introduced in Galaabaatar and Karni (2013). Its significance and impli-

cations were investigated and discussed in Karni (2011), who showed that the relations <
and 3 agree if and only if Â is negatively transitive and 3 is complete. The relation Â is
not the asymmetric part of 3. The indifference relation as is defined here, introduced in
Galaabaatar and Karni (2013), is equivalent to that of Eliaz and Ok (2006).

7See, for example, Ian Krajbich et al. (2014) and Baldassi et al. (2020).
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weakly preferred to  then the decision maker chooses 0 Otherwise, the
decision maker procrastinates while waiting for another mental decoy to be

randomly selected that would allow him to resolve his indecision. The in-

tuition behind the mental decoy idea is provided by the well-known “decoy

effect” in consumer decisions. The decoy effect pertains to a pattern of choice

behavior according to which, when facing a choice between two products that

have multiple attributes, but are noncomparable in the sense that neither

product has more of all the desirable attributes than the other, the introduc-

tion of a third product that is dominated (in the sense of having less of the

desirable attributes) by one of the existing products but not by another, tilts

the consumer choice towards the dominating product. A third alternative

dominated by both products does not affect the choice behavior and does

not produce significant shift in market share.8 The mental decoy captures

the same idea with strict preference instead of attribute-wise domination and

random selection of the decoy alternative. Whichever is the signal-generating

process, to the outside observer, the decision maker displays stochastic choice

behavior.

To formalize this idea, I model irresolute choice behavior as a set {Â|  ∈
[0 1]} of irreflexive and transitive binary relations on  dubbed stochastic

choice relations. For each  ∈ [0 1]  the derived relations 3∼  and

< are defined follows:  3 0 if, for all 00 ∈  00 Â  implies that

00 Â 0;  ∼ 0 if  3 0 and 0 3 ;   0 if and only if ¬ ( 3 0)
and ¬ (0 3 ) ;  < 0 if ¬ (0 Â ) 

Given any  0 ∈  the interpretation of  Â 0 is as follows: Facing
a choice between the alternatives  and 0, alternative  is strictly preferred
and, hence, chosen, over 0 with probability that is at least 9 In other words,
for all 0    Â 0 implies that  Â0 0. Equivalently, for all 0  

Â⊂Â0  Moreover, if  3 0 then  Â0 0 for all 0   Given any

 0 ∈  let ̄ ( 0) := sup{ ∈ [0 1] |  Â 0}10 Then  3̄(0) 0 and
̄ ( 0) is the exact probability that  is chosen from the set { 0}, and 0

is chosen with probability 1− ̄ ( 0)  Clearly,  Â 0 implies that  31 0.
Henceforth, to maintain consistency, I use the symbol Â1 instead of Â to

8See Huber et al. (1982) and Ok, et al. (2015).

9Equivalently, alternative 0 is strictly preferred over  with probability that is at most
1− 
10That the supremum exists follows from the fact that the set is bounded and that

¬ (0 ∼ ) implies that there is 0 ∈ [0 1] such that  Â0 0 Hence, the set is nonempty.
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denote the strict preference relation. Consistently with the interpretation of

the probabilistic choice relations,  31 0 implies that  is chosen from the set
{ 0} with probability that is at least, and therefore equal to, one. If  ∼1 0
then  ∼ 0 for all  ∈ [0 1]  Consequently, insofar as the probability of 
chosen over 0 is concerned, the model is silent.
The binary relations Â are a new concept whose interpretation merits

further elaboration. To begin with let us revisit the familiar notion of strict

preference relation Â  This relation may be interpreted as a parsimonious

way of representing data of a decision maker’s actual choices as seen by an

outside observer.

Consider observing a decision maker facing a choice between two alter-

natives, say  and 0 choosing the alternative  Can an observer conclude
that the decision maker prefers the alternative  over 0? Such conclusion,
based on one data point, is not warranted. However, if facing the same choice

repeatedly, the decision maker is observed to choose  over 0 consistently,
the confidence that his choices do, in fact, reflect a preference of  over 0

increases. It also increases the confidence in predicting that the next time

around, facing the same choice, the decision maker will choose the alternative

. The binary relation Â is a formal way of representing this choice pattern.
By the same logic, observing a decision maker who faces the same re-

peated choice, choosing the alternative  ̄ ( 0) percent of the time and
chooses the alternative 0 (1− ̄ ( 0)) percent of the times, warrants the
conclusion that this choice pattern is a manifestation of some underlying

(unspecified) random process. The interpretation that  is preferred over

0 with probability ̄ ( 0) is an efficient way of summarizing the data and
predicting the probability that the next time around facing the choice from

the set { 0} the decision maker will choose the alternative . The binary
relation Â̄(0) is a formal way of representing this pattern of (random)

choice behavior. A concrete example may help clarify the meaning of the

ICM. Consider the binary set { 0} and suppose that ̄ ( 0) = 23 (i.e.,
the probability that  is chosen from the set { 0} is 2/3). According to
the ICM the implication is that  Â 0 according to all the probabilistic
choice relations in the set {Â|  ∈ [0 23]} and 0 Â  according to all the

probabilistic choice relations in the complementary set {Â|  ∈ (23 1]}11
11Another way of putting it,  Â 0 according to all the probabilistic choice relations

in the set {Â|  ∈ [0 23]} implies taht and 0 Â1−  according to all the probabilistic

choice relations in the set {Â1−|  ∈ [0 13)}
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By definition,  < 0 if and only if ¬ (0 Â )  Hence, the irresolute

choice model may be equivalently stated as a set of binary relations {<|
 ∈ [0 1]} on  Note that ¬ (0 Â ) means that the statement “0 is
chosen over  with probability at least ” is false. Hence, by the preceding

argument,  ≤ 1−̄ ( 0)  Let ̄ (0 ) := sup{ ∈ [0 1] | ¬ (0 Â )} then
̄ (0 ) = 1−̄ ( 0)  The interpretation of  <̄(0) 0 is as follows: Facing
the choice between alternatives  and 0 such that ¬( ∼ 0),  is chosen with
probability ̄ ( 0)  Hence,  <̄(0) 0 if and only if  3̄(0) 0 and the two
statements of the model are in agreement. Note also that, since Â⊂Â0for

all 0   we have <⊂<0 

3 Irresolute Choice Behavior

The ICM is a refinement of decision models that admit incomplete prefer-

ences; as such, it is may be super-imposed on the models of decision making

under certainty, risk, or uncertainty with incomplete preferences. To analyze

the behavioral implications of the ICM in these contexts, I superimpose the

ICM on the relevant decision models. Specifically, this section provides a

detailed analysis of the application of the ICM to decision making under cer-

tainty emphasizing the method and deriving the stochastic choice function it

entails. Following that it outlines the results of applying the ICM to decision

making under uncertainty.

3.1 Axiomatic characterization of irresolute choice be-

havior under certainty

Let the choice set  be a nonempty topological space, and denote by < a

preorder on  For every  ∈ , the upper and lower <-contour sets of  are
defined, respectively, by U<() = {0 ∈  | 0 < } and L<() = {0 ∈  |
 < 0} The preorder < is continuous if U<() and L<() are closed, for all
 ∈ . A nonempty set U of real-valued functions on  is said to represent

< if, for all  0 ∈   < 0 if and only if () ≥ (0), for all  ∈ U 
Let {Â|  ∈ [0 1]} be a set of probabilistic choice relations on , and

{<|  ∈ [0 1]} the corresponding model expressed in terms of the negations
of Â  For each  ∈ [0 1] the structure of < is depicted, axiomatically, as

follows:

(P1) (Partial preorder) For each  ∈ [0 1] < is transitive and reflexive.

8



(P2) (Continuity) For every  ∈  and  ∈ [0 1]  U<() and L<() are
closed.

The representation of irresolute choice behavior requires that the stochas-

tic choice relations in the set {<|  ∈ [0 1]} be linked. The next axiom
provides this link.

(P3) (Monotonicity) For all  0 ∈ [0 1], <⊆<0 if and only if 0 ≤ 

Lemma 1. The irresolute choice model {<|  ∈ [0 1]} satisfies monotonic-
ity if and only if, for every  ∈  U<() ⊆ U<0 () if and only if 0 ≤ 

Proof. Monotonicity is equivalent to the proposition, for all  0 ∈ 

0 <  implies that 0 <0  if and only if 0 ≤  The last statement is

equivalent to the proposition, for all  ∈  U<() ⊆ U<0 () if and only if
0 ≤  N
The following theorem extends Evren and Ok (2011) Corollary 1, to in-

clude irresolute choice behavior.12

Theorem 1: Let  be a locally compact separable metric space and {<|
 ∈ [0 1]} be binary relations on . Then, the following conditions are

equivalent:

() For every  ∈ [0 1]  < satisfies (P1) and (P2) and jointly <

 ∈ [0 1]  satisfy (P3).
() There exists a collection {U |  ∈ [0 1]} of real-valued, continu-

ous, strictly < −increasing, functions such that, for every  ∈ [0 1]  U

represents <, and  ≥ 0 if and only if U ⊇ U0 

Proof. (Sufficiency) Suppose that  is a locally compact separable metric

space and {<|  ∈ [0 1]} be binary relations on  satisfying (P1) and (P2)
then, by Evren and Ok (2011) Corollary 1 for each  ∈ [0 1]  there exists a
set U of real-valued, continuous, functions representing <and every  ∈ U

is strictly < −increasing Let U be the set of all (continuous) real functions

 such that  < 0 implies () ≥  (0) and U0 be the set of all continuous

real functions  such that  <0 0 implies () ≥  (0)  Then <⊆<0 if

and only if  ∈ U0 then  ∈ U Thus, U0 ⊆ U By the representation,

U<0 () ⊇ U< () if and only if U ⊇ U0  By (P3) and Lemma 1,  ≥ 0 if
and only if U<0 () ⊇ U< ()  Hence,  ≥ 0 if and only if U ⊇ U0 

12Other results of Evren and Ok (2011), including their Theorem 1 and Corollaries 2

and 3, may be extended in the same way.
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(Necessity) Assume that () holds. Corollary 1 of Evren and Ok (2011)

implies that, for every  ∈ [0 1], <satisfies (P1) and (P2). Suppose that

0 ≤  if and only if U ⊇ U0  By the representation , U ⊇ U0 if and only

if U<0 () ⊇ U< ()  Hence, 0 ≤  if and only if U<0 () ⊇ U< ()  for
all  ∈  which, by Lemma 1 is equivalent to (P3). ¥
The uniqueness of the representation is as follows: Given any nonempty

subset U of R, define the map ΥU :  → RU


by ΥU () () := ().

Two nonempty subsets U and V of continuous real-valued functions on 

represent the same preorder if, and only if, there exists an  : ΥU()→ ΥV
such that () ΥV =  (ΥU); and () for every   ∈ ΥU(),    if and

only if ()  ()13

3.2 The indifference relation

The case in which the alternatives under consideration belong to the same

indifference class requires special attention. By definition,  ∼1 0 if and only
if  31 0 and 0 31 
Lemma 2: For all  0 ∈ ,  31 0 if and only if () ≥ (0) for all

 ∈ U1
Proof. By definition  31 0 if ̂ Â1  then ̂ Â1 0 for all ̂ ∈  Hence,

by definition, 0 <1 00 implies that  <1 00 By Theorem 1, this is equivalent
to (0) ≥  (00) implying that () ≥  (00)  for all  ∈ U1 Consider a
sequence (00) ⊂  such that 0 <1 00 for  = 1 2  and 0 = lim→∞ 00
This is equivalent to  (0) ≥  (00) for  = 1 2  and, by the continuity of 
 (0) = lim→∞  (00)  for all  ∈ U1Moreover,  <1 00  = 1 2  which is
equivalent to  () ≥  (00),  = 1 2  and  () ≥ lim→∞  (00) =  (0) 
for all  ∈ U1 Hence, by Theorem 1,  <1 0 if and only if () ≥ (0) for
all  ∈ U1 N
By definition of ∼1 and Lemma 2,  ∼1 0 if and only if () = (0) for

all  ∈ U1 By Theorem 1, U ⊆ U1 for all  ∈ [0 1]  Thus,  ∼1 0 implies
that  ∼ 0  ∼0 0 for all  0 ∈ [0 1] Consequently, the irresolute choice
13See Evren and Ok (2011). Note that, in general, for arbitrary multi-utility represen-

tations, V and V0 , of two preorders, < and <0 , such that <⊂<0 does not imply

that V ⊂ V0 .
Given <the chance with which the subject will choose  over 0 when facing the choice

from the set { 0} does not depend on the representation. In other words, if U and V
are two representations of < then the functions in V are given by the uniqueness of the
representation.
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model is silent with regard to the probability of selection of any alternatives

belonging to the same indifference class.

3.3 Canonical signal space and random choice

The premise underlying the stochastic choice behavior depicted by the ICM is

that choices between noncomparable or indifferent alternatives are governed

by unspecified of random signals-generating process. For example, if the

process is drift-diffusion the signal corresponds to the cumulative process

reaching the threshold of confidence.

Consider the choice between two alternatives,  and 0 such that ¬( ∼
0) then the probability of a signal that would resolve the indecision in
favor of  is ̄ ( 0)  Let  ( { 0}) denote the probability of choosing
the alternative  from the set { 0} Then,  ( { 0}) = ̄ ( 0)  for all
 0 ∈ 14 By the representation of the ICM this is the case if and only if

() ≥ (0) for all  ∈ U ̄(0)

Given an ICM {<|  ∈ [0 1]}, let  : 2U\∅→ [0 1] be any probability

measure such that  (U) =  for  ∈ [0 1] By definition,  (U0) = 0

 (U1) = 1 and  (U) ≥ 
¡U0

¢
 for all  ≥ 0 Then, for all  0 ∈ 

 ( { 0}) = 
¡U ̄(0)

¢
 In other words, if ¬( ∼ 0) the decision maker

behaves as if a function  is selected from U1 according to a probability
distribution  and  is chosen if  ∈ U ̄(0) and 0 is chosen if  ∈ U1\U ̄(0).

Therefore, the set U1 may be taken to be the canonical signal space.
It is worth underscoring that if ̄ (0 ) = 0 then there is no  ∈ U0 such

that  (0)   (). To grasp this, consider two alternatives,  0 ∈  such

that ̄ (0 ) = 0 Since ̄ (0 ) = 0 if and only if ̄ ( 0) = 1, by Theorem
1,  () ≥  (0)  for all  ∈ U1 But U0 ⊆ U1 implies that for no  ∈ U0 it
holds that  (0)   () 

3.4 Stochastic choice

Many decision problems require the decision maker to choose an alternative

from a finite set of feasible alternatives that includes more than two elements.

To see how the ICM may be applied to choice from such sets, consider the

following adaptation of the model.

14In terms of the mental-decoy generating process  ( { 0}) is the probability that
the decoy alternative, 00  is weakly inferior to  and noncomparable or weakly preferred
to 0
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Let  ⊂  be a feasible set of alternatives and, to simplify the exposi-

tion, suppose that no two alternatives in  belong to the same indifference

class. An alternative  ∈  is said to be dominated if for no  ∈ [0 1]
it holds that  3 0 for all 0 ∈ \{} Let () denote the subset of
dominated alternatives in and let  () =\ () denote the subset
of undominated alternatives in  .15 Note that  () is nonempty.

Let  () = {1  } and, for each  ∈  () define Λ () =

{ ∈ [0 1] |  3  ∀ ∈  () \{}}. In words, Λ () is the set of

indices designating the stochastic choice relations that rank the alternative
(weakly) higher than any other undominated alternative in the menu  .

Define  (;) = inf Λ () and ̄ (;) = supΛ () 
16 By definition,

 (;) and ̄ (;) are the indices of the probabilistic choice relations

such that 3̄(;)⊆3⊆3(;) for all  ∈ Λ ().

Without loss of generality assume that the elements of  () are re-

arranged in a ascending order of set inclusion (i.e.,3(1;)⊆3(2;)⊆ ⊆3(;)

) If  (1;) = 1 then, by Theorem 1, 1 is the only element of the undom-

inated set and  () = \{1} In general, we have 1   (1;) 

 (2;)     (−1;)   (;) = 0
17

Define 1 = [1  (1;)] and  = ( (;)− (+1;)]  = 1 −
1 Then, J := {1  −1} is a partition of the unit interval. Corresponding
to J define a partition of U1 as follows: Let 1 () := { ∈ U1 |  ∈
U(1;)}  () := { ∈ U1 |  ∈ U(+1;)U(;)},  = − 1  2 and
 () := { ∈ U1 |  ∈ U1\U(−1;)}18 Then,  ∈ Λ () if and only if,

for all  ∈   () ≥  ()  for all ∀ ∈\{}
A stochastic choice function is a function  that, for every nonempty sub-

set of  returns a probability distribution  () over The probability

of choosing  from the set is denoted  ()  The stochastic choice func-

tion is said to be induced by the ICM if there is a function  : 2\∅→ 2\∅
given by  () =  () and

 () =

∙
̄ (;)− ̄ (+1;) if  ∈  ()

0 if  ∈  ()

¸


15Formally, an alternative,  ∈ is undominated if, for some  ∈ [0 1],  3 0 for all
0 ∈\{}.
16That the infimum and supremum exist follows from the facts that the set Λ () is

bounded and, because  is undominated, Λ () nonempty.
17By definition, ̄ (1;) = 1 and ̄ (;) =  (−1;)  for all  = 2 
18Since indifference is not allowed, there is no ambiguity with regard to which element

of the partition each utility function belongs to.
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for all  ⊆ 

Since U 1

is the canonical signal space, the probability of receiving a signal

 ∈  is:


¡U ̄(;)

¢− 
¡U ̄(+1;)

¢
= ̄ (;)− ̄ (+1;)   = 1 

Hence,

 () =

∙

¡U ̄(;)

¢− 
¡U ̄(+1;)

¢
if  ∈  ()

0 if  ∈  ()

¸
Thus, when facing a choice form , the decision maker behaves as if a utility

function  ∈ U1 is selected according to  and the undominated alternative,

 is chosen if  ∈ U(+1;)U(;)  = 1 − 1

3.5 Irresolute Choice Behavior under Uncertainty

To explore the application of the ICM to subjective expected utility theory,

I invoke the model of Galaabaatar and Karni (2013). This model admits

incomplete beliefs and tastes. It includes Bewley’s Knightian uncertainty

model (i.e., complete tastes and incomplete beliefs) and the subjective ex-

pected multi-utility model (i.e., complete beliefs and incomplete tastes) as

special cases.

The analytical framework is that of Anscombe and Aumann (1963) in

which the choice set,  := ∆ ()

 consists of all the mappings from a

(finite) state space,  to a set ∆ () whose elements are probability distri-

butions on finite set,  of prizes.

Assume that the choice set  is bounded (i.e., there exist ̄ and  in 

such that ̄ Â1  Â1  for all  ∈  − {̄ }) and let {Â|  ∈ [0 1]} be
stochastic choice relations on  For each  ∈ [0 1]  let U be a nonempty

closed set off real-valued functions on  and, for every  ∈ U let Π () be

a nonempty closed set of probability measures on . Define Φ = {( ) |
 ∈ U,  ∈ Π ()} Then {Φ |  ∈ [0 1]} is said to represent the ICM
{Â|  ∈ [0 1]} if the following conditions hold:
(a) For all  ∈  and ( ) ∈ Φ1X

∈
()

X
∈

̄( )() 
X
∈

()
X
∈

( )() 
X
∈

()
X
∈

( )()

(1)
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(b) For all  0 ∈ 

 Â 0 ⇔
X
∈

()
X
∈

( )() 
X
∈

()
X
∈

0( )() ∀ ( ) ∈ Φ

(2)

By Theorem 1 of Galaabaatar and Karni (2013), the stochastic choice

relationsÂ  ∈ [0 1] are strict partial orders (i.e., transitive and irreflexive)
satisfying the Archimedean (i.e., for all    ∈  if  Â  and  Â 

then there exist   ∈ (0 1) such that  + (1− ) Â  and  Â  +

(1− )), independence (i.e., for all    ∈  and  ∈ (0 1]  Â  if and

only if +(1− ) Â +(1− )) dominance (i.e., for all   ∈  and

 ∈ [0 1]  if  Â  for every  ∈  then  Â  where  the constant act

that pays off  () in every state) and monotonicity (i.e., for all  0 ∈ [0 1],
Â⊆Â0 if and only if 0 ≤ ) axioms if and only if Âis represented by (1)

and (2), for all  ∈ [0 1] and  ≥ 0 if and only if Φ ⊇ Φ0 

3.5.1 Knightian uncertainty

The theory of subjective expected utility with incomplete preferences in-

cludes two special cases: the case in which the incompleteness is due solely

to incomplete beliefs and the case in which it is due solely to incomplete

tastes.

The case of incomplete beliefs was axiomatized by Bewley (2002), who

dubbed it “Knightian uncertainty.” Tastes completeness (i.e., unambiguous

risk attitudes) requires that the restriction of the preference relation to con-

stant acts exhibits negative transitivity. Let ∆ () ⊂  be identify with

the subset of constant acts. The stochastic choice relations Â  ∈ [0 1]
have a structure depicted by the aforementioned axioms and, in addition,

the preference relation Â1 is displays negative transitivity if and only if Âis

represented by (1) and (2) with Φ = {} × Π , where for each  ∈ [0 1] 
Π is a set of probability measures on  and  ≥ 0 if and only if Π ⊇ Π0 

Moreover,  is unique up to positive affine transformation, the closed convex

hull of Π is unique and, for each  ∈ Π  ()  0 for all  ∈ 

3.5.2 Complete beliefs

For each event  denote by  the act whose payoff is  for all  ∈  and

 for all  ∈  −  Denote by  ∈ ∆ () the constant act whose payoff
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in every state is  + (1− )  A bet on an event  is the act , whose

payoffs satisfy  Â1  where   ∈ ∆ ().19

Suppose that the decision maker considers the constant act  preferable

to the bet . Because the payoffs are the same, this preference indicates

that he believes that  exceeds the likelihood of  This belief is said to be

coherent if it holds that 00 is preferable to the bet 00 for all constant
acts 0 and 0 such that 0 Â1 0. By the same logic a preference of a bet
 over the constant act  means that the decision maker believes the

probability of  to exceed . A binary relation Â1 on  is said to exhibit

coherent beliefs if, for all events  and   0 0 ∈ ∆() such that  Â1 
and 0 Â1 0,  Â1  if and only if 00 Â1 00, and  Â1  if
and only if 00 Â1 00.

The idea of complete beliefs is captured by the following axiom, which

is due to Galaabaatar and Karni (2013). For all events  and  ∈ [0 1] 
and constant acts  and  such that  Â1  either  Â1  or  Â1
0 for every   0 If the decision maker’s beliefs are complete, then the
incompleteness of the stochastic choice relations Â  ∈ [0 1]  on  is due

entirely to the incompleteness of his tastes.

The stochastic choice relations Â  ∈ [0 1] are strict partial orders
satisfying the Archimedean, independence, dominance, monotonicity and,

in addition, the preference relation Â1 displays complete beliefs if and only
if Â is represented by (1) and (2) with Φ = U × {} and  ≥ 0 if
and only if U ⊇ U0  Moreover, the probability measure,  is unique and

 ()  0 for all  ∈  and if V is another set of real-valued functions on

 that represent Â in the sense of (2) then hVi = hUi where hUi :=
{ (U) + {1}∈R.20

4 Behavioral Implications

Any theory that purports to describe natural or social phenomena must have

clear testable predictions and implications. To render the proposed ICM

meaningful, I describe briefly some of its behavioral implications in the con-

text of a simple portfolio problem. I also describe experiments designed to

19By monotonicity,  Â1  implies that  Â  for all  ∈ [0 1]
20hUi denotes the closure, with respect to the sup-norm topology, of the cone generated

by U and the constant real-valued functions on 
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test qualitative and quantitative properties of the model, pointing out the

kind of observations that would contradict the model.

4.1 A simple portfolio problem

Let there be two financial assets: a risk-free asset, whose rate of return is

zero, and a risky asset whose rates of return are 1 or 2 in the states 1
and 2 respectively, where 1  0  2 Consider a risk-averse decision

maker displaying Knightian uncertainty, and let the set of his subjective

probabilities of state 1 be [ ̄]  Suppose that the decision maker’s initial

wealth is 0 which he must allocate between the two assets. Denote by  the

investment in the risky asset, which may be positive or negative depending

on whether the decision maker buys or sells the risky asset. The decision-

maker’s problem is to choose .

According to the ICM, the decision is triggered by a signal  ∈ [ ̄] that
induces a choice of  that maximizes  (0 +1) + (1− ) (0 +2) 

If the decision maker is sufficiently risk averse, there is a unique internal

solution solution, denoted ∗ (; 1 2)  given by the necessary and sufficient
condition:

0 (0 +∗ (; 1 2) 1) 1 + (1− )0 (0 +∗ (; 1 2) 2) 2 = 0

Clearly, ∗ (·; 1 2) is a monotonic increasing function of 
The prediction of the ICM is that the choice of  is random and is de-

picted by a cumulative distribution function  (∗ (; 1 2)) =  ()  for

all 1 2. Moreover, a change in the rates of returns may induce a random

change in the portfolio position triggered by a new signal 0 ∈ [ ̄]  Specif-
ically, consider a decrease of the positive return from 1 to 01 Define ̂ by
the equation

̂0 (0 +∗ (0; 01 2) 
0
1) 

0
1 + (1− ̂)0 (0 +∗ (0; 01 2) 2) 2 = 0

Then decision maker chooses to increase or decrease the investment in the

risky asset depending on whether 0 is larger or small than ̂ Specifically,

∗ (0; 01 2)  (≤)∗ (; 1 2)) if and only if 0() ≤ ̂

The random choice behavior described above is different from Bewley’s

dictum “if in doubt do nothing.” Applied to the initial portfolio choice, Be-

wley’s dictum predicts that the decision maker will chose to stay put, not

buy or sell the risky asset unless 1+(1− ) 2  0 or ̄1+(1− ̄) 2  0
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respectively. Suppose that the decision maker invested in the risky asset

(i.e., ∗ (; 1 2)  0). Then, unlike the prediction of the ICM, Bewley’s

dictum predicts that the decision maker displays inertia by not adjusting his

portfolio position if the variations in the rate of return 01 are in the range
1  01  ̄1 where ̄1 and 1 are defined, by ̄1 + (1− ) 2 = 0 and

̄1 + (1− ̄) 2 = 0 respectively.

4.2 Experiments

Generally speaking, testing the proposed ICM requires that alternatives the

decision maker considers to be noncomparable be identified and the agree-

ment between the observed choices among such alternatives and the prob-

abilistic choices predicted by the model evaluated. In the context of deci-

sion making under uncertainty, Karni and Vierø (2022) introduced incentive

compatible schemes by which the incompleteness displayed by a preference

relation may be elicited.

Under uncertainty monotonicity of the preference relations with respect

to first-order stochastic dominance transcends individual idiosyncratic risk

attitudes. Consequently, the multi-prior expected multi-utility model with

incomplete preferences displays probabilistic choice monotonicity with re-

spect to first-order stochastic dominance. Formally, if an act  first-order

stochastically dominates an act  and  is noncomparable to either  or 

then the probability that  is selected from the pair { } ( { }) is
greater than the probability, ( { }) that it is selected from the pair

{ }. Moreover, for all acts  and  ∈ (0 1) 
( + (1− )  { + (1− )   + (1− ) })− ( + (1− )  { + (1− )  + (1

= ( { })− ( { })
Similar reasoning applies in the case of decision making under certainty

in which the alternatives are multi-attribute goods and the incompleteness is

due to the inability of the decision maker to compare alternatives that have

different attributes. Formally, if an alternative  dominates an alternative

0 in the sense that it has more of the positive attributes and/or less of the
negative ones and 00 is an alternative that is noncomparable to either  or
0 then the probability that 00 is selected from the pair {00 0} is greater
than the probability that it is selected from the pair {00 }.
An experimental test of the probabilistic choice monotonicity hypothesis

in consists of two parts: In the first part, a set  = {1  } of subjects is
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recruited and the ranges of incompleteness of bets (i.e., , where   )

are elicited using the scheme of Karni and Vierø (2022). In the second part,

the subjects are asked to choose, repeatedly, between a bet on  and sure

payoffs that are noncomparable to the bet The prediction of the ICM is that

the relative frequency of choosing the bet decreases monotonically with the

values of the sure payoffs21

The experiments described above are designed to test a qualitative prop-

erty of the ICM, namely, probabilistic choice monotonicity that transcends

the idiosyncratic variations of individual stochastic signal-generating processes.

They are not designed to quantify the change in the probabilistic choice be-

havior in response to variations in the sets alternatives. To grasp the na-

ture of qualitative constrains imposed by the ICM model on subjects’ choice

behavior, consider the following experiment. Let  =  , 
0 = 0

0 and
00 = 00

00 be three bets on  where 00  0      0  00 and suppose
that no two of these bets are comparable22 The subjects are asked to choose,

repeatedly, from the binary set { 0} and { 00} Let 0 = (0 { 0})
and 00 = (00 { 00}) denote the relative frequency of choosing the 0 from
the set { 0} and 00 from the set { 00}. Then the ICM model predicts

that: (a) If 00 ≥ 0 then facing a choice among the three bets, the sub-
ject chooses 00 with probability (00 { 0 00}) = 00,  with probability
( { 0 00}) = (1− 00) and (0 { 0 00}) = 0 (i.e., 0 is a dominated
bet in the set { 0 00}). (b) If 00  0 then facing the choice among
the three bets, the subject chooses 00 with probability, 00  with proba-
bility (1− 0)  and 0 with probability 0 − 00 (i.e., (00 { 000}) = 00
( { 000}) = (1− 0) and (0 { 000}) = 0 − 00).

5 Concluding Remarks

This paper proposes a novel approach to modeling decision making under

certainty, risk, and uncertainty in situations in which the preference rela-

tions are incomplete. The indecisiveness, due to the noncomparability of the

21This method is discussed in Loomes and Sugden (1998) and was implemented in a

study by Loomes, Moffatt, and Sugden (2002). To provide the subjects with an incentive

to consider the choice seriously, one of each subject’s choices is randomly selected, and the

subject is rewarded according to the outcome of the selected alternative.
22The bets are chosen after the range of incompleteness at  is elicited, using the scheme

described in Karni and Vierø (2022).
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alternatives under consideration, is captured by a set of partial strict orders

on the corresponding choice sets. The implied stochastic choice behavior is

characterized.23

The preference relations of different decision makers may not agree on the

sets of alternatives that are noncomparable. For example, one decision maker

may strictly prefer an alternative  over 0 displaying resolute choice, while
another decision maker may find the same alternatives noncomparable and

display irresolute choice behavior. Even if the decision makers are indecisive

with regard to the two alternatives, they may still exhibit distinct random

choice patterns, due to distinct underlying signal-generating processes. To

grasp this, let the ICM of the one decision maker be {Â|  ∈ [0 1]} and
that of another be {Â̂ |  ∈ [0 1]} Suppose that both models agree that 
and 0 are noncomparable. It may still be that  3̄(0) 0 and 3̂̄0(0)

0,
for ̄ ( 0) 6= ̄0 ( 0)  According to the ICM, the former decision maker
chooses  with probability  ( { 0}) = ̄ ( 0)  and the latter with prob-
ability 0 ( { 0}) = ̄0 ( 0) 

5.1 Related literature

The recognition that, in many settings, choices are observed to display sto-

chastic patterns led, in recent years, to a revival of interest in modeling and

testing stochastic choice behavior.24 Much of this work - including recent

contributions by Echenique and Saito (2019), Ahumada and Ulku (2018),

and Horan (2021) - builds on, and extends, the seminal model proposed by

Luce (1959). A common feature of these models is a primitive stochastic

choice function that is assumed to be the observable object being studied

and characterized. The stochastic choice relations are the analogue con-

cept in this paper. Like the stochastic choice function, these relations are

a primitive concept. In every other respect, however, (i.e., the axiomatic

structure and the representations), the ICM is different from Luce’s original

model and its extensions. In particular, Luce’s (1959) model requires that

the choice probabilities must always be strictly positive. In many instances

the empirical choice probability is zero. Consequently, this requirement is re-

23The ICM can be applied, using the same approach, to nonexpected utility theories

with incomplete preferences (e.g., the dual theory (Maccheroni [2004]), probabilistically

sophisticated choice (Karni [2020]) and weighted utility theory (Karni and Zhou [2021])).
24See Gul et al. (2014), Fudenberg et al. (2015), and Frick et al. (2019).
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garded as a weakness of the model. Indeed, the aforementioned extensions of

Luce’s model are intended to address and overcome this weakness by admit-

ting “editing” processes that qualify the supports of the images of the choice

functions by eliminating dominated alternatives. By contrast, the ICM nat-

urally admits dominated alternatives that are assigned zero probability.

Another characteristic of Luce’s model is the constancy of probability

ratios. Formally, the ratio of the choice probabilities of any two alternatives

 and  is independent of the menu to which they belong This condition

which is neither natural nor intuitively compelling is not required by the

stochastic choice function induced by the ICM. In other words, according to

the stochastic chice function induced by the ICM, richer menu may decrease

the probabilities of choosing existing alternatives. The decreases, however,

are not necessarily equiproportional. Consequently, the ICM is consistent

with richer set of stochastic choice behaviors than Luce’s model.

Danan (2010) modeled a two-stage decision-making process according to

which, in the first stage, any two alternatives are either ranked in the strict

sense or judged as being equally valuable. If no judgment is rendered compar-

ing their values, the two alternatives are determined to be noncomparable.

In the second stage, the alternative that is ranked higher, if such an alter-

native exists, is selected. Otherwise, one of the alternatives is chosen either

by deliberate randomization or selectively. In the case of deliberate random-

ization, choice behavior is based on a signal produced be a randomization

device. In terms of the ICM the signal space of the randomizing device is

mapped onto the canonical signal space by ascribing to the sets of utility

functions that rank one alternative over the other the probability that the

first alternative is selected by the randomization device.

Recent experimental studies documented evidence of deliberate random-

ization (Agranov and Ortoleva [2017], Dwenger et al [2018], Agranov et al.

[2022], Feldman and Rehbeck [2022]). One interpretation of this evidence is

that preferences are incomplete and decision makers relegate the decisions

to the randomizing devices. The empirical counterpart of randomization are

probability distributions on the sets relevant sets of feasible alternatives. De-

liberate randomization is different from the stochastic impulses that govern

choice behavior in the ICM. Yet, if the outside observer is not aware of the

randomization, the probability of selecting an alternative may be interpreted

as the probability of the set of utility functions that rank the selected alter-

native above all others in the feasible set.

Ok and Tserenjigmid (2020) model random choice behavior as random
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choice functions, which they define and characterize for stochastic choices

induced by indifference, indecisiveness, and experimentation. The first two

are closely related to the phenomena modeled in this paper. Ok and Tseren-

jigmid merely assert that the maximal elements of the menu will be chosen

with positive probability.25

Karni and Safra (2016) study stochastic choice under risk and under un-

certainty based on the notion that decision makers’ actual choices are gov-

erned by randomly selected states of mind. They provide axiomatic char-

acterization of the representation of decision makers’ perceptions of the sto-

chastic process underlying the selection of their state of mind. In the context

of decision making under uncertainty with incomplete preferences, the states

of mind are probability-utility pairs in the set Φ26 The stochastic choice

process corresponds to a subjective probability measure,  of the sets Φ

Thus, the work of Karni and Safra (2016) may be regarded as providing

axiomatic foundations of a subjective version of the ICM.

Finally, although not involving random choice behavior, the idea of nested

family of preorders, was explored by Hill (2016). In the context of Knight-

ian uncertainty, Hill proposed that the larger the stake involved, the more

confidence the decision maker must have in his judgment before making a

decision. Formally, this takes the form of nested preorders with the set of

prior corresponding to a higher stake decision being contained in that of the

lower stake one.

25Ok and Tserenjigmid (2021) propose making rationality comparisons between stochas-

tic choice rules by means of a partial ordering method. According to their method, the

stochastic choice model of this paper is maximally rational.
26In the special cases of Knightian uncertainty and complete beliefs, the sets of states

of mind are Π and U1, respectively.
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