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1 Introduction

Situations in which decision makers find the feasible alternatives difficult, if

not impossible, to compare and choose from are common. As von Neumann

and Morgenstern, (1947) admitted, “It is conceivable — and even in a way

more realistic — to allow for cases where the individual is neither able to

state which of two alternatives he prefers nor that they are equally desirable.”

Depending on the context, this difficulty may be due to the complexity of the

alternatives or, for lack of experience, the inability to assess their, potentially

long-run, consequences. A topical example is the decision whether or not to

vaccinate against COVID-19 and, if the decision is to vaccinate, which vaccine

to choose.

The appropriateness of the postulate that all alternatives are readily

comparable (i.e., that the preference relation is complete) was broached by

Leonard Savage in a letter to Karl Popper dated March 25, 1958, in which

Savage discusses his work on the choice-based foundations of subjective prob-

abilities. Savage wrote: “There is, though, a postulate that insists that eco-

nomic situations can be ranked in a linear order by the subject, and I freely

admit that this seems to me to be a source of much difficulty in my theory.

This stringent postulate is in conflict with the common experience of vague-

ness and indecision, and if I knew a good way to make a mathematical model

of those phenomena, I would adopt it, but I despair of finding one.”1

Aumann (1962) questioned not only the descriptive validity of the com-

pleteness postulate but also its normative justification. “Of all the axioms

of utility theory,” he wrote, “the completeness axiom is perhaps the most

questionable. Like others of the axioms, it is inaccurate as a description of

real life; but unlike them, we find it hard to accept even from the normative

viewpoint.”

Danan and Ziegelmeyer (2006), Sautua (2017), and Cettolin and Riedl

(2019) provide evidence of the prevalence of incomplete preferences in ex-

perimental settings is provided . Yet with few exceptions, the theories of

individual decision making — under certainty, risk, or uncertainty — presume

that the preference relations depicting individual choice behavior are com-

plete.

When the preference relations are complete, all alternatives are compa-

rable and, in general, decision makers exhibit resolute choice behavior. By

1This correspondence is reproduced by Carlo Zappia (2020).
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contrast, when the preference relations are incomplete, there are alternatives

that are noncomparable, and, facing a choice between such alternatives, de-

cision makers display indecisiveness (e.g., procrastination, hesitation, and

irresolute choice). Bewley (2002) suggests that if among the noncomparable

alternatives there is one that may be regarded as the status quo, or de-

fault, alternative, it is chosen.2 Danan (2010) analyzes the implications of

choice behavior that invokes deliberate randomization.3 Evren et al. (2019)

model choice behavior based on secondary criterion of the top-cycle among

all undominated alternatives in the feasible set relative to a complete and

transitive binary relation. In the present work I address the same issue with

a new axiomatic model, dubbed irresolute choice model (henceforth ICM).

Taking preference relations on choice sets for a primitive ingredient and de-

parting form the completeness postulate, the model describes random choice

behavior between noncomparable alternatives by a collection of nested partial

orders each depicting different choice probabilities.

The literature offers a variety of axiomatic models characterizing the rep-

resentations of incomplete preferences under certainty (Ok [2002] Evren and

Ok [2011]); under risk (Shapley and Baucells [1998] and Dubra et al. [2004]);

and under uncertainty (Bewley [2002], Seidenfeld et al. [1995], Nau [2006],

Ok et al. [2012], Galaabaatar and Karni [2013], and Riella [2015]). Unlike

the case of complete preferences, in which the alternative that commends the

highest representation value is chosen, in the case of incomplete preferences,

the representations do not, in general, single out a preferred alternative. The

main result of this paper connects the representations to choice behavior.

The underlying premise of this work is that when facing a choice among

noncomparable alternatives, decisions are triggered by impulses, or signals,

that are inherently random, or appear to be random to an observer who is

not privy to the workings of the decision maker’s mind. In either case, insofar

as the observer is concerned, the decision maker’s choices appear to be ran-

dom. The model I propose has predictable probabilistic choice behavior. In

other words, facing a choice between noncomparable alternatives, the model

predicts the probabilities that each alternative is selected.

The main novelty of this work is conceptual rather than technical, it

is the approach to modeling of random choice behavior. More specifically,

the incompleteness of the preference relation is modeled as a continuum of

2See also Masatlioglu and Ok (2005).
3See further discussion of this work in the concluding section.
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strict partial orders on the relevant choice sets depicting the binary relations

“one alternative is strictly preferred over another with probability that is at

most  ∈ [0 1].” These strict partial orders are linked by a monotonicity
requirement. The results are characterizations of probabilistic choice repre-

sentations.

The rest of the paper is organized as follows. Section 2 describes the

model. Section 3 applies the model to decision making under certainty. Sec-

tion 4 applies the model to subjective expected utility theory. Section 5

provides sme concluding remarks and a brief review of the relevant litera-

ture.

2 A Model of Random Choice

2.1 Preliminaries

Let  denote a choice set. Elements of  are alternatives. Denote by Â
irreflexive and transitive binary relation on  dubbed strict preference rela-

tion. For any alternatives  0 ∈   Â 0 is the proposition that, facing a
choice between these two alternatives, a decision maker characterized by Â
chooses the alternative  This behavior has the usual interpretation that 

is strictly preferred over 0  I assume throughout that Â on  is nonempty.

The strict preference relation, Â induces the following derived binary
relations on . For all  0 ∈ 

(a) The weak preference relation, 3, is defined by:  3 0 if, for all 00 ∈  

00 Â  implies that 00 Â 0.4

(b) The indifference relation, ∼ is defined by  ∼ 0 if  3 0 and 0 3 

(c) The noncomparability relation , is defined by:   0 if ¬ ( 3 0)
and ¬ (0 3 ) 

(d) The negation of Â, denoted <, is defined by  < 0 if ¬ (0 Â ).5

It is natural to suppose that if presented with a choice between two alter-

natives,  and 0, a decision maker would choose the former act if  3 0 and

4Clearly,  Â 0 implies that  3 0.
5Note that < is reflexive but not necessarily transitive. The weak preference relation

defined here was introduced in Galaabaatar and Karni (2013). Its significance and impli-

cations were investigated and discussed in Karni (2011), who showed that the relations

< and 3 agree if and only if Â is negatively transitive and 3 is complete. Note that Â
is not the asymmetric part of 3. The indifference relation defined here, introduced in
Galaabaatar and Karni (2013), is equivalent to that of Eliaz and Ok (2006).

4



¬ (0 3 )  However, if   0 or 0 ∼ , then the preference relation does

not indicate which of the two alternatives will be chosen. Moreover, since <
⊇ ∪ ∼  < 0 does not imply that  will be chosen form the subset { 0}

2.2 Irresolute choice model

The basic premise of this work is that, facing a choice between noncompa-

rable or indifferent alternatives. the decision maker behaves as if he is

awaiting a signal that would determine his choice and, thereby, resolve his

indecision. The signal is presumed to be generated by a stochastic process

whose nature is not specified extraneously. The behavioral manifestation of

this presumption is that having to choose between noncomparable or indiffer-

ent alternatives, the decision maker may procrastinate while waiting for the

signal and then choose in a manner that reflects the underlying randomness

of the signal-generating process.6 Consequently, to the outside observer, the

decision maker displays stochastic choice behavior.

To formalize this idea, I model irresolute choice behavior as a set {Â|
 ∈ [0 1]} of binary relations on  dubbed probabilistic choice relations. For
each  ∈ [0 1]  the derived relations 3∼  and < are defined follows:

 3 0 if, for all 00 ∈   00 Â  implies that 00 Â 0;  ∼ 0 if  3 0

and 0 3 ;   0 if and only if ¬ ( 3 0) and ¬ (0 3 ) ;  < 0 if
¬ (0 Â ) 

Given any  0 ∈  the interpretation of  Â 0 is as follows: Facing a
choice between the alternatives  and 0, alternative  is is strictly preferred
and, hence, chosen, over 0 with probability that is smaller or equal to  In
other words, for all 0    Â 0 implies that  Â0 0 (that is, Â⊆Â0)

and for no 00   it holds that  Â00 0 To grasp how this interpretation
is related to choice behavior, observe that if  3 0 then  Â0 0 for all
0   Thus, except in the case in which  ∼ 0 which implies that  ∼ 0

for all  ∈ [0 1]   3 0 implies that  = sup{0 ∈ [0 1] |  Â0 0}7
Consequently, if ¬( ∼ 0) then  is the exact probability that  is chosen

from the set { 0} Clearly,  Â 0 implies that  31 0.8 Hence,  31 0

6For example, the underlying process may have the structure of the drift-diffusion

model, in which the procrastination is measured to the response time. See, for example,

Ian Krajbich et al. (2014) and Baldassi et al. (2020).
7That the supremum exists follows from the fact that the set is bounded and that

¬ (0 ∼ ) implies that there is 0 ∈ [0 1] such that  Â0 0 Hence, the set is nonempty.
8That is,  3̄ 0 where ̄ = 1 However, to maintain coherence, henceforth I use the
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implies that  is chosen from the set { 0} with probability one. If  ∼ 0

then, insofar as the probability of  chosen over 0 is concerned, the model is
silent.

The IMC may also be stated as a set of binary relations {<|  ∈ [0 1]}
on  The interpretation of  < 0 is as follows: Facing the choice between
the alternative  and 0, the alternative  is chosen with probability no greater
than (1− )  Hence, for all 0 ≥   < 0 implies that  <0 0 (that is,
<⊆<0) and for no 00   it holds that  <00 0
To analyze the behavioral implications of the ICM I invoke the formula-

tion that is consistent with the underlying decision model under considera-

tion.

3 Irresolute Choice Behavior

3.1 An axiomatic characterization

Let the choice set  be a nonempty topological space, and denote by < a

preorder on  For any  ∈ , the upper and lower <-contour sets of  are
defined as U<() = {0 ∈  | 0 < } and L<() = {0 ∈  |  < 0} The
preorder < is continuous if U<() and L<() are closed, for all  ∈ . A

nonempty set U of real-valued functions on  is said to represent < if, for

all  0 ∈   < 0 if and only if () ≥ (0) for all  ∈ U 
Let {Â|  ∈ [0 1]} be a set of probabilistic choice relations on , and

{<|  ∈ [0 1]} the corresponding model expressed in terms of the negations
of Â  For each  ∈ [0 1] the structure of < is depicted axiomatically as

follows:

(P1) (Partial Order) For each  ∈ [0 1] < is transitive and reflexive.

(P2) (Continuity) For each  ∈  and  ∈ [0 1]  U<() and L<() are
closed, for all  ∈ .

The representation of irresolute choice behavior requires that the random

choice relations in the set {<|  ∈ [0 1]} be linked. The next axiom provides
this link.

(P3) (Monotonicity) For all  0 ∈ [0 1], <⊆<0 if and only if 0 ≥ 

symbol Â1 instead of Â to denote the strict preference relation.
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Equivalently, the monotonicity postulates asserts that, for each  ∈ 

the upper contour set of  according to < is contained in that of <0 if and

only if 0 ≤  Formally,

Lemma 1. The irresolute choice model {<|  ∈ [0 1]} satisfies monotonic-
ity if and only if for every  ∈  U<0 () ⊆ U<() if and only if 0 ≥ 

Proof. Monotonicity is equivalent to the proposition, for all  0 ∈ 

0 <  implies that 0 <0  if and only if 0 ≥  Equivalently, for all

 0 ∈  ¬ ¡0 <0 
¢
implies ¬ (0 < ) if and only if 0 ≥  But the

last statement is equivalent to the proposition  ∈ U<0 (0) implies that
 ∈ U<(0) if and only if 0 ≥ , for all 0 ∈  Thus, monotonicity holds if

and only if, for all 0 ∈  U<0 (
0) ⊆ U<(0) if and only if 0 ≥  N

The following theorem extends Evren and Ok (2011) Corollary 1, to in-

clude irresolute choice behavior.9

Theorem 1: Let  be a locally compact separable metric space and {<|
 ∈ [0 1]} be binary relations on . Then, the following conditions are

equivalent:

() For every  ∈ [0 1]  < satisfies (P1) and (P2) and jointly <

 ∈ [0 1]  satisfy (P3).
() For every  ∈ [0 1] there exists a set U of real-valued, continuous

and strictly < −increasing, functions such that U represents <and  ≥
0 if and only if U ⊇ U0 

Proof. () ⇒ ()  Suppose that  is a locally compact separable metric

space and {<|  ∈ [0 1]} be binary relations on  satisfying (P1) and (P2)
then, by Evren and Ok (2011) Corollary 1 for each  ∈ [0 1]  there exists a
set U of real-valued continuous functions such that U represents < every

 ∈ U is strictly < −increasing  By (P3) and Lemma 1, 0 ≤  if and

only if U<0 () ⊇ U< ()  But, by the representation, U<0 () ⊇ U< () if
and only if U ⊆ U0  Hence, 0 ≤  if and only if U ⊇ U0 

() ⇒ ()  Suppose that () holds. Then, by Evren and Ok (2011)

Corollary 1 each <  ∈ [0 1], satisfies (P1) and (P2). Suppose that

0 ≤  if and only if U ⊇ U0  By the representation , U ⊇ U0 if and

only if U<0 () ⊇ U< ()  Hence, 0 ≤  if and only if U<0 () ⊇ U< () 
for all  ∈  which, by Lemma 1 is equivalent to (P3). ¥
The uniqueness of the representation is as follows: Given any nonempty

subset U of R , define the map ΥU :  → RU


by ΥU () () := ().

9Other results of Evren and Ok (2011), including their Theorem 1 and Corollaries 2

and 3, may be extended in the same way.
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Two nonempty subsets U and V of continuous real-valued functions on 

represent the same preorder if, and only if, there exists an  : ΥU()→ ΥV
such that () ΥV =  (ΥU); and () for every   ∈ ΥU(),    if and

only if ()  ()10

Remark: Let V and V0 be arbitrary multi-utility representations of

two preorders, < and <0, respectively, and suppose that < ⊂ <0 (i.e.,

0  ). In general, this does not imply that V ⊂ V0. However, one can

always find representations U and U0 such that U ⊂ U0, as is required in

Theorem 1. To see this, let U be the set of all (continuous) real functions 

such that  < 0 implies () ≥  (0) and U0 be the set of all continuous

real functions  such that  <0 0 implies () ≥  (0)  Then <⊂ <0

implies that if  ∈ U0 then  ∈ U  Thus, U ⊂ U0 11 Henceforth, the

property 0   if and only if U0 ⊃ U is dubbed nestedness.

3.2 The indifference relation

The case in which the alternatives under consideration belong to the same

indifference class requires special attention. By definition,  ∼1 0 if and only
if  31 0 and 0 31 
Lemma 2: For all  0 ∈ ,

 31 0 ⇔ () ≥ (0) for all  ∈ U1
Proof. By definition  31 0 if ̂ Â1  then ̂ Â1 0 for all ̂ ∈  Hence,

by definition,  <1 00 implies 0 <1 00 By Theorem 1, this is equivalent to

() ≥  (00) implying that (0) ≥  (00) for all  ∈ U1
Consider a sequence (00) ⊂  such that  <1 00 for  = 1 2  and

 = lim→∞ 00 Then 0 <1 00 for  = 1 2  By continuity,  <1 0 Hence,
by Theorem 1,  31 0 ⇔ () ≥ (0) for all  ∈ U1 N

By definition of ∼1, and Lemma 2,
 ∼1 0 ⇔ () = (0) for all  ∈ U1

By Theorem 1, U ⊆ U1 for all  ∈ [0 1]  Thus, for all  0 ∈   ∼1
0 implies that  ∼ 0  ∼0 0 for all  0 ∈ [0 1] Consequently, the
irresolute choice model is silent with regard to the probability of selection of

any alternatives belonging to the same indifference class.

10See Evren and Ok (2011).
11I thank Özgür Evren for this remark.
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3.3 Canonical signal space

The premise underlying the stochastic choice behavior depicted by the ICM is

that choices between noncomparable or indifferent alternatives are governed

by unspecified process of randomly generating signals. Consider the choice

between two alternatives,  and 0 such that ¬( ∼ 0) then the probability
of a signal that would resolve the indecision in favor of  is ̄ = sup{0 ∈
[0 1] |  Â0 0} By the representation of the ICM this is the case if and only

if () ≥ (0) for all  ∈ U ̄ In other words, the decision maker behaves as

if a function  is selected from U1 and  is chosen if  ∈ U ̄ and 0 is chosen
if  ∈ U1\U ̄. Under this interpretation, ̄ is the probability of the set U ̄

Therefore, the set U1 may be taken to be the canonical signal space.

3.4 Probabilistic choice

Many decision problems require the decision maker to choose from finite sets

of feasible alternatives that include more than two elements. To apply the

ICM to choice from such sets, let  = {1  } ⊂  be a feasible set of

alternatives and, to simplify the exposition, suppose that no two alternatives

in belong to the same indifference class. An alternative  ∈ is said to be

dominated if for no  ∈ [0 1] it holds that  3 0 ∀0 ∈\{} Let ()
denote the subset of dominated alternatives in and let  () =\ ()
denote the subset of undominated alternatives in  Note that  () is

nonempty.

For each  ∈  () define Λ () = { ∈ [0 1] |  3  ∀ ∈
\{}}. In words, Λ () is the set of indices of the random choice relations

that rank the alternative  higher than any other alternative in the menu

 For each  ∈  () let ∗ () := supΛ () 
12 Then, by Theorem

1,  3∗()  for all  ∈ \{} if and only if  () ≥  ()  for all

 ∈ U∗()

Without loss of generality assume that the elements of  () are per-

muted so they are rearranged in a descending order of ∗ (i.e., ∗ (1) 
∗ (2)    ∗ ()  0  ∈  (),  = 1 ) Note that ∗ (1) = 1
and let ∗ (+1) := 0 By the nestedness and Theorem 1,  3∗()  if

and only if  ∈ P () := U∗()\U∗(+1)
  = 1 − 1 and P () :=

12That the supremum exist since the set Λ () is bounded and, because  is undomi-

nated, Λ () nonempty.
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U∗()

 Then  ∈ P () if (−1)  () ≥ (+1) Thus, P () :=
{P1 ()  P ()} is a partition of U 1

.13

Since U1

is the canonical signal space, the probability of receiving a sig-

nal  ∈ P () is  () := ∗ () − ∗ (+1)   = 1  Thus, when

facing a choice form  , the decision maker behaves as if a utility function

 ∈ U1 is selected according to the distribution  ()   = 1  and the

undominated alternative,  is chosen if  ∈ P ()   = 1  Hence,

 ∈  () is chosen with probability  () and dominated alternatives are

never chosen Stated differently, ∗ () is the probability that an alternative
in the set  := { +1  }.

4 Irresolute Choice Behavior under Uncer-

tainty

4.1 The analytical framework

For over half a century subjective expected utility theory has been the dom-

inant model of decision making under uncertainty. Because of its prominent

role and rich analytical framework, I explore the application of the ICM to

subjective expected utility theory, invoking the model of Galaabaatar and

Karni (2013). This model admits incomplete beliefs and tastes, and includes

Bewley’s Knigthian uncertainty model (i.e., complete tastes and incomplete

beliefs) and the subjective expected multi-utility model (i.e., complete beliefs

and incomplete tastes) as special cases.

The analytical framework is that of Anscombe and Aumann (1963). Let

 be a finite set of states. Subsets of  are events. Let  be a finite set

of outcomes and denote by ∆ () the set of all probability distributions on

 For each  0 ∈ ∆ () and  ∈ [0 1] define  + (1− ) 0 ∈ ∆ () by

( + (1− ) 0) () =  () + (1− ) 0 ()  for all  ∈ 

The choice set is  := ∆ ()

(i.e., the set of mapping from  to∆ ())

The elements of  are acts. For all  0 ∈  and  ∈ [0 1], define  +
(1− )0 ∈  by (+ (1− )0) () =  () + (1− )0 (). Under this
definition is a convex subset of the linear spaceR||×||+ A constant act,  ∈
, is an act such that  () =  for all  ∈  where  ∈ ∆ ()  Henceforth,

13Since indifference is not allowed, there is no ambiguity with regard to which element

of the partition each utlity function belongs to.
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I identify the subset of constant acts with ∆ ()  Hence, ∆ () ⊂ 

Let {Â|  ∈ [0 1]} be random choice relations on  depicting irresolute

choice behavior The choice set  is said to be bounded if there exist ̄ and

 in  such that ̄ Â1  Â1  for all  ∈  − {̄ }
For each  ∈ [0 1]  let U be a nonempty closed set off real-valued

functions on  and, for every  ∈ U let Π () be a nonempty closed set

of probability measures on . Define Φ = {( ) |  ∈ U,  ∈ Π ()}
Then {Φ |  ∈ [0 1]} is said to represent the ICM {Â|  ∈ [0 1]} if the
following conditions hold:

(a) For all  ∈  and ( ) ∈ Φ1X
∈

()
X
∈

̄( )() 
X
∈

()
X
∈

( )() 
X
∈

()
X
∈

( )()

(1)

(b) For all  0 ∈ 

 Â 0 ⇔
X
∈

()
X
∈

( )() 
X
∈

()
X
∈

0( )() ∀ ( ) ∈ Φ

(2)

4.2 Axiomatic characterization

Following Galaabaatar and Karni (2013) I assume that the random choice

relations Â  ∈ [0 1] have a structure depicted by the following axioms.
The first three axioms are well-known and require no elaboration.

(A.1) (Strict partial order) For every  ∈ [0 1]  the Â is transitive and

irreflexive.

(A.2) (Archimedean) For all    ∈  if  Â  and  Â  then there

exist   ∈ (0 1) such that +(1− ) Â  and  Â +(1− )

(A.3) (Independence) For all    ∈  and  ∈ (0 1]  Â  if and

only if  + (1− ) Â  + (1− )

For each  ∈  and every  ∈  denote by  the constant act whose

payoff is  () in every state. The next axiom asserts that if every possible

consequence of  taken as a constant act, is an element of the lower contour

set of  according to irresolute choice relation Â then the convexity of the
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lower contour sets implies that any convex combination of the consequences

of  is dominated by  Think of  as representing a subset of the simplex

in R|| whose elements correspond to subjective probabilities on  that the

decision maker may entertain. Since any such combination isÂ −dominated
by  so is  Formally,

(A.4) (Dominance) For all   ∈  and  ∈ [0 1]  if  Â  for every

 ∈  then  Â .

The next axiom restates (P3) in terms of the present model.

(A.5) (Monotonicity) For all  0 ∈ [0 1], Â⊆Â0 if and only if 0 ≤ 

The following theorem characterizes irresolute choice behavior:

Theorem 2: Let {Â|  ∈ [0 1]} be a set of binary relations on .

Then the following conditions are equivalent:

()  is Â-bounded and for each  ∈ [0 1]  Âsatisfies (A.1)—(A.4) and

jointly Â  ∈ [0 1]  satisfy (A.5).
() For each  ∈ [0 1] Â is represented by (1) and (2) and  ≥ 0 if

and only if Φ ⊇ Φ0 

The proof that Â satisfies (A.1)—(A.4) if and only if Â is represented

by (1) and (2) is an immediate implications of Theorem 1 of Galaabaatar and

Karni (2013). The proof that (A.5) holds if and only if  ≥ 0 if and only if
Φ ⊇ Φ0 is by the same argument as in Theorem 1 above. The uniqueness

of the representation is described in Galaabaatar and Karni (2013)and is not

replicated here.

4.3 Special cases

The theory of subjective expected utility with incomplete preferences in-

cludes two special cases: the case in which the incompleteness is due solely

to incomplete beliefs and the case in which it is due solely to incomplete

tastes.

The case of incomplete beliefs was axiomatized by Bewley (2002), who

dubbed it Knightian uncertainty. Tastes completeness, or unambiguous risk

attitudes, requires that the restriction of the preference relation to constant

acts exhibits negative transitivity. Let  ∈ ∆ () denotes the constant act

that pays off  in every state. Then tastes completeness is captured by the

following:

12



(A.6) (Unambiguous risk attitudes) For all constant acts    ∈
∆ ()  ¬ ( Â1 ) and ¬ ( Â1 ) imply ¬ ( Â1 ) 

The corollary below is implied by Theorem 2.

Corollary 1: Let {Â|  ∈ [0 1]} be a set of binary relations on  Then

 is bounded and, for each  ∈ [0 1]  Âsatisfies (A.1)—(A.4), jointly

Â  ∈ [0 1]  satisfy (A.5), and Â1satisfies (A.6) if and only if Âis

represented by (1) and (2) with Θ = {} × Π and  ≥ 0 if and only if
Π ⊇ Π0  Moreover,  is unique up to positive affine transformation, the

closed convex hull of Π is unique and, for each  ∈ Π  ()  0 for all

 ∈ 

Consider next the case of complete beliefs and ambiguous risk attitudes.

For each event  denote by  the act whose payoff is  for all  ∈  and

 for all  ∈  −  Denote by  ∈ ∆ () the constant act whose payoff

in every state is  + (1− )  A bet on an event  is the act , whose

payoffs satisfy  Â1  where   ∈ ∆ ().14

Suppose that the decision maker considers the constant act  preferable

to the bet . Because the payoffs are the same, this preference indicates

that he believes that  exceeds the likelihood of  This belief is said to be

coherent if it holds that 00 is preferable to the bet 00 for all constant
acts 0 and 0 such that 0 Â1 0. By the same logic a preference of a bet
 over the constant act  means that the decision maker believes the

probability of  to exceed . A binary relation Â1 on  is said to exhibit

coherent beliefs if, for all events  and   0 0 ∈ ∆() such that  Â1  and
0 Â1 0,  Â1  if and only if 00 Â1 00, and  Â1  if and only
if 00 Â1 00. Note that the structure of a binary relation Â1 depicted by

(A.1)—(A.4) implies that the decision maker’s beliefs are coherent.

The idea of complete beliefs is captured by the following axiom, which is

due to Galaabaatar and Karni (2013).

(A.7) (Complete beliefs) For all events  and  ∈ [0 1]  and constant
acts  and  such that  Â1  either  Â1  or  Â1 0 for
every   0

If the decision maker’s beliefs are complete, then the incompleteness of

the random choice relations Â  ∈ [0 1]  on  is due entirely to the

14By monotonicity,  Â1  implies that  Â  for all  ∈ [0 1]
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incompleteness of his tastes. To state the next result I introduce the following

additional notations. Let hUi := { (U)+{1}∈R (i.e., hUi denotes
the closure, with respect to the sup-norm topology, of the cone generated by

U and the constant real-valued functions on ) The next Corollary is an

implication of Theorem 2.

Corollary 2: Let {Â|  ∈ [0 1]} be binary relations on  Then

 is bounded and, for each  ∈ [0 1]  Âsatisfies (A.1)—(A.4), jointly

Â  ∈ [0 1]  satisfy (A.5) and Â1satisfies (A.7), if and only if Â is

represented by (1) and (2) with Θ = U × {} and  ≥ 0 if and only if
U ⊇ U0  Moreover, the probability measure,  is unique and  ()  0

for all  ∈  and if V is another set of real-valued functions on  that

represent Â in the sense of (2) then hVi = hUi

5 Concluding Remarks

This paper proposes a novel approach to modeling decision making under

certainty, risk and uncertainty in situations in which the preference relations

are incomplete. The indecisiveness that is due to the noncomparability of the

alternatives under consideration, is captured by a set of partial strict orders

on the corresponding choice sets. The implied probabilistic choice behavior

was characterized.

5.1 Interpersonal comparisons

Different decision makers may exhibit distinct random choice behaviors be-

cause of different attributes of the ICMs that depict their decision-making

processes. Specifically, the preference relations may not agree on the sets

of alternatives that are noncomparable. For example, one decision maker

may strictly prefer an alternative  over 0 displaying resolute choice, while
another decision maker may find the same alternatives noncomparable and

display irresolute choice behavior. Even if the decision makers are indecisive

with regard to the two alternatives, they may still exhibit distinct random

choice patterns due to distinct underlying signal-generating processes. To

grasp this let the ICM model of the one decision maker be {Â|  ∈ [0 1]}
and that of another be {Â̂ |  ∈ [0 1]} Suppose both models agree that
 and 0 are noncomparable. It may still be that  3 0 and 3̂0

0, for
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 6= 0 According to the ICM, the former decision maker chooses  with
probability  and the latter with probability 0

5.2 Behavioral implications

Any meaningful theory that purports to describe natural or social phenom-

ena must be accompanied by clear testable implications. To render the pro-

posed ICM meaningful I describe briefly below experiments designed to test

qualitative and quantitative properties of the model. Generally speaking,

testing the proposed ICM requires that alternatives the decision maker con-

siders noncomparable be identified and the agreement between the observed

choices among such alternatives and the probabilistic choices predicted by

the model evaluated.

In the cases of decisionmaking under risk and under uncertainty, monotonic-

ity of the preference relations with respect to first-order stochastic dominance

is a property that transcends individual idiosyncratic attitudes towards risk

or uncertainty. Consequently, the multi-prior expected multi-utility model

with incomplete preferences displays probabilistic choice monotonicity with

respect to first-order stochastic dominance. Formally, if an act  first-order

stochastically dominates an act  and  in noncomparable to either  or 

then the probability that  is selected from the pair ( ) is greater than the

probability that it is selected from the pair ( ).

The degree of incompleteness of a decision maker’s preference relation

is a personal characteristic. Therefore, to obtain testable implications of

the ICM, one needs formal measures of the degree of incompleteness and an

elicitation scheme by which it is possible to determine the individual degree

of incompleteness. Karni and Vierø (2021) introduced such measures and

as well as incentive compatible mechanisms by which the incompleteness

displayed by a preference relation may be elicited.

The experimental test of the probabilistic choice monotonicity hypothesis

consists of two parts. In the first part, a set  = {1  } of subjects is
recruited and the their ranges of incompleteness of bets on an event,  are

elicited using the scheme of Karni and Vierø (2021). In the second part,

the subjects are asked to choose, repeatedly, between a bet on  and a sure

payoffs that are noncomparable to the bet The prediction of the ICM is that

the relative frequency of choosing the bet decreases monotonically with the
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values of the sure payoff15

The experiments described above is designed to test a qualitative property

of the ICM, namely, probabilistic choice monotonicity that transcends the

idiosyncratic variations of individual stochastic signal-generating processes.

They are not designed to quantify the change in the probabilistic choice

behavior in response to variations in the sets alternatives.

To understand the kind of qualitative constrained imposed by the ICM

model on subjects’ choice behavior, consider the following experiment. A bet

on an event  is an act that pays off  dollars if  obtains and  dollars

otherwise, where    Let  , 
0


0 and 00
00 be three bets on  where

00  0      0  00 and suppose that no two of these bets are
comparable16 The subjects are asked to choose, repeatedly, from the binary

set {  00} {00  0000} and {  0000} Let , 0 and 00 denote
the relative frequency of choosing the  from the first set, 0

0 from the

second, and 00
00 from the third. Then the ICM model predicts that:

a. If  ≤ 0 then facing the choice among the three bets, the subject
chooses  with probability   and 00

00 with probability (1− )  The

probability that the subject chooses 0
0 is zero (i.e., 0

0 is a dominated
bet in the set {  00 0000}).
b. If   0 then facing the choice among the three bets, the subject

chooses  with probability   00
00 with probability (1− 0) and 0

0

with probability 0 − .

c. Suppose that payoffs of the bets are such that 0  00      00 
0 and no two bets are comparable then, facing the choice among the bets
in {  00 0000}, the subject chooses  with probability 1 −00 00

00

with probability 00 − 0, and 0
0 with probability 0.

5.3 Related literature

Building on existing representation results, specific applications of the ICM

to decision making under certainty and uncertainty were axiomatically char-

acterized. In all instances, the ICM predicts random choice behavior and

15This method is discussed in Loomes and Sugden (1998) and was implemented in a

study by Loomes, Moffatt, and Sugden (2002). To provide the subjects with incentive to

consider the choice seriously, one of each subject’s choices is randomly selected, and the

subject is rewarded according to the outcome of the selecte bet.
16The bets are chosen afer the range of incompleteness at  is elicited, using the scheme

described in Karni and Vierø (2021).
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assigns probabilities to the different feasible alternatives depicting the like-

lihoods of their being selected. The ICM can be applied to nonexpected

utility theories with incomplete preferences such as the dual theory (Mac-

cheroni [2004]), the probabilstically sophisticated choice (Karni [2020]) and

weighted utility theory (Karni and Zhou [2021]) using the same approach.

The recognition that, in many settings, observed choices display stochas-

tic behavior lead, in recent years, to increased interest in modeling and testing

stochastic choice behavior.17 In general, these studies do not attribute sto-

chastic choice behavior specifically to preference incompleteness. Exceptions

include Danan (2010) and Ok and Tserenjigmid (2020).

Danan (2010) modeled a two-stage decision-making process according to

which in the first stage any two alternatives that are evaluated are either

ranked in the strict sense, or being judged as being equally valuable. If

no judgment is rendered comparing their values, the two alternatives are

determined to be noncomparable. In the second stage, the alternative that

is ranked higher, if such an alternative exists, is selected. Otherwise, one of

the alternatives is chosen either by deliberate randomization or selectively.

Danan’s analysis addresses the vulnerability of the decision process to being

manipulated to produce sure losses through a process known as a money

pump. In the case of deliberate randomization, choice behavior is based

on a signal produced be a randomization device. In terms of the irresolute

choice model of this paper, the signal space of the device is mapped onto

the canonical signal space by ascribing to the sets of utility functions that

rank one alternative over the other the probability that the first alternative

is selected by the randomization device.

Ok and Tserenjigmid (2020) model random choice behavior as random

choice functions, which they define and characterize for stochastic choices

induced by indifference, indecisiveness, and experimentation. The first two

are closely related to the phenomena modeled in this paper. Ok and Tseren-

jigmid merely assert that the maximal elements of the menu will be chosen

with positive probability. By contrast, the ICM characterizes the random

choice behavior.

Karni and Safra (2016) study stochastic choice under risk and under un-

certainty based on the notion that decision makers’ actual choices are gov-

erned by randomly selected states of mind. They provide axiomatic charac-

terization of the representation of decision makers’ perceptions of the stochas-

17See Luce (1959), Gul et al. (2014), Fudenberg et al. (2015), Frick et al. (2019).
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tic process underlying the selection of their state of mind. In the context of

decision making under uncertainty with incomplete preferences, the states of

mind are probability-utility pairs in the set Φ18 The stochastic choice process

corresponds to a subjective probability measure,  of the sets Φ To the ex-

tent that the decision maker’s introspective perception of the random choice

process agrees with the actual random choice process, (that is,  = ) The

work of Karni and Safra (2016) may be regarded as an alternative axiomatic

foundations of the ICM.

Ok and Tserenjigmid (2021) propose to make rationality comparisons be-

tween stochastic choice rules by means of a partial ordering method. Accord-

ing to their method, the stochastic choice model of this paper is maximally

rational.19

18In the special cases of Knightian uncertainty and complete beliefs, the sets of states

of mind are Π and U1, respectively.
19The stochastic choice function on binary menus that selects an alternative  from the

menu { 0} with probability smaller or equal to  if and only if  Â 0 is, by (P1),
what Ok and Tserenjigmid (2021) call moderately stochastically transitive. Because it is

restricted to binary menus, by their Lemma 3.3, it is maximally rational.
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