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1 Introduction

An expert’s assessment of the likelihood of an event in which he has no stake

may be of interest to others. For example, a patient may want to obtain a sec-

ond opinion about the likelihood of success of a treatment recommended by

his physician. A venture capitalist may be interested in an engineer’s assess-

ment of the chance of success of a new technology for generating electricity

from sea waves. In some instances the expert’s beliefs may be represented

by a set of priors, which makes it impossible for him to deliver a precise

assessment of the probability of the event of interest. Such an expert may

be able to provide a range of the probabilities instead.1 In other instances,

a Bayesian expert (that is, a subjective expected utility maximizer whose

beliefs are represented by a unique prior) may anticipate receiving new, pri-

vate, information that would affect his assessment. Such an expert could

deliver a precise assessment of his prior of the event of interest. However, he

entertains a set of posteriors corresponding potential information signals he

anticipates receiving. In this case, the expert’s assessment takes the form of

a range of posterior probabilities. Whether priors or posteriors, I refer to the

expert’s set of subjective probabilities of the event of interest as first-order

beliefs.

In both instances, the expert may also entertain beliefs about the likeli-

hoods of the probabilities in the corresponding sets. In the case in which the

first-order beliefs is represented by a set of priors, I refer to these likelihoods

as second-order belief, and in the case in which the first-order beliefs is rep-

resented by a set of posteriors I refer to them as the subjective information

structure.2 In either case, the second-order belief or information structure

1In robust Bayesian statistics, the elicitation of the set of priors is analogous to the

elicitation of a single prior in Bayesian statistics (see Seidenfeld, Schervish and Kadane

[1995]). Multi-prior models are part of the more general theory of imprecise probability,

which allows for partial probability specifications. It is applicable when information is in-

sufficient to identify a unique (prior) probability distribution (“it is useful for dealing with

expert elicitation, because decision makers have a limited ability to determine their own

subjective probabilities and might find that they can only provide an interval.” [Wikipedia,

Imprecise probability]).
2The term “second-order belief” is defined in the literature dealing with interactive

decision making to describe one player’s belief of another player belief. It is also employed

in the theory of decision making under uncertainty in the sense of its use here, namley,

to describe a decision maker’s belief over a set of priors (e.g., Seo [2009], Nascimento and
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are represented by a unique probability measure.

The situation in which an expert or a decision maker entertains a set

of priors arises when the expert’s preference relation over the set of non-

constant, state-contingent consequences (or acts), is incomplete. Bewley’s

(2002) Knightian uncertainty model characterizes this situation.3 A deci-

sion maker’s second-order belief in the context of incomplete preferences is

modeled in Karni and Safra (2016), according to whom, decision makers’

display random choice among acts which is governed by their moods, beliefs,

or states of mind. In the present context, states of mind correspond to the

decision maker’s beliefs and are represented by belief-contingent preference

relations on acts. The fact that a decision maker’s may entertain distinct

beliefs à la Bewley, reflects the underlying incompleteness of her preference

reation on the set of acts. According to Karni and Safra, decision makers

entertain introspective belief about their likely beliefs.

The situation in which a Bayesian expert entertains a set of posterior

beliefs corresponding to his subjective information structure was studied in

Dillenberger, Lleras, Sadowski and Takeoka (2014) and Lu (2016). Both

models describe Bayesian decision makers who anticipate receiving private

signals before choosing an act from a set of acts (menu).

Dillenberger et al. characterize what they refer to as subjective learning

representations of preference relations on menus. A subjective learning rep-

resentation involves a unique information structure which takes the form of

a probability measure on canonical signal space (that is, the set of distribu-

tions on the state space) representing the decision maker’s subjective beliefs

on the set of posteriors.

Using similar framework, Lu (2016) models an analyst who observes the

decision maker’s random choice but is not privy to the signal he receives

and acts upon. Lu shows that, if the distribution on the canonical signal

space corresponds to the observed random choice rule (that is, the empirical

distribution of choices of elements from menus of acts), the analyst can iden-

tify the decision maker’s private information structure by observing binary

choices.

Despite the differences in their analytical frameworks, their axiomatic

foundations, and their implied choice behavior, the works of Karni and Safra

Riella [2013] and Giraud [2014]).
3See also Galaabaatar and Karni (2013).
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(2016), Dillenberger et al. (2014) and Lu (2016), share in common repre-

sentations of the decision maker’s second-order belief or private information

structure. Moreover, in all of these models decision makers exhibit random

choice behavior. According to Karni and Safra, when facing a choice be-

tween two alternatives that are non-comparable (that is one alternative is

preferred over another according to some priors while it is less preferred ac-

cording to other priors in the set of priors), choice behavior is random. More

specifically, some impulse triggers a choice of a prior from the set of priors

according to the second-order belief, and this prior determines the alternative

to be chosen according to the subjective expected utility criterion. According

to Dillenberger et al. and Lu a decision maker receives, at an interim stage,

a private signal on the basis of which he updates his beliefs. The posterior

belief governs his eventual choice.

Suppose that an uniformed party (henceforth, the elicitor) would like to

elicit the expert’s assessment of range of the prior or posterior probabilities

of the event of interest as well as his subjective belief regarding the likeli-

hoods of the different priors or the posteriors in the corresponding sets. In

this paper I propose a direct revelation mechanism requiring the expert to

submit a report that allows the simultaneous elicitation of the range of pri-

ors (or posteriors) and his subjective assessment of the probabilities that the

priors (or posteriors) in the corresponding sets are true. The mechanism is

a modified quadratic scoring rule. If the expert displays incomplete beliefs

the mechanisms elicit the range of the expert’s priors of an event of interest,

as well as his introspective second-order belief (à la Karni and Safra [2016]).

If the expert is Bayesian, the mechanism can be used to elicits the range of

the expert’s posterior probabilities of the event of interest and his subjective

information structure (à la Dillenberger et al. [2014] and Lu [2016]).

With two notable exceptions, Chambers and Lambert (2014, 2015, 2017),

and Prelec (2004), the mechanisms described in the literature on the elicita-

tion of subjective probabilities require the conditioning of the expert’s payoff

on the event of interest.4 This paper deals with the elicitation of the probabil-

ities of events in a subjective state space (that is, probabilities on subjective

beliefs). Consequently, the true state (or event) is never observed and hence

4Unlike the mechanism in this paper and the protocol of Chambers and Lambert,

Prelec’s (2004) elicitation scheme is not designed for the elicitation of second-order beliefs

and is, therefore, less pertinent for the problem under study.
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cannot be used to condition the payoff of the expert. Chambers and Lambert

deals with the elicitation of the private information structure that governs the

evolution of an expert beliefs over time. Because the information acquired

by the expert is private, the elicitor cannot condition the expert’s payoff on

this information.

Despite the similarity in their objectives, the mechanisms presented here

and the protocol of Chambers and Lambert (henceforth the CL protocol)

are distinct. The differences include the underlying decision models, which

affects the nature of the information they are designed to elicit, the elicitation

schemes themselves, and the preference relations of the experts they admit.

A more detailed discussion of the relation of this work to that of Chambers

and Lambert is put off until after the reader review the proposed elicitation

mechanisms of this paper (see section 4.3).

2 The Elicitation Mechanism

2.1 The analytical framework

I adopt the analytical framework of Anscombe and Aumann (1963). Let 

be a set of states, one of which is the true state. Subsets of  are events. An

event is said to obtain if the true state belongs to it. Let ∆ () be the set of

simple probability distributions (that is, distributions with finite supports)

on an interval  in R, and denote by  := { :  → ∆ ()} the set of
Anscombe-Auamnn acts. I identify the set of constant acts with ∆ () 

A bet on an event , denoted  is a mapping from  to  that pays

 dollars if  obtains and  dollars otherwise, where    Denote by

 (; ) = [ ;  (1− )]   ∈ [0 1]  the act that pays off  dollars with

probability  and  dollars with probability (1−) in every state Henceforth,
I refer to such constant act as lottery. Let  := { |  ⊂    ∈ R,
  } be the set of bets and  := { (; ) |  ∈ [0 1]    ∈ R,   }
be the set of lotteries. Clearly,  ⊂  and  ⊂ ∆ ().

2.2 The subject

Consider a subject whose assessment of the probability of the event  is

of interest. The subject’s assessment may not be unique for two reasons.

5



First, his belief might not be complete in which case the assessment involves

a non-singleton set of subjective priors. Second, even if his prior assess-

ment is represented by a unique subjective probability, the subject might

anticipate receiving a private signal that would make him revise his initial

assessment. In this case the subject’s posterior beliefs are represented by

a signal-contingent assessments of the posterior probability of the event of

interest. These are distinct possible situations depicted by different models

of the subject’s beliefs.

The notion of incomplete prior beliefs was first axiomatized by Bewley

(2002). According to Bewley, the subject’s prior beliefs are represented by

a subset, Π0 ⊆ ∆ ()  where ∆ () the set of probability distributions on 

and he strictly prefers and act  over another act  if and only if E  E
for all  ∈ Π0 where E = Σ∈[Σ∈ ()  () ()] () and  :  → R
is a strictly monotonic increasing function. I assume throughout that  is

twice continuously differentiable.

In the model of Karni and Safra (2016) Knightian uncertainty corre-

sponds to the special case in which possible states of mind are represented

by first-order beliefs (that is, elements of Π0).
5 Let  ⊆  be a menu

of acts and suppose that given a menu to start with, there is an interim

period in which the decision maker acquire knowledge of his first-order be-

liefs and chooses an act from the menu based on these beliefs. According

to Karni and Safra (2016), for any pair of menus in   Â  0 if and
only if

P
∈Π0

 () [E − E 0 ]  0 where  : Π0 →  is defined as

follows: For each  ∈ Π0  () is a selection of a unique element from

the set { ∈  | E ≥ E 0,∀ 0 ∈ } of undominated acts in  and

 is a second-order belief on Π0 ()  In other words, given a menu  
assigns to each first-order belief,  ∈ Π0, an act in  such that, give this

belief, the assigned act,  ()  is at least as preferred as any other act in

the menu. Consequently, E is the value of the menu  Thus, given

  ∈     and  = {  (; )},  () =  if  () ≥  and

 () =  (; ) otherwise.

The notion of multi-posterior beliefs figures in the representations of Dil-

lenberger et al. (2014) or Lu (2016). Let % be the subject’s preference

5This is the case of a subjective expected utility maximizing decision-maker whose

preference relation on the set of acts is incomplete, but restricted to the subset of constant

acts the preference relation is complete.
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relation on the set of compact subsets of  (called menus). Suppose that

the subject is a Bayesian decision maker whose preference relation satisfies

the axioms of Dillenberger et al. (2014). In this case, Π1 ⊆ ∆ () can be

interpreted as the set of posterior beliefs.6

For each event  the subject’s prior beliefs under Knightian uncertainty

are represented by the probabilities Π0 () = { () |  ∈ Π0} and if
the subject is Bayesian then posterior beliefs are represented by Π1 () =

{ () |  ∈ Π1} In the former case, the subject believes that the prior
probability of an event  is a random variable, e0 taking values in the in-
terval Π0 () = [0 ()  ̄0 ()] and that the likelihood that the true prior

probability is  is described by a cumulative distribution function 0 on

[0 ()  ̄0 ()]  interpreted as the subject’s second-order belief
7 In the lat-

ter case, the subject believes that the posterior probability of an event  is

a random variable, e1 taking values in the interval Π1 () = [1 ()  ̄1 ()]
and that the likelihood that the true posterior probability is  is described

by a cumulative distribution function, 1 on [1 ()  ̄1 ()]  interpreted as

the subject’s subjective information structure8

2.3 The elicitation mechanism

The mechanism described below is designed to elicit the range of subjective

prior or posterior probabilities of an event  as well as the subject’s cor-

responding second-order belief or the subjective information structure. The

proposed elicitation scheme requires the subject to report, at time  = 0

a function  : [0 1] → [0 1]. Following the report  a random number,

 is drawn from a uniform distribution on [0 1]  The subject is awarded

the choice between the bet ( +  − 2 ())2)
¡
 − 2 ()

2
¢
and the lot-

tery  (;  +  − 2(1−  ())2  − 2(1−  ())2)  where   0. In the last

period,  = 2 after it becomes clear whether or not the event  obtained

and the outcome of the lottery are revealed, all payments are made.

6Kanri and Safra (2016) provide a detailed discussion of connection between their work

and those of Dillenberger et al. (2014) and Lu (2016). They argue that, despite sharing

some features, their work is different conceptually, methodologically, and structurally.
7The existence of 0 representing the decision maker’s second-order belief on the set

of priors, is implied by the model of Karni and Safra (2016).
8The existence of 1, representing the subject’s subjective information structure, is

implied by the models of Dillenberger et al. (2014) and Lu (2016).
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A crucial aspect of the mechanism is the flexibility it affords in delaying

the choice. If the subject’s preferences display Knightian uncertainty the

value of this delay is in allowing the subject more time to consider his beliefs

in the hope that in the interim some, possibly subconscious, stimuli would

“trigger” a selection of an element from the set of priors and that the selected

prior is used to determine the choice.9

If the subject is Bayesian, the delayed choice allows him to receive new

information, or a signal, before making up his mind. In either case, the sub-

ject reports  () = 1 if he is confident that, for that  the lottery dominates

the bet and intends to choose the lottery. The subject reports  () = 0 if

he is confident that the bet dominated the lottery and intends to choose the

bet. The subject reports  () ∈ (0 1) if he is unsure about his preference
between the bet and the lottery and prefers postponing her choice to the

interim period. Put differently, the subject’s preference for flexibility is man-

ifested in his willingness to pay a price 2 ()
2
in case he decides to chose

the bet or 2(1−  ())2 in case he decides to choose the lottery, in order to

preserve his right to choose from the menu

{¡ +  − 2 ())2
¢


¡
 − 2 ()

2
¢
 
¡
;  +  − 2(1−  ())2  − 2(1−  ())2

¢}
in the interim period,  = 1.10

2.4 The elicitation mechanism analyzed

To fix the ideas, suppose that the subject’s preference relation on  displays

incomplete beliefs.11 Also, to simplify the notations, without loss of gener-

ality I assume that  = 0 and, fixing the event of interest,  I denote the

9Kreps (1979) articulates this presumption as follows: “In many problems of individual

choice, the choice is made in more than one stage. At early stages, the individual makes

decisions which will constrain the choices that are feasible later. In effect, these early

choices amount to choice of a subset of items from which subsequent choice will be made.

This paper concerns choice among such opportunity sets, where the individual has a “desire

for flexibility” which is “irrational” if the individual knows what his subsequent preferences

will be” (Kreps [1979], p. 565). The focus of the discussion here is the subject’s subsequent

beliefs rather than subsequent tastes.

10In Dillenberger et al. (2014) and Lu (2016) the delay is built in as the interim period

in which the decision maker receives the information signal. The willingness to delay the

choice is a manifestation of the value of the anticipated information.
11The same analysis pertains to Bayesian subjects with private information structures.
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corresponding set of priors by Π = [ ̄] instead of Π0 () = [0 ()  ̄0 ()]

and the subject’s second-order belief by  instead of 0

Under the mechanism, the subject’s optimal choice of () permits the

recovery of his second-order belief,  Moreover, it is in the subjects’ best

interest to truthfully reveal the range of his beliefs by announcing () = 1

of all  ∈ [̄ 1]and  () = 0 for all  ∈ [0 ]. Formally, given  denote

by ∗ (; ) the optimal choice under the mechanism, then the next theorem
asserts that lim→0 ∗ (·; ) =  (·) 
Theorem 1: In elicitation scheme the optimal report of ∗ (; ) satisfies

lim→0 ∗ (; ) =  ()  for all  ∈ [0 1]  Moreover, ∗ (; ) = 1 for all

 ∈ [̄ 1]  and ∗ (; ) = 0 for all  ∈ [0 ].

Proof. In the interim period  = 1 the subject learns his first-order belief,

 Given his announcement  ()  the subject chooses the bet if


¡
 − 2(1−  ())2

¢
+ (1− ) 

¡−2(1−  ())2
¢ ≤


¡
 − 2 ())2

¢
+ (1− )

¡−2 ()2¢ 
otherwise he chooses the lottery. Thus, the subject will choose the bet if

 ≥  (  ()) + (  ())

where

 (  ()) =
 ( − 2(1−  ())2)−  (−2(1−  ())2)

 ( − 2 ())2)− 
¡−2 ()2¢

and

 (  ()) =
 (−2(1−  ())2)− 

¡−2 ()2¢

¡
 − 2 ()

2
)
¢− 

¡−2 ()2¢ 

The subject is a subjective expected utility maximizer, hence, anticipating

his choice in the interim period, he reports a function  : [0 1]→ [0 1] so as

to maximize

1Z
0

{ ( (  ()) + (  ()))
h
( − 2(1−  ())2) + (1− )

¡−2(1−  ()
¢2
)
i

(1)
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+

̄Z
(())+(())

£
( − 2 ()

2
) + (1− )(−2 ()2)¤  ()}

The maximal value is attained by maximizing the integrand pointwise.

For every  ∈ [0 1]  the first-order condition is12

 ( (  ()) + (  ())) (1− ())
h
0
¡
 − 2(1−  ()

¢2
)) + (1− )0

¡−2(1−  ()
¢2
)
i
+

0 ( (  ()) + (  ())) ( (  ()) + (  ()))×h

¡
 − 2(1−  ()

¢2
) + (1− )

¡−2(1−  ()
¢2
)
i

= (1−  ( (  ()) + (  ()))) ())×£
̂ ( (  ()) + (  ()))

£
0( − 2∗ ()2)− 0(−2∗ ()2)¤+ 0(−2∗ ()2)¤

+0 ( (  ()) + (  ())) ( (  ()) + (  ()))×£
 ( (  ()) + (  ()))

£
( − 2 ()

2
)− (−2 ()2)¤+ (−2 ()2)¤

where

̂ ( (  ()) + (  ())) =

̄Z
(())+(())



(1−  ( (  ()) + (  ())))
 () 

 (  ()) =  (  ())  and  (  ()) =  (  ()) 

Since 0 and  are continuous, for all  ()  lim→0 (  ()) = 1,

lim→0 (  ()) = 0, lim→0 (  ()) = lim→0 (  ()) = 0 More-

over,

lim
→0

h
0
¡
 − 2(1−  ()

¢2
) + (1− )0

¡−2(1−  ()
¢2
)
i
= 0 (0)

= lim
→0

h
̂ ()0

¡
 − 2(1−  ()

¢2
) + (1− ̂ ())0(−2 ()2)

i
12It is easy to verify that the second-order condition is satisfied, so the first-order con-

dition is necessary and sufficient for a maximum.
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and

lim
→0

h

¡
 − 2(1−  ()

¢2
) + (1− )

¡−2(1−  ()
¢2
)
i
=  (0) =

= lim
→0

h
 ()

¡
 − 2(1−  ()

¢2
) + (1−  ())(−2 ()2)

i


Let ∗ (; ) denote the optimal choice of the subject, then these condi-
tions imply that

 () (1− lim
→0

∗ (; )) = lim
→0

∗ (; ) (1−  ())  (2)

for all  ∈ [0 1]  Thus, lim→0 ∗ (; ) =  ()  for all  ∈ [0 1] 
Suppose that  ∈ [̄ 1] then


¡
 − 2(1−  ())2

¢
+(1− )

¡−2(1−  ())2
¢ ≥ 

¡
 − 2 ()

2
)
¢
+(1− ) 

¡−2 ()2¢
(3)

for all  ∈ Π = [ ̄]  By first order stochastic dominance

 () + (1− ) (0)  
¡
 − 2(1−  ())2

¢
+ (1− )

¡−2(1−  ())2
¢


(4)

for all  ()  1 Hence, ∗ (; ) = 1 for all  ∈ [̄ 1]  By a similar argument
∗ (; ) = 0 for all  ∈ [0 ]  ¥
Let lim→0 ∗ (; ) := ∗ ()  then ∗ () =  ()  for all  ∈ ( ̄)

implies that  () =  ()  for all  ∈ Π ()  Moreover, as  tends to zero,

the subject chooses the lottery if    and the bet if  ≤  Thus, the subject

chooses the lottery with probability  () and with probability 1− () she

chooses the bet. Hence, the subject exhibits random choice behavior.

Remark: Consider a more general mechanism that allows the subject a

choice, in the interim period, between the bet (− ()2)(− ()2) and
the lottery (;− (1−  ())2 ( − (1−  ())

2
) where   0 and   

If the expert is risk neutral then the marginal utilities are constant and,

consequently, Theorem 1 holds in the limit as  tends to zero, for all values

of  and  By the argument in the proof of Theorem 1, the necessary and

sufficient condition for optimality of the report ∗ (; ) = lim→0 ∗ (; )
is  () (1 − ∗ ()) = ∗ () (1−  ())). Hence, for every given   

 () = ∗ ()  for all  ∈ [0 1]  If the expert is risk averse, then the taking
the limit as  tends to zero would induce a biased report that depends on 

and  To avoid this bias, it is necessary to take the limit letting the − → 0
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Alternatively, it is possible to use the lottery payoff scheme described in Roth

and Malouf (1979) to obtain an assessment of  for all values of   

Because the mechanism requires the specification of a function,  (·)  it
is difficult, if not impossible, to implement in practice. However, the analysis

of the mechanism-induced choice behavior suggests a practical method of

approximating the solution to any desired degree.

3 Implementation

3.1 The discrete elicitation schemes described

Consider a discrete version of the elicitation mechanism depicted in the pre-

ceding section. Assume that the subject is a subjective expected utility

maximizer whose assessment of the probability of an event,  is a random

variable, e taking values in the interval Π () = [ ̄] Let  denote the

subject’s cumulative distribution function on [0 1] representing his beliefs

about the distribution of e
Fix  and let  =   = 0 1   At  = 0 the subject is asked to

report a number  () ∈ [0 1] for each  ∈ { |  = 0 1  }. A random
number  is then selected from a uniform distribution on {0   } In the
interim period  = 1, the subject is allowed to choose between the bet,

( − 2 ()
2
))(−2 ()2)

and the lottery

(;  − 2(1−  ())2)
¡−2(1−  ()

¢2
)

  0. All the payoffs are affected at  = 2.

3.2 The discrete elicitation scheme analyzed

Consider the partition P = {[  +1) |  = 0   − 2} ∪ [(− 1)  1]
of the unit interval Suppose that  ∈ [  +1) and ̄ ∈ [  +1) for some
0 ≤  ≤  ≤  − 1 For sufficiently small  the subject’s optimal choice of
 ()   ∈ { |  = 0 1  } denoted ∗ (; )  permits the recovery of
 ( )  for all 


 ∈ [0 1]  Formally,
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Theorem 2: In elicitation scheme the report of ∗ (; ) satisfies lim→0 ∗ (; ) =
 ()  for all  ∈ { |  = 0 1  } Moreover, ∗ ¡ ; ¢ = 1 for all

 ∈ [̄ 1]  and ∗
¡
 ; 

¢
= 0 for all  ∈ [0 ].

Proof. To simplify the notations, define ̄ ( ; ) =  () + (1− ) (0) 

and ̄∆ ( ; ) = 0 () + (1− )0 (0)   ∈ [0 1]  By the argument in the
proof of Theorem 1, in the interim period  = 1 the subject whose first-order

belief is  chooses the bet if

 ≥ 
¡
 

¡

¢¢
+

¡
 

¡

¢¢



The subject chooses 
¡

¢
so as to maximize


¡


¡
 

¡

¢¢
+

¡
 

¡

¢¢¢×h  ¡ − 2(1− 

¡

¢
)2)
¢
+
¡
1− 

¢

¡−2(1− 

¡

¢¢2
)
i

(5)

+

̄Z
 (( ))+(( ))

h
( − 2

¡

¢2
)) + (1− )(−2 ¡ ¢2)i  () 

By the same argument as in the proof of Theorem 1, the first-order condition

evaluated at the limit as  → 0 is


¡

¢ ¡
1− ( ; )

¢
̄∆

¡
 ; 

¢−( ; ) ¡1− 
¡

¢¢ ̄Z



̄∆ (; ) 
¡
 |  ≥ 

¢
] = 0

(6)

Let 
£
̄∆ (; ) |  ≥ 

¤
=

Z


̄∆ (; )  ( |  ≥ )  Then, the first

order condition implies that

( ; )¡
1− ( ; )

¢ = 
¡

¢
̄∆ (̄; )¡

1− 
¡

¢¢


£
̄∆ (; ) |  ≥ 

¤  (7)

In the limit  → 0, ̄∆ ( ; ) = 0 (0) is independent of  Hence, denoting
the optimal solution by ∗( ; ) (7) implies lim→0 ∗( ; ) = 

¡

¢
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Moreover, by the same argument as in the proof of Theorem 1, for  ≥ ̄


¡

¢
= 1, hence ∗( ; ) = 1 and for 


   

¡

¢
= 0, hence, ∗( ; ) =

0 for all   0 ¥
In the limit, as  tends to infinity, these estimates coincide with the true

values and ∗ converge to 
Theorem 3: Let ̄ () := lim→0 ∗( ; ) for all  = 0  1 and  ∈

(−1 ], then lim→∞ ̄ () =  ()  for all  ∈ [0 1]
Proof. For each  ∈ [0 1] and  = 1 2 let [ 


) be the cell of the

partition P = {[  +1)}=0 such that  ∈ [ ) Consider the sequence
{} Since    for all  = 1  inf{ |     = 1 2 } exists and
is equal to . But  is right continuous, hence lim→∞ ̄

¡

¢
=  ()  ¥

Under the limit processes described above, the mechanism yields the

range of the subject’s beliefs about the likelihood of any event in the state

space and of his introspective assessment of the likelihoods of his beliefs. In

practice, an appropriate choice of the parameters   and the payoff  yields

estimated values that approximate the true values of the subject’s beliefs to

any degree desired

4 Extension, Variation and Related Litera-

ture

4.1 Elicitation of distributions of real-valued random

variables

The procedure described above is designed to elicit a subject’s beliefs about

the likely realization of events. By extension, this method can also be used to

elicit an entire distribution of a random variable. Consider the case in which

the variable of interest is a subject’s beliefs regarding the distribution of a

real-valued random variable. Suppose that the subject entertains multiple

such beliefs. To elicit the subject beliefs, the procedure described below

combines the elicitation mechanism described in Section 2 with an elicitation

procedure due to Qu (2012).

Consider the set, H, whose elements are cumulative distribution functions
(CDF) on R.13 Suppose that a subject’s beliefs regarding the distribution

13Assume that H is endowed with the topology of weak convergence, and denote by Σ
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of a real-valued random variable of interest are represented by F ⊂ H and

that his introspective beliefs about the likely realizations of elements of F
are depicted by a probability measure,  on F 14
The subject is asked to report a function  : R× [0 1] → [0 1]  The

mechanism then draws a number  from a distribution with full support on

the real line and a random number  from a uniform distribution on the unit

interval. For each  ∈ R define  = (−∞ ].

For each possible realization of  the subject is allowed to choose between

the bet ¡
 −  ( )

2
)
¢


¡−2 ( )2¢
and the lottery


¡
;  − (1−  ( ))2)−2(1−  ( ))2

¢


The next theorem asserts that, for every value in the support of the

random variable whose CDF is of interest, truthful reporting of the beliefs

about the range and the likelihoods of values of the CDF is the unique best

response.

Theorem 4: For each ( ) ∈ R× [0 1], in the limit as  tend to zero,
the optimal report satisfies  ( ) = { ∈ F |  () ≤ } Moreover, for
each  ∈ R, let ̄ () = sup∈F{ ()} and  () = inf∈F{ ()} then
∗ ( ; ) = 1 for all  ∈ [̄ ()  1] and ∗ ( ; ) = 0 for all  ∈ [0  ()]
Proof. Applying the proof of Theorem 1 for each  the subject’s optimal

report, ∗ ( ; ) satisfies lim→0 ∗ ( ; ) = { ∈ F |  () ≤ } More-
over, by the same argument as in the proof of Theorem 1, ∗ ( ; ) = 1 for
all  ∈ [̄ ()  1] and ∗ ( ; ) = 0 for all  ∈ [0  ()] ¥
The same procedure can be employed to elicit a subject’s beliefs about

the distribution of a vector valued random variable.

4.2 Direct elicitation of the range of probabilities of

an event

A direct elicitation of the range of priors is possible using an incentive scheme

that combines a mechanism described in Grether (1981) and Karni (2009)

the Borel sigma algebra on H.
14I assume that F together with the trace of Σ on F is the relevant measurable space.
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for the elicitation of unique subjective prior and a modified proper scoring

rule applied over a restricted set of measures.

Fix an event  and let Π = [ ̄] denote the rang of subjective probabili-

ties representing the subjects beliefs about the likelihood of  The modified

scheme requires the subject to report, at time  = 0 two numbers,  ̄ ∈ [0 1]
(intended to demarcate the range of his subjective prior or posterior proba-

bility assessments of the event ) and, for each  ∈ ( ̄) to report a number
 () ∈ (0 1)  A random number,  is drawn from a uniform distribution on
[0 1]  In the interim period,  = 1 the subject is awarded the bet  if  ≤ 

and the lottery  (; ) if  ≥ ̄ where    If  ∈ ( ̄) then the subject
is allowed to choose, at  = 1 between the bet

¡
−  ()

2
¢


¡
 −  ()

2
¢

and the lottery  (;− (1−  ())2  − (1−  ())2)  where   0. In the

last period,  = 2 whether or not the event  obtained and the outcome of

the lottery are revealed, and all payments are made.

Theorem 5: In the modified scheme, in the limits as  → 0 the subject’s

unique dominant strategy is to report  =  and ̄ = ̄.

Proof. Fix    and   0 Suppose that the subject reports ̄  ̄

If  ≤ ̄ or  ≥ ̄ the subject’s payoff is the same regardless of whether he

reports ̄ or ̄. If  ∈ (̄ ̄) the subject’s payoff is a choice between the bet¡
−  ()

2
¢


¡
 −  ()

2
¢
and the lottery  (;− (1−  ())2  − (1−  ())2);

had he reported ̄ instead of ̄ his payoff would have been  (; )  By first-

order stochastic dominance,

 (; ) < 
¡
;− (1−  ())2  − (1−  ())2

¢


for all  () ∈ [0 1] with strict preference except when  = 1 Since   ̄

 (; ) Â  Â
¡
−  ()

2
¢


¡
 −  ()

2
¢


for all  () ∈ (0 1] Thus the subject is worse off reporting ̄ instead of ̄
Suppose that the subject reports    If  ≤  or  ≥  the subject’s

payoff is the same regardless of whether he reports  or . If  ∈ ( )
the subject’s payoff is a choice between

¡
−  ()

2
¢


¡
 −  ()

2
¢
and

the lottery  (;− (1−  ())2  − (1−  ())2); had he reported  in-

stead of  his payoff would have been  By stochastic dominance,  <¡
−  ()

2
¢


¡
 −  ()

2
¢
 for all  () ∈ [0 1] with strict preference ex-

cept when  = 0 Since   

 Â  (; ) Â 
¡
;− (1−  ())2  − (1−  ())2

¢
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for all  () ∈ [0 1] Thus the subject is worse off reporting  instead of 
Suppose that the subject reports ̄ ∈ ( ̄) If  ∈ [̄ ̄] the subject’s

payoff is  (; )  whereas had he reported ̄ he would have the opportu-

nity to choose between the bet
¡
−  ()

2
¢


¡
 −  ()

2
¢
and the lottery

 (;− (1−  ())2  − (1−  ())2)  Thus, in the limit  → 0 the sub-

ject’s subjective expected utility is:

 () [ () + (1− ) ()] +

̄Z


[ () + (1− ) ()]  () 

It is easy to verify that this expression exceeds the expected utility of the

lottery  (; )   () + (1− )  ()  Thus, reporting ̄  ̄ is dominated

by reporting ̄ By similar argument,  ≯  ¥

4.3 Related literature

Belief elicitation procedures have been the subject of inquiry for more than

half a century, beginning with the work of Brier (1950) and Good (1952)

followed by Savage (1971) Kadane and Winkler (1988) and others.15 Ex-

cept for Prelec (2004), Chambers and Lambert (2014, 2015, 2017), and the

mechanisms described in this paper, the elicitation schemes in the literature

condition the subject’s (expert’s) reward on the event of interest. This re-

quires that the event of interest be publicly observable. In this sense, the

game mechanism of Prelec, the protocol of Chambers and Lambert, and the

elicitation scheme described in this paper are unconventional.

Both the CL protocol and the elicitation scheme of this paper are designed

to elicit the expert’s subjective “belief over beliefs,” interpreted, respectively,

as subjective information structure and second-order introspective beliefs.

Both schemes presume that the decision maker refines his belief over beliefs

over time and, in both instances, the event of interest is a set “first-order be-

liefs,” or subjective probabilities, that, by definition, is not observable and,

consequently, cannot be used to condition the expert’s reward. Despite these

similarities the CL protocol and the elicitation scheme of this paper employ

distinct procedures. According to a special CL protocol (i.e., the simple ex-

ample) described in Chambers and Lambert (2017) the elicitor selects two

15For a recent review, see Chambers and Lambert (2017).
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numbers,  and  from uniform distributions on [0 1] and [−1 1]  respec-
tively. These numbers represent, respectively, the price of an option, dubbed

−option, to short-sell a security in the interim period ( = 1) at the price 
and the price of the −option as of the initial period ( = 0) The mechanism
requires the expert to announces a prior ̂ and, later, a posterior ̂.16 The

elicitor, acting on the expert’s behalf, makes the optimal decision to buy or

not to buy the option, then to exercise or not to exercise the right to sell

the security. The elicitor must never inform the expert of which decision she

has made until all uncertainty about the random variable is resolved. The

expert is awarded the payoff resulting from the elicitor’s choices.

Finally, it is noteworthy that, because the results of this work focus on

approximate thruthfulness (with strict truthfulness only in the limit) the

conclusion of Chambers and Lambert (2017) that no protocol in the general

class they define as “stage separate protocols” can be strategy proof does not

contradicts the result of this paper.

16Note that ̂ is a second-order belief and is the same as  in this paper. Similarly, ̂ is

a first-order belief and is the same as  in this paper. It is nothworthy, however, that the

mechanism descibed in this paper does not require that the subject report his posterior

belief.
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