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Abstract: This paper studies an environment in which a decision maker choosing 
between acts may initially be unaware of certain consequences. We follow the 
approach of Karni and Vierø (2013) to modeling increasing awareness, which 
allows for the decision maker’s state space to expand as she becomes aware of new 
possible consequences. We generalize the main result in Karni and Vierø (2013) by 
allowing the discovery of new consequences to nullify some states that were non-
null before the discovery. We also provide alternative assumptions which 
strengthen the predictions of the belief updating model. 
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1 Introduction 

Karni and Vierø (2013) provides an approach to modeling increasing awareness of a 
decision maker. The approach allows for the decision maker’s state  space  to expand  
as she becomes aware of new possible actions and consequences. They named their 
approach to modeling increasing awareness “reverse Bayesianism,” motivated by a 
consistency property of the decision maker’s beliefs over the state spaces before and 
after the expansion of her awareness. Under reverse Bayesianism the likelihood 
ratios between originally non-null states remain unchanged upon the discovery of 
new consequences and the subsequent expansion of the state space. 
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Karni and Vierø (2013) implicitly assumes that any state that was non-null 
before the increase in awareness resulting from the discovery of a new 
consequence has to remain non-null after the discovery. Under monotonicity 
this is equivalent to assuming that the prior set of non-null states – what Karni 
and Vierø (2013) calls the feasible state space – is included in the posterior 
feasible state space. However, there are important situations in which such 
inclusion is untenable. For example, situations of scientific discoveries that 
falsify prior beliefs. To illustrate, consider the famous Michelson–Morley 
experiment. The experiment compared the velocity of light traveling in 
perpendicular directions in an attempt to detect difference in the return time 
that would indicate motion of matter through the substance aether, which was 
hypothesized to fill empty space. The failure to detect such difference provided 
strong evidence against the aether theory, contradicted the predictions of 
Newtonian mechanics, and prompted research that eventually led to Einstein’s 
special relativity theory. 

In terms of reverse Bayesianism, the a-priori (i. e., before the Michelson– 
Morley experiment) feasible state-space includes states in which the velocity of 
light obeys the of rules of Newtonian mechanics. The Michelson-Morley experi-
ment resulted in a consequence that required a revision of the Newtonian outlook. 
This revision nullified some of the a-priori feasible states simultaneous to an 
expansion of the conceivable state space. The present paper modifies the 
axiomatization of Karni and Vierø (2013) so as to allow some states that were non-
null before the discovery of new consequences to become null after it. 

To illustrate more concretely, imagine an injured athlete who is contemplating 
whether or not to take a pain killer. The athlete knows that taking the drug has 
influence on when he will be ready to compete again. In particular, it influences 
whether he will be ready to compete next month. Suppose that the athlete believes 
that regardless of whether or not he takes the drug, he will be ready to compete 
next year. He thus faces a set of feasible actions F = {take drug (D), abstain from 
taking drug (A)}, while the set of consequences he is aware of are C0 = {ready to 
compete next month (M), ready to compete next year but not next month (Y)}. Then 
the set of possible resolutions of uncertainty the athletes faces are given by the 

conceivable state space CF
0, illustrated by the matrix (1): 

s1 s2 s3 s4 
D M M  Y  Y  
A M  Y  M Y  

(1) 

Suppose that the athlete considers it to be impossible to compete next month if he 
doesn’t take the drug and for there to be a 50-50 chance of being ready in a month if 
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he takes the drug. Thus, the set of non-null states, referred to as the feasible state 
space, is {s2, s4} with π0(s2)  π0(s4)  .5. 

Consider the possibility that the athlete discovers that the drug is highly 
addictive and taking it means that he will not be able to compete next month due to 
the need for rehabilitation and possibly he will never be able to compete again. The 
new set of feasible consequences is C1 = {ready to compete next month (M), ready to 
compete next year but not next month (Y), never compete again (N)}. The new 
conceivable state space CF 

1 is

s1 s2 s3 s4 s5 s6 s7 s8 s9 
D M M  Y  Y  M  Y  N  N  N  
A M  Y M  Y  N  N M  Y N  

(2) 

In the wake of the discovery of the addictive nature of the drug, the new feasible 
state space is {s4, s8}. Therefore, simultaneously to the expansion of the conceiv-
able state space, the prior feasible state s2 becomes null. 

The paper is organized as follows: Section 2 provides the framework, as-
sumptions, and results, while Section 3 discusses the results and provides an 
example of extreme belief revision within the model. Proofs are collected in the 
appendix. 

2 The Main Result 

2.1 Preliminaries 

We briefly restate the framework of Karni and Vierø (2013). Let F be a finite, 
nonempty set of feasible actions, and C be a finite, nonempty set of feasible con-

sequences. Together these sets determine a conceivable state space, CF , whose 
elements depict the resolutions of uncertainty. 

On this conceivable state space, we define what we refer to as conceivable acts. 
Formally, 

F:   f : CF → Δ(C), (3) 

where Δ(C) is the set of all lotteries over C. As is usually done, we abuse notation 
and use p to also denote the constant act that returns the lottery p in each state. We 
use both c and δc to denote the lottery that returns consequence c with probability 
1, depending on the context. 
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Discovery of new consequences expands the conceivable state space. Let C 
denote the initial set of consequences and suppose that a new consequence, c̄, is 
discovered. The set of consequences of which the decision maker is aware then 

expands to C ′  C ∪{c̄}. As a result, the conceivable state space expands to (C ′ )F . 
The corresponding expanded set of conceivable acts is given by 

F 
∗ 
:  f : C ′  F → ΔC ′ . (4) 

We consider a decision maker whose choice behavior is characterized by a preference 

relation ≽F 
on the set of conceivable acts F. We denote  by  ≻F 

and ∼F 
the asymmetric 

and symmetric parts of ≽F 
with the interpretations of strict preference and indiffer-

ence, respectively. For any f ∈ F, p ∈ Δ(C), and E ⊆ CF , let pEf be the act in F obtained 

from f by replacing its s–th coordinate with p for all s ∈ E. A state  s ∈ CF is said to be 

null if psf ∼ F 
qsf for all p, q ∈ Δ(C) and for all f ∈ F. A state is said to be nonnull if it is 

not null. Denote by EN the set of null states and let S(F, C)  CF − EN be the set of all 
nonnull states. Henceforth we refer to S(F, C) as the feasible state space. 

When the state space expands so does the set of conceivable acts, which 
means that the preference relation must be redefined on the extended domain. 

Specifically, if F* is the expanded set of conceivable acts in the wake of discoveries 
of new feasible consequences, then the corresponding preference relation is 
denoted by ≽F 

* . Let F be a family of sets of conceivable acts corresponding to 

increasing awareness of consequences.1 

In Karni and Vierø (2013) it is implicitly assumed that upon the expansion of 
the state space following the discovery of a new consequence, non-null states 

remain non-null. Formally, for all f ∈ F and f ′∈ F* 
, if psf ≻ F 

qs f then psf 
′ ≻F 

∗ qsf 
′ , for 

all s ∈ S(F, C). Under monotonicity this is equivalent to assuming that 

S(F, C) ⊆ S(F, C ′ ). However, as we discussed in the introduction, there are 
important situations in which such inclusion is untenable. 

For each F ∈ F , f , g ∈ F, and α ∈ [0, 1] define the convex combination 

αf + (1 − α)g ∈ F by: (αf + (1 − α)g)(s)  αf (s) + (1 − α)g(s), for all s ∈ CF . Then, F
is a convex subset in a linear space.2 We assume that, for each F ∈ F , ≽F 

abides by 

the axioms of Anscombe and Aumann (1963). Formally, 

1 For the preference relation ≽F 
∗ as well as for preference relations associated with any other 

awareness levels, we make the corresponding definitions to those stated in the previous para-
graph. 
2 Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). 
According to this formulation, mixed acts, (that is, αf + (1 − α)g) are, by  definition, conceivable acts. 
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(A.1) (Weak order) For all  F ∈ F , the preference relation ≽ F 
is transitive and 

complete. 
(A.2) (Archimedean) For all F ∈ F and f , g, h ∈ F, if f ≻F 

g and g≻F 
h then 

αf + (1 − α)h ≻F 
g and g ≻F 

βf + (1 − β)h, for some α, β ∈ (0, 1). 
(A.3) (Independence) For all  F ∈ F , f , g, h ∈  F, and α ∈ (0, 1], f ≽ F 

g if and only if 
αf + (1 − α)h≽ F 

αg + (1 − α) h. 
(A.4) (Monotonicity) For all F ∈ F , f ∈ F, p, q ∈ Δ(C) and nonnull event E ⊆ CF , 

pEf ≽F 
qEf if and only if p ≽Fq. 

(A.5) (Nontriviality) For all F ∈ F , ≻F 
≠ ∅. 

Karni and Vierø (2013) postulated the following awareness consistency axiom 
to characterize the decision maker’s reaction to expansion in his awareness of 
consequences: 

(A.7) (Awareness consistency) For every given F, for all C, C ′ with C ⊂ C ′ , 
S(F, C) ⊆ S(F, C ′ ), f , g ∈ F, and f ′ , g ′ ∈ F* 

, such that f ′  f and g ′  g on S(F, C)
and f ′  g ′ on S(F, C ′ ) − S(F, C) it holds that f ≽F 

g if and only if f ′ ≽F 
∗g ′ . 

In words, axiom (A.7) posits that preferences conditional on events that are 
considered feasible before the expansion of awareness remain unchanged when 
awareness expands. 

To allow for the possibility that some non-null states become null upon the 
discovery of new consequences, we modify the awareness consistency axiom (A.7) 
by restricting the events conditional on which preferences are required to remain 
unchanged when awareness expands to events that are considered feasible both 
before and after the awareness expansion. 

(A.7r) (Revised awareness consistency) For every given F, for all C, C ′ with C ⊂ C ′ , 
and for f , g ∈ F, and  f ′ , g ′ ∈ F* 

, such that f ′  f and g ′  g on S(F, C) ∩ S(F, C ′ ), 
f  g on S(F, C) − [S(F, C) ∩ S(F, C ′ )] and f ′  g ′ on S(F, C ′ ) − [S(F, C)
∩S(F, C ′ )] it holds that f ≽F 

g if and only if f ′ ≽F 
∗ g′ . 

To grasp the nature of the extension of the “Reverse Bayesianism” result, 
consider the awareness consistency axiom (A.7). It is more restrictive than axiom 

(A.7r) in the sense that it requires that equalities f ′  f and g ′  g hold on the set 
S(F, C) while (A.7r) requires that these equalities only hold on the event 
S(F, C ′ ) ∩ S(F, C). This difference is significant because if, in (A.7r), we do not 
insist that f  g on S(F, C) − [S(F, C) ∩ S(F, C ′ )], there could arise a preference 
reversal g ≻ F 

f and f ′ ≽ F 
∗ g ′ . This reversal reflects the fact that the decision maker 

initially believes that all the states in S(F, C) are nonnull, and following the 
revision of her beliefs in the wake of the discovery of new consequences, some 

Reverse Bayesianism 5



states in S(F, C) become null. Hence, it is possible that initially g ≻F 
f because the 

payoffs of g in the states that would later become null make it more attractive than f 
but once these states are nullified, f dominates g. The awareness consistency 
axiom (A.7) is compelling if none of the states in S(F, C) becomes null after the new 
consequences are discovered. 

2.2 Representation theorem 

Dominiak and Tserenjigmid (2018) have shown that the invariant risk preferences 
axiom (A.6) in Karni and Vierø (2013) is redundant. Therefore, in addition to invoking 
the revised awareness consistency axiom,  we  state and  prove the  theorem below  
without the invariant risk preferences axiom. Since the proof in Dominiak and Tser-
enjigmid (2018) was based on the awareness consistency axiom, the revised aware-
ness consistency axiom requires a proof of the below theorem that is slightly different 
from the proofs in both Karni and Vierø (2013) and Dominiak and Tserenjigmid (2018). 

Theorem. For each F ∈ F , let ≽ F 
be a binary relation on F then, for all F, F∗ 

∈ F ,

the following two conditions are equivalent: 
i. Each ≽F 

satisfies (A.1) – (A.5) and, jointly, ≽F 
and ≽F 

∗ satisfy (A.7r). 
ii. There exist real-valued, non-constant, affine functions, U on Δ(C)and U* on 

Δ(C ′ ), and for any two F, F* ∈ F , there are probability measures, πF 
on CF and 

πF 
* on (C’)F , such that for all f , g ∈ F, 

f ≽ F 
g ⇔ ∑ 

s∈CF 

U(f (s)) πF 
(s) ≥ ∑  

s∈CF 

U(g(s)) πF 
(s). (5) 

and, for all f ′ , g ′ ∈ F* 
, 

f ′ ≽F 
∗g ′ ⇔ ∑ 

s∈(C ′)F 

U*f ′ (s) πF 
*(s) ≥ ∑

s∈(C′)F 

U*g ′ (s) πF 
* (s). (6) 

Moreover, U and U* are unique up to positive linear transformations, and there 
exists such transformations for which U(p)   U*(p) for all p ∈ Δ(C). The proba-
bility distributions πF 

and πF 
* are unique, πF 

(S(F, C))  πF 
* (S(F, C ′ ))  1, and 

πF 
(s)

πF 
(s ′ )  

πF 
∗(s)

πF 
∗(s ′ ) , (7) 

for all s, s ′ ∈ S(F, C) ∩ S(F, C ′ ). 
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Proof: See the appendix. 

Note that if S(F, C) ⊆ S(F, C ′ ), then S(F, C) ∩ S(F, C ′ )  S(F, C), and we have 
the result in Theorem 1 in Karni and Vierø (2013). 

The generalization in the theorem allows for a wider range of applications of 
reverse Bayesianism than Karni and Vierø (2013). The generalization permits a 
particular type of belief revision on the prior feasible state space, namely extreme 
belief revision in which a state is nullified. For prior feasible states that are still 
considered feasible after the expansion in awareness, beliefs are updated ac-
cording to reverse Bayesianism. This can be justified on the ground that it is 
possible to falsify a hypothesis, but one can only gain evidence that supports that 
something is true. Therefore, it is reasonable that one would nullify a state when 
presented with evidence that falsifies it but that with other types of evidence one 
maintains the relative beliefs. 

The simultaneous expansion of the state space and nullification of prior 
feasible events may reflect an implicit belief of the DM in an underlying theory, or 
causal relation, under which the newly discovered consequences are inconsistent 
with particular actions resulting in some previously known consequences. Such 
theories are themselves subjective views, or interpretations, of the world that are 
manifested in the revision of beliefs. Because of their subjective nature these 
subjective interpretations are not formalized in this model. The examples in the 
introduction illustrates this point. The observations about the velocity of light in 
the Michelson-Morley experiment are inconsistent with Newtonian mechanics, 
therefore, once accepted as valid, it compelled nullifying states in which the 
experiment yield consequences implied by the aether theory. In the athlete 
example, there is an underlying cause, namely addiction, that simultaneously 
adds the new consequence of never competing again and nullifies the existing 
state in which the athlete can compete next month. 

Another example is the theory of evolution and the subsequent discovery of 
genetics. These findings contradict Lamarck’s hypothesis that an organism can 
pass on characteristics acquired through use or disuse during its lifetime to its 
offspring. In the 1930s, long after the discovery of genetics, Lysenko revived the 
ideas of Lamarck in the Soviet Union with Lysenkoism. Lysenkoism influenced 
Soviet agricultural policy and was later blamed for crop failures. This example 
illustrates that while the modern theory of genetics is interpreted by some as ruling 
out Lamarckism, others find it compatible with Lamarckism. Similarly, the evi-
dence supporting evolution produced by research in molecular biology convinced 
some people that Darwin’s theory is valid, while others continue to believe in 
intelligent design. These examples serve to illustrate the subjective nature of belief 
revision and nullification of states. Such beliefs can presumably be detected and 
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quantified by the odds a decision maker would be willing to place on the outcomes 
of experiments testing the prediction of the underlying hypothesis. 

Karni and Vierø (2013) imposed the assumption that S(F, C) ⊆ S(F, C ′ ). A  
strengthening of axiom (A.7r), in conjunction with monotonicity, will imply that 
nullification of prior feasible states will not occur. Axiom (A.7r’) below gives a 
preference-based condition under which the assumption in Karni and Vierø (2013) 
is satisfied. 
(A.7r’) For every given F, for all C, C ′ with C ⊂ C ′ , f , g ∈ F and f ′ , g ′ ∈ F* , such that 

f ′  f and g ′  g on S(F, C ′ ) ∩ S(F, C) and f ′  g ′ on S(F, C ′ )− 
[S(F, C) ∩ S(F, C ′ )] it holds that f ≽F 

g if and only if f ′ ≽F 
∗ g ′ . 

Proposition 1 

If ≽F 
and ≽F 

∗ satisfy axioms (A.7r’) and (A.4) thenS(F, C) ⊆ S(F, C ′ ). 
Proof: See the appendix. 
The difference between axioms (A.7r) and (A.7r’) is that axiom (A.7r) allows for 

preference reversals for acts that differ on S(F, C) − [S(F, C ′ ) ∩ S(F, C)], while 
axiom (A.7r’) does not. By forcing the prior and posterior preference relations to 
agree on the ranking of acts, even if the acts differ in that event, axiom (A.7r’) 
together with monotonicity, has the implication that S(F, C) − S(F, C ′ ) must be 
null under the posterior preference relation. 

Karni and Vierø (2013) allows for the possibility of states that were previously 
conceivable but null to become feasible upon the discovery of new consequences. 
For example, before the discovery that mosquitoes are carriers of malaria and 
yellow fever, the consequence of developing these diseases as a result of exposure 
to mosquitoes was considered a null event. The discovery of the germs mosquitoes 
carry, which was a new consequence of the exposure, turned a null event into a 
non-null event. 

The following revision of (A.7r’) rules out such belief revisions. That is, it 
implies that prior conceivable but null states remain null. In this case the likeli-
hood ratios of all original conceivable states remain unchanged when beliefs are 
updated according to reverse Bayesianism. 
(A.7r”) For every given F, for all C, C ′ with C ⊂ C ′ , f , g ∈ F and f ′ , g ′ ∈ F* , such that 

f ′  f and g ′  g on S(F, C ′ ) ∩ S(F, C) and f ′  g ′ on S(F, C ′ ) − [S(F, C ′ ) ∩ CF ]
it holds that f ≽F 

g if and only if f ′ ≽F 
* g ′ . 

Proposition 2 

Let C ⊂ C ′ , then (A.7r”) and (A.4) imply that S(F, C ′ ) ∩ CF  S(F, C). 
Proof: See the appendix. 
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Since states in CF − S(F, C) are ≽ F 
-null, f S(F,C)h ≽F 

gS(F,C)h′ if and only if 

f S(F,C)k ≽F 
gS(F,C)k ′ for all h, h′ , k, k ′ ∈ F. In other words, if acts differ on 

CF − S(F, C), it does not affect their ranking according to the prior preferences. 
However, if a state s ∈ CF − S(F, C) is non-null according to the posterior, what the 
acts return in that state affect their ranking. In contrast to (A7r’), (A7r’’) rules out 

preference reversals for acts that differ on CF − S(F, C). Therefore, any such state 
must be ≽F 

∗ -null to preserve the ranking. 

Axioms (A.7r), (A.7r’), and (A.7r’’) illustrate how assuming consistency of ≽ F 
and 

≽F 
∗ on a larger set of acts shrinks the set of states on which extreme belief revisions 

may occur. Which of these assumptions is relevant will depend on the setting. 

3 Discussion 

This paper provides a model of belief updating under increasing awareness that is 
due to the discovery of new consequences. Within the framework of reverse 
Bayesianism we axiomatize a representation consistent with the observation that 
the discovery of new consequences may contradict the belief that certain states 
may occur. The result is nullification of prior feasible states simultaneous to the 
addition of newly discovered states. 

An alternative to the simultaneous addition and nullification of states is a two-
step procedure according to which the first step expands the feasible state space to 
include the newly discovered states, and the second step nullifies prior feasible 
states that are considered no longer feasible and, at the same time, updates the 
probabilities of the feasible states using Bayes rule. Given a prior, the simultaneous 
addition and nullification of states and the two-step procedure can generate 
identical posterior beliefs. However, whether updating is done in one or two steps 
could matter depending on the timing of subsequent decisions. Consider the 
example of the athlete from the introduction. Given the posterior, taking the drug is 
dominated by not taking it, since if the athlete takes the drug, he will either 
compete in a year or never, while if he doesn’t take the drug, he will for sure 
compete in a year. With the two-step procedure, if a decision is to be made between 
the moment when the athlete discovers that taking the drug might prevent him 
from competing again (that is, the time when the new states are incorporated into 
the athlete’s perception of the world) and the realization, sometime later, that 
taking the drug will prevent him form competing in a month (which leads to 
posterior updating) the athlete may still prefer to take the drug, since he assigns a 
positive probability to the event that will have him race ready in a month. 
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The issue of whether the nullification of the states occurs simultaneously with 
the discovery of new consequences or after a delay may depend on the particularity 
of the situation at hand. In principle, given a particular situation, the issue can be 
resolved by conducting an experiment designed to elicit the odds placed on the 
states immediately following the discovery of the new consequence. Such exper-
iment would determine if some of the original states become null immediately. If 
not, repeating the experiment after a delay could show if updating of beliefs occurs 
separately from the discovery of the new states. 

Karni and Vierø (2013) considered discovery of new consequences without 
severing existing links between acts and consequences. They also considered 
situations in which links between acts and consequences that the decision maker 
believed possible are discovered to be impossible, without a simultaneous dis-
covery of a new consequence. The latter realization renders null some states that 
were considered feasible without altering the conceivable state space. This paper 
expands the results to situations in which the discovery of a new consequence 
simultaneously severs a link. Thus, in this paper the severance of act-consequence 
links is the result of a discovery of a new consequence that entails an expansion of 
the conceivable state space. 

These extreme belief revisions differ conceptually from intermediate revisions. 
Whereas new information may provide logical evidence falsifying a null hypoth-
esis, it will only provide supporting evidence that it is true. Propositions 1 and 2 
illustrate the subtle nature of such extreme revisions. These results highlight the 
distinction between extreme belief revisions that support the possibility of a state 
and those that nullify it. 

Acknowledgments: Vierø acknowledges financial support from SSHRC grant 
number 435-2014-0642. 

A Proofs 

A.1 Proof of Theorem 

(Sufficiency) Fix F and C. By (A.1)–(A.5) and the von Neumann-Morgenstern ex-
pected utility theorem, there exists a real-valued, non-constant, function u F 

on C 
such that for all p, q ∈ Δ(C) 

p ≽F 
q ⇔ ∑ 

c∈Supp(p) 
uF 
(c)p(c) ≥ ∑ 

c∈Supp(q) 
uF(c)q(c). (8) 
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Let C ′ ⊃ C and F* ∈ F . Then, by the same argument as above, there exists a real-
valued function uF 

* on C ′ such that for all p′ , q′ ∈ Δ(C ′ )

p ′ ≽F 
∗ q ′ ⇔ ∑ 

c∈Supp(p ′) 
uF 

* (c)p ′ (c) ≥ ∑ 
c∈Supp(q ′) 

uF 
* (c)q ′ (c). (9) 

The functions uF 
and uF 

* are unique up to positive linear transformations. 
Define U (f (s)):  ∑c∈Supp(f (s)) uF 

(c)f (s)(c), for all f ∈  F and s ∈ S(F, C). Thus, 
U(f (s)) is the von Neumann-Morgenstern utility of the lottery f (s). Define also 
U∗(f (s)):  ∑c∈Supp(f (s)) uF 

∗ (c)f (s)(c), for all f ∈ F* and s ∈ S(F* 
, C ′ ). 

The remainder of the proof follows steps similar to steps in Dominiak and 
Tserenjigmid (2018), but needs more elaboration to prove different properties on 
different subsets of states. In particular, the steps in (11) through (15) show that the 
properties hold on the the intersection of the feasible state spaces. Let b and w be a 
best and worst consequence in C, respectively. Without loss of generality, 
normalize uF 

(b)   uF 
∗ (b)   1 and uF 

(w)   uF 
* (w)   0. 

Take any lottery q ∈ Δ(C) and acts f , g ∈ F and f ′ , g ′ ∈ F* such that f ′  f and 
g ′  g  q on S(F, C) ∩ S(F, C ′ ), f  g  δw on S(F, C) − [S(F, C) ∩ S(F, C ′ )] and 
f ′  g ′  δw on S(F, C ′ ) − [S(F, C) ∩ S(F, C ′ )]. Then, by the Anscombe and Aumann 
(1963) theorem and axiom (A.7r), we have that f ≽F 

gif and only if f ′ ≽F 
* g ′ , which 

implies that 

∑ 
s∈S(F,C)∩S(F,C ′ ) 

U(f (s))πF 
(s)  U (q)πF 

S(F, C) ∩ SF, C ′  

⇔ ∑ 
s∈S(F,C)∩S(F,C ′ ) 

U∗(f (s))πF 
∗ (s)  U ∗(q)πF 

∗ S(F, C) ∩ SF, C ′  (10) 

The next step will show that beliefs are updated according to reverse 
Bayesianism for all states in S(F, C) ∩ S(F, C′ ). For  any  s ∈ S(F, C) ∩ S(F, C′ ), 
let f (s)   δc for some c ∈ C and f (s̃)   δw for all s̃ ≠ s. Let 

q  
πF 

(s) 
πF 

(S(F, C)∩S(F, C ′ )) δc + 1 − 
πF 

(s) 
πF 

(S(F, C)∩S(F, C ′ )) δw. Then the utility of f is given by 

∑ 
s∈S(F,C) 

U(f (s))πF 
(s)  πF 

(s)U(δc) (11) 

while the utility of g is given by 

∑ 
s∈S(F,C) 

U (g(s))πF 
(s)  

πF 
(s)

πF 
(S(F, C) ∩ S(F, C ′ )) U(δc)πF 

S(F, C) ∩ SF, C ′ . (12) 

Equations (11) and (12) imply that f ∼F 
g. 
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The utility of f ’ is given by 

∑ 
s∈S(F,C ′ ) 

U*f ′ (s)πF 
* (s)  πF 

(s)U*(δc) (13) 

while the utility of g’ is given by 

∑ 
s∈S(F,C ′) 

U ∗(g ’ (s))πF 
∗ (s)  

πF 
(s)

πF 
(S(F, C) ∩ S(F, C ′ )) U ∗(δc)πF 

∗ S(F, C) ∩ SF, C ′ . 
(14) 

By axiom (A.7r), f ′ ∼F 
* g ′ , since f ∼ F 

g. Hence, (10) implies that 

πF 
∗ (s)U ∗(δc)  

πF 
(s)

πF 
(S(F, C) ∩ S(F, C ′ )) U ∗(δc)πF 

∗ S(F, C) ∩ SF, C ′ . (15) 

Equivalently, 

πF 
∗ (s)

πF 
∗ (S(F, C) ∩ S(F, C ′ ))  

πF 
(s)

πF 
(S(F, C) ∩ S(F, C ′ )) (16) 

Next we show that under the normalization of the utility functions uF 
and uF 

* it 
holds that U*(δc)  U (δc) for all c ∈ C. For any c ∈ C and s ∈ S(F, C) ∩ S(F, C ′ )), let 
f (s)  αδc + (1 − α)δw and f (s̃)  δw for all s̃ ≠ s. Let q  βδb + (1 − β)δw. By the 
normalization, U(δb)  U*(δb)  1. Hence, (10) implies that 

αU (δc)πF 
(s)  βπF 

S(F, C) ∩ SF ∗ , C ′  (17) 

⇔αU ∗(δc)πF 
∗ (s)  βπF 

∗ S(F, C) ∩ SF ∗ , C ′  (18) 

Equations (16), (17), and (18) now imply that U *(δc)  U (δc) for all c ∈ Δ(C). 
(Necessity) The necessity of (A.1)–(A.5) is an implication of the Anscombe and 

Aumann (1963) theorem. The necessity of (A.7r) is immediate. 
The uniqueness part is an implication of the uniqueness of the utility and 

probability in Anscombe and Aumann (1963). 

A.2 Proof of Proposition 1 

Suppose there exists s such that s ∈ S(F, C), s ∉ S(F, C ′ ). Let p, q ∈ Δ(C) be such 
that p≻F 

q (Note that if no such p, q exist then by Monotonicity S(F, C)  ∅, so the 
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result is trivial). Define the conceivable acts f , g, and f ′ , g ′ as follows: f  g on 
S(F, C) \ s, f (s)  p, g(s)  q. Furthermore f ′  f , g ′  g on S(F, C), and f ′  g ′ on 
S(F, C ′ ) − [S(F, C ′ ) ∩ S(F, C)]. Note that f ′ and g ′ coincide exactly on S(F, C ′ ), so  
f ′ ∼F 

* g ′ . Moreover, by Monotonicity f ≻F 
g. Since f , g, f ′ , g ′ satisfy the conditions of 

(A.7r’) we have a contradiction. 

A.3 Proof of Proposition 2 

That S(F, C) ⊆ S(F, C ′ ) ∩ CF follows from Proposition 1, since (A7r’’) is a  
strengthening of (A7r’). 

It remains to show that S(F, C ′ ) ∩ CF ⊆ S(F, C). Suppose there exists s such that 
s ∈ S(F, C ′ ) ∩ CF , s ∉ S(F, C). Let p, q ∈ Δ(C) be such that p≻F 

* q (if no such p, q exist 
then, by (A.4), S(F, C ′ )  ∅, so the result is trivial). Define the conceivable acts f , g, 
and f ′ , g ′ as follows: f  g on CF \ s, f (s)  p, g(s)  q. Furthermore f ′  f , g ′  g on 
CF , and f ′  g ′ on S(F, C ′ ) − [S(F, C ′) ∩ CF ]. But f and g coincide on S(F, C), hence, 
f ∼F 

g. By (A.4) f ′ ≻F 
* g ′ . Since f , g, f ′ , g ′ satisfy the conditions of (A.7r”) we have a 

contradiction. 
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