
Ambiguity Aversion, Risk Aversion, and the Weight of

Evidence

Edi Karni

Johns Hopkins University∗

March 9, 2023

Abstract

Wakker (1990) showed that under natural conditions the Choquet expected utility

(CEU) and the rank-dependent utility (RDU) models are identical. Invoking Wakker’s

result and applying the certainty equivalent reduction procedure, this paper shows

that risk aversion in the RDU model implies ambiguity aversion in the corresponding
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1 Introduction

Bayesian decision theory, pioneered by Ramsey (1931) and de Finetti (1937), culminated

in Savage’s (1954) and Anscombe and Aumann (1963) subjective expected utility (SEU)

models. These models presume that decision makers entertain beliefs about the likelihoods

of events that are quantifiable by probability measures. Moreover, these beliefs are mani-

fested in, and can be inferred form, decision makers choice behavior. Using different choice

sets, both Savage and Anscombe and Aumann depict structures of preference relations

(i.e., patterns of choice behaviors) that are necessary and sufficient to quantify a decision

maker’s beliefs by a unique subjective probability measure.

Consider a decision maker whose belief that an event, say  obtains is quantified by

a probability  (). Presumably, this belief incorporates the information of the decision

maker regarding the plausibility of this event. Moreover, it is natural to suppose that the

quality of the information and the confidence in the belief it inspires, should affect the

decision maker behavior. The subjective expected utility models, however, fail to account

for the weight of evidence, or information, that support the decision makers’ probabilistic

belief. In particular, given a posterior probability a decision maker’s choices are the same

regardless of the evidence supporting that posterior. Put differently, SEU theories, accords

no weight to the evidence supporting the decision maker’s beliefs.

To grasp the issue, consider an urn containing a hundred balls that are known to be

either red or black. No other prior information about the color composition of the balls

in the urn is available. A ball is about to be drawn at random and a decision maker is

contemplating placing a bet on its color. Compare the following two scenarios; in the first

scenario, before placing the bet, a sample of balls are drawn from the urn repeatedly, with

replacement, and their colors observed. Suppose that after repeated draws, it so happens

that the number of red and black balls in the sample is the same. The decision maker

concludes that observing either color in the next draw is equally likely. In the second

scenario no balls are drawn before the decision maker is required to place the bet. It seems

reasonable that, by reason of symmetry (or insufficient reason), the decision maker believes

that the events drawing a red ball and drawing a black ball are equally likely. According

to subjective expected utility theory, in both scenarios, the decision maker’s subjective

probabilities of the two events are the same and equal 12 Consequently, the decision

maker should be indifferent between betting on red and betting on black, and he should
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also be indifferent to between betting on red on a draw from the tested and the untested

urn. The greater confident in his belief about the likely outcome if the ball is drawn form

the tested urn is completely disregarded.

This lack of consideration of the weight of evidence supporting the decision making

beliefs has been long recognized. In Treatise on Probability Keynes discusses the scenario

similar to the one described above. In Keynes’ words, “...in the first case we know that

the urn contains black and white in equal proportions; in the second case the proportion

of each color is unknown, and each ball is as likely to be black as white. It is evident that

in either case the probability of drawing a white ball is 1/2, but that the weight of the

argument in favour of this conclusion is greater in the first case.” Keynes (1921 [1973], p.

82).1

Ellsberg (1961) argued that, facing choices between the bets described in the example

above, decision makers exhibit strict preference for betting on either color of a ball drawn

form an urn containing equal number of black and white balls over betting on either color of

a ball drawn from an urn in which proportion of each color is unknown. These preferences

are inconsistent with the existence of additive subjective probability à la Savage.

Schmeidler (1982, 1986, 1989) proposed a novel decision model, that later became

known as Choquet expected utility (CEU), designed to accommodate choice behavior that

accounts for the information supporting the decision maker’s beliefs.2 According to the

CEU model, decision makers maximize the expectations of a utility function with respect

to a non-additive probability measure, or capacity. To capture the preference for being

better informed, Schmeidler introduced the notion of ambiguity aversion and characterized

it by convex capacity.3

About the same time that Schmeidler developed the CEU model, a class of theories of

decision making under risk, dubbed rank-dependent utility models (RDU) were introduced.

1Zappia (2020) contains a detailed review of this issue including an exchange between Savage and Popper

prompted by it. Zappia (2020) mentioned that Popper (1958) “...argued that he found it paradoxical that

two apparently similar events should be attributed the same subjective probability even though the evidence

supporting judgment in one case was stronger than in the other case.”
2For alternative modeling of Choquet expected utility see Gilboa (1987), Wakker (1989a, 1989b), Naka-

mura (1990) and Chew and Karni (1994).
3Schmeidler (1989) dubbed the preference for betting on events whose probability is supported by more

evidence uncertainty aversion. This term was replaced by abiguity aversion in the nomenclature of decision

theory. Schmeidler also discusses several equivalent characterizations of ambiguity aversion.
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These include Quiggin’s (1982) Anticipated Utility, Yaari’s (1987) Dual Theory as well as

the general RDU model of Chew (1989). According to these models preference relations on

objective risks, or lotteries, are represented by the inner product of a utility function on the

set of outcomes and a transformation function on the corresponding probabilities, where

the transformation of the objective probabilities depends on the ranks of the outcomes in

the set of feasible outcomes.

Wakker (1990) showed that under natural conditions the CEU and RDU models are

identical. Invoking Wakker’s result, I argue that the representation of risk aversion by a

RDU model implies the representation of ambiguity aversion by the corresponding to a

CEU model.

A different formalization of the idea of ambiguity aversion proposed by Klibanoff, Mari-

nacci, and Mukerji (2005) and Seo (2009). In their models ambiguity aversion is captured

by a concave real-valued function on the expected utilities associated with the set of all

conceivable priors. In this paper I argue that, properly formulated, smooth ambiguity

aversion may also be regarded as risk aversion.

The next section sets the stage, describing briefly the rank-dependent utility and Cho-

quet expected utility representations. Section 3 discusses two procedure of reduction of

compound lotteries and introduces the lead example. Section 4 includes the statement and

proof of the main result. Section 5 applies the main idea to the models based on second-

order beliefs. The concluding section includes discussion and interpretation of the findings

of this work.

2 Setting the Stage

2.1 Subjective expected utility and rank-dependent utility

Let  be a finite set of states and let  be an interval in the real line. Denote by G ()
the set of cumulative distribution functions (CDF) on  with finite supports. The choice

set,  := { :  → G ()} consists of elements representing alternative courses of action
and are referred to as acts. For all   ∈  and  ∈ [0 1]  define ( + (1− ) ) ∈ 

by ( + (1− ) ) () =  () + (1− )  ()  for all  ∈  Thus,  is a convex set in a

linear space.

A preference relation, denoted < is a complete and transitive binary relation on  The
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asymmetric and symmetric parts of < are denoted by Â and ∼ respectively Anscombe
and Aumann (1963) provide necessary and sufficient conditions for the representation of

< by a subjective expected utility functional. Formally, for all   ∈ 

 <  ⇔ Σ∈ ( ()) () ≥ Σ∈ ( ()) ()  (1)

where the utility function  is affine real-valued function on  and  is an additive proba-

bility measure on 2 . The utility-probability pair ( ) is jointly unique (i.e., given  the

function  is unique up to positive affine transformation and given   is unique).

The RDU models — Quiggin’s (1982, 1993) Anticipated Utility,4 Yaari’s (1987) Dual

Theory as well as the general RDU model of Chew (1989) — are theories of decision making

under risk (that is, the domain of the preference relation is the set, G () ⊂  of constant

acts that deliver the same CDF in every state) According to these models a preference

relation < on G () is represented by RDU. Formally, for all  ∈ G () 

 <  ⇔
Z


 ()  ( ◦) () ≥
Z


 ()  ( ◦  ) ()  (2)

where the utility,  is a real-valued function on  unique up to positive affine transfor-

mation, and  : [0 1] → [0 1] is nondecreasing, continuous, and onto function, dubbed

probability transformation function.

2.2 Rank-dependent and Choquet expected utility

To analyze the relationships between ambiguity aversion and risk aversion we need to

convert the RDU models to theories of decision making under uncertainty. This conversion

was attained by Wakker (1990). Invoking a capacity of the CEU model, Wakker induced

a probability transformation function in the RDU model such that when composed with

an additive probability measure, mimics the capacity of the CEU model. Formally, a

preference relation, <̂ on , is said to have a CEU representation if for all   ∈ 

<̂ ⇔
Z


 ( ())  () ≥
Z


 ( ())  ()  (3)

where  is a real-valued affine function on G ()  unique up to positive affine transforma-
tion, and  : 2 → [0 1] is a capacity measure.5

4See also Segal (1989) and (1993).
5A capacity measure is a set function  on a measurable space (Σ) such that  (∅) = 0  () = 1

and  () ≤  () for all  ∈ Σ such that  ⊆ 
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Given a preference relation <̂ on  that has a CEU representation, define a binary

relation <∗on 2 as follows:  <∗  if and only if  () ≥  ()  Consider a decision

maker whose preference relation <̂ on  incorporates beliefs that are represented by a

finitely-additive subjective probability measure,  on 2, such that  <∗  if and only if

 () ≥  ()  Thus,  () ≥  () if and only if  () ≥  ()  Therefore, there exists

strictly increasing and onto probability transformation function  : [0 1] → [0 1] defined

by  () = ( ◦ ) ()  for all  ∈ 26 ThenZ


 ( ())  () =

Z


 ( ())  ( ◦ ) ()  (4)

For each  ∈  let  :=
¡
()

¢
∈  where () is the certainty equivalent of  ()

(i.e.,  ( ()) = 
³
()

´
 where  is the Dirac measure). Then, by (3), ∼̂ and,

by (1),  ∼  . For each  ∈  define  () = { ∈  | () ≤ )}  ∈  and let

 () :=  ( ())  for all  ∈  For each  ∈ Z


 ( ())  ( ◦ ) () =
Z



¡
()

¢
 ( ◦ ) () =

Z


 () ( ◦ ) ( ())  =

Z


 ()  ( ◦ ) () 

(5)

Therefore, we have a RDU model based on (additive) subjective probability measure  on

 that mimics the CEU model

3 The Weight of Evidence and Risk Aversion

3.1 Two reduction procedures

Resolutions of uncertainties may occur in stages as information may be obtained sequen-

tially. If acting upon the receipt of early information is not feasible, the situation is repre-

sented by compound lotteries that may involve subjective and objective uncertainties. A

prime example of such compound lotteries is the Anscombe and Aumann (1963) model in

which the decision maker’s beliefs about the likely outcomes of a horse race are represented

by subjective probabilities and the payoffs, contingent on the outcomes of the horse race,

are ‘roulette lotteries’ that assign objective probabilities to a set of prizes.

6Wakker (1990) Lemma 6 gives necessary and sufficient condition for the existence of such probability

transformation function
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The literature dealing with decision making under uncertainty includes alternative pro-

cedures of reducing compound lotteries to equivalent (i.e., indifferent) one stage lotteries.

To discuss the reduction procedures formally, let G () denote the set of one stage lot-
teries. A two-stage compound lottery is a probability distribution on G ()  Formally,
2 = [ (1)  1; (2)  2; ; ()  ]  where  ∈ G () and  (·) is a possible subjec-
tive probability measure on  Denote by L2 the set of two-stage compound lotteries.

The reduction of compound lotteries axiom requires that the probabilities of the ulti-

mate outcomes, or prizes, be the product of the probabilities of reaching the nodes along

the path leading to the outcome. For our purpose we only need to two-stage compound

lotteries.

Reduction of Compound Lotteries Axiom (RCLA): For all 2 ∈ L2, 2 ∼
[Σ∈ ()  (1)  1; ;Σ∈ ()  ()  ]  where  () :=  () −  (−1)   =

1 

An alternative reduction procedure calls for the replacement of the second-stage lottery

by its certainty equivalent to obtain one stage lottery. Formally, denote by  the constant

act that assigns the lottery  ∈ G () to every  ∈ . The certainty equivalent of  is

 () ∈ R defined by () ∼ 

Certainty Equivalence Reduction Axiom (CERA): For all 2 ∈ L2, 2 ∼£
 (1)  (1); (2)  (2); ; ()  ()

¤


Preference relations that admit expected utility representation are consistent with both

reduction procedures. By contrast, preference relations that admit rank-dependent utility

representations with nonlinear probability transformation functions are consistent with

CERA but not with RCLA (See Segal [1990]).

3.2 The lead example

Consider the urn, described in the introduction, containing 100 balls that are either red or

black. The color composition of the balls in the urn admits 101 feasible states. Imagine

that it is possible to inspect the content of the urn to verify its composition. It is then

possible to ask decision makers to choose among acts whose payoffs are contingent on the

color composition of the balls in the urn. To formalize this decision problem, let  =

{0 1  100}, where  ∈  is the number of red balls in the urn. Consider a bet that pays

off $100 if a ball drawn at random is red and $0 otherwise. Then, from the decision maker’s
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viewpoint, the bet is an act,  := ( ())∈ whose payoffs are state-contingent lotteries

 () = ($100 100; $0 (1− )100)  Let  (()) denote the certainty equivalent of

 () (i.e., the decision maker is indifferent between the constant act that pays  ( ()) ∈
R in every state and the constant act that pays off $100 with probability 100 and $0

otherwise). Define the induced act  = ( ( (0))   ( (1))    ( (100))) 

Suppose that a decision maker’s belief regarding the color composition of the balls is

represented by a subjective probability measure  (· | ) on  where  = (1  ) 

 ≥ 1 denotes the colors of a sample of  balls drawn at random from the urn with

replacement, and let 0 indicates that no ball is drawn. Then 
¡· | 0¢ =  (·) is the

subjective probability representing the prior belief.

Consider the decision maker’s choice between the acts,  | and  |  of betting
on red conditional on observing the samples  and  respectively, where 0 ≤  ≤ 

Clearly,  (· | ) is a mean-preserving squeeze of  (· | ) 7 By definition every risk-averse
decision maker prefers  | over  | .

Let there be two identical urns, say  and , containing 100 balls each that are either

red or black. Suppose that random samples of sizes 2 and 2,    were drawn from 

and  respectively, with replacement. Assume that the prior 
¡· | 0¢ is symmetric and

suppose that both samples happen to contain equal number of red and black balls.

Consider a decision maker whose preference relation has a RDU representation as in

(4) and (5) facing a choice between two bets;  | that pays off $100 if the next ball
drawn at random from urn  is red, and  | that pays off $100 if the next ball drawn
at random from urn  is red. By Bayes rule, given a state  and a sample of size  = 2

by the binomial distribution, the probability of  red balls is

Pr ( | ) = !

! ( − )!

¡
 | 0¢ ¡1− 

¡
 | 0¢¢− = ∙ 1

!

¡
 | 0¢ ¡1− 

¡
 | 0¢¢¸

By Bayes rule, the posterior probabilities satisfy, for all  = 2  = 1 2 

 ( | ) =
£
1
!

¡
 | 0¢ ¡1− 

¡
 | 0¢¢¤  ¡ | 0¢

Σ0∈
£
1
!
 (0 | 0) (1−  (0 | 0))¤  (0 | 0) 

An expected utility-maximizing decision maker would be indifferent between the two

bets. To grasp this suffices it to note that an expected utility maximizer abides by the

7Formally,


=0 

 |  := Π


 |    ∈ {0 1  101} Then, 

=0 [Π ( | )−Π ( | )] ≤ 0 for
all  ∈ {0 1  101} and 100

=0 [Π ( | )−Π ( | )] = 0
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reduction of compound lotteries axiom. Letting  (100) = 1 and  (0) = 0 an expected

utility maximizing decision maker evaluates the bets as follows:

 ( |) = Σ100=0



100
 ( | ) = 1

2
= Σ100=0



100
 ( | ) =  ( |) 8

However, a risk-averse RDU maximizing decision maker would strictly prefer to bet on

red form urn  To grasp this, recall that a RDU maximizing decision maker who is not

an expected utility maximizer does not abide by the RCLA, displaying CERA instead.

Moreover, risk-aversion in the RDU model requires that the probability transformation

function,  that figures in the representation (5) be concave (see Chew, et al [1987]). Since

 (· | ) is a mean-preserving spread of  (· | )  the RDU valuations of the bets are:

 ( |) =
X
∈

 ( ( ()))
£
 (Σ=0( | 2))− 

¡
Σ−1=0( | 2)

¢¤
and

 ( |) =
X
∈

 ( ( ()))
£
 (Σ=0( | 2))− 

¡
Σ−1=0( | 2)

¢¤


Hence, by risk-aversion,  ( |)   ( |)  The weight of evidence tilts the bet in favor
of the option in which the belief is based on more informative experiment. This observation

underscores the point on which I elaborate in the analysis below, that it is risk-aversion

in the context of the RDU model that captures the effect of the weight of evidence on the

decision maker’s preferences. The Ellsberg paradox is a special case of the argument above

in  = 0 and →∞

8To grasp this claim observe that, by symmetry, 

 | 0 = 


100−  | 0  for all  ∈  Thus,



 | 0 1− 


 | 0 = 


100−  | 0 1− 


100−  | 0 

and

 ( |) = 1

100

100
=0




 | 0 1− 


 | 02   | 0 

Σ0∈ [ (0 | 0) (1−  (0 | 0))]2  (0 | 0)
=

1

100

50
=0


2

 | 0 1− 


 | 02   | 0(|0)(1−(|0))+(100−|0)(1−(100−|0))(100−)

2(|0)(1−(|0))


Σ0∈ [ (0 | 0) (1−  (0 | 0))]2  (0 | 0)

=

50

100

50
=0

2



 | 0 1− 


 | 02   | 0

Σ0∈ [ (0 | 0) (1−  (0 | 0))]2  (0 | 0)
=
1

2


This is true for all  = 2  = 0 1
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4 Risk aversion and ambiguity aversion

4.1 Preliminaries

A preference relation < on G () is said to display risk aversion if, for all  ∈ G () 
 <  whenever  differs from  by a mean-preserving spread. It is said to display strict

risk aversion if  Â 

The theory of risk aversion in the RDU model was developed in Chew et al (1987).

Corollary 2 of Chew et al (1987) asserts that a preference relation < on G () that admits
a RDU presentation → R


 ()  ( ◦) () displays risk aversion if and only if both the

utility function, , and the probability transformation function,  are concave. It displays

strict risk aversion if and only if it displays risk aversion and either  or  or both are

strictly concave.

The notion of ambiguity aversion was first formulated and characterized by Schmeidler

(1982) and was further developed in Schmeidler (1989). Formally, a preference relation

<̂ on  is said to display ambiguity aversion if, for all   ∈  and  ∈ [0 1]  <̂
implies that  + (1− ) <̂. It is said to display strict ambiguity aversion if  +

(1− ) Â̂ If <̂ admits CEU representation then ambiguity aversion is characterized

by a convex capacity (i.e., a capacity satisfying  ( ∪ ) +  ( ∩ ) ≥  () +  (),

for all  ∈ 2). Equivalently, it is characterized by concavity of the CEU functional

 () =
R

 ( ())  () 9

To set the stage for the main result we need the following.

Lemma: For all   ∈ ,  ∈ [0 1] and  ∈ 


¡
+(1−) ()

¢
=  ( ()) + (1− ) ( ()) 

Proof. By the theorem of Anscombe and Aumann (1963), the affinity of the utility function

implies that, for all   ∈  and  ∈ [0 1] 

Σ∈ ( () + (1− )  ()) () = Σ∈ ( ()) () + (1− )Σ∈ ( ()) () 

(6)

Equivalently, by the certainty equivalence reduction axiom,

Σ∈
¡
+(1−) ()

¢
 () = Σ∈ ( ()) () + (1− )Σ∈ ( ()) ()  (7)

9See the Proposition in Schmeidler (1989).
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But, for all  ∈ 

Σ∈ ( ()) () =
Z


 ()  ( ())  (8)

Hence, by (7) and (8), for all   ∈  and  ∈ [0 1] Z


 () 
¡
+(1−) ()

¢
= 

Z


 ()  ( ()) + (1− )

Z


 ()  ( ()) (9)

=

Z


 ()  ( ( ()) + (1− ) ( ())) 

By the uniqueness of  we get that


¡
+(1−) ()

¢
=  ( ()) + (1− ) ( ())  (10)

for all   ∈ ,  ∈ [0 1] and  ∈  ¥

4.2 The Main Result

The main result of this paper is the demonstration that risk aversion in the RDU model

implies ambiguity aversion in the corresponding CEU model.

Theorem: Let <̂ and < on  have CEU and RDU representations  → R

 ( ())  ()

and  → R

 ( ())  ( ◦ ) ()  respectively and suppose that R


 ( ())  () =

R

 ( ())  ( ◦ ) () 

If < displays (strict) risk aversion then <̂ displays (strict) ambiguity aversion.

Proof. By the hypothesis and (4) and (5),Z


 ( ())  () =

Z


 ( ())  ( ◦ ) ( ()) =

Z


 ()  ( ◦ ) ()  (11)

Corollary 2 of Chew et al (1987) asserts that a necessary condition for < to display

(strict) risk aversion is that  is (strictly) concave. Thus, if < displays (strict) risk aversion
thenZ


 ()  ( ◦ ( + (1− ))) () ≥ ()
Z


 ()  ( ◦ ) ()+(1− )

Z


 ()  ( ◦) () 

(12)

The convexity of  and the affinity of  imply that

 ( () + (1− )  ()) =  ( ()) + (1− )( ()) ∀ ∈  (13)

By the Lemma and the definition of  () Z


( ( ()) + (1− ) ( ()))  () =

Z


 ()  ( ◦ ) ¡+(1−) ()
¢

(14)

11



=

Z


 ()  ( ( ()) + (1− ) ( ())) =

Z


 ()  ( ◦ ( + (1− ))) () 

and



Z


 ( ())  ()+(1− )

Z


 ( ())  () = 

Z


 ()  ( ◦ ) ()+(1− )

Z


 ()  ( ◦) () 

(15)

Thus, (11) and (12) implies thatZ


( ( ()) + (1− ) ( ()))  () ≥ ()
Z


 ( ())  ()+(1− )

Z


 ( ())  () 

(16)

By the Proposition of Schmeidler (1989), <̂ displays (strict) ambiguity aversion if and

only if  ( ()) :=
R

 ( ())  () is concave. Hence, if < displays risk aversion then <̂

displays ambiguity aversion. ¥

4.3 Bayesian updating

The issue of updating ambiguous beliefs has been thoroughly studied, and various axiomatic-

based updating rules have been proposed both for Choquet expected utility (see, for ex-

ample, Gilboa and Schmeidler (1993), Eichenberger, Grant and Kelsey (2007)).

The approach taken in this paper suggests a new and natural procedure for updating

the capacities by the application of Bayes rule in situations in which the Choquet expected

utility has an equivalent rank-dependent utility representation. The idea is as follows:

Under the conditions specified in Wakker’s (1990), capacities may be expressed as trans-

formations of additive probability measure. Update the additive probability measure using

Bayes rule and update the corresponding capacity by setting the capacity of each event

equal to the transformation of the updated additive probability of the same event. Formally,

let  denote a sample of observations. For each event  set  ( | ) = ( ( | ))
where  ( | ) =  ( | ) ()  [ ( | ) () +  ( | \) (1−  ()]  In partic-

ular,  ( () | ) = ( ( () | ) =  ◦ ( | )   ∈ 

5 Ambiguity and Risk Aversion with Second-Order Beliefs

Klibanoff et. al (2005) and Seo (2009) provide alternative axiomatizations of a model of

decision making under uncertainty in which ambiguity is expressed by the set of conceiv-

able priors and ambiguity attitudes are captured by a real-valued function on the reals

12



representing the expected utilities of acts under these priors. A decision maker’s beliefs

about the likelihoods of the priors is represented by a probability measure referred to as

second-order belief. Formally, a preference relations exhibiting smooth ambiguity aversion

has the representation

 7→
Z
Π



µZ


 ( ())  ()

¶
Φ ()  (17)

where Π := { ∈ [0 1]|| | Σ∈ () = 1}, is the set of all probability distributions on the
set of states,  is a real-valued function on R,  is a real-valued function on ∆ ()  and Φ a

probability measure on Π representing the second order beliefs. In the usual interpretation

risk aversion is captured by the concavity of  and ambiguity aversion by that of 

Adopting the approach of the preceding analysis I show below that smooth ambiguity

aversion may be interpreted as (extra) layer of risk aversion. To being with, I use the

CERA to translate the ambiguity to risk. With this objective in mind, consider the risk

represented by a choice of an act,  under a prior  ∈ Π and define the certainty equivalent
of this risk, denoted  ()  as the solution of the equation

 ( ()) =

Z


 ( ())  ()  (18)

Then the representation (17) may be written as

 7→
Z
Π

( ◦ ) ( ()) Φ ()  (19)

For every  ∈ R, define  () = { ∈ Π |  () ≤ } and let  () := Φ ( ())   ∈ R
Then Z

Π



µZ


 ( ())  ()

¶
Φ () =

Z
( ◦ ) ()  ()  (20)

Given an act  let ̂ be a mean-preserving spread of  , then the decision maker

displays risk aversion if and only if  < ̂ if and only if the composition ◦ is a concave
function. In particular, the concavity of , which presumably captures the decision maker’s

ambiguity aversion may also be an expression a second layer of risk aversion. Indeed, since

 is a concave transformation of  by a theorem of Pratt (1964),  ◦ exhibits greater risk
aversion than 

Consider next the effect of the weight of evidence. Returning to the lead example, the

utility of betting on red from urn  is

 ( |) = Σ100=1 ( ◦ ) ( ()) [ ( () | 2)− ( (−1) | 2)] 
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and that of betting on red from urn  is

 ( |) = Σ100=1 ( ◦ ) ( ()) [ ( () | 2)− ( (−1) | 2)] 

But    implies that  (· | 2) is a mean-preserving squeeze of  (· | 2)  and

(strict) risk aversion implies that  ( |)   ( |)  The weight of evidence makes the
betting on red from the less ambiguous urn preferable.

6 Discussion

Decision makers’ preference to base their beliefs (about the likely realization of the events

that underlie the risks they are facing) on more information, dubbed ambiguity aversion,

is captured by convex capacity in the CEU model. By contrast, risk aversion depicts

the decision maker’s preference to avoid larger spread of payoffs of the risks, is captured

by the concavity of the utility and the probability transformation functions in the RDU

models. Generally speaking, ambiguity aversion and risk aversion are distinct concepts as

the following example illustrates.

Consider the Ellsberg (1961) two urn experiment mentioned in the introduction. For

the sake of simplifying the exposition, consider a decision maker whose utility function is

linear and normalized so that  ($0) = 0 and  ($100) = 1.10 Suppose that the decision

maker faces a choice between betting on the event,  drawing a red ball, and the event

 drawing a black ball, from the ambiguous urn (i.e., being paid $100 if the ball drawn

at random from the ambiguous urn is red and $0 otherwise). According to the CEU

model symmetry and ambiguity aversion imply that  () =  ()  12 According

to Wakker (1990), by the additivity of the prior probability measure 
¡· | 0¢  we have


¡
 | 0¢ = 

¡
 | 0¢ = 12 By (4),  () = ( ◦ ) ()   ∈ {}

Ambiguity aversion implies that the decision maker prefers betting on red from the

unambiguous urn over betting on red from the ambiguous urn. According the CEU model

this is equivalent to 0 () + 1 ()  12 For instance, letting  () =  () = 14

implies, according to Wakker (1990), that 
¡

¡
 | 0¢¢ = 

¡

¡
 | 0¢¢ =  (12) = 14

(e.g.,  () = 2). According to Chew et al. (1987) the corresponding RDU model exhibits

risk proclivity. Indeed, 0× 
¡

¡
 | 0¢¢+ 1× ¡1− 

¡

¡
 | 0¢¢¢ = 34 which is smaller

10 In the case of RDU theory this corresponds to Yaari’s (1987) dual theory. The CEU representation is:

 7→ 

[Σ∈ () ()]  () 
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than the certainty equivalent of the risk represented by 
¡· | 0¢  Ambiguity averse decision

maker prefers betting on either color from the ambiguous urn over that from the ambiguous

urn whereas the RDU decision maker displays the opposite preferences.11

How do we reconcile these examples with the main result of this paper? The answer

is to be found in the way we conceive ambiguity. According to the analysis in this paper,

a bet on any color form the ambiguous urn is modeled as two-stage compound lottery in

which the beliefs about the likely realization of the states in the first stage are represented

by a convex capacity measure. Risk aversion in the corresponding RDU model is captured

by concave probability transformation function of additive probability measures that ranks

the probability of event in the same way that the convex capacity does. The state-dependent

second stage risks represented by the bets, either or red or black, are replaced by their state-

dependent certainty equivalents. For instance, because no ambiguity is associated with the

unambiguous urn, the capacity assigned to the event red ball drawn at random form that

urn is  () = 12. Consequently, 
¡
 | 0¢ =  ()  Thus, the second-stage risk of

betting on red from the unambiguous urn is reduced (by CERA) to a certainty equivalent

outcome equal to $50 (given the linear utility, 0
¡
 | 0¢+ 1 ¡ | 0¢ = 12 =  ($50)).

If betting on the color of a ball from the ambiguous urn display ambiguity averse behavior

according to the CEU model then, as is shown by the theorem, the corresponding RDU

model displays risk-averse behavior. Let 0
¡
 | 0¢+1 ¡ | 0¢ = 100 be the expected

value of betting on red if the state (i.e., the number of red balls in the ambiguous urn) is

 = 0 1  100 then the certainty equivalent a bet on red,  ()  is given by the equation

 () =
1

100

100X
∈0


£

¡
Σ=0( | 0)

¢− 
¡
Σ−1=0( | 0)

¢¤
 $50

where the inequality is an implication of the concavity of . Thus, given our way of modeling

ambiguity there is no contradiction between ambiguity aversion in the CEU model and risk

aversion in the corresponding RDU model. Moreover, the models agree on the ranking of

bet on the same color from the ambiguous and unambiguous urn.

The analysis of section 5 reveals that, under CERA, risk and ambiguity aversion are

fundamentally the same, describing attitudes towards mean-preserving spreads of the ul-

11A similar situation in which the CEU decision maker exhibits ambiguity seeking whereas the cor-

responding RDU decision maker exhibits risk aversion is easy to construct (e.g., let  () =
√
 and

 () =  () =

12).
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timate payoffs. The spread may accounted for by irreducible risks or by risks that are

reducible through the acquisition of information. The reduction of compound risks proce-

dures determine whether the attitudes towards sources of the spread are treated as separate

factors whose modeling requires distinct theoretical concepts or combined by the CERA

procedure and treated as unified notion of risk aversion.

I have long been puzzled by the fact that institutions designed to better allocate risk-

bearing (such as insurance and financial markets) are prevalent whereas no institutions

appear to improve the allocation of ambiguity. Perhaps the answer is that ambiguity

aversion is an aspect of risk aversion and therefore does not require special institutions.
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