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“In interpreting human behavior there is a need to substitute

“stochastic consistency of choices” for “absolute consistency of

choices.” The latter is usually assumed in economic theory but is

not well supported by experience,” Block and Marschak (1960).

1 Introduction

It is standard practice in economics and decision theory to depict individ-

ual choice behavior by rational (i.e., transitive) preference relations on sets

of alternatives whose interpretations are context dependent.1 Formally, a

preference relation is a transitive and irreflexive binary relation, denoted by

Â, on a set  of alternatives, where  Â 0 means that the alternative  is
strictly preferred to 0
The exact meaning of the last statement is open to interpretation. One

interpretation is that the preference relation have substantive meaning, cap-

turing intrinsic characteristics of the decision maker, that make him choose

the alternative  whenever facing a choice between  and 0 An alternative,
behavioral, interpretation takes the same statement to parsimoniously sum-

marize the decision maker’s revealed choices. According to this interpretation

 Â 0 means that, other things being the same, facing the need to choose,
repeatedly, between the alternatives  and 0 the decision maker consistently
chooses 

Underlying both interpretations is the notion described by Block and

Marschak (1960) as “absolute consistency of choices.” Absolute consistency

of choices may depict accurately choice behavior in some situations (e.g.,

when the choice is between bets ranked by pointwise first-order stochastic

dominance). However, in many situations (e.g., choice between dining in

Chinese or Indian restaurants), repeated choices reveal that different alter-

natives are chosen on occasion, producing a pattern depicted by stable fre-

quency distribution. Using the terminology of by Block andMarschak (1960),

such behavior may be described as “stochastic consistency of choices.” The

stochastic pattern may be the manifestation of the effects of factors not cap-

tured by the primitives  and Â. The neglected factors include unobserved
1Sometimes included in the definition of rational preference relation the condition of

completeness (e.g., Mas-Collel, Whinston, and Green [1995]). However, there is nothing

irrational in finding some alternatives noncomparable and exhibiting incomplete prefer-

ences.
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psychological processes, such as boredom, variations in mood, physical or

biological processes such as changing needs, or inability to compare the al-

ternatives due to their complexity or lack of familiarity that is resolved by

deliberate randomization; by exogenous stimuli (e.g., imitation of others); or

by subconscious neurological process (e.g., drift diffusion). Whatever might

be the underlying reasons, to an observer, the decision maker’s choice behav-

ior appears to be stochastic. Put differently, from an observer point of view,

there are inputs (i.e., sets of feasible alternatives) and the outputs (i.e., the

alternatives chosen). Lacking the ability to discern what is going on in the

decision maker’s mind, one must, provisionally, settle on models that make

sense of the observed choice patterns and derive their implications.2

A stochastic choice function assigns to every element in every given feasi-

ble set of alternatives a probability of being selected. Thus, stochastic choice

functions are formal summaries of the relationships between the inputs and

outputs and have been a subject of extensive studies of stochastic choice

behavior.3

In Karni (2023), I proposed a theory, dubbed irresolute choice model,

in which stochastic choice is expressed by a set of transitive and irreflexive

binary relations Â on , where  Â 0 is interpreted to mean that facing
repeated choices from a binary set, { 0} of feasible alternatives, ceteris
paribus, the relative frequency with which a decision maker chooses alterna-

tive  is  and that of choosing 0 is 1− 

The main purpose of this paper is to study the relation between stochas-

tic choice function and irresolute choice behavior depicted by the irresolute

choice model. In particular, characterize the stochastic choice functions that

are rationalizable by irresolute choice models.4 In addition, this paper dis-

cusses the representations of stochastic choices as random utility process and

its application to the theories of individual and market demand as well as

portfolio selection.

The contribution of this work to the literature dealing with the modelling

and analysis of stochastic choice behavior is better understood after the ideas

2Improved understanding of the way the brain works may one day allow researchers to

model the decision-making process at the neurological level.
3Some of these studies are discussed in section 6.1 below.
4The study of the relationship between preference relations depicted by the irresolute

choice model and stochastic choice rules is a contribution to the research agenda that ex-

plores the relationship between preference relations and choice functions (see Mas-Collell,

Whinston and Green (1995) Ch. 1).
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and results of this work are presented. I therefore relegate the discussion of

the related literature to the concluding section.

The paper is organized as follows. The next section introduces the sto-

chastic choice functions and a model of irresolute choice. Section 3 analyzes

the relationships between stochastic choice functions and irresolute choice

behavior depicted by this model. Section 4 discusses the representations of

stochastic choice functions. Section 5 applies the irresolute choice model to

the theories of individual and market demands and portfolio selection. Sec-

tion 6 discusses the related literature and offers some concluding remarks.

2 Stochastic Choice Functions and the Irres-

olute Choice Model

2.1 Stochastic choice functions

Let  denote an arbitrary set with |  |≥ 2, referred to as the choice set.
Elements of  are alternatives, depending on the context may be interpreted

as courses of action, bundles of goods, or outcomes that the decision maker

cares about. Denote by A the set of all non-empty finite subsets of 

Elements of A, dubbed menus, represent feasible sets of mutually exclusive
alternatives that a decision maker may have to choose form.

A stochastic choice function (SCF) is a mapping  : ×A→ [0 1] such
that

Σ∈ () = 1 for every  ∈ A
and

 (0) = 0 for every 0 ∈ \

For all binary menus, { 0} ∈ A  ( { 0}) = 1 means that facing the
choice between  and 0 the decisionmaker always chooses  and  ( { }) =
12 by definition.

I consider SCFs that feature two attributes. The first attribute, regularity,

asserts that the probability of choosing an alternative from amenu is (weakly)

smaller the more inclusive the menu.5 This property restricts the structure of

the SCF across menus in the spirit of the weak axiom of revealed preference.

In particular, it asserts that if an alternative  is revealed to be chosen from

5See Block and Marschak (1960).
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a menu  0 with certain frequency, then it is revealed to be chosen from a

submenu  ⊂ 0 at lease as frequently. Formally,
(A.1) Regularity: For all  ,  0 ∈ A such that  ⊂  0 and  ∈ 

 ( 0) ≤  () 6

The second attribute requires that the restriction of the probabilistic

choice relation depicted by SCF to binary menus be stochastically transi-

tive. Formally,

(A.2) Stochastic Transitivity (ST): For all  0 00 ∈  and  ∈
[12 1)  ( { 0})   and  (0 {0 00})   imply  ( { 00})  

The literature dealing with stochastic choice behavior contains distinct

conceptions of stochastic choice transitivity.7 One such concept is Partial Sto-

chastic Transitivity (PST). Formally, for all  0 00 ∈   ( { 0})  12
and  (0 {0 00})  12 implies  ( { 00}) ≥ min{ ( { 0})   (0 {0 00})}.8
Proposition: A stochastic choice function satisfies Stochastic Transitiv-

ity if and only if it satisfies Partial Stochastic Transitivity.

Proof. (Sufficiency) Let  0 00 ∈ , be such that  ( { 0})  12

and  (0 {0 00})  12 and define

 := { ∈ [12 1) |  ( { 0})  } ∩ { ∈ [12 1) |  (0 {0 00})  }

By ST, for all  ∈  it holds that  ( { 00})   Hence,  ( { 00}) ≥
sup = min{ ( { 0})   (0 {0 00})}
(Necessity) Suppose that  ( { 0})   and  (0 {0 00})   Since

 ≥ 12 PST implies that  ( { 00}) ≥ min{ ( { 0})   (0 {0 00})} 
 ¤

2.2 Irresolute choice model

Let
¡
[12 1],B[121],

¢
be a probability space, where B[121] is the Borel

−field on [12 1] and  a Borel probability measure on B[121]. Let  :=

6The axiom may be stated as follow: For all  ,  0 ∈ A and  ∈  ∩  0
max{ ()   ( 0)} ≤  ( ∩ 0) 

7See Fishburn (1973) for a discussion of different notions of stochastic transitivities.
8Another concept, Moderate Stochastic Transitivity, is obtained from PST by replacing

the strict inequalities in the hypothesis with weak inequalities. He and Natenzon (2022)

show that a version of Moderate Stochastic Transitivity is necessary and sufficient for a

binary stochastic choice rule, , to have a moderate utility representations proposed by

Halff (1976).
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{Â|  ∈ [12 1]} be an indexed set of irreflexive and transitive binary rela-
tions on  satisfying set-inclusion monotonicity (i.e., for all  0 ∈ [12 1],
0 ≤  if and only if Â⊆Â0).9

For each  ∈ [12 1] the derived relations 3∼  and < are de-

fined as follows:  3 0 if, for all 00 ∈   00 Â  implies that 00 Â 0;
 ∼ 0 if  3 0 and 0 3 ;   0 if ¬ ( 3 0) and ¬ (0 3 ) ;  < 0

if ¬ (0 Â )  By transitivity,  Â 0 implies that  3 0 In particular,
 312 0 and ¬ ¡ Â12 0¢ if and only if 0 312  and ¬ ¡0 Â12 ¢  Further-
more, if  312 0 and 0 312  then, by definition,  ∼12 0 and 12= ∅,
(that is, the derived binary relations 312 and <12 are complete).
Given any  0 ∈  define Λ ( 0) = { ∈ [12 1] |  Â 0} then

Λ ( 0) ∈ B[121] Probabilistic choice relations are Â∈  such that, for all

 0 ∈   Â 0, where  =  (Λ ( 0))  The interpretation of  Â(Λ(0))

0 is that alternative  is strictly preferred over 0 with probability of, at
least,  (Λ ( 0))  Moreover, the interpretation of  3(Λ(0)) 0 is that
given a choice from the binary menu { 0}  is chosen with probability

 (Λ ( 0)) and 0 is chosen with probability 1−  (Λ ( 0)) 10 For example,
if  is the Borel-Lebesgue measure and  0 ∈  such that  3(Λ(0)) 0 and
¬ ¡0 3(Λ(0)) 

¢
then the alternative  is chosen, over 0 with probability

 (Λ ( 0)) = supΛ ( 0)− inf Λ ( 0).11
Let I ⊂ B[121] be the subset if intervals in B[121]. Clearly, Λ ( 0) ∈ I.

The irresolute choice model (ICM) is a triplet (I ) Define an equivalence
relation, ≈ on the set of ICMs as follows: ( I ) ≈ ( I 0) if  agrees
with 0 on I. Equivalent ICMs are said to belong to the same equivalence
class.

Consistent with the interpretation of the probabilistic choice relations,

 31 0 and ¬ (0 31 ) imply that Λ ( 0) = [12 1] and  is chosen from

the set { 0} with a probability ([12 1]) = 1. If  ∼1 0 then, insofar
as the probability of  chosen over 0 is concerned, the model is silent. By
definition, for all  ∈  and  ∈ [12 1]  3  and  3  hence  ∼ 

9Robert (1971) studied the relations between nested semiorders and the family of binary

relations {Â|  ∈ [12 1)} induced by  (i.e., ∀ 0 ∈   Â 0 if and only if
 ( { 0})  ) .
10Denote by Λ ( 0) the complement of Λ ( 0) in [12 1] then 1 −  (Λ ( 0)) =

 (Λ ( 0)) 
11That the supremum and infimum exist follows from the fact that the set Λ ( 0) is

bounded and that ¬
³
0 ∼(Λ(0)) 

´
implies that there is 0 ∈ [0 1] such that  Â0 0

Hence, Λ ( 0) is nonempty.
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3 The Relationship between ICM and SCF

3.1 Two questions

The depictions of the input (i.e.,  ∈ A) - output (i.e.,  ∈) patterns by

ICM and SCF raises two questions about the relationship between them:

(a) If a decision maker’s choice behavior is described by an ICM, do his

choices from menus necessarily generate an SCF that satisfies regularity and

stochastic transitivity?

(b) If a decision maker’s choice behavior is depicted by an SCF that

satisfies stochastic transitivity and regularity is there an ICM that generates

his choices?

To answer these questions, I introduce the following additional defin-

itions and notations. For each  ∈ A and  ∈  define Λ () =

∩0∈{ ∈ [12 1] |  3 0}. In words, Λ () is the set (interval)

of indices designating the random choice relations that rank the alterna-

tive (weakly) higher than any other alternative in the menu  . An al-

ternative  ∈  is said to be dominated if Λ () is a set of -measure

zero. Let () denote the subset of dominated alternatives in  and let

 () = \ () denote the subset of undominated alternatives in  .

Formally,  () = { ∈  |  (Λ ())  0}. Note that  () is
not empty. For each  ∈ A and  ∈  I write  3  if and only if

 3 0, for all 0 ∈  A mapping  : A→ A is a choice function induced

by ICM if  () =  ()  for all ∈ ALet  () = {1  } then
J () := {Λ (1)  Λ ()} is a partition of the unit interval whose
cells are elements of B[121].

3.2 SCFs generated by ICM

Given an ICM, ( I,)  define a stochastic choice function  : ×A→ [0 1]

by

 () =

∙
(Λ ()) if  ∈  ()

0 if  ∈  ()

¸
 (1)

The SCF  () so defined is said to be generated by the ICM (I ).
Note that, for binary menus,  = { 0} by definition,  (0 { 0}) =
 (Λ (0 { 0})) and  ( { 0}) =  (Λ ( { 0})) = 1− (Λ (0 { 0})) 
The following theorem asserts that the answer to the first question posed

in the preceding section is affirmative.
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Theorem 1. A stochastic choice function  on ×A generated by an

irresolute choice model, ( I )  satisfies regularity and stochastic transi-
tivity.

Proof. Given an ICM (I ) let  on ×A be the SCF generated by
it (i.e.,  is defined in (1)). Let  ⊂ 0 and denote by J () and J ( 0)
the corresponding induced partitions of the unit interval.

If  ( 0) =  () then J () = J ( 0) and  ( 0) =  () 

for all  ∈ If  ( 0) 6=  () then either  ∈  () ∩ ( 0)  or
 ∈  () ∩  ( 0)  In the former case  ( 0) = 0 ≤  () and,

in the latter case,  3  0 for all  ∈ Λ ( 0)  But Λ ( 0) ⊆ Λ () 

Hence

 () = (Λ ()) ≥ (Λ ( 0)) =  ( 0)  (2)

Thus,  satisfies regularity.

Let  0 00 ∈  and consider the binary menus { 0} {0 00}, { 00}
Suppose that  Â 0 and 0 Â 00 then by definition  ∈ Λ ( { 0}) ∩
Λ (0 {0 00})  ButΛ ( { 0}) = [12 supΛ ( { 0})] andΛ (0 {0 00}) =
[12 supΛ (0 {0 00})]. Without loss of generality, assume that supΛ ( { 0}) ≤
Λ (0 {0 00})  then Λ ( { 0})∩Λ (0 {0 00}) = Λ ( { 0})  By transi-
tivity of the relations in Λ ( { 0}) ⊆ Λ ( { 00}) Hence,  (Λ ( { 00})) ≥
 (Λ ( { 0})) = min{ (Λ ( { 0})   (Λ (0 {0 00})))  Suppose that  ( { 0}) 
 and  (0 {0 00})   then, by definition, (Λ ( { 0}))   and

(Λ (0 {0 00}))}   By the argument above,  (Λ ( { 00})) ≥ min{(Λ ( { 0}))
(Λ (0 {0 00}))}  . Hence, by definition,  ( { 00})   Thus,  is

stochastically transitive. ¥

3.3 Rationalizable SCF

The next theorem asserts that the answer to the second question posed in

the preceding section is affirmative, and that the generating ICM is unique

up to equivalence class. An SCF  ∗ on ×A is said to be rationalized by an
ICM if  ∗ () =  ()  for all () ∈ ×A where  is generated

by an ICM.

Theorem 2. If  ∗ : ×A→ [0 1] is an SCF satisfying regularity and

stochastic transitivity then there is a unique equivalence class of ICMs that

rationalizes it.

Proof. Let  ∗ on ×A be an SCF satisfying stochastic transitivity and
regularity We need to show that there exists an ICM (I,) such that all
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Â∈  are transitive, irreflexive and satisfy set-inclusion monotonicity, and

that the SCF  the ICM generates satisfies  () =  ∗ ()  for all
() ∈ ×A.
For all  ∈ [12 1) define binary relations Â on  by  Â 0 if

 ∗ ( { 0})   and  31 0 if  ∗ ( { 0}) = 112
If  ∗ ( { 0})   then  ∗ ( { 0})  0 for all 0 ≤  Thus,

by definition,  Â 0 implies that  Â0 0 Consequently, Â⊆Â0  If

 ∗ ( { 0}) = 1 then  ∗ ( { 0})  0, for all 0  1 Hence,  31 0

implies  Â0 0 and Â1⊆31⊆Â0  for all 0 ≤ 1 Thus, Â satisfies set-

inclusion monotonicity for all  ∈ [12 1].
Let  0 00 ∈  and suppose that  Â 0 and 0 Â 00. By defini-

tion  ∗ ( { 0})   and  ∗ (0 {0 00})  . By stochastic transitivity

 ∗ ( { 00})  . Hence, by definition,  Â 00 Thus, Â is transitive.

By definition, for all binary menus, { 0}  ∗ ( { 0})+ ∗ (0 { 0}) =
1Hence,  ∗ ( { }) = 12 and, by definition, for all  ∈ [12 1] ¬ ( ∗ ( { })  ) 

Hence, ¬ ( Â ). Thus, Â is irreflexive.

Let  = {Â|  ∈ [12 1]} be the set of binary relations defined above.
By definition, for all () ∈ ×A,

Λ () = ∩0∈{ ∈ [12 1] |  3 0} = ∩0∈Λ ( { 0}) ∈ I

Let ∗ be a Borel probability measure on B[121] agrees with  ∗ on
{Λ () | () ∈  × A} ⊆ I (i.e., ∗ (Λ ()) =  ∗ ()  for all
() ∈ ×A.
Denote by  be an SCF generated by the ICM ( I,∗). Then  is

given by (1) and, by definition,  () =  ∗ ()  for all () ∈ ×
A. By Theorem 1,  is stochastically transitive and satisfies regularity.

Moreover, because A contains all the binary menus { 0} the SCF  ∗ fully
characterizes the binary relations in the index set  of the rationalizing

ICM. By (1), the same  is induced by all the ICMs that belong to the same

equivalence class ¥
12The first part of this definition is the same as that of Roberts (1971).
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4 Representations and the Canonical Signal

Spaces

4.1 Representations

In Karni (2023), I showed that the ICM in conjunction with the existing

models of decision making under certainty, under risk, and under uncertainty

are represented by sets of utility functions (in the cases of decision making

under certainty and under risk) and sets of utility-probability pairs (in the

case of decision making under uncertainty). To grasp this point, consider the

case of decision making under certainty.

Let the choice set  be a nonempty topological space. A nonempty set U
of real-valued functions on  is said to represent a transitive and irreflexive

binary relation B on  if, for all  0 ∈   B 0 if and only if ()  (0),
for all  ∈ U  The following is a corollary of Theorem 1 in Karni (2023).

Corollary: Let  be a locally compact separable metric space and ( I,)
an ICM, where Â∈  are continuous, then there exists a collection {U |
 ∈ [12 1]} of sets of real-valued, continuous, strictly Â −increasing, func-
tions such that, for every  ∈ [12 1]  U represents Â, and  ≥ 0 if and
only if U ⊇ U0 

The uniqueness of the representation is as follows: Given any nonempty

subset U of R, define the map ΥU :  → RU


by ΥU () () := ().

Two nonempty subsets U and V of continuous real-valued functions on 

represent the same preorder if, and only if, there exists an  : ΥU()→ ΥV
such that () ΥV =  (ΥU); and () for every   ∈ ΥU(),    if and

only if ()  ()13

4.2 Canonical signal spaces

The premise underlying the stochastic choice behavior depicted by ICM is

that choices are governed by unspecified, random, signal—generating process.

Consider the choice between two alternatives, say  and 0 such that ¬( ∼
13See Evren and Ok (2011). Note that, in general, for arbitrary multi-utility represen-

tations, V and V0 , of two preorders, < and <0 , such that <⊂<0 does not imply

that V ⊃ V0 . Given < and facing a choice from a binary set { 0}, the probability
that the decision maker chooses the alternative  is independent of the representation. In

other words, if U and V are two representations of < then the functions in V are
given by the uniqueness of the representation.
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0) Then (Λ ( { 0})) may be interpreted as the probability of a signal
that would resolve the indecision in favor of  By Theorem 1 and the Corol-

lary, this is the case if and only if ()  (0) for all  ∈ ∪∈Λ({0})U

By set-inclusion monotonicity, this is equivalent to  ∈ U supΛ({0})
Given SCF  ∗ let (I,) be the ICM that rationalizes it. Let  :

2U\∅ → [0 1] be a probability measure such that, for  ∈ [0 1]  (U) =

 ([12 ])  Then  ∗ ( { 0}) = 
¡U supΛ({0})¢  for all  0 ∈  In

other words, facing a choice between two alternatives,  and 0 that are not
indifferent to one another, the decision maker behaves as if a function  is

selected from U1 according to a probability measure  and  is chosen if

 ∈ U supΛ({0}) and 0 is chosen if  ∈ U1\U supΛ({0}). Therefore, the set
U1 may be taken to be the canonical signal space.
Corresponding to the partition J ()  define a partition of U1 as follows:

For each  ∈ = {1  } let

 () := { ∈ U1 |  ()   (0) ∀0 ∈\{}} (3)

Then,  ∈ Λ () if and only if  ∈  ()  Since U1

is the canonical

signal space, the probability of the signal  ∈  () is  ( ()) =

 (Λ ())  By Theorem 2, given an SCF  ∗ rationalized by an ICM we

have, every  and  ∈ ,

 ∗ () =  ( ( ))  ∀ ∈ (4)

Thus, the random choice behavior depicted by an SCF  ∗ may be interpreted
as follows: When facing a choice from a menu , the decision maker behaves

as if a utility function  ∈ U1 is randomly selected from the measure  and

 ∈ is chosen if  ∈  () 

5 Stochastic Demand and Portfolio Choice

5.1 Stochastic demand functions

The application of the ICM to the theory of market demand is based on

the following idea. When a consumer faces a menu consisting of commodity

bundles, a utility function is selected at random from the canonical signal

space according to some implicit probability measure and the commodity

bundle that maximizes this utility function is chosen. In this context the
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two questions of section 3.1 correspond to two issues concerning stochastic

demand. First, what is the nature of the stochastic individual and market

demands induced by irresolute choice behavior? Second, can the data induced

by stochastic individual and market demands, be rationalized by irresolute

choice behavior?

To model market demand, let  = {1  } be the set of individuals in
the market, and let R

+ denote the set of alternatives representing commodity

bundles. Menus are feasible budget sets,  ( ) = { ∈ R
+ |  ·  ≤ } 

where  = (1  ) ∈ R
++ denotes the commodity price vector and 

the income of individual . Denote by ̄ the set of budget sets. Assuming

non-satiation, the undominated subset of  ( ) ∈ ̄ is  ( ) = { ∈
R
+ |  ·  = }
To answer the first question, let U 1

 denotes the canonical signal space

corresponding to an ICM depicting the behavior of individual . Then, given

a budget set  ( ) the realization of the random demands e ( ) may
be described as follows: For each  ∈ U1

  let 
∗ (  ) be the solution to

the program

max () subject to  ∈  ( ) 

and denote by ∗ (  ) its  −  entry. Then the stochastic commodity

demands are driven by the random selection of a function  ∈ U1

 Let e
be random utility function, then, e ( ) = ∗ (  e) is the observed
random demands.

For every  ( ) ∈ ̄ and  ∈  ( )  let  () = { ∈ U1

 |
 () ≥  (0) ∀0 ∈  ( )}. The revealed stochastic demand is an SCF
 : R

+ × ̄ → [0 1] given by

 ( ( )) =  ( ())  (5)

The random demand for commodity  by individual  is e ( ) =
∗ (  e)  whose support is [0 ]. Thus, given the budget set  ( )
the probability that the individual  chooses  is 

¡
  ( )

¢
. Given

an income profile  = (1  ) and a price vector  the market stochastic

demand function for commodity  is: e (  ) = Σ
=1e ( ).

It is standard practice in economics to treat individual demands as in-

dependent variables.14 The analogous assumption in the present context

14This assumption is reasonable when applied to commodities such as milk and gas; it

is much less compelling when applied to other commodities.
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maintains that individual demands are stochastically independent random

variables.15 If e ( ),  ∈   are stochastically independent, then the dis-

tribution,  of the market demand for commodity , e (  )  is given by the

convolution  =  (1   ( 1)) ∗  (2   ( 2)) ∗  ∗ 
¡
   ( )

¢


Expected demand is given by


h e (  )

i
= Σ

=1

Z
(∗ ( ))

∗ (  )  ()  (6)

Its variance is

 
³ e (  )

´
= Σ

=1

Z
(∗ ( ))

[∗ (  )−
h e (  )

i
]2 () 

(7)

Standard practice notwithstanding, in many markets individual demands

are correlated, possibly because of implicit social effects such as conformism

and status seeking. For instance, the demand for clothes is affected by fash-

ion, the demand for vacation spots may be affected by the anticipated com-

position of the clientele, and demand for stocks may respond to information

shared by many investors that respond to it in similar way. In these cases, the

linearity of expectations implies that 

h e (  )
i
= Σ

=1

¡e ( )¢ 
The variance of market demand, however, depends on the correlations among

the individual demands and takes the form

 
³ e (  )

´
= Σ

=1  (e ( )) + 2Σ
¡e ( )  e ( )¢ 

(8)

In commodity markets in which individual demands are positively correlated,

the individual stochastic choice behavior implied by the ICM induces greater

demand fluctuation.

If the data summarizing individual demand behavior constitute SCFs

satisfying regularity and stochastic transitivity, then by Theorem 2, it is

ratioanlizable by ICMs.

5.2 Comparative statics

Consider next the consequences of income and price variations on mar-

ket demands. Suppose that, ceteris paribus, the income of individual 

15A collection of random avriables is said to be independent if every finite subcollection

is independent.
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increases form  to  0
  The supports of the random demands increase

to [0  0
]   = 1   For each  ∈ U  the optimal bundle changes

from ∗ (  ) to ∗ (  0
  )  and the corresponding change in the de-

mand for commodity  is from ∗ (  ) to 
∗
 ( 

0
  )  For, each  ∈ U ,

∗ (  ) ∈ argmax∈()  () and ∗ (  0
  ) ∈ argmax∈( 0)  (),

(5) implies that

Pr(∗ ( 
0
  )) = Pr(

∗
 (  )) =  () 

The change in the demand distribution of commodity  depends on the income

effects implies by the utility functions in the canonical signal space.

Similar considerations apply to relative price variations. Suppose that the

price of commodity  increases from  to 
0
. Denote the new price vector by

0 Let ∗ (0  ) denote the optimal bundle given the budget set  (0 )
corresponding to  ∈ U and let ∗ (0  ) denote its  entry. Then by the
same argument as above,

Pr(∗ (  )) = Pr(
∗
 (

0  )) =  () 

The change in the market demand for commodity  is a random variable

given by e (
0  )− e (  ) = Σ

=1

£e (0 )− e ( )¤ 
Example: Consider the case in which the set of utility functions of indi-

vidual  consists of Cobb-Douglas utility functions (i.e., U = {11 
2
2 


 |

 ∈
h


 ̄

i
 


≥ 0Σ

=1 = 1}) Let  := 
1
1 

2
2 


 and denote by 

the joint probability distribution function on
h


 ̄

i
Then, ∗ (  ) =

 : ,  = 1   The stochastic demand for commodity  by individ-

ual  e ( ) is depicted by  . Formally, let ̄ () denote the marginal
distribution of  then

Pr{e ( ) = ∗ (  )} = ̄ ()  (9)

If the income of individual  increases from  to 
0
  then the demand in-

creases proportionally, (i.e.,for all  = 1  , ∗ ( 
0
  ) = (

0
) 

∗
 ( ;))

and Pr (( 0
)

∗
 (  )) = Pr (∗ (  )) = ̄ ()  Similarly, if

the price of commodity  increase to 0 then the demand decreases propor-
tionally (i.e., ∗ (

0
 ;) = (

0
)

∗
 ( ;)) and Pr ((

0
)

∗
 ( ;)) =

Pr (∗ ( ;)) = ̄ () 

If the utility functions of all individuals are Cobb-Douglas functions, then

their demands are independent random variables. Consequently, given an
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income profile  and price vector  the distribution of the market demande ( ) is the convolution of the distributions ̄  = 1  

Let  0 be another income profile. Then the change in the expected market
demand is

Σ
=1 [ (e (  0

))− (e ( ))] = Σ
=1 [(

0
)− 1] (e ( )) 

(10)

where  (e ( )) = R ̄


∗ ( ;) ̄ ()  The variance of individ-

ual demands increases by a factor ( 0)
2
(i.e.,   (e (  0

 )) = (
0
)

2
  (e ( )))

5.3 Stochastic portfolio choice

Consider next the application of the ICM to the theories of portfolio choice

and financial markets. Let  = {1  } be a finite state space, and
denote by {1  } the corresponding set of Arrow securities.16 The set of
alternatives, R are portfolios of Arrow securities (i.e., portfolio is  ∈ R

where  denotes the number of Arrow securities of type 
 in the portfolio).

Denote by ̄ = (1  1) the portfolio that consists of one Arrow security of

each state. Then ̄ is a unit of a risk-free asset. Let  = (1  ) denote

the vector of prices of the Arrow securities then the price of ̄ is ̄ = Σ
=1.

Let ̄ denote the initial endowment of risk-free asset of individual 

whose value is  = ̄ · ̄. Then the budget set of individual  is  ( ) =

{ ∈ R |  ·  = } where  is the transposed of 
Denote by Π a set of subjective probability distributions on  repre-

senting the possible beliefs of individual  about the likely realizations of

the states, and let  be a real-valued function on R, representing the in-
dividual’s risk-attitudes. A preference relation, Â of individual  is said

to exhibit Knightian uncertainty if, for all  0 ∈ R,  Â 0 if and only
if Σ

=1 () ()  Σ
=1 (

0
) ()  for all  ∈ Π.

17 Note that, in this

instance, Π constitutes individual ’s canonical signal space corresponding

to the ICM Let V := {Σ
=1 () () |  ∈ Π} with generic element 

Let  denote a probability measure on Π induced by a ICM Define

Π () = { ∈ Π |  () ·  ≥  (
0) · ∀0 ∈  ( )} (11)

16An Arrow security  pays off $1 in the state  and nothing otherwise.
17See Bewley (2002) and Galaabaatar and Karni (2013).
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The the optimal portfolios of Arrow securities of individual  corresponding

to  ∈ Π is e ( ) () = arg max
∈()

 () ·  (12)

Then e ( ) is a random variable whose distribution (and that of e ( ))

induced by  Then the SCF generated by ICM that represent the random

portfolio choices of individual  is:

 ( ( )) = {Π ()}. (13)

The market demand for Arrow security  is the sum of individual demands,

whose distribution is the convolution of the distributions of the individual

demands.

6 Related Literature and Concluding Remarks

6.1 Related literature

Luce (1959) pioneered the study of random choice behavior. A primitive

of Luce’s model is a stochastic choice function summarizing the observed

frequencies of choice of alternatives in the feasible sets in a variety of situ-

ations encountered in psychology and economics. Luce explored (sufficient)

conditions on the choice probabilities that admit a numerical scale that rep-

resents individual stochastic choice behavior. In the notations of this pa-

per, for a finite set of alternatives, say  = {1  }, Luce’s proposed
structure of the stochastic choice function is represented by (strictly pos-

itive) utility vector, unique up to positive scalar multiplication, such that

 () =  () Σ0∈ (0)  for all nonempty  ⊆  and  ∈

Luce’s model requires that every alternative in every menu has strictly

positive probability of being chosen and a constancy of probability ratios

condition. Formally,  (;)  0 for every  ∈  and, for every  0 ∈ 

the ratio  ()  (0) is constant over all menus  ⊆  that contain

 and 0 Neither of these conditions seems natural, nor are they intuitively
compelling.18 Therefore it is worth underscoring that neither of these con-

ditions is required by the ICM and the corresponding SCFs. According to

the ICM  (;) = 0 for all  ∈  () and, while adding alternatives to

18Recent research including Ahumada and Ulku (2018), Echenique and Saito (2019),

and Horan (2021) extend Luce’s seminal work to address these weaknesses of the model.
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a menu may decrease the probabilities of choosing existing alternatives, the

decreases are not necessarily equiproportional.

The notion of random choice governed by random selection of utility

functions was explored by Block and Marschak (1960). Specifically, Block

and Marschak treat the (finite) set of utilities as primitive and postulate the

existence of a random utility vector  = ( (1)  ()) (unique up to

increasing monotone transformation) which induces random rankings of the

elements of the alternatives such that, for all  ∈  () is equal to the

probability of the set of rankings whose elements rank  above every other

alternative in the menu  . They show that this condition requires that no

two alternatives can be assigned the same rank. Formally, for all  6= 0
Pr{ () =  (0)} = 0 They also show that the existence of probability dis-
tribution on rankings consistent with the probabilities  () implies regu-

larity. Unlike Block and Marschak’s model in which the utility functions are

primitives, the utility functions that constitute the canonical signal space in

the ICM are derived from the underlying set of probabilistic choice relations,

and the regularity condition is derived from the set inclusion monotonicity

condition. Moreover, the ICM admits infinite sets of utility functions and

does not require that distinct alternatives are assigned the different utilities.

The problem of revealed stochastic preference deals with a similar ques-

tion — namely — whether the distribution of observed choices from variety

of feasible sets of alternatives is consistent with preference maximization.

Applied to a population, the distributions of observed choices arise because

of heterogeneity of tastes and/or beliefs. Applied to individuals, the dis-

tribution is a reflection of stochastic variables underlying individual pref-

erences. McFadden and Richter (1971, 1990), Falmagne (1978), Fishburn

(1978), Stoye (2019) addressed the question of consistency of the distribution

of observed choices with optimizing behavior.19 The ICMmay be regarded as

a contribution to the part of this literature that deals with individual stochas-

tic choice behavior. However, unlike the literature on stochastic preference

in which the set of utility functions is a primitive ingredient of the models,

the primitive of the ICM is a set of incomplete probabilistic choice relations,

that admit random utility representation. This difference is reflected in the

axiomatic structures of the models. Recently, there has been a revival of

interest in random utility models of choice and random choice behavior that

19McFadden (2005) synthesizes and extends the literature on stochastic preference. He

also provides an extensive reference list to this literature.
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reflects preference for deliberated randomization.20

Roberts (1971) studied the properties of homogeneous families of semi-

orders. His primitives consist a set  of alternatives and a binary proba-

bility function  :  ×  → [0 1] that satisfies  ( 0) +  (0 ) = 1

for all  0 ∈ . The choice probabilities,  , are assumed to satisfy Strong

Stochastic Transitivity (in the notations of this paper, for all  0 00 ∈
  ( { 0}) ≥ 12 and  (0 {0 00}) ≥ 12 implies  ( { 00}) ≥
max{ ( { 0})   (0 {0 00})).21 Following Luce (1958, 1959) Roberts
invokes the function  to define binary relations on  as follows  Â 0

if and only if  ( { 0})  .22 Roberts (Theorem 4) shows that, for 

finite, {Â|  ∈ [12 1)} is induced by binary choice probabilities if and only
if it satisfies the following axioms: For all  0 ∈  and  0 ∈ [12 1) (a)
 Â 0 implies ¬(0 Â0 ) (b) Either Â⊆Â0or Â0⊆Â  Roberts’ main

result is that each of the relations in {Â|  ∈ [12 1)} is a semiorder and
the set itself must be homogeneous in the sense that a common weak order

on  underlies (i.e., is compatible with) every semiorder. The main thrust of

this paper is different from that of Roberts (1971) in several respects. First,

Roberts’ analysis is confined to stochastic choice form binary menus whereas

the main focus of this paper is stochastic choice from feasible menus. Second,

the axiomatic structure of this paper is different from that of Roberts and

are not required to satisfy Strong Stochastic Transitivity. Consequently, the

binary relations of ICM are not semiorders and are not homogeneous. Third,

given the axiomatic structure, Roberts’ main result is identifying a set of

conditions that are equivalent to Strong Stochastic Transitivity, whereas the

main objective of this paper is the study of the axiomatic foundations that

rationalizes the revealed probabilistic choice behavior depicted by stochastic

choice functions.

At the individual level, random choice behavior may reflect the decision

maker’s indifference among feasible alternatives or his inability to compare

them because of their complexity or the lack of familiarity with their conse-

quences. Ok and Tserenjigmid (2020) model these aspects of random choice

behaviors by stochastic choice functions. They characterize stochastic choice

20Various aspects of random utility models of choice behavior have been studies by Gul,

Natenzon, and Pesendorfer (2014), Fudenberg, Iijima, and Strzalecki (2015), and Frick,

Iijima, and Strzalecki (2019). Danan (2010), Agranov and Ortoleva (2017), and Cettolin

and Riedl (2019) examined random choice based on deliberate randomization.
21See also Block and Marschak (1960).
22I use the notations of this paper.
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functions that assign positive probabilities solely to alternatives that consti-

tute maximal elements of the feasible sets. They do not study the probability

distributions on the sets of maximal elements.

Karni and Safra (2016) axiomatized the representation of decision makers’

perceptions of the stochastic process underlying the selection of their state

of mind which, in turn, govern their choice behavior. This work may be

regarded as providing axiomatic foundations of a probability measure on the

canonical signal space based on the decision makers’ introspections.

Becker (1962) argued that some economic theorems, such as the law of

demand, do not depend on agents in the market behaving rationally. He

showed that even if consumers choose their consumption bundles without

attempting to optimize of some objective function, the change in the bud-

get set caused by the relative price changes will force them to respond in a

way that, in the aggregate, produces a downward-slopping demand functions.

In Becker’s analysis, households’ choices may be irrational but not stochas-

tic. Consequently, unlike in the market demand theory implied by the ICM,

market demand is non-stochastic.

Cerreia-Vioglio et al. (2022), adopt a purely behavioral approach to the

study the law of demand in the presence of stochastic choice. Accordingly,

in their analysis the primitive are stochastic choice functions depicting con-

sumer’s choices to which they attribute no preferential (mental) interpre-

tation. They showed that, if these functions are consistent in the sense of

Luce’s (1959) choice axiom, and if strictly dominated alternatives are elimi-

nated, then the law of demand for normal goods holds on average. In their

concluding remarks Cerreia-Vioglio et. al mention the possibility of taking a

complementary preferential approach to stochastic consumer theory. In this

paper, I link the stochastic choice functions to random preferential relations

and showed, in Theorem 2, that any SCF may be generated by a stochas-

tic preference that was hinted to by Cerreia-Vioglio et al. It is also worth

mentioning that, whereas Cerreia-Vioglio et al. (2022) analysis is focused

on the comparative statics properties average demand, this paper analysis of

the implications of random choice behavior for market demand is concerned

with both the implied the average and variance of the demands.
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6.2 Consistency with violations of the weak axiom of

revealed preference

According to the revealed preference approach, stochastic choice functions

are empirical manifestations of random choice behavior that may be governed

by decision makers’ indifference among feasible alternatives, their inability

to compare and rank the alternatives, variations in their moods, and/or

changing needs. Whatever the underlaying motivations, the reasons for the

observed stochastic choice may not be accessible to an outsider; if they are

driven by subconscious impulses they may not be accessible even to the

decision maker himself. It is necessary in such cases to build theories that

make sense of observations that consist of feasible alternatives and actual

choices. The irresolute choice model is a way of making sense of observed

random choices in repeated decision situations involving the same feasible

set of alternatives summarized by stochastic choice functions.

The model is also consistent with some violations of the weak axiom of

revealed preference (WARP).23 To see why, let 0 ∈ R
+ denote the initial

endowment of a decision makers commodities. Let  and 0 be two price
vectors and consider the budget sets  ( 0 · ) and  (0 0 · 0)  The cor-
responding undominated sets are


¡

¡
 0 · ¢¢ = { ∈ 

¡
 0 · ¢ | ∃ ∈ U s.t.  () ≥  (0) ∀0 ∈ 

¡
 0 · ¢}

and


¡

¡
0 0 · 0¢¢ = { ∈ 

¡
0 0 · 0¢ | ∃ ∈ U s.t.  () ≥  (0) ∀0 ∈ 

¡
0 0 · 0¢}

If 0 ∈  ( ( 0 · )) ∩  ( (0 0 · 0)) then  ( ( 0 · )) ∩
 (0 0 · 0) and  ( (0 0 · 0))∩  ( 0 · ) are nonempty.24 Let
∗ ∈  ( ( 0 · )) ∩  (0 0 · 0) and ∗∗ ∈  ( (0 0 · 0)) ∩
 ( 0 · ) then the choices ∗ from (0 0 · 0) and ∗∗ from ( 0 · )
constitute a violation of WARP.25 Such choice is consistent with irresolute

choice behavior.

23I am grateful to Yujian Chen for calling my attention to this point.
24

¡
 0 · ¢ and  ¡0 0 · 0¢ are the interiors of the corresponding budget sets

in the R topology.
25In the case of complete preferences, U is a singleton set.
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