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Abstract
Wakker (Theory Decis 29:119–132, 1990) proved that the rank-dependent util-
ity model is a special case of Choquet expected utility model. Invoking this result 
and applying the certainty equivalent reduction procedure, this paper shows that 
risk aversion in the rank-dependent utility model implies ambiguity aversion in the 
corresponding Choquet expected utility model. Consequently, the pattern of choice 
depicted by Ellsberg’s experiments and, more generally, preference for evidence to 
support their beliefs is an expression of decision makers’ risk aversion. In addition, 
the paper introduces a new procedure of updating capacities by the application of 
Bayes rule that smooth ambiguity aversion may also be regarded as risk aversion.

Keywords Ambiguity aversion · Risk aversion · Choquet expected utility · Rank-
dependent utility · Bayesianism

1 Introduction

Bayesian decision theory, pioneered by Ramsey (1931) and de Finetti (1937), culmi-
nated in Savage’s (1954) and Anscombe and Aumann’s (1963) subjective expected 
utility (SEU) models. These models presume that decision makers entertain beliefs 
about the likelihoods of events that are quantifiable by probability measures. 
Moreover, these beliefs are manifested in, and can be inferred from, decision mak-
ers’ choice behavior. Using different choice sets, both Savage and Anscombe and 
Aumann depict structures of preference relations (i.e., patterns of choice behavior) 
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that are necessary and sufficient to quantify a decision maker’s beliefs by a unique, 
subjective, probability measure.

Consider a decision maker whose belief that an event, say E,  obtains is quanti-
fied by a probability �(E). Presumably, this belief incorporates the decision maker’s 
information regarding the plausibility of this event. Moreover, it is natural to sup-
pose that the quality of the information and the confidence in the belief it inspires, 
should affect the decision maker’s behavior. Specifically, it is natural to suppose that 
decision makers prefer taking courses of action about the likely outcomes of which 
their beliefs are more informed. The subjective expected utility models, however, 
fail to account for the weight of evidence, or information, that support the decision 
makers’ probabilistic beliefs. In particular, given a posterior probability a decision 
maker’s choices are the same regardless of the evidence supporting that posterior. 
Put differently, SEU theories accords no weight to the evidence supporting the deci-
sion makers’ beliefs.

To grasp the issue, consider an urn containing a hundred balls that are known to 
be either red or black. No other prior information about the color composition of the 
balls in the urn is available. A ball is about to be drawn at random and a decision 
maker is contemplating placing a bet on its color. Compare the following two sce-
narios; in the first scenario, before placing the bet, a sample of balls are drawn from 
the urn repeatedly, with replacement, and their colors observed. Suppose that after 
repeated draws, it so happens that the number of red and black balls in the sample 
is the same. The decision maker concludes that observing either color in the next 
draw is equally likely. In the second scenario no balls are drawn before the decision 
maker is required to place the bet. It seems reasonable that, by reason of symmetry 
(or insufficient reason), the decision maker believes that the events drawing a red 
ball and drawing a black ball are equally likely. According to subjective expected 
utility theory, in both scenarios, the decision maker’s subjective probabilities of the 
two events are the same and equal 1/2. Consequently, a subjective expected utility 
maximizing decision maker displays indifference between betting on red and betting 
on black, and also between betting on red on a draw from the tested and the untested 
urn. The greater confidence in his belief about the likely outcome if the ball is drawn 
from the tested urn is completely disregarded.

This lack of consideration of the weight of evidence supporting the decision mak-
ing beliefs has been long recognized. In Treatise on Probability Keynes discusses a 
scenario similar to the one described above. In Keynes’ words, “…in the first case 
we know that the urn contains black and white in equal proportions; in the second 
case the proportion of each color is unknown, and each ball is as likely to be black 
as white. It is evident that in either case the probability of drawing a white ball is 
1/2, but that the weight of the argument in favour of this conclusion is greater in the 
first case.” Keynes (1921 [1973], p. 82).1

1 Zappia (2020) contains a detailed review of this issue including an exchange between Savage and Pop-
per prompted by it. Zappia (2020) mentioned that Popper (1958) “…argued that he found it paradoxical 
that two apparently similar events should be attributed the same subjective probability even though the 
evidence supporting judgment in one case was stronger than in the other case.”
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Ellsberg (1961) argued that, facing choices between the bets described in the 
example above, decision makers exhibit strict preference for betting on either color 
of a ball drawn from an urn containing equal number of black and white balls over 
betting on either color of a ball drawn from an urn in which the color composition of 
the balls is unknown. These preferences are inconsistent with the existence of addi-
tive subjective probabilities à la Savage.

Schmeidler (1986, 1989) proposed a novel decision model, that later became 
known as Choquet expected utility (CEU), designed to accommodate choice behav-
ior that accounts for the information supporting the decision maker’s beliefs.2 
According to the CEU model, decision makers maximize the expectations of a util-
ity function with respect to a non-additive probability measure, or capacity. To cap-
ture the preference for being better informed, Schmeidler introduced the notion of 
ambiguity aversion and characterized it by a convex capacity.3

About the same time that Schmeidler developed the CEU model, a class of theo-
ries of decision making under risk, dubbed rank-dependent utility (RDU) models 
were introduced. These include Quiggin’s (1982) Anticipated Utility, Yaari’s (1987) 
Dual Theory as well as Wakker (1994). According to these models preference rela-
tions on objective risks, or lotteries, are represented by the inner product of a utility 
function on the set of outcomes and a transformation function on the corresponding 
probabilities, where the transformation of the objective probabilities depends on the 
ranks of the outcomes in the set of feasible outcomes.

Wakker (1990) showed that under stochastic dominance the RDU model is a 
special case of the CEU model. Invoking Wakker’s result, I present a hybrid RDU 
model in which, following Schmeidler (1989), risks are evaluated by their expected 
utility and uncertainties by the expected utility with respect to a transformation 
function of the subjective probabilities. I then argue that the representation of risk 
aversion in that model implies the representation of ambiguity aversion by the cor-
responding CEU model. I also introduce a new procedure for updating the capacities 
based on updating the subjective probabilities by Bayes’ rule.

A different formalization of ambiguity aversion was proposed by Klibanoff et al. 
(2005) and Seo (2009). In their models ambiguity aversion is captured by a concave 
real-valued function on the expected utilities associated with the set of all conceiv-
able priors. I argue that, properly formulated, smooth ambiguity aversion may also 
be regarded as risk aversion.

The next section sets the stage, briefly describing the rank-dependent utility 
and Choquet expected utility representations. Section  3 discusses two procedures 
of reduction of compound lotteries and introduces the lead example. Section  4 
includes the statement and proof of the main result. Section 5 applies the main idea 

2 For alternative modelings of Choquet expected utility see Gilboa (1987), Wakker (1989a, b), Naka-
mura (1990) and Chew and Karni (1994).
3 Schmeidler (1989) dubbed the preference for betting on events whose probability is supported by more 
evidence uncertainty aversion. This term was replaced by ambiguity aversion in the nomenclature of 
decision theory. Schmeidler also discusses several equivalent characterizations of ambiguity aversion. 
For recent surveys see Gilboa and Marinacci (2016) and Trautmann and van de Kuilen (2015).
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to the models based on second-order beliefs. The concluding section discusses the 
application of the approach to the Ellsberg two-urn experiment reviews the related 
literature.

2  Setting the stage

2.1  Subjective expected utility and rank‑dependent utility

Let S be a finite set of states and let X be a nonpoint interval in the real line. 
Denote by G(X) the set of cumulative distribution functions (CDF) on X with 
finite supports, referred to as lotteries. The choice set, A ∶= {f ∶ S → G(X)}, 
of all mappings from S to G(X), representing alternative courses of action, 
referred to as acts. For all f , g ∈ A and � ∈ [0, 1], define (�f + (1 − �)g) ∈ A by 
(�f + (1 − �)g)(s) = �f (s) + (1 − �)g(s), for all s ∈ S. Thus, A is a convex set in a 
linear space.

A preference relation, denoted ≽, is a complete and transitive binary relation on 
A. The asymmetric and symmetric parts of ≽ are denoted by ≻ and ∼, respectively. 
Anscombe and Aumann (1963) provide necessary and sufficient conditions for the 
representation of ≽ by a subjective expected utility (SEU) functional. Formally, for 
all f , g ∈ A,

where the utility function U is affine (i.e., linear in the probabilities) real-valued 
function on G(X) and � is an additive probability measure on 2S. The utility-probabil-
ity pair (U,�) is jointly unique (i.e., given � the function U is unique up to positive 
affine transformation and given U,  � is unique). Define u ∶ X → ℝ by u(x) = U

(

�x
)

, 
where � is the Dirac measure.

The RDU models—Quiggin’s (1982, 1993) Anticipated Utility,4 Yaari’s (1987) 
Dual Theory—are theories of decision making under risk (that is, the domain of the 
preference relation is the set, G(X) ⊂ A, of constant acts that deliver the same CDF 
in every state). According to these models a preference relation ≽ on G(X) is repre-
sented by RDU. Formally, for all G,F ∈ G(X),

where the utility, u,   is a real-valued function on X,   unique up to positive affine 
transformation, and � ∶ [0, 1] → [0, 1] is non-decreasing, continuous, and onto func-
tion, dubbed probability transformation function.

(1)f ≽ g ⇔ Σs∈SU(f (s))𝜋(s) ≥ Σs∈SU(g(s))𝜋(s),

(2)G ≽ F ⇔ �X

u(x)d(𝜉◦G)(x) ≥ �X

u(x)d(𝜉◦F)(x),

4 See also Segal (1989, 1993).
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2.2  Choquet expected utility and hybrid rank‑dependent utility

To analyze the relationships between ambiguity aversion and risk aversion we need 
to convert the RDU models of decision making under risk to theories of decision 
making under uncertainty. This conversion was attained by Wakker (1990). Invoking 
a capacity of the CEU model, Wakker induced a probability transformation function 
in the RDU model such that when composed with an additive probability measure, it 
mimics the capacity of the CEU model.

Following Schmeidler (1989), a preference relation, ≽̂ on A,   is said to have a 
CEU representation if for all f , g ∈ A,

where Û is an affine, real-valued, function on G(X), unique up to positive affine trans-
formation, and � ∶ 2S → [0, 1] is a capacity measure.5

It is worth emphasizing that, according to Schmeidler, risks are evaluated by 
their expected utility using the objective, additive, probability measures (i.e., 
Û(f (s)) = Σx∈Xû(x)f (s)(x)) while uncertainties are evaluated by their subjective, non-
additive, probability measures. I refer to this distinct treatments of the two sources of 
variations of outcomes as Schmeidler’s doctrine and invoke it in the analysis below.

Given a preference relation ≽̂ on A that has a CEU representation, define a binary 
relation ≽∗ on 2S as follows: C ≽∗ B if and only if �(C) ≥ �(B). Consider a decision 
maker whose preference relation ≽̂ on A incorporates beliefs that are represented by 
an additive subjective probability measure, � on 2S, such that C ≽∗ B if and only if 
�(C) ≥ �(B). Thus, �(C) ≥ �(B) if and only if �(C) ≥ �(B). Therefore, there exists 
a strictly increasing and onto probability transformation function � ∶ [0, 1] → [0, 1] 
defined by �(E) = (�◦�)(E), for all E ∈ 2S.

6 Then

Adding to Schmeidler’s CEU model the assumption that the capacity is a trans-
form of subjective probabilities, including that such subjective probabilities exist, is 
nontrivial restrictive assumption. It allows me to present the main idea in the most 
transparent manner. Exploration of the implications of weakening this assumption is 
beyond the scope of this paper.

For each f ∈ A let cf ∶=
(

cf (s)
)

s∈S
, where cf (s) ∈ X is the certainty equivalent of 

f (s) (i.e., Û(f (s)) = Û
(

𝛿cf (s)

)

).7 Then, by (3), f ∼̂cf .

(3)f ≽̂g ⇔ �S

Û(f (s))d𝜑(s) ≥ �S

Û(g(s))d𝜑(s),

(4)∫S

Û(f (s))d𝜑(s) = ∫S

Û(f (s))d(𝜁◦𝜋)(s).

5 A capacity measure is a set function � on a measurable space (S,Σ) such that �(∅) = 0, �(S) = 1 and 
�(A) ≤ �(B) for all A,B ∈ Σ such that A ⊆ B.
6 Wakker (1990, Lemma 6) gives necessary and sufficient condition for the existence of such probability 
transformation function.
7 If Û is on X is continuous and increasing then the certainty equivalent is unique.
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For each f ∈ A, define Ef (x) = {s ∈ S ∣ cf (s) ≤ x)}, x ∈ X, and let 

Gf (x) ∶=�
(

Ef (x)
)

, for all x ∈ X. Let Hf  denote the decumulative distribution func-
tion induced by f (i.e., Hf (x) ∶= 1 − Gf (x), for all x ∈ X). Then, Hf (x) = �

(

S�Ef (x)
)

 
and, for each f ∈ A,8

Let �(�) = 1 − �(1 − �), then

Hence,

Therefore, we have what I refer to as hybrid RDU model (henceforth HRDU) accord-
ing to which, invoking Schmeidler’s doctrine, risks (i.e., constant acts) are evaluated 
by their expected utility and non-constant acts are evaluated by their expected utility 
with respect to a transformed additive subjective probability measure that mimics 
the capacity of the corresponding CEU model.

3  The weight of evidence and risk aversion

3.1  Two reduction procedures

Resolutions of uncertainties may occur in stages as information may be obtained 
sequentially. If acting upon the receipt of early information is not feasible, the situ-
ation is represented by compound lotteries that may involve subjective and objec-
tive uncertainties. A prime example of such compound lotteries is the Anscombe 
and Aumann (1963) model in which the decision maker’s beliefs about the likely 
outcomes of a horse race are represented by subjective probabilities and the pay-
offs, contingent on the outcomes of the horse race, are ‘roulette lotteries’ that assign 
objective probabilities to a set of prizes.

(5)
∫S

u
(

cf (s)
)

d(�◦�)(s) = ∫X

u(x)(�◦�)
(

S�Ef (x)
)

dx

= ∫X

u(x)d
(

−�◦Hf

)

(x).

(6)−∫X

u(x)d
(

�◦Hf

)

(x) = ∫X

u(x)d
((

�◦Gf

)

(x) − 1
)

.

(7)

∫S

U(f (s))d(�◦�)(s) = ∫S

u
(

cf (s)
)

d(�◦�)(s)

= ∫X

u(x)(�◦�)
(

Ef (x)
)

dx

= ∫X

u(x)d
(

�◦Gf

)

(x).

8 See Wakker (1990) for a detailed exposition.
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The literature dealing with decision making under uncertainty includes alternative pro-
cedures of reducing compound lotteries to equivalent (i.e., indifferent) one stage lotter-
ies. To discuss the reduction procedures formally, let G(X) denote the set of one stage 
lotteries. A two-stage compound lottery is a probability distribution on G(X). Formally, 

L2 =
[

�(1),G1;�(2),G2; … ;�(n),Gn

]

, where Gs ∈ G(X) and �(⋅) is a subjective prob-

ability measure on S. Denote by L2 the set of two-stage compound lotteries.
The reduction of compound lotteries axiom requires that the probabilities of the 

ultimate outcomes, or prizes, be the product of the probabilities of reaching the 
nodes along the path leading to the outcome. For our purpose we only need to con-
sider two-stage compound lotteries.

Reduction of compound lotteries axiom (RCLA): For all L2 ∈ L2, 
L2 ∼

[

Σs∈S�(s)gs
(

x1
)

, x1; … ;Σs∈S�(s)gs
(

xm
)

, xm
]

, where gs
(

xi
)

:=Gs
(

xi
)

− Gs
(

xi−1
)

, for all s ∈ S and i = 1,… ,m.

An alternative reduction procedure calls for the replacement of the second-stage 
lottery by its certainty equivalent to obtain one stage lottery. Formally, denote by Gs 
the constant act that assigns the lottery Gs ∈ G(X) to every s ∈ S. The certainty 
equivalent of Gs is c

(

Gs

)

∈ ℝ defined by �c(Gs) ∼ Gs.

Certainty equivalence reduction axiom (CERA): For all L2 ∈ L2, 

L2 ∼
[

�(1), �c(G1);�(2), �c(G2); … ;�(n), �c(Gn)

]

.

Preference relations that admit expected utility representations are consistent with 
both reduction procedures. By contrast, preference relations that admit rank-depend-
ent utility representations with nonlinear probability transformation functions are 
consistent with CERA but not with RCLA (see Segal, 1990).

3.2  An example

Consider an urn drawn at random from a population of urns each containing 100 
balls that are either red or black and no further information is available. There 
are 101 feasible color compositions defining the states. Imagine the possibly of 
asking decision makers to choose among acts whose payoffs are contingent on 
the color composition of the balls in the urns before selecting an urn and verify-
ing its content (i.e., color composition). To formalize this decision problem, let 
S = {0, 1,… , 100}, where s ∈ S is the number of red balls in the urn. Consider a 
bet that pays off $100 if a ball drawn at random is red and $0 otherwise. Then, from 
the decision maker’s viewpoint, the bet is an act, fR ∶=

(

fR(s)
)

s∈S
 whose payoffs 

are state-contingent lotteries fR(s) =
(

$100, s∕100;$0, (1 − s)∕100
)

. Let c
(

fR(s)
)

 
denote the certainty equivalent of fR(s) (i.e., the decision maker is indifferent 
between the constant act that pays c

(

fR(s)
)

∈ ℝ in every state and the constant act 
that pays off $100 with probability s/100 and $0 otherwise). Define the induced act 
cR =

(

c
(

fR(0)
)

, c
(

fR(1)
)

,… , c
(

fR(100)
))

.

Let � denote the decision maker’s subjective prior belief on S,   and denote by 
�(⋅ ∣ yn), his posterior belief on S,   given sample yn =

(

y1,… , yn
)

, n ≥ 1, drawn at 



 E. Karni 

1 3

random from the urn with replacement. Let y0 indicates that no ball is drawn. Then 
�
(

⋅ ∣ y0
)

= �(⋅).

Consider the decision maker’s choice between the acts, fR ∣yn and fR ∣ym , (i.e., 
a choice between betting on red conditional on observing the samples yn and ym, 
of sizes n and m,   respectively.9 Clearly, �(⋅ ∣ yn) is a mean-preserving squeeze of 
�(⋅ ∣ ym) on 

(

c
(

fR(0)
)

, c
(

fR(1)
)

,… , c
(

fR(100)
))

.
10 By definition every risk-averse 

decision maker prefers fR ∣yn over fR ∣ym .

Let there be two identical urns, say A and B,  containing 100 balls each that are 
either red or black. Suppose that random samples of sizes 2m and 2n,   m < n, are 
to be drawn from A and B,   respectively, with replacement. Assume that the prior 
�
(

⋅ ∣ y0
)

 is symmetric and consider the event that both samples happen to contain 
equal number of red and black balls.

Consider a decision maker whose preference relation has a HRDU representation 
as in (4) and (7) facing a choice between two bets; fR ∣A, that pays off $100 if the 
next ball drawn at random from urn A is red, and fR ∣B, that pays off $100 if the next 
ball drawn at random from urn B is red. By Bayes rule, given a state s and a sample 
of size r = 2k, by the binomial distribution, the probability of k red balls is

By Bayes rule, the posterior probabilities satisfy, for all r = 2k, k = 1, 2,… ,

An expected utility-maximizing decision maker would be indifferent between the 
two bets. To grasp this suffices it to note that an expected utility maximizer abides 
by the reduction of compound lotteries axiom. Letting u(100) = 1 and u(0) = 0, an 
expected utility maximizing decision maker evaluates the bets as follows:

Pr (k ∣ s) =
r!

k!(r − k)!
�
(

s ∣ y0
)k(

1 − �
(

s ∣ y0
))r−k

=
r!

k!(r − k)!

[

�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))]k

.

�(s ∣ k) =

[

�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))]k

�
(

s ∣ y0
)

Σs�∈S

[

�
(

s� ∣ y0
)(

1 − �
(

s� ∣ y0
))]k

�
(

s� ∣ y0
)

.

9 Ellsberg’s two-urn experiment is a version of this example with m = 0 corresponding to the ambiguous 
urn and n → ∞ corresponding to the unambiguous urn.
10 Formally, given (x(1),… , x(∣ S ∣) ∈ Xn define Π

�

x ∣ yk
�

=
∑

s∈{s�∈S∣x(s� )≤x} �
�

s ∣ yk
�

, ∀x ∈ X. Then, 

∑t

s=0

�

Π
�

c
�

fR(s)
�

∣ yn
�

− Π
�

c
�

fR(s)
�

∣ ym
�� ≤ 0 for all t ∈ {0, 1,… , 100} and 

100
∑

s=0

[

Π
(

c
(

fR(s)
)

∣ yn
)

−Π
(

c
(

fR(s)
)

∣ ym
)]

= 0, where we invoke the fact that c
(

fR(i)
)

< c
(

fR(i + 1)
)

, i = 0,… , 99, for all mono-

tonic increasing utility functions.
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However, a risk-averse HRDU maximizing decision maker would strictly prefer 
to bet on red from urn B. To grasp this, recall that a HRDU maximizing decision 
maker who is not an expected utility maximizer does not abide by the RCLA, dis-
playing CERA instead. Moreover, risk-aversion in the HRDU model requires that 
the probability transformation function, �, that figures in the representation (7) be 
concave (see Chew et  al., 1987). Since �(⋅ ∣ ym) is a mean-preserving spread of 
�(⋅ ∣ yn), the HRDU valuations of the bets are:

and

Hence, by risk-aversion, V
(

fR ∣A
)

< V
(

fR ∣B
)

. The weight of evidence tilts the bet 
in favor of the option in which the belief is based on more informative experiment. 
This observation underscores the point on which I elaborate in the analysis below, 
that it is risk-aversion in the context of the HRDU model that captures the effect of 
the weight of evidence on the decision maker’s preferences.

U
(

fR ∣A
)

= Σ100

s=0

s

100
�(s ∣ ym) =

1

2
= Σ100

s=0

s

100
�(s ∣ yn) = U

(

fR ∣B
)

.

V
(

fR ∣A
)

=
∑

s∈S

u
(

c
(

fR(s)
))[

�
(

Σs
t=0

�(t ∣ m∕2)
)

− �
(

Σs−1
t=0

�(t ∣ m∕2)
)]

V
(

fR ∣B
)

=
∑

s∈S

u
(

c
(

fR(s)
))[

�
(

Σs
t=0

�(t ∣ n∕2)
)

− �
(

Σs−1
t=0

�(t ∣ n∕2)
)]

.

11 To grasp this claim observe that, by symmetry, �
(

s ∣ y0
)

= �
(

100 − s ∣ y0
)

, for all s ∈ S. Thus,

and

This holds for all r = 2k, k = 0, 1…

�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))

= �
(

100 − s ∣ y0
)(

1 − �
(

100 − s ∣ y0
))

,

U
(

fR ∣A
)

=
1

100

100
∑

s=0

[

�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))]r∕2

�
(

s ∣ y0
)

s

Σs�∈S

[

�
(

s� ∣ y0
)(

1 − �
(

s� ∣ y0
))]r∕2

�
(

s� ∣ y0
)

=
1

100

50
∑

s=0

[

2�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))]r∕2

�
(

s ∣ y0
)

(

�(s∣y0)(1−�(s∣y0))s+�(100−s∣y0)(1−�(100−s∣y0))(100−s)
2�(s∣y0)(1−�(s∣y0))

)

Σs�∈S

[

�
(

s� ∣ y0
)(

1 − �
(

s� ∣ y0
))]r∕2

�
(

s� ∣ y0
)

=
50

100

50
∑

s=0

2
[

�
(

s ∣ y0
)(

1 − �
(

s ∣ y0
))]r∕2

�
(

s ∣ y0
)

Σs�∈S

[

�
(

s� ∣ y0
)(

1 − �
(

s� ∣ y0
))]r∕2

�
(

s� ∣ y0
)

=
1

2
.
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4  Risk aversion and ambiguity aversion

4.1  Preliminaries

A preference relation ≽ on G(X) is said to display risk aversion if, for all F,G ∈ G(X), 
F ≽ G whenever G differs from F by a mean-preserving spread. It is said to display 
strict risk aversion if F ≻ G.

The theory of risk aversion in the general RDU model was developed in Chew 
et al. (1987). In particular, Chew et al. showed that a preference relation ≽ on G(X) 
that admits a RDU presentation G → ∫

X
u(x)d(�◦G)(x) displays risk aversion if and 

only if both the utility function, u,   and the probability transformation function, �, 
are concave. It displays strict risk aversion if and only if it displays risk aversion and 
either u or � or both are strictly concave.

The notion of ambiguity aversion was first formulated and characterized by 
Schmeidler (1986) and was further developed in Schmeidler (1989). Formally, a 
preference relation ≽̂ on A is said to display ambiguity aversion if, for all f , g ∈ A 
and � ∈ (0, 1], f ≽̂g implies that 𝛼f + (1 − 𝛼)g≽̂g. It is said to display strict ambi-
guity aversion if 𝛼f + (1 − 𝛼)g≻̂g. If ≽̂ admits CEU representation then ambi-
guity aversion is characterized by a convex capacity (i.e., a capacity satisfying 
�(B ∪ C) + �(B ∩ C) ≥ �(B) + �(C), for all B,C ∈ 2S). Equivalently, it is character-
ized by concavity of the CEU functional I(f ) = ∫

S
U(f (s))d�(s).12

To set the stage for the main result we need the following.

Lemma 1 Let � be a subjective probability measure on S that figure in the SEU rep-
resentation (1), then, for all f , g ∈ A, � ∈ [0, 1] and x ∈ X,

Proof By the theorem of Anscombe and Aumann (1963), the affinity of the utility 
function implies that, for all f , g ∈ A and � ∈ [0, 1],

  ◻

Equivalently, by the certainty equivalence reduction axiom,

But, for all f ∈ A,

�
(

E�f+(1−�)g(x)
)

= ��
(

Ef (x)
)

+ (1 − �)�
(

Eg(x)
)

.

(8)
Σs∈SU(�f (s) + (1 − �)g(s))�(s) = �Σs∈SU(f (s))�(s) + (1 − �)Σs∈SU(g(s))�(s).

(9)Σs∈Su
(

c�f+(1−�)g(s)
)

�(s) = �Σs∈Su
(

cf (s)
)

�(s) + (1 − �)Σs∈Su
(

cg(s)
)

�(s).

(10)Σs∈Su
(

cf (s)
)

�(s) = ∫X

u(x)d�
(

Ef (x)
)

.

12 See the Proposition in Schmeidler (1989).
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Hence, by (9) and (10), for all f , g ∈ A and � ∈ [0, 1],

By the uniqueness of �, we get that

for all f , g ∈ A, � ∈ [0, 1] and x ∈ X.  ▪

4.2  The main result

The main result of this paper is the demonstration that risk aversion in the HRDU 
model implies ambiguity aversion in the corresponding CEU model.

Theorem  1 Let ≽̂ and ≽ on A have CEU and HRDU representations 

f → ∫
S
U(f (s))d�(s) and f → ∫

S
U(f (s))d(�◦�)(s), respectively, and suppose that 

∫
S
U(f (s))d�(s) = ∫

S
U(f (s))d(�◦�)(s). If ≽ displays (strict) risk aversion then ≽̂ dis-

plays (strict) ambiguity aversion.

Proof By the hypothesis, (4), (5), (6) and (7),

Corollary 2 of Chew et al. (1987) asserts that a necessary condition for ≽ to display 
(strict) risk aversion is that � is (strictly) concave. Thus, if ≽ displays (strict) risk aver-
sion then

The convexity of A and the affinity of U imply that

By the lemma and the definition of Gf (x),

(11)

∫X

u(x)d�
(

E�f+(1−�)g(x)
)

= � ∫X

u(x)d�
(

Ef (x)
)

+ (1 − �)∫X

u(x)d�
(

Eg(x)
)

= ∫X

u(x)d
(

��
(

Ef (x)
)

+ (1 − �)�
(

Eg(x)
))

.

(12)�
(

E�f+(1−�)g(x)
)

= ��
(

Ef (x)
)

+ (1 − �)�
(

Eg(x)
)

,

(13)∫S

U(f (s))d�(s) = ∫X

U(f (s))d(�◦�)
(

Ef (x)
)

= ∫X

u(x)d
(

�◦Gf

)

(x).

(14)
�X

u(x)d
(

𝜉◦
(

𝛼Gf + (1 − 𝛼)Gg

))

(x) ≥ (>)𝛼 �X

u(x)d
(

𝜉◦Gf

)

(x)

+ (1 − 𝛼)�X

u(x)d
(

𝜉◦Gg

)

(x).

(15)U(�f (s) + (1 − �)g(s)) = �U(f (s)) + (1 − �)U(g(s)), ∀s ∈ S.
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and

Thus, (13) and (14) imply that

By the Proposition of Schmeidler (1989), ≽̂ displays (strict) ambiguity aversion if 
and only if I(f ) ∶= ∫

S
u(f (s))d�(s) is concave. Hence, if ≽ displays risk aversion then 

≽̂ displays ambiguity aversion.  ▪

Ambiguity aversion in the CEU model constrains only the capacity. Thus, it is 
consistent with convex utility function. In the HRDU model convex utility function 
is inconsistent with risk aversion. Hence, it is not the case that ambiguity aversion 
under CEU implies risk aversion under RDU.

It is worth underscoring, that the like Schmeidler’s CEU model, the hybrid RDU 
evaluates objective risks by their expected utility with respect to the objective prob-
abilities and subjective risks by their expected utility with respect to the transformed 
subjective probabilities.

Schmeidler’s rank-dependent CEU, uses top-down integration, weighing “good 
news event” of receiving anything better than an outcome. Quiggin’s rank-dependent 
RDU, uses bottom-up integration, weighing “bad news events” of receiving an out-
come or anything worse. Thus, convexity of the capacity corresponds with concavity 
of probability transformation. Using bottom-up integration in the RDU model, risk-
aversion a la Chew et al. (1987) would require that the probability transformation 
function be convex.

4.3  Bayesian updating

The issue of updating ambiguous beliefs has been thoroughly studied, and various 
axiomatic-based updating rules have been proposed for Choquet expected utility 
(e.g., Eichenberger et al., 2007; Gilboa & Schmeidler, 1993).

(16)

∫S

(�U(f (s)) + (1 − �)U(g(s)))d�(s) = ∫X

u(x)d(�◦�)
(

E�f+(1−�)g(x)
)

= ∫X

u(x)d�
(

��
(

Ef (x)
)

+ (1 − �)�
(

Eg(x)
))

= ∫X

u(x)d
(

�◦
(

�Gf + (1 − �)Gg

))

(x),

(17)

� ∫S

U(f (s))d�(s) + (1 − �)∫S

U(f (s))d�(s) = � ∫X

u(x)d
(

�◦Gf

)

(x)

+ (1 − �)∫X

u(x)d
(

�◦Gg

)

(x).

(18)
�S

(𝛼U(f (s)) + (1 − 𝛼)U(g(s)))d𝜑(s) ≥ (>)𝛼 �S

U(f (s))d𝜑(s)

+ (1 − 𝛼)�S

U(g(s))d𝜑(s).
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The approach taken in this paper suggests a new and natural procedure for updat-
ing the capacities by the application of Bayes rule in situations in which the Cho-
quet expected utility has an equivalent HRDU representation. The idea is as follows: 
Update the additive probability measure using Bayes rule and update the corre-
sponding capacity by setting the capacity of each event equal to the transformation 
of the updated additive probability of the same event. Formally, let yn denote a sam-
ple of observations. For each event E,  set �(E ∣ yn) = �(�(E ∣ yn)), where

In particular, �
(

Ef (x) ∣ y
n
)

= �(�
(

Ef (x) ∣ y
n
)

= �◦Gf (x ∣ y
n), x ∈ X.

5  Ambiguity and risk aversion with second‑order beliefs

Klibanoff et  al. (2005) and Seo (2009) propose alternative axiomatizations of a 
model of decision making under uncertainty in which ambiguity is expressed by 
the set of conceivable priors and ambiguity attitudes are captured by a real-valued 
function on the reals representing the expected utilities of acts under these priors. A 
decision maker’s beliefs about the likelihoods of the priors is represented by a prob-
ability measure referred to as second-order belief. Formally, a preference relation 
exhibiting smooth ambiguity aversion has the representation

where Π∶={� ∈ [0, 1]∣S∣ ∣ Σs∈S�(s) = 1}, is the set of all probability distributions 
on the set of states, v is a real-valued function on ℝ, u is a real-valued function on X,  
and Φ a probability measure on Π, representing the decision maker’s second order 
beliefs. In the usual interpretation, risk aversion is characterized by the concavity of 
u and ambiguity aversion by the concavity of v.

Adopting the approach of the preceding analysis I show below that smooth ambi-
guity aversion may be interpreted as (extra) layer of risk aversion. To begin with, I 
use the CERA to translate the ambiguity to risk. With this objective in mind, con-
sider the risk represented by a choice of an act, f,  under a prior � ∈ Π, and define 
the certainty equivalent of this risk, denoted cf (�), as the solution of the equation

Then the representation (19) may be written as

�(E ∣ yn) =
�(yn ∣ E)�

(

E ∣ y0
)

�(yn ∣ E)�(E) + �(yn ∣ S�E)(1 − �
(

E ∣ y0
) .

(19)f ↦ ∫Π

v

(

∫S

[Σx∈Xu(x)f (s)(x)]d�(s)

)

dΦ(�),

(20)u
(

cf (�)
)

= ∫S

[Σx∈Xu(x)f (s)(x)]d�(s).

(21)f ↦ ∫Π

(v◦u)
(

cf (�)
)

dΦ(�).
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For every x ∈ ℝ, define Ef (x) = {� ∈ Π ∣ cf (�) ≤ x} and let Gf (x) ∶=Φ
(

Ef (x)
)

, 
x ∈ ℝ. Then

Given an act f let Ĝf  be a mean-preserving spread of Gf  (i.e., Gf  is the CDF condi-
tioned on a larger sample) then the decision maker displays risk aversion if Gf ≽ Ĝf  
if and only if the composition v◦u is a concave function. In particular, the concav-
ity of v,   which presumably captures the decision maker’s ambiguity aversion may 
also be an expression of a second layer of risk aversion. Indeed, since v is a concave 
transformation of u,  by a theorem of Pratt (1964), v◦u exhibits greater risk aversion 
than u.

Consider next the effect of the weight of evidence. Returning to the lead 
example, the utility of betting on red from urn A is

and that of betting on red from urn B is

But n > m implies that Gf (⋅ ∣ n∕2) is a mean-preserving squeeze of Gf (⋅ ∣ m∕2), and 
(strict) risk aversion implies that V

(

fR ∣B
)

> V
(

fR ∣A
)

. The weight of evidence makes 
the betting on red from the less ambiguous urn preferable.

6  Discussion

Decision makers’ preference to base their beliefs about the likely realization 
of the events that underlie the risks they are facing on more information about 
probabilities, dubbed ambiguity aversion, is captured by a convex capacity in the 
CEU model. By contrast, risk aversion depicts the decision maker’s preference 
to avoid larger spreads of payoffs of the risky prospects, is captured by the con-
cavity of the utility and the CDF transformation functions in the RDU models. 
Generally speaking, ambiguity aversion and risk aversion are distinct concepts. 
In this paper I propose a hybrid RDU model that mimics the CEU model and 
show that, under CERA, risk aversion displayed by the HRDU implies ambigu-
ity aversion displayed by the corresponding CEU model, both describing atti-
tudes towards mean-preserving spreads of the ultimate payoffs. The spread may 
be accounted for by objective, irreducible, risks or by uncertainty, reducible 
through the acquisition of information. The hybrid RDU and CEU models treat 
objective and subjective risks as distinct and evaluate them differently.

(22)∫Π

v

(

∫S

[Σx∈Xu(x)f (s)(x)]d�(s)

)

dΦ(�) = ∫X

(v◦u)(x)dGf (x).

V
(

fR ∣A
)

= Σ100

i=1
(v◦u)

(

cf
(

�i
))[

Gf

(

cf
(

�i
)

∣ m∕2
)

− Gf

(

cf
(

�i−1
)

∣ m∕2
)]

,

V
(

fR ∣B
)

= Σ100

i=1
(v◦u)

(

cf
(

�i
))[

Gf

(

cf
(

�i
)

∣ n∕2
)

− Gf

(

cf
(

�i−1
)

∣ n∕2
)]

.
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6.1  Ellsberg revisited

Consider the Ellsberg (1961) two urn experiment mentioned in the introduction. To 
simplify the exposition, consider a decision maker whose utility function is linear 
and normalized so that u

(

$0
)

= 0 and u
(

$100
)

= 1.
13 Suppose that the decision 

maker faces a choice between betting on the event, R,  (i.e., being paid $100 if the 
ball drawn at random from the ambiguous urn is red and $0 otherwise) and bet-
ting on the event B,   (i.e., being paid $100 if the ball drawn at random from the 
ambiguous urn is black and $0 otherwise). According to the CEU model symme-
try and ambiguity aversion imply that 𝜑(R) = 𝜑(B) < 1∕2. By the additivity of the 
prior probability measure �

(

⋅ ∣ y0
)

, we have �
(

R ∣ y0
)

= �
(

B ∣ y0
)

= 1∕2, and by 

(4), �(E) = (�◦�)(E), E ∈ {A,B}.

According to the analysis in this paper, a bet on any color from the ambiguous 
urn is modeled as two-stage compound lottery in which the beliefs about the likely 
realization of the states (i.e., color-composition of the selected urn) in the first stage 
are represented by a convex capacity measure. Risk aversion in the corresponding 
HRDU model is captured by a concave transformation function of additive prob-
ability measures that ranks the probability of event in the same way that the convex 
capacity does. The state-dependent second stage risks represented by the bets, either 
or red or black, are replaced by their state-dependent certainty equivalents under 
expected utility. For instance, because no ambiguity is associated with the unambig-
uous urn, the capacity assigned to the event red ball drawn at random from that urn is 
�(R) = 1∕2. Consequently, �

(

R ∣ y0
)

= �(R). Thus, the second-stage risk of betting 
on red from the unambiguous urn is reduced (by CERA) to a certainty equivalent 
outcome, c(R), equal to u−1(1∕2) (i.e., 0�

(

B ∣ y0
)

+ 1�
(

R ∣ y0
)

= 1∕2 = u(c(R))). If 
betting on the color of a ball from the ambiguous urn displays ambiguity averse 
behavior according to the CEU model then, as is shown by the theorem, the represen-
tation of corresponding HRDU model displays concave CDF transformation func-
tion. Let 0�

(

B ∣ y0
)

+ 1�
(

R ∣ y0
)

= s∕100, be the expected value of betting on red if 
the state (i.e., the number of red balls in the ambiguous urn) is s = 0, 1,… , 100, then 
the certainty equivalent a bet on red, ĉ(R), is given by the equation

where the inequality is an implication of the concavity of �. Thus, given our way of 
modeling ambiguity the CEU model and the corresponding HRDU model agree on 
the ranking of bets on the same color from the ambiguous and unambiguous urns.

u(ĉ(R)) =
1

100

100
∑

s∈1

s
[

𝜉
(

Σs
t=0

𝜋(t ∣ y0
)

) − 𝜉
(

Σs−1
t=0

𝜋(t ∣ y0)
)]

< 1∕2,

13 In the case of RDU theory this corresponds to Yaari’s (1987) dual theory. The CEU representation is: 
f ↦ ∫

S

[

Σx∈Xxf (s)(x)
]

d�(s).
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6.2  Related literature

Segal (1987) studied the necessary conditions that the probability transformation 
function in the RDU model must satisfy if a decision maker is to prefer betting on a 
color from the unambiguous urn over betting on the same color from the ambiguous 
urn in Ellsberg’s (1961) thought experiment. These conditions are more restrictive 
than the concavity of the probability transformation function. The explanation of the 
discrepancy between Segal’s conclusions and those of this paper is to be found in 
the definitions of the certainty equivalents of unambiguous lotteries. In this paper, 
I adopted the Schmeidler doctrine, defining the certainty equivalents of the second-
stage lotteries according to the expected utility model (i.e., using additive probabili-
ties). By contrast, Segal invokes the RDU model to represent both the subjective 
and objective uncertainty. Specifically, using our notations, Segal’s (1987) certainty 
equivalent of a lottery, �, that pays off $x with probability p and $0with probabil-
ity 1 − p is c(�) = u−1(u(0)�(p) + u(x)(1 − �(p))). Consequently, according to Segal, 
the certainty-equivalent reduction of the two-stage compound lottery that consists 
of subjective uncertainty in the first stage and objective uncertainty in the second 
that corresponds to the ambiguous urn in Ellsberg’s thought experiment, involves 
the probability transformation function twice, which is the source of the additional 
conditions in Segal’s results.

For long I have been puzzled by the fact that institutions designed to better allo-
cate risk-bearing (such as insurance and financial markets) are prevalent whereas 
no institutions appear to have been designed to improve the allocation of ambiguity. 
Perhaps the answer is that ambiguity aversion is an aspect of risk aversion and there-
fore the allocation of ambiguity bearing does not require special institutions.
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