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Abstract

Departing from the reduction of compound lotteries axiom on multi-stage lotter-

ies induced by experiments, this paper shows that Blackwell’s (1953) definition of the

relation “more informative” on the set of information structures is equivalent to exper-

iments being more valuable to a class of nonexpected utility preferences. This result

extends Blackwell’s (1953) theorem and suggests new method of evaluating experi-

ments.
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1 Introduction

From a decision making point of view, experiments are valuable because they provide

information that helps decision makers choose courses of actions whose payoffs are higher

in the states that are more likely to obtain. Blackwell (1953) formalized this perception

as a binary relation, “more informative than” on the set of experiments. According to

Blackwell one experiment is more informative than another if, for every set of feasible

actions, it yields a richer menu of experiment-wise expected payoffs (i.e., expected-loss

vectors) each of which corresponds to an action taken contingent on the experimental

observations. Blackwell characterized this relation by proving that one experiment is more

informative than another if and only if the information content of the latter is obtained

by garbling the information content of the former. Equivalently, an experiment is more

informative if it allows choices that have higher expected utility. In this paper, I refer

to the equivalence between being more informative in this sense and containing clearer

information as Blackwell’s theorem.1

∗Johns Hopkins University, Department of Economics, e-mail: karni@jhu.edu
†Useful comments by Edward Schlee are gratefull acknowledged.
1Cremer (1982) and Leshno and Spector (1992) provide simple proofs of Blackwell’s theorem.
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As being better informed seems unambiguously beneficial, the equivalence between

ranking experiments by their information content and their ranking by the expected utility

criterion seems oddly restrictive. This equivalence is particularly disconcerting in view of

experimental evidence suggesting that subjects violate the tenets of expected utility theory—

the sure thing principle and the independence axiom—systematically, and the proliferation,

over the last 40 years, of non-expected utility models of decision making under risk and

under uncertainty.2

Experimentation followed by signal-contingent choice of actions may be regarded as a

multi-stage compound lottery. In this paper I argue that the critical aspect of the expected

utility model that is underlying Blackwell’s theorem is a postulate, known as reduction of

compound lotteries, that requires that the probability of the ultimate payoff is equal to

the product of the probabilities on the events that lead to it. Moreover, I show that

replacing the reduction of compound lotteries postulate with an alternative procedure,

analogous to the certainty equivalent reduction proposed by Segal (1990), implies that

experiments whose information content is superior are preferred according to a large class

of non-expected utility models.

To grasp this point, consider a decision maker who faces a choice among feasible ac-

tions whose consequences depend on the realization of some underlying states. Suppose

that the likelihoods of the various states to obtain is quantified by a (prior) probability

distribution function. Before choosing an action, the decision maker receives a signal (i.e.,

an observation), produced by an experiment, that informs him about the likely realization

of the states. Upon receiving such signal, the decision maker invokes Bayes’ rule to up-

date the prior state probabilities, and then proceeds to choose an action from the feasible

set. This process may be thought of as two-stage compound lottery. In the first stage,

the experiment produces a signal, according to some probability distribution on the set of

signals, following which the decision maker chooses an action. In the second stage, a state

is selected (according to the posterior distribution), and the decision maker is awarded the

prize that corresponds to the image of the selected state under the chosen action.3 The

question is how do decision makers perceive this two-stage lottery. According to the re-

duction of compound lotteries postulate, this two-stage lottery is reduced to a single-stage

lottery by attributing to each prize the probability of the signal multiplied by the posterior

probabilities of the states to which the chosen course of action assigns that prize. Analysis

that treat the two-stage process as equivalent to its one-stage reduction runs the risk of

disregarding subtleties that beset the extensive form decision process.

I contend that because the first and second stages are separated by a decision, they

merit distinct treatments. Application of the reduction of compound lotteries which seems

2Wakker (1988), Schlee (1990) and Safra and Sulganik (1995), demonstrated that non-expected utility

theories imply that information may have negative value.
3 If the prize itself is a lottery ticket than the procedure described above amounts to three-stage lottery

in which, in the third and final stage, the lottery corresponding to the image of the selected state under

the chosen action is played out to determine the prizes.
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compelling when the transition between the stages is automatic, seems less so when the

two stages are separated by an intermediate decision. In this paper I pursue this line of

reasoning and propose to analyze the decision process in its extensive form. I show that,

by replacing the reduction of compound lotteries in the first stage, it is possible to identify

a class of non-expected utility preferences that unambiguously values one experiment over

another if and only if the information content of the latter is obtained by garbling that of the

former. The proposed extension rules out the possibility of negatively valued information

which, I regard as a powerful argument in favor of the proposed model. The expected

utility model is a special case of this class—the only model in this class that is consistent

with the reduction of the compound lotteries postulate.

The surprising (difficult) aspect of Blackwell’s theorem is that a more informative ex-

periment (that is, experiment that affords better decisions by the expected utility criterion)

implies sufficiency (that is, clearer signal). In this paper, informativeness corresponds to

an experiment being more valuable in the sense of affording better decisions for a broader

set of preferences, including expected utility preferences. Consequently, this direction of

the proof relies on Blackwell’ Theorem. The novelty of this paper is the observation that

the full power of expected utility, in particular, the reduction of compound lotteries which

is implied by the independence axiom, is not needed for Blackwell’s result.

The next section includes a brief review of Blackwell’s (1953) theorem. Section 3 reviews

the reduction procedures. Section 4 extends Blackwell’s theorem. Section 5 provides an

axiomatic characterization of preference relations that underlie the extension of Blackwell’s

theorem. Section 6 discusses the value of information and briefly reviews the related

literature.

2 The Analytical Framework and Blackwell’s Theorem

2.1 The analytical framework

Let  = {1  } be a finite set of states and denote by ∆ () the simplex in R. Subsets

of  are events. Let  a set of outcomes and denote by ∆ () the set of simple probability

distributions on  referred to as lotteries.4 Mappings on  to ∆ () are referred to as acts

representing potential courses of action. The set of all acts is denoted byH. For all   ∈ H
and  ∈ [0 1] define +(1− )  ∈ H by ( + (1− ) ) () =  ()+(1− )  ()  for

all  ∈  Thus, H is convex. Constant acts (i.e., acts that assign the same image to every

state) are identified with elements of ∆ ()  thus, ∆ () ⊂ H For all   ∈ ∆ () and
 ∈ [0 1] define  + (1− )  ∈ ∆ () by (+ (1− ) ) () =  () + (1− )  () 

for all  ∈  Throughout I denote by  the distribution function that assigns  the unit

probability mass and by ∆ (∆ ()) the set of simple probability distributions with supports

in ∆ () 

4Simple probability distributions are probability distribution functions with finite supports.
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Complete and transitive binary relations < on H are referred to as preference relations.

The strict preference relation, Â and the indifference relation, ∼ are the asymmetric and
the symmetric parts of < respectively. A real-valued function  on H is said to represent

the preference relation < if, for all   ∈ H  <  if and only if  () ≥  () 

Experiments are random variables, e  taking values in the sets   = {1  ()}
 ∈ N where N denotes the set of natural numbers Let Y denote the set of all experiments.
An experiment e is identified with a joint probability distribution  on   × . Givene ∈ Y and  ∈  the conditional probability on   is depicted by a vector of probabilities,

 (· | ) :=
³

³


1 | 

´
  

³



()
| 
´´

 Without loss of generality assume that for

each 

 ∈   there exists  ∈  such that 

³


 | 

´
 0 Thus, for all  ∈ ∆ () 


³




´
:= Σ∈


³


 | 

´
 ()  0

Applied to constant acts, expected utility theory provides necessary and sufficient con-

ditions for the preference relations to have affine representation. Consequently, there exist

a real-valued function  on such that, for all  ∈ ∆ ()   () = Σ∈ ()  ()  Denote
by U the set of all such functions.

2.2 Blackwell’s theorem

Consider an expected utility maximizing decision maker characterized by a utility function

 ∈ U . Given a probability distribution  ∈ ∆ () and a non-empty set,  ⊆ H of feasible
acts, denote by ∗ ( ) the solution to the problem:

max
∈

Σ∈ ()Σ∈ ()  () ()  (1)

Define  ( ) = Σ∈ ()Σ∈ () ∗ ( ) () 
Suppose that, before choosing an act from a feasible set , the decision maker ob-

serves the outcome 

 ∈   of an experiment e ∈ Y and updates the prior distribution

 according to Bayes’ rule to obtain the posterior probability distribution 
³
 | 

´
=


³


 | 

´
 () 


³




´
 for all  ∈  The decision maker’s ex-post problem is:

max
∈

Σ∈
³
 | 

´
Σ∈ ()  () ()  (2)

Letting 
³

³
· | 

´
 

´
= Σ∈

³
 | 

´
Σ∈ () ∗

³

³
· | 

´
 
´
(), the expected

utility associated with the experiment e is:
̄
¡e ; ¢ := Σ()=1

³

³
· | 

´
 

´

³




´
 (3)

Definition 1: An experiment e is more informative than another experiment e if
̄
¡e ; ¢ ≥ ̄

¡e; ¢  for all ( ) ∈ ∆ × U and  ⊆ H
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An information structure, is an ×  () right-stochastic matrix, 
¡e¢, whose generic

element is 
³


 | 

´
 LetM be the set of  ()×  () Markov matrices dubbed garbling

matrices. The garbling matrix,  introduces noise that blurs the information in 
¡e¢.

Definition 2: An experiment e is sufficient for e if the corresponding information
structures satisfy 

¡e¢ = 
¡e¢  for some  ∈M

With these definitions in mind Blackwell’s theorem is stated as follows:

Blackwell’s Theorem: An experiment e is more informative than another experi-
ment e if and only if e is sufficient for e.

According to Blackwell’s theorem the relation “being sufficient” is equivalent to being

ranked higher by all preference relations that admit expected utility representations.

3 Informative Signals and Reduction Procedures

3.1 Signals

According to Blackwell’s (1953) theorem more informative experiments produce clearer

signals in the following sense: When comparing two experiments every signal produced by

the less informative experiment is an average of signals produce by the more informative

experiment (i.e., the sufficient experiment). Formally, let e,e0 ∈ Y with supports  and

 0 respectively. Suppose that e is sufficient for e0 By definition,  (e) =  (e0)  for
some  ∈M. Hence, for every 0 ∈  0 and  ∈ 


¡
0 | 

¢
= Σ∈{|∈ } ( | ) (4)

where ()∈{|∈ } is the  −  column of the garbling matrix  By Bayes’ rule, for

every 0 ∈  0 and  ∈ 


¡
 | 0

¢
=

 ()Σ{|∈ } ( | )

Σ=1 ()Σ{|∈ } ( | )
 (5)

=
Σ{|∈ } () ( | )
Σ{|∈ }Σ


=1 () ( | )

= Σ{|∈ } ( | )

where, to obtain the last equality divide the numerator and denominator byΣ=1 () ( | )
and use the fact that Σ{|∈ } = 1 Consequently, for each act-posterior probability

pair, (  (· | 0)) ∈ H×∆ ()  that is feasible under the less informative experiment cor-
responds a set {(  (· | )) |  ∈  } ⊂ H × ∆ () of act-posterior probability pairs of
the more informative experiment. In other words, from an ex-ante viewpoint, the more

informative experiment offers a richer set of opportunities to match feasible acts to the

perceived likelihood of the states depicted by their posterior probabilities.

5



3.2 Reduction procedures

The axiomatic structure underlying expected utility theory implies a property known as

reduction of compound lotteries. Formally, reduction of compound lotteries maintains that

every compound lottery,  ∈ ∆ (∆ ()) is equivalent (indifferent) to the one stage lottery
 ∈ ∆ ()  where  () = Σ∈ ()  ()  for all  ∈  where  denotes the

support of 

Given  ∈ ∆ () the certainty equivalent of  is an outcome  () ∈  such that

() ∼   The certainty equivalent may or may not exist depending on the richness of the

set of outcomes . If  includes the certainty equivalents of all the elements of ∆ () 

then implicit in expected utility theory is another reduction procedure maintaining that

every compound lottery,  ∈ ∆ (∆ ()) is equivalent to  ∈ ∆ ()  where  ( ()) =

Σ∈ () () for all  () such that  ∈  I refer to this form of reduction as

certainty equivalence reduction.5

Every ( ) ∈ H×∆ () may be regarded as a two-stage lottery in which, in the first
stage, a state  ∈  is drawn at random according to the distribution  and, in the second

stage, an outcome  ∈  is determined by the lottery  () ∈ ∆ ()  Applying reduction
of compound lotteries, ( ) is equivalent to Σ∈ ()  () ∈ ∆ () 

Let ⊂ H denote a set of feasible acts and consider the a decision problem depicted by a
quadruplet (   e) ∈ 2H\∅×∆ ()×U×Y. Given the parameters  ∈ U and  ∈ ∆ () 
the decision problem requires a plan of choosing acts in  contingent on the realization

of signals produced by e The signals produced by e are drawn at random from the set

 according to a distribution   This problem induces a three-stage compound lottery.

In the first stage, a signal,  ∈  is drawn at random according to a distribution  on

 Contingent on the signal, the posterior distribution  (· | ) ∈ ∆ () is calculated using
Bayes’ rule and an act, ∗ ( (· | )  ) ∈  is chosen. In the second stage a state,  ∈  is

selected according to the posterior distribution  (· | ) and the lottery ∗ ( (· | )  ) () ∈
∆ () is awarded as a prize. In the third and final stage, the lottery ∗ ( (· | )  ) ()
determines the final outcome  ∈  

If the reduction of compound lotteries is applied then the compound lottery induced

by a decision problem (   e) is equivalent to the one-stage lottery
Σ∈  ()Σ∈ ( | ) ∗ ( (· | )  ) () ∈ ∆ () 

If the certainty equivalence reduction is applied then the one-stage lottery induced by the

same decision problem is:

Σ∈  () 



Σ∈(|)

(∗((·|))())


In expected utility theory, these two reduction procedures are equivalent.

5For more detailed discusssion and application see Segal (1987).
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An alternative approach, which I propose and study in this paper, applies the reduc-

tion of compound lotteries to the second stage and a procedure analogous to certainty

equivalence reduction to the first stage. Under this hybrid procedure, for each  ∈ 

the second-stage reduction induces a one-stage lottery Σ∈ ( | ) ∗ ( (· | )  ) () ∈
∆ ()  Denote the valuation of this lottery by  (Σ∈ ( | ) ∗ ( (· | )  ) ())  Ac-
cording to the hybrid procedure, the lottery induced by a decision problem (   e) is
Σ∈  () (Σ∈(|)∗((·|))()) ∈ ∆ (R) whose value is

Σ∈  () (Σ∈ ( | ) ∗ ( (· | )  ) ()) 6

The justification for applying distinct procedures to the different stages is the nature

of the uncertainties involved. In the second stage, given the act and the (updated) state

probabilities, the outcome is selected “algorithmically” without interference by the decision

maker. By contrast, after the first stage, corresponding to each signal there is an interim

stage at which, the decision maker interferes by updating the state probabilities and choos-

ing an act. This aspect of the process suggests that decision makers may regard the first

stage as qualitatively distinct from the later stages and, consequently, treat them differ-

ently. Specifically, according to the hybrid procedure, assessing the value of experiments,

decision makers envision the acts that they would choose contingent on the signals, assign

these acts utility values and take the mean utility values as the value of the experiment.

4 Blackwell’s Theorem Extended

4.1 Utility representation on H×∆ () 

The spaces H and ∆ () are a convex subset of R and, as such, they are connected

separable topological spaces. Let< be a preference relation (that is, complete and transitive
binary relation) on H×∆ () 

Definition 3. The preference relation< onH×∆ () is continuous if the sets {( 0) ∈
H ×∆ () | ( 0) < ( )} and {( 0) ∈ H×∆ () | ( ) < ( 0)} are closed in the
topology of R, for all ( ) ∈ H×∆ () 

Definition 4. A preference relation is said to satisfy the reduction of compound

lotteries axiom if ( ) ∼ Σ∈ ()  ()  for all ( ) ∈ H×∆ () 
With this in mind we have:

Proposition 1: A continuous preference relation < on H×∆ () satisfies reduction of
compound lotteries if and only if there exists a continuous function  on ∆ () such that,

6 If the certainty equivalents exist this is equivalent to

Σ∈  () ( (Σ∈ ( | ) ∗ ( (· | )  ) ())) 
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for all ( 0)  ( ) ∈ H×∆ () ¡
 0

¢
< ( )⇔ 

¡
Σ∈0 ()  ()

¢ ≥  (Σ∈ ()  ())  (6)

Proof. The existence of a continuous, real-valued, function  on H×∆ () representing
< is implied by a theorem of Debreu (1954). Thus, for all ( 0)  ( ) ∈ H×∆ () ¡

 0
¢
< ( )⇔ 

¡
 0

¢ ≥  ( ) 

By reduction of compound lotteries, for all ( ̄) ∈ H ×∆ ()  ( ̄) ∼ Σ∈̄ () () 
Hence, by transitivity, ( 0) < ( ) if and only if Σ∈0 ()  () < Σ∈ ()  ()  Since
∆ () ⊂ H , by the representation,

Σ∈0 ()  () < Σ∈ ()  ()⇔ 
¡
Σ∈0 ()  ()

¢ ≥  (Σ∈ ()  ()) 

Hence, ( 0) < ( ) if and only if  (Σ∈0 ()  ()) ≥  (Σ∈ ()  ())  ¥
Henceforth, I denote by V the set of functions representing continuous preference

relations on H×∆ () that satisfy reduction of compound lotteries.

4.2 Compound lotteries reductions and their representations

For every ( ) ∈ H×∆ ()  define
 () = Σ∈ ()  () ()  ∀ ∈  (7)

Similarly, given an experiment, e ∈ Y with support    for every signal 

 ∈   let

(·|

) () := Σ∈

³
 | 

´
 () ()  ∀ ∈  (8)

For every ( ) ∈ ∆ ()× V and  ⊆ 2H\∅ define
∗ ( ) ∈ argmax

∈
 ()  (9)

Given (   e) ∈ 2H\∅×∆ × V × Y, define
 (e; ) = Σ∈  ()  (∗ ( (· | )  ))  (10)

Let

() (e) := Σ∈  ()Σ∈∗ ( (· | )  ) ()  (11)

By definition, 
()

(e) ∈ ∆ () is the lottery obtained by the application of the reduction
of compound lotteries to the three stages of the lottery. Expected utility representation

admits reduction of compound lotteries, hence,

 (e; ) = 
³
() (e)´ = Σ∈() (e) () ()  (12)

This is the reduction procedure that underlies Blackwell’s theorem.
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4.3 The main result

Let < be a continuous preference relation on H × ∆ () that admits hybrid reduction
representation. Formally, given ( ) ∈ ∆ ()×V × 2H\∅ the value of the experimente ∈ Y whose support is  is:

̂ (e; ) := Σ∈  ()max
∈


³
 ((·|))

´
 (13)

where  ((·|)) = Σ∈∗ ( (· | )  ) () () ∈ ∆ ()  Consequently, given ( ) ∈
∆ ()× V × 2H\∅ for all e e0 ∈ Y

e < e0 ⇔ ̂ (e; ) ≥ ̂
¡e0; ¢  (14)

With this in mind I make the following definition:

Definition 5: Experiment e is more valuable than experiment e0 if ̂ (e; ) ≥
̂ (e0; )  for all ( ) ∈ ∆ ()× V × 2H\∅.

Theorem 1: An experiment e is more valuable than another experiment e0 if and only
if e is sufficient for e0.

Proof. (Sufficiency) Suppose that e is sufficient for e0. Let  and  0 denote the
supports of e and e0 respectively. Fix ( ) ∈ ∆ () × V × 2H\∅ then, by (5), for

every 0 ∈ 
0
and  ∈   (· | 0) = Σ{|∈ } (· | ) Hence, for every 0 ∈  0 and

 ∈ { | 0 ∈  0}

max
∈


³
(·|

0
)
´
= max

∈

³

Σ{|∈ }(·|)

´
≤  (∗ ( (· | )  ))  for all  ∈ 

(15)

By (4),  (0) = Σ∈ (0 | ) () = Σ
∈{|∈ } (Σ∈ ( | ) ()) Conse-

quently,

̂
¡e0; ¢ = Σ0∈ 0 ¡0¢max∈


³
(·|

0
)
´

(16)

= Σ{|0∈ 0}Σ{|∈ } (Σ∈ ( | ) ())max
∈


³
Σ{|∈ }(·|)

´
≤ Σ{|∈ } ()

¡
Σ{|∈ 0}

¢
 (∗ (· | )  )

= Σ∈  ()max
∈


³
(·|)

´
= ̂ (e; ) 

where the inequality is implied by (15) and the last equality follows from the fact that, for

each  ∈ { |  ∈  } Σ{|0∈ 0} = 1

(Necessity) Since expected utility representations are a subset of the set of preference

relations that have hybrid representations, necessity is implied by the necessity part of

Blackwell’s theorem. ♠
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5 Characterization of the Hybrid Representation

5.1 Utility representations

The primitives of the hybrid model consist of a choice set, ∆ (∆ ())  whose elements are

simple two-stage compound lotteries on  and a preference relation < on ∆ (∆ ())  A

generic element  of ∆ (∆ ()) is a distribution function with finite support in ∆ (). A

generic element  of ∆ () is a distribution function with finite support in  Identifying

 ∈ ∆ () with  ∈ ∆ (∆ ()) implies that ∆ () ⊂ ∆ (∆ ())  For all  0 ∈ ∆ (∆ ())
and  ∈ [0 1] define  + (1− )0 ∈ ∆ (∆ ()) by (+ (1− )0) () =  () +

(1− )0 ()  for all  ∈ ∆ () 
The structure of the preference relation is depicted by the following axioms:

(A.1) (Weak order) < is complete and transitive binary relation on ∆ (∆ ()).
(A.2) (Archimedean) For all  0 00 ∈ ∆ (∆ ()) such that  Â 0 Â 00 there are

  ∈ (0 1) such that + (1− )00 Â 0 and 0 Â + (1− )00
(A.3) (First-Stage Independence) For all  0 00 ∈ ∆ (∆ ()) and  ∈ (0 1]  < 0

if and only if + (1− )00 < 0 + (1− )00
By the expected utility theorem we have:

Proposition 2. A preference relation < on ∆ (∆ ()) satisfies (A.1)-(A.3) if and only
if there exists a real-valued function  on ∆ () such that, for all  0 ∈ ∆ (∆ ()),

 < 0 ⇔ Σ∈ () () ≥ Σ∈00 () () 

Moreover,  is unique up to positive affine transformation.

5.2 Consistency and hybrid representation

Consider next a binary relation, <̂ on H × ∆ (). By Proposition 1, <̂ is a continuous

weak-order satisfying reduction of compound lotteries if and only if there is a continuous,

real-valued, function on ∆ () such that, for all ( 0)  ( ) ∈ H×∆ () ¡
 0

¢
<̂ ( )⇔ 

¡
Σ∈0 ()  ()

¢ ≥  (Σ∈ ()  ())  (17)

The next axiom links the preference relations < on ∆ (∆ ()) and <̂ on H×∆ ()  It
asserts that the preference between two act-probability pairs in H×∆ () is the same as
that between their corresponding reductions to one stage lotteries in ∆ ()  Formally,

(A.4) (Consistency) For all ( 0)  ( ) ∈ H ×∆ ()  ( 0) <̂ ( ) if and only if
0 <  

To state the hybrid representation theorem I introduce the following additional nota-

tions and definitions. Given  × Π ⊆ H × ∆ ()  define  ( ×Π) := { | ( ) ∈
 × Π} ⊆ ∆ () and denote by  ∈ ∆ (∆ ()) the generic compound lottery whose
support is  ⊆ ∆ ()  Let T := {  ( ×Π) |  ×Π ⊆ H×∆ ()}

Theorem 2. The following two conditions are equivalent:
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() < on ∆ (∆ ()) is an Archimedean weak-order satisfying first-stage independence;

<̂ on H × ∆ () is a continuous weak order satisfying reduction of compound lotteries;
jointly < and <̂ satisfy consistency.

() There exist real-valued continuous function  on ∆ () such that, for all   0 ∈ T


 <  0 ⇔ Σ∈ ()  () ≥ Σ∈ 0 0 ()  () 
Moreover,  is unique up to positive affine transformations.

Proof. To prove sufficiency, let ( )  ( ) ∈ H ×∆ ()  By reduction of compound
lotteries, ( ) ∼̂ and ( ) ∼̂ By Proposition 1, ( ) <̂ ( ) if and only if  () ≥
 ()  Thus, by transitivity of <̂ <̂ if and only if  () ≥  () 

By Proposition 2, {} < {} if and only if  () ≥  ()  Consistency, (A.5),

implies that  () ≥  () if and only if  () ≥  (). Hence, by the uniqueness of

  =  +    0 The conclusion follows from Proposition 2.

Necessity is immediate. ♣
Consider next the application of the hybrid representation to the ranking of experi-

ments. Quadruplets (e  ) ∈ Y×∆ ()×2H\∅ translate into ( (e)   (e)  ∗ ( ; e)) ∈
∆ ( )×∆ ()| |×H| | as follows:  (e) := ¡ (1)    ¡| |¢¢   (e) = ¡ (· | 1)    ¡· | | |¢¢
and ∗ ( ; e) = ¡∗ ( (· | 1)  )   ∗ ¡ ¡· | | |¢  ¢¢  Hence, the hybrid representa-
tion of experiments is as follows:

(e  )→ ̂ (e; ) = Σ=1 ()  (Σ∈∗ ( (· | )  ) () ( | ))  (18)

This is the representation in (14) and Definition 5.

6 Concluding Remarks

6.1 The value of information

Lurking in the background of Blackwell’s theorem are two tacit properties of expected util-

ity theory — consequentialism and reduction of compound lotteries. The former maintains

that, facing sequential decisions involving risky choices, decision makers are “forward look-

ing” in the sense that, at every decision node, their preferences are unaffected by outcomes

that did not materialize, or “roads not taken,” along the decision making path. The latter

asserts that decision makers evaluate acts solely by the ultimate probability distributions

they induce on outcomes regardless of whether the outcome is drawn, in a single step, from

a known distribution or is arrived at by more convoluted trajectory that includes chance

and decision nodes.

Safra and Sulganik (1995) demonstrated that, maintaining consequentialism and reduc-

tion of compound lotteries, a more informative experiment à la Blackwell is ranked below
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a less informative one by convex non-expected utility preferences.7 The present result “ex-

plains” this finding arguing that Blackwell’s theorem implies that the only decision theory

that maintains the properties of reduction of compound lotteries and consequentialism,

according to which being better informed is necessarily valuable is expected utility theory.

6.2 Related literature

Segal (1990) was the first to propose a model of decision making under risk in which

he replaced the reduction of compound lotteries with certainty equivalence reduction, to

characterized rank-dependent utility model.8 Seo (2009) obtains smooth ambiguity averse

representations of choice under uncertainty that departs from the reduction of compound

lotteries axiom. Halevy (2007) presented experimental evidence suggesting that subjects

whose behavior violates reduction of compound lotteries under risk are more likely to

exhibit ambiguity aversion when facing decision making under uncertainty.

The present work argues that being better informed is unambiguously better. This

natural and intuitive presumption justifies the departure from the reduction of compound

lotteries in sequential decision situations in which, at the interim stages, information may

be exploited by choosing acts that better match the underlying data.

Following Blackwell (1953), the primitives of the hybrid model include objective prob-

ability distributions on the state space. The Bayesian tradition in the theory of decision

making under uncertainty maintains that the prior state probabilities are derived from the

underlying reference relations. In view of these distinct outlooks, it is worth mentioning

that the representation in Proposition 1 of preference relation on H × ∆ () can be ob-
tained by the application of the probabilistic sophisticated choice models of Machina and

Schmeidler (1992, 1995). The primitives of these models consist of a choice sets, F and a

preference relation & on F . A probability  ∈ ∆ () and a utility function,  on the set
{ |  ∈ F ,  ∈ } are derived concepts. In particular, Machina and Schmeidler show
that a preference relation & on F satisfies the axioms of the probabilistic sophisticated

choice if and only if there is a utility function  on { |  ∈ F ,  ∈ } and a probability
distribution  ∈ ∆ () such that for all   ∈ F ,  &  if and only if  () ≥  ()  This

result may be regarded as the Bayesian version of Proposition 1. It implies the reduction

of subjective compound lotteries corresponding ( ) ∈ F ×∆ ()  In this interpretation,
the hybrid model of this paper is a model of choice of experiments under uncertainty.

7Wakker (1988) showed that departing from the independence axiom while maintiaining consequentiolism

and reduction of compound lotteries necessarily result in situations in which the decision maker refuses free

information. Schlee (1990) demonstrate that the same point in the context of the the rank-dependent utility

model.
8Since the independence axiom of expected utility theory implies reduction of compound lotteries, de-

parture from the latter property implies the departure from the former axiom.
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