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1 Introduction

Decision making is the exercise of choice among feasible courses of action the consequences

of which have been discovered over time. In the case of decision making under uncertainty,

decision makers’ beliefs about the likely occurrence of the consequences are formed by

inductive inference. It is often the case that decision makers become aware of a consequence

only after it obtains for the first time (i.e., it is unknown unknown). Repeated discovery

of unanticipated, novel, consequences, however, alerts the decision maker to the possibility

that there may exist additional, unanticipated, consequences whose nature he is unable

to conceive of. In other words, the decision maker may be aware of his unawareness, and

this awareness of unawareness may affect his choice behavior. Based on their notion of

‘reverse Bayesianism’,1 Karni and Vierø (2017) proposed a model of decision making under

uncertainty in which decision makers’ awareness of their unawareness impact their choice

behavior.

In this paper I explore a different, non-Bayesian, approach to modeling decision mak-

ing under uncertainty, based on inductive inference. The proposed model accommodates

decision makers beliefs regarding potential consequences whose existence is not conceivable

of before they obtain. To motivate this endeavour, I consider instances requiring making

decision under uncertainty, in which decision makers have access to data that may be used

to calibrate the likelihoods of the outcomes of their actions. For example, a decision maker

who must choose whether or not to vaccinate against a disease and if the decision is to

vaccinate, which of several available vaccines to take. Clinical trials in which different vac-

cines are tested and, once approved and implemented, the cumulative evidence regarding

their effectiveness and potential side effects provide the data on which the decision makers

may base their beliefs. Because the testing and using new vaccines is a process of explor-

ing uncharted terrain, the potential of discovering novel, previously unsuspected, health

consequences is ubiquitous. In deciding whether to vaccinate, or which vaccine to choose,

decision makers make use the accumulated evidence to form beliefs about the likelihoods

of occurrence of known outcomes and potential existence of unforeseeable health effects.

Similarly, statins have been used to reduce cholesterol levels for decades. Their side effects,

including headache, dizziness, feeling unusually tired or physically weak, digestive system

problems, such as constipation, diarrhoea, or indigestion, muscle pain, sleep problems, low

1See Karni and Vierø (2013).
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blood platelet count, are well known, leaving little chance to discovering new, unantici-

pated, side effects, both in the short and the long run. Clinical trials have shown that

a new medication is more effective in lowering the cholesterol levels and has fewer side

effects. However, the lack of long-term experience with the new medication implies that

there is greater chance of discovering unanticipated side effects in the long run. A decision

maker who must choose between the familiar statins and the less familiar new medica-

tion may take into account the likelihoods of the known effects as well as the potential of

unforeseeable health consequences.

This example illustrates the need for theories of decision making under uncertainty,

founded on inductive inference, that accommodates the potential existence of unknown

unknown consequences. With few recent exceptions, all the theories of decision making

under uncertainty maintain that the set of the ultimate outcomes, or payoffs, are known. To

the extent that there is learning, it is expressed as the updating of subjective probabilities

on a fixed state space. The exceptions include recent models of decision making under

uncertainty in which the decision makers are not assumed to be aware of all the possible

the consequences that may result from their choice of actions, and may also be aware of

this unawareness. Karni and Vierø (2013), addressed this by expanding the state space

and axiomatized a process, dubbed ‘reverse Bayesianism’, according to which the decision

maker’s updates her beliefs following a procedure that maintain the spirit of Bayes’ rule.

This approach was further explored and elaborated in Karni and Vierø (2017), Dominiak

and Tserenjigmid (2018), Karni, Vierø, Valenzuela-Stookey (2021), Chakravarty, Kelsey,

and Teitelbaum (2021), Vierø (2021)2.

A different, non-Bayesian, approach to modeling the process of exploration and dis-

covery in an environment in which unsuspected events may occur has been pursued in

probability theory. The problem is what to do when such an event obtains. In other

words,

“How can we predict the occurrence of something we neither know, nor

even suspect, exists? Subjective probability and Bayesian inference, despite

their many impressive successes, would seem at a loss to handle such a problem

2The study unawareness is also taken up in epistemologic game theory by Heifetz, Meier, and Schipper,

(2006), (2008), (2013) and Grant and Quiggin (2013). For experimental test of reverse Bayesianism see

Becker, Melkonyan, Proto, Sofianos, and Trautman, (2020).
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given their structure and content.” [Zabell (1992) p. 206].

A particular instance of this difficulty is the so-called sampling of species problem.3 The

process may best be described as follows:

“Imagine that we are in a new terrain, and observe the different species

present. Based on our past experience, we may anticipate seeing certain old

friends - black crows, for example - but stumbling across a giant panda may

be a complete surprise. And, yet, all such information will be grist to our

mill: if the region is found rich in the variety of species present, the chance of

seeing a particular species again may be judged small, while if there are only

a few present, the chances of another sighting will be judged quite high. The

unanticipated has its uses.” [Zabell (1992) p. 206]

De Morgan (1838) proposed an updating process for dealing with precisely this issue.

According to De Morgan, if following a sequence, 1 2   of  trials (i.e., observa-

tions)  categories, or outcomes, labeled 1  , have been observed, then the probability

of seeing the outcome on trial  + 1 fall into the  −  category is:

Pr{(+1) =  | n} =  + 1

 + + 1
 (1)

where n = (1  ) denote the number of times each of the  outcomes occurred in 

trials. Notice that Σ=1 Pr{(+1) =  | n}  1 (i.e., the probability of observing, in the
 + 1 trial an outcome seen before is smaller than 1). This formula implicitly assigns a

category not yet observed, denoted ̂, a probability of occurring equal to

Pr{(+1) = ̂ | n} = 1

 + + 1
 (2)

The stochastic process depicted by De Morgan’s proposal is generated by the following

urn model.4 Consider an urn containing  balls of different colors and a black ball called

the mutator. Draw a ball at random. If a colored ball is drawn, then it is replaced together

with another ball of the same color. If the mutator is drawn, then it is replaced together

with another ball of new color.

3Zabell (1992) provides an insightful discussion and numerous references.
4See Zabell (1992).
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Let  be the number of times a ball of color  is drawn in  trials and let n =

(1  ) be the frequency distribution of the known colors. Then, under exchangeabil-

ity, n is a sufficient statistics for the  = Σ=1 observations In other words, under

exchangeability all the sequences of observations whose frequency distribution is n are

equally probable. What is the probability distribution of the next draw from the same

urn? The answer to this question is given by the De Morgan formulas (1) and (2).5

The De Morgan process described above sole concern is epistemic, the exploration of the

same ‘new terrain’ through repeated observations using the same procedure (e.g., sampling

from the same urn). As such, it is not concerned with the possibility exploration using

alternative procedures (e.g., sampling from different urns). Furthermore, the observations,

species or colors, having no welfare implications, are purely informative.

In this paper I explore the application of the Ewens’ process to situations in which

decision making in the face of uncertainty allows for the possible existence of unanticipated

consequences or outcomes. This objective requires the modification and extension of De

Morgan’s proposal. In particular, we have to consider repeated observations of outcomes

generated by the choice of alternative courses of action, (e.g., sampling from different urns)

while taking into account that information acquired under one course of action informs the

decision maker about the possibility of the occurrence and prevalence of outcomes under

other courses of action. In particular, discovering an outcome never seen before informs the

decision maker of its existence thereby changing his awareness of the possible outcomes of

all courses of action. The correlation among the samples from distinct urns necessitates the

loss of the property of partition exchangeability that characterizes the prediction rule of De

Morgan (1838) and its generalization due to Ewens (1972). Furthermore, in addition to the

exploration depicted by the sampling of species problem, the choice of alternative courses

of action involves exploitation — the outcomes have material (i.e., welfare) consequences —

and may involve distinct direct or indirect costs.

The next section describes the extension of the Ewens (1972) generalization of the

De Morgan proposal. Section 3 introduces a decision making model. Section 4 discusses

the implications of a decision model that incorporates the extended De Morgan process.

Section 5 includes additional remarks and a brief discussion of related literature.

5At a deeper level, the De Morgan formula is generated by the representation of random partitions

exchangeability. A more detailed exposition of this idea is beyond the scope of this paper. The interested

reader will find an excellent review and references in Zabell (1992).
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2 Generalized Sampling Process

The extended sampling process is best described by the following multi-urns model that

allows for the possibility that the mutator assumes different weights (e.g., different numbers

of mutators in the different urns) and the random processes of draws from distinct urns

may not be stochastically independent.

Let U := {1  } be a finite set of urns. Let  be the number of draws from ,

 = 1  containing balls of  of different colors and some black balls called mutators.

Let  denote the weight of the mutator in urn  Consider the following process. Select an

urn from U and drawn a ball at random from the selected urn. If a colored ball is drawn,

then it is replaced together with another ball of the same color. If a mutator is drawn,

then it is replaced together with another ball of new color.

Let  be the number of balls of color  in  draws from . Define  = {1  }
 = 1  the set of colors, or categories, observed in  draws from  Let  = ∪=1

be the set of colors known to exist after  = Σ=1 draws form all the urns. Let  denote

the number of balls of color  ∈  in  draws from  Denote by n () =
¡
1  ||

¢
the frequency of draws of the known colors after a sequence 1 2 

of draws from

. Note that  = 0 if  ∈ \

Given 1   and  let  :=  ( + )   ∈ {1  |  |} and  :=

 ( + ). Clearly,  = 0 if  ∈ \ Let p := (1   ||  )  = 1 

For every pair of probability vectors pp ,   ∈ {1 } denote by hppi their inner
product and let

 ( ) :=
hppi

k p kk p k  (3)

Then,  ( ) = cos  is a measure the angle between the two probability vectors. I interpret

it to be a measure of similarity between the underlying stochastic processes. Because the

probability vectors are in R
+ the similarity measure takes values in the unit interval. Obvi-

ously,  ( ) = 1 for all  = 1  (each urn is perfectly similar to itself) and  ( ) = 0

if and only if p and p are orthogonal. Note, however, that under the assumption that all

the urns contain mutators, no two probability vectors p and p are orthogonal. Hence,

 ( )  0 and lim→∞  ( ) = 0 for all   = 1  The larger values of  ( )  the

more similar are the content of the urns  and  It is worth underscoring that, before the

sampling starts, all the urns are perfectly similar (i.e.,  ( ) = 1 for all   = 1 ) in
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the sense that nothing is known about their content.

It is worth mentioning that a mathematical property of the similarity measure is that

it is monotonic decreasing in the difference between the size of the samples of the urns.

To grasp this, consider two urns, say  and   and suppose that the corresponding

number of draws are  and   where    Suppose further that, given  and  

the conditional probabilities, p̂ := p (1− ) and p̂ := p
¡
1− 

¢
are the same.

However, the larger is the difference in the sample sized (i.e., the weight of evidence), the

larger is the difference  −   Consequently, the smaller is the similarity coefficient

 ( )  In general, two urns are more similar when high-probability categories in one urn

are high-probability categories in the other urn and low-probability categories in one urn

are low-probability categories in the other urn.

Given p  = 1  the probability of observing  ∈  conditional on a draw from 

is:

Pr{(+1) =  | p1 p} =
X
=1

 ( )



 (4)

The probability of encountering a color not seen before, (i.e., drawing ) is

Pr{(+1) =  | p1 p} =
X
=1

(1−
X
∈

) ( )



=

X
=1



 + 
 ( )




 (5)

In the analysis that follows I assume the decision maker predicts the outcomes of his

actions using these formulas. If  ∈ \ then it is known to exist even though it didn’t

show up in the sampling from  The decision maker is unaware of outcomes that are not

in 6

6De Morgan’s and Ewen’s prediction rules are charaterized by partition exchangeability. The prediction

rules (4) and (5) do not satisfy partition exchangeability. To be exact, as long as the sampling is from a

single urn, partition exchangeability may be assumed to hold and the prediction rules apply to continuation

of draws from the same urn. However, once sampling from another urn is undertaken, cross inferences

implies that partition exchangeability no longer applies to either of the urns. This is analogous to the

predictive rule of heads and tails in repeated flipping of the same coin, that may be characterized by

exchangeablity, whereas the predictive rule corresponding to flipping distinct, correlated, coins do not

satisfy exchangeability.
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3 The Decision Model

3.1 The choice set and the structure of the preference relations

Let  := {1  } be a set whose elements are alternatives courses of action, or actions,
for short. The reader may find it convenient to think of  ∈  as corresponding to  ∈ U .
Define C = ∪ {} as the set of outcomes, where  signifies the existence of outcomes not
in  In other words,  symbolizes unanticipated outcomes whose nature is, by definition,

unknown and may be inconceivable. Let ∆ (C) denote the set of probability distributions

on C where Pr{} = 1−Σ∈ Pr{}
The product set C =  × ∆ (C) is said to be the choice set. A binary relation <

on C, is a preference relation. Denote by Â and ∼ the asymmetric and symmetric parts
of < respectively. I assumed that the decision maker is able to rank all pairs, ( ) ∈
C =  ×∆ (C). In particular, the decision maker is able to rank such pairs in which the
predictive probabilities in ∆ (C) are obtained from the formulas (4) and (5). The structure

of the preference relation is depicted axiomatically as follows.

(A.1)Weak Order (WO) - < is complete and transitive.
(A.2) Conditional Archimedean (CA) - For each  ∈  and ( )  ( )  ( ) ∈ C

such that ( ) Â ( ) Â ( ) there are   ∈ (0 1) such that ( + (1− ) ) Â
( ) Â ( + (1− ) ) 

(A.3) Conditional Independence (CI) - For each  ∈  and all ( )  ( )  ( ) ∈
C and  ∈ (0 1] ( ) < ( ) if and only if ( + (1− ) ) < (  + (1− ) ) 

The next axiom asserts that the decision maker’s risk preferences are action-independent

(A.4) Action-Independent Risk Preferences (AIRP) - For all  0 ∈  and

  ∈ ∆ (C)  ( ) < ( ) if and only if (0 ) < (0 ) 
The next axiom asserts that the valuations of the actions in  and the distributions

in ∆ (C) are additively separable. To state the axiom I introduce the following additional

notations and definitions. Let ̄  ⊂  be the subsets of maximal and minimal outcomes

in  Formally, for all ̄ ∈ ̄ and  ∈  ( ̄) Â ( ) Â ¡
 

¢
for all ( ) ∈  ×

∆ (C) \{ |  ∈ ̄ ∪ }7 If ̄ or  contain more that one element, choose arbitrarily any

one of the maximal and minimal elements.

A pair of actions  0 ∈  is said to be directly linked if neither
¡
 

¢
< (0 ̄) nor

7That ̄ and  are independent of  is an implications of (A.4).
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¡
0 

¢
< ( ̄)  They are indirectly linked if there exist a sequence of actions 1   ∈ 

such that 1 =   = 0 and for  = 1   − 1  and +1 are directly linked. For 

and 0 that are directly linked there is 0 ∈ (0 1) such that(0 ̄) ∼
¡
 0̄ + (1− 0) 

¢
or  ∈ (0 1) such that ( ̄) ∼

¡
0 ̄ + (1− ) 

¢
. Suppose that  and 0 are indi-

rectly linked and let
¡
 

¢ Â (0 ̄)  Then there are  ∈ (0 1) such that ¡ ̄¢ ∼¡
+1 ̄ +

¡
1− 

¢

¢
  = 1   − 1

For each  ∈ [0 1]  let  := ̄ + (1− )  Then, for all  
0 ∈  that are directly

linked there exist   ∈ [0 1] such that ( ) ∼ (0 )  That such   ∈ [0 1] exist
follows from the fact that, since  and 0 are directly linked, either (0 ̄) Â

¡
 

¢
or

( ̄) Â
¡
0 

¢
 Consider the former case (the argument of the latter case is the same).

There is an interval  ⊂ [0 1] such that ( ̄) Â (0 ) Â
¡
 

¢
 for all  ∈  Then,

for every given given  ∈  by conditional Archimedean, there is  ∈ [0 1] such that
( ) ∼ (0 ) 

The difference  −  is a measure of the implicit cost difference between choosing 

and 0 The next axiom asserts that this cost difference is independent of the distributions

that, together with these actions, constitute the elements of the choice set.

(A.5) Separability - For any  0 ∈  that are directly linked, and   0 0 ∈ [0 1],
( ) ∼ (0 ) and ( 0) ∼

¡
0 0

¢
if and only if −  = 0 − 0

The last axiom asserts that, conditional on the actions, not all the elements of ∆ (C)

and equally preferred.

(A.6) Non-triviality - For each  ∈  ( ̄) Â
¡
 

¢


3.2 Representations

Theorem: Let < be a preference relation on C and suppose that all the alternatives in 

are directly or indirectly linked then < satisfies (A.1) - (A.6) if and only if there exist a

real-valued functions  on C and  on  such that, for all ( )  (0 0) ∈ C,

( ) <
¡
0 0

¢⇔ Σ∈C ()  () +  () ≥ Σ∈C () 0 () + 
¡
0
¢
 (6)

Moreover, the function  (·) +  (·) is unique up to positive linear transformation.
Proof. (a) (Sufficiency) Suppose that < satisfies (A.1)-(A.4). By the expected utility

theorem, < satisfies (A.1)-(A.3) if and only if there exist real-valued functions  (· ) 
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 ∈  such that, for all ( )  ( 0) ∈ C,

( ) <
¡
 0

¢⇔ Σ∈C ( )  () ≥ Σ∈C ( ) 0 () 
Moreover, for each  ∈  the function  (· ) is unique up to positive linear transformation.

Axiom (A.4) implies that, for all  0 ∈   (· ) and  (· 0) are positive linear
transformations of one another. Fix ̂ ∈  and let  (· ̂) :=  (·)  then for all  ∈ 

 (· ) =  (·) () +  ()  where, for all  ∈   ()  0 and  (̂) = 1,  (̂) = 0 Thus,

for all ( )  (0 0) ∈ C,

( ) <
¡
0 0

¢⇔ Σ∈C () ()  () +  () ≥ Σ∈C ()
¡
0
¢
0 () + 

¡
0
¢
 (7)

Let ̄  ∈  be maximal elements of  (i.e., ( ̄) < ( ) <
¡
 

¢
 for all ( ) ∈ C)

For each  ∈ (0 1) define  = ̄ + (1− )  Suppose that  and 0 are directly linked

and let   0 0 ∈ [0 1] be such that ( ) ∼ (0 ) and ( 0) ∼
¡
0 0

¢
. Then, by

(7),

[ (̄) + (1− ) ()] () +  () = [ (̄) + (1− ) ()]
¡
0
¢
+ 

¡
0
¢

(8)

and £
0 (̄) +

¡
1− 0

¢
 ()

¤
 () +  () =

£
0 (̄) +

¡
1− 0

¢
 ()

¤

¡
0
¢
+ 

¡
0
¢
 (9)

But (8) is equivalent to

[ (̄)−  ()]
£
 ()− 

¡
0
¢¤
=  ()

£

¡
0
¢−  ()

¤
+ 

¡
0
¢−  ()  (10)

and (9) is equivalent to

[ (̄)−  ()]
£
0 ()− 0

¡
0
¢¤
=  ()

£

¡
0
¢−  ()

¤
+ 

¡
0
¢−  ()  (11)

Subtracting (9) from (8) we obtain

[ (̄)−  ()]
£¡
− 0

¢
 ()− ¡ − 0

¢

¡
0
¢¤
= 0 (12)

Since  and 0 are directly linked, by (A.5), − = 0−0 Hence, −0 = −0 Thus,

by (12), ¡
− 0

¢
[ (̄)−  ()]

£
 ()− 

¡
0
¢¤
= 0 (13)
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But (− 0) 6= 0 and, by (A.6),  (̄) −  ()  0 implying that  () =  (0)  for all

 0 ∈  In particular,  () =  (̂) = 1 for all  ∈  Hence, by (7),

( ) <
¡
0 0

¢⇔ Σ∈C ()  () +  () ≥ Σ∈C () 0 () + 
¡
0
¢
 (14)

which is the representation (6).

If  and 0 are indirectly linked then  () −  (0) = Σ−1=1

¡

¡

¢− 

¡
+1

¢¢
, where¡

1  
¢
is a sequence that links  = 1 and 0 =  Thus, (6) holds with  () =

 (0) + Σ−1=1

¡

¡

¢− 

¡
+1

¢¢


(Necessity) The proof that (6) implies that < satisfies (A.1)-(A.6) is obvious and is,

therefore, omitted.

The uniqueness of  (·) +  (·) follows from the uniqueness of  (· )  ¥
The function  captures the (utility) cost of the actions and, if the preference relation

satisfies (A.1)-(A.6), it is additively separable from the expected utility of the outcomes.

Implicit in the representation is the expression  ()  ()  One should think of  as rep-

resenting unanticipated outcomes, or outcomes ‘not in ’ Accordingly,  () captures the

decision maker’s valuation of discovering outcomes of whose existence he is unaware.

4 Behavioral Implications

As the examples in the introduction suggest, the approach taken in this paper may be

interpreted as a model depicting one choice conditional on the data currently available

about the outcomes corresponding to actions taken in the past (e.g., the vaccine effects),

or a model of repeated choice based on the cumulative experience of selecting alternative

actions (e.g., the experience of dinning in different restaurants).

4.1 Static Choice Behavior

Consider first the case of a single choice. Given 1   and a set  of observed

outcomes, denote the corresponding vector of frequency distribution by p = (p1 p) 

Choosing  ∈  induces a conditional probability distribution p (· | ) ∈ ∆ (C)  given by

p ( | ) = Pr{(+1) =  | p}

for all  ∈  and

p ( | ) = Pr{(+1) =  | p}
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where Pr{(+1) =  | p} and Pr{(+1) =  | p} are given by (4) and (5), respectively.
By the theorem, if a preference relation on C satisfies the axioms (A.1)-(A.6) then the

decision problem is to choose  ∈  so as to maximize Σ∈C ()p ( | ) +  ()  This

representation includes the decision maker’s assessment of the probability, p ( | )  of
encountering outcomes of whose existence he is unaware and the utility evaluation of such

occurrences.

4.2 Dynamic Choice Behavior

To understand the choice dynamics implied by the model consider the decision making

problem over two consecutive periods. Suppose that at time  =  the action  has

been taken  times,  = 1  the set of observed outcomes is  and the corresponding

vector of frequency distribution is p = (p1 p)  A choice of  ∈  induces a conditional

probability distribution p (· | ) ∈ ∆ (C)  given by

p ( | ) = Pr{(+1) =  | p}

for all  ∈   and

p ( | ) = Pr{(+1) =  | p}
where Pr{(+1) =  | p} and Pr{(+1) =  | p} are given by (4) and (5), respectively.

Given the choice of  suppose that the outcome is (+1) =  If  ∈   then the

decision maker updates the frequency distribution n () to n
0
 () =

¡
1   + 1  ||

¢


and, for all  6=  n () = n0 (). The corresponding probability vector, p ( ) =

(p01 p
0
 p

0
), is given by:

p0 = (
0
1
  0||  

0

) =

³
1   + 1  ||  

´
 ( + 1 + )  (15)

and p0 = p   6=  If the outcome is (+1) =  then the set of known outcomes is

augmented by the addition of the newly discovered outcome, ̂ ∈  . Formally, +1 =

 ∪ {̂}.
Define

0 ( ) =
hp0p0i

k p0 kk p0 k
   ∈ {1 }

Letting  0
 = +1 and, for  6=   0

 =   Then, for all  ∈ +1∪{} and  = 1 

Pr{( 0
+1)

=  | p ( )} =
X

=1 6=
0

0 ( )
 0


 + 1
+ 0 (16)
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and

Pr{( 0
+1)

=  | p ( )} =
X

=1 ∈{}
0

0 ( )


 + 1
+0

0 ( )
 + 1

 + 1
+0 (17)

Given that  was chosen in time  resulting in the outcome  ∈ +1 a choice of 

at time  + 1 induces a conditional probability distribution p+1 (· | ) ∈ ∆ (C)  given by

p+1 ( | ) = Pr{( 0
+1)

=  | p ( )}

for all  ∈ C+1
Denote by  and 0 the action chosen at time  the outcome that results. By the

theorem, if a preference relation on C satisfies the axioms (A.1)-(A.6) then, for all  0 ∈ ¡
p+1

¡· |    0¢¢ <
¡
0p+1

¡· | 0   0¢¢⇔ (18)

Σ∈C+1 ()p+1
¡
 |    0

¢
+  () ≥ Σ∈C+1 ()p+1

¡
 | 0   0

¢
+ 

¡
0
¢


Consequently, in the second and final period the decision maker chooses the action

∗
¡
  

0¢ ∈ argmax


£
Σ∈C+1 ()p+1

¡
 |    0

¢
+  ()

¤


Then the first-period decision problem is: Choose  ∈  so as to maximize

Σ0∈C
£

¡
0
¢
+ 

¡
Σ∈C+1 ()p+1

¡
 | ∗ ¡  0¢¢+ 

¡
∗
¡
0
¢¢¢¤

p
¡
0 | 

¢
+  ( ) 

where  ∈ [0 1] denotes the discount rate.
The choice of the first-period action yields a payoff in the form of an outcome and,

simultaneously, and information regarding the probabilistic payoffs of actions including

the potential discovery of unanticipated outcomes. This dual role implies that first pe-

riod choice involves exploitation-exploration trade-off. In other word, it may be that

(p (· |  )) < (0p (· | 0 )) and yet, 0 is chosen in the first period if it is more infor-
mative about the distribution of outcomes in the second period, that is, if

argmax

Σ0∈C

£
Σ∈C+1 ()p+1
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5 Concluding Remarks

5.1 State-space formulation

A cornerstone of Bayesian theories of decision making under uncertainty is a primitive, im-

mutable, state space, whose elements represent complete resolutions of uncertainty. Specif-

ically, the presumption is that there is an element, a true state, that once known, the

consequences of every conceivable course of action are known.

The decision model of this paper does not invoke the notion of states as a primitive

concept. It is possible, however, to derive, within the framework of the model of this paper,

a concept of evolving state space. To grasp this, let  denote the set of known outcomes,

or consequences, after  choices of actions in  The state space describing the uncertainty

before the  + 1 choice consists of all the mappings from the set of actions to the set of

known and unknown outcomes (i.e.,  = { :  → C})8 Clearly, this definition of states
represents the resolution, in the sense defined above, of the uncertainty the decision maker

faces before choosing his next action. Moreover, given 1  p =(p1 p) and 

the probability of the state  = ( (1)    ()) is:

Pr{} = Pr{1(+1) =  (1) | p} × × Pr{(+1) =  () | p}

Obviously, the state space in this model is neither primitive nor immutable. In fact,

once a new outcome is discovered, the domain of definition of states expands and new

states are generated. More concretely, let ̂ denote the newly observed outcome and let

 0 =  ∪ {̂} and C =  0 ∪ {}, then the new state space is: 0 = {0 :  → C0} The
probabilities of the states are:

Pr{̂} = Pr{1(+2) = ̂ (1) | p̂} × × Pr{(+2) = ̂ () | p̂}

where p̂ =(p̂1  p̂) and p̂ = (̂1  ̂|0| ̂)  = 1   are the updated probabil-

ities vector following the discovery of the new outcome.

If the action  that was chosen at the  +1 stage results in a known outcome,  ∈ 

then the state space does not change but the probabilities of the states do. In particular,

8This notion of states was describe in Schmeidler and Wakker (1987) and Karni and Schmeidler (1991)

and was invoked in Karni and Viero (2013), (2017).
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let p0 = (p01 p
0
)  where p

0
  = 1   are given by (15) then

Pr{} = Pr{1(+1) =  (1) | p0} × × Pr{(+1) =  () | p0}

5.2 Related literature

A strand of literature displaying some of the ingredients of the model of this paper deals

with multi-armed bandit problems. In its most familiar form it is a sequential decision

problem that requires the decision maker (e.g., gambler) choose a sequence (finite or infi-

nite) arms, of distinct slot machines, to pull so as to maximize the expected present value

of his reward. The distributions of the payoffs of the different arms are unknown. Each

choice of arm pays off immediately and, at the same time, informs the player about the

distribution of the payoffs associated with the arm. The most common variation of the

multi-arm bandit problems assumes that the random returns of the distinct arms are sto-

chastically independent. Other variations include correlated random payoffs across arms.

In either case, since the possible payoffs are supposed to be known, the learning takes the

form of updating the distributions by the application of Bayes’ rule.

The main differences between the multi-arm bandit models and the model of this paper

are: (a) Whereas in the multi-armed bandit problem it is assumed that the set of possi-

ble payoffs is known and fixed, the focal issue of this paper is the process of discovery of

unanticipated outcomes, or payoffs and (b) A consequence of (a) is that unlike the explo-

ration in the multi-armed bandit game, which consists of updating the distributions of the

arms by the application of Bayes’ rule, the exploration in the model of this paper includes

both the discovery of new, unanticipated, outcomes and the updating of the probability

distributions of the known outcomes. This former aspect renders Bayes’ rule inapplicable.

Instead, learning is accomplished by the application of Ewens’ (1972) generalization of De

Morgan’s rule.

Schipper (2022) derives the predictive probabilities of the De Morgan rule, Ewens sam-

pling rule, as subjective probabilities. In particular, Schipper considers the process of

repeated sampling from a population, using the same sampling procedure, and studies the

question of what must be true about the pattern of a decision maker’s betting on out-

comes (including the discovery of novelty) for it to display beliefs that agree with these

rules. Whereas the main concern of this paper is the modeling of the behavior of decision

makers whose beliefs are represented by Ewens’ (1972) sampling rule, the main thrust of
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Schipper’s work, the characterization the subjective beliefs that agree with the objective

predictions of the exchangeable random partition models and display ‘reverse Bayesianism’

á la Karni and Vierø (2013, 2017). In particular, Schipper shows that models exhibiting

‘reverse Bayesianism’ include, among others, the De Morgan model and some variations of

it, including Ewens’ sampling rule.

The exploitation-exploration aspect of the dynamic application of the model is a feature

shared by Karni (2022). Unlike the present paper, in which the predictions of probabili-

ties of the action-contingent outcomes is arrived at by induction, the probabilities of the

outcomes in Karni (2022) are predicted by theoretical models. Moreover, whereas in this

paper actions may discover unanticipated outcomes, in Karni (2022) the set of outcomes

is known and fixed, so the exploration aspect is captured by the updating of the decision

maker’s probabilistic belief in the validity of the theories using Bayes’ rule.

Invoking the state-space formulation of increasing awareness introduced by Karni and

Vierø (2013, 2017), Grant et al. (2022) propose a model of learning in which decision

makers become aware of new states (i.e., resolutions of uncertainty) through the discovery

of unknown actions and consequences. Whereas the observations in this work are action-

outcome pairs, the sampling process in the model of Grant et al. yields observations of

states restricted by the known acts and consequences at each point in time. Moreover,

unlike this paper, in which the underlying stochastic process generating the observations

is not assumed to have a specific structure, Grant et al. (2022) assume that the data

is generated by a Dirichlet process, which govern the evolution of the decision maker’s

beliefs.9 Finally, the main thrust of their work is the characterization of the learning

process as opposed to that of the decision making process.

Eichberger and Gouerdjikova (2024) propose a model of decision making under un-

certainty whose primitives are cases, (i.e., triplet of action taken, outcome obtained and

characteristics, describing background data that determines the outcome corresponding to

each and every action). The set of cases is the data available at the point in which a deci-

sion maker must choose the next action. The data permits the construction of the relative

frequencies of the already outcomes and characteristics. The set of characteristics in the

data may not be complete. It is completed by including a “place holder” signifying not

yet-observed characteristic. They axiomatize a representation of preferences that includes

9A focal issue in their work is the ambiguity sorrounding the base measure of the Dirichlet process
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a subjective weight assigned to this “place holder”, which they interpret as measure of the

awareness of unawareness of possible characteristics. In the model of the present paper,

the set of observed act-outcome pairs may is the data and the state-space, whose elements

are resolutions of the uncertainty, has the flavor of characteristics set in Eichberger and

Gouerdjikova (2024). Despite the similar interpretation, however, there is a fundamental

distinction between the state-space and the set of characteristics. First, the state space is

a derived concept whereas the characteristics are taken to be directly-observed primitive in

Eichberger and Gouerdjikova’s model. Second, the evolution of the state space is endoge-

nous, following naturally the process of taking actions and discovering new, unanticipated,

outcomes, whereas the discovery of new characteristics is exogenous and independent of

the actions taken. Third, in the present model the probability of discovering an outcome,

not yet seen, (i.e., the measure of unawareness) is monotonic decreasing as a function of

the number of actions taken (i.e., that sample size), whereas in the model of Eichberger

and Gouerdjikova a discovery of not yet-seen characteristic increases their measure of the

unawareness. Forth, unlike the set extended set of characteristics whose completion en-

tails a “place holder,” the specification of state space does not require such device. The

unawareness in this model is about the possible outcomes in which the mutator plays the

role of “place holder.” Fifth, in the model of this paper the probability distributions on the

evolving state space are objectively derived from the data, while the distribution on the

set of extended characteristics incorporates a subjective “degrees of unawareness”, which

is an ingredient of the representation of the preference relations.
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