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“It is conceivable - and may even in a way be more realistic - to allow for cases where the individual is neither able

to state which of two alternatives he prefers nor that they are equally desirable.” von Neumann and Morgenstern 

1. Introduction 

There are situations in which the inability of decision makers to state a clear preference is undeniable. For example, hav-

ing to decide between two treatments of a disease, one that is expected to expand your life span by 20 years at 70 percent

quality of life and another that is expected to expand your life span by 15 years at 90 percent quality of life, a decision

maker might have difficulty expressing a clear preference between the two treatments. 1 Incompleteness of preferences is a 

prevalent feature of actual choice behavior and to assume otherwise does not seem justified on either positive or norma- 

tive grounds. “Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable. Like others of

the axioms, it is inaccurate as a description of real life; but unlike them, we find it hard to accept even from a normative

viewpoint.” Aumann (1962 , p. 446). 

During the last couple of decades, there has been growing appreciation of the significance of incomplete preferences 

and recognition of the potential behavioral implications thereof. As a result, there has been an increasing interest in the 
� Vierø gratefully acknowledges financial support from SSHRC grant number 435-2014-0642 and Aarhus University Research Foundation. We thank 

Morten Nielsen and two anonymous referees for comments. 
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1 See Attema et al. (2020) for an experimental investigation. 
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modeling, analysis and study of economic applications of incomplete preferences. 2 However, to the best of our knowledge, 

measures that would allow comparisons of the incompleteness of distinct preference relations have not yet been provided. 

In view of the role of measurement in scientific inquiry, the lack of measures of incompleteness is a significant lacuna in

decision theory. 

In this paper, we propose measures of incompleteness of preferences under risk and under uncertainty. These include 

measures of incompleteness of beliefs, incompleteness of risk attitudes, and overall incompleteness of preference relations 

under uncertainty. When preferences have multi-prior subjective expected multi-utility representations, we show how these 

measures of incompleteness capture the sets of subjective probabilities and utilities that constitute the representations of 

decision makers’ preferences. The local properties, or “incompleteness in the small,” are investigated as well. 

We proceed to introduce measures of comparative incompleteness. We define what it means for one preference rela- 

tion to be more incomplete than another, both in terms of beliefs, risk attitudes, and overall. We also show how greater

incompleteness manifests itself in the representation of preferences. 

We illustrate the behavioral implications of greater incompleteness in the context of a simple portfolio choice model. The 

behavioral manifestations of incompleteness include the range of unpredictability of the decision maker’s portfolio position 

and the level of inertia exhibited in response to changes in security prices. We show that greater incompleteness according 

to our measures corresponds to both greater inertia and greater unpredictability. 

A natural and intuitive idea is to regard one preference relation as displaying greater incompleteness than another if all 

alternatives that are non-comparable according to the latter are non-comparable according to the former, but not necessarily 

vice versa. Our definitions of comparative incompleteness are based on this direct ranking of incompleteness. The result is 

binary relations “more incomplete than” on the set of preference relations that are themselves partial orders. 3 

We complete the “more incomplete than” relations using our measures by expanding on the following idea. Consider a 

situation where one preference relation is complete, while another relation is incomplete. Clearly, the complete relation will 

be able to compare any two alternatives, and we can comfortably state that the complete relation is less incomplete, even

when the two decision makers are not necessarily comparing the same alternatives. 

Finally, we introduce incentive compatible mechanisms – modified scoring rules – by which the proposed measures of 

incompleteness may be elicited. 

The paper is structured as follows: Section 2 introduces our measures of incompleteness, connects them to properties of 

multi-prior subjective expected multi-utility representations, and investigates local behavior of the measures. Section 3 de- 

fines comparative incompleteness, shows how it manifests itself in the representation of preferences, illustrates its behav- 

ioral implications in the context of a simple portfolio choice problem, and completes the comparative incompleteness re- 

lations. Section 4 introduces incentive compatible mechanisms by which the measures of incompleteness may be elicited. 

Concluding remarks appear in Section 5 . The proofs are collected in the Appendix. 

2. Measuring incompleteness 

2.1. Preliminaries 

Let S be a finite set of states and denote by �R the set of simple probability distributions, dubbed lotteries , on a set of real

numbers representing monetary payoffs. 4 Assume that �R is endowed by the topology of weak convergence. Subsets of S

are events and S is the universal event . Maps from S to �R are acts . Let the set of acts, (�R ) S , be denoted by F and endowed

with the product topology. Constant acts are identified with the corresponding elements of �R . Denote by δx ∈ �R the

constant act whose payoff is the outcome x in every state. Henceforth, we identify x ∈ R with the constant act δx . Hence,

R ⊂ �R . A bet on an event E is the act x E y ∈ F such that (x E y )(s ) = x for all s ∈ E, and (x E y )(s ) = y otherwise, where x > y .

A lottery � (r; x, y ) ∈ �R , is a constant act that pays x with probability r and y with probability (1 − r) . 

A strict preference relation is an irreflexive and transitive binary relation � on F . We assume throughout that the strict 

preference relation is not empty, and we do not impose that it is negatively transitive. Taking the strict preference relation

as primitive we define several induced binary relations on F . 5 The indecisive preference relation � on F is defined as follows:
2 The study of the representation of incomplete preferences under risk and under uncertainty was pioneered by Aumann (1962) and Bewley (2002) . More 

recently, the issue has been addressed in the works of Dubra et al. (2004) , Baucells and Shapley (2008) , Nau (2006) , Seidenfeld et al. (1995) , Galaabaatar and 

Karni (2013) , Ok et al. (2013) , Riella (2015) , and Karni (2020a) . For an analysis of the implications of incomplete beliefs for equilibrium in financial markets 

see Rigotti and Shannon (2005) . 
3 The idea of making interpersonal comparisons in this way is not new and has been expressed in the literature in different contexts. Yaari (1969) defines 

one preference relation as displaying (weakly) greater risk aversion than another if every risk that is acceptable to the former is acceptable to the latter. A 

similar idea, appears in Ghirardato et al. (2004) . They propose interpersonal comparisons of revealed ambiguity, where any element in set of priors char- 

acterizing the preference relation of the decision maker who displays smaller revealed ambiguity belongs to the set of priors characterizing the preference 

relation of the decision maker who displays greater revealed ambiguity. 
4 A simple probability distribution is a probability distribution with finite support. 
5 The advantage of using the strict preference relation is that it has a clear choice meaning while the weak preference relation does not. More impor- 

tantly, a theorem by Schmeidler (1971) shows that if a weak order on a connected topological space is continuous in the two usual definitions (i.e., closed 

upper and lower contour sets according to the weak preference and open upper and lower contour sets according to the strict preference relation) then it 

is complete. Thus, incompleteness requires that one of the continuity conditions must not hold. Karni (2011) showed that this puzzling result is due to the 
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For all f, g ∈ F , 

f � g if ¬ ( f � g) and ¬ (g � f ) . (1) 

Then, � is symmetric, reflexive and, in the case of incomplete preferences, intransitive. 6 Following Galaabaatar and 

Karni (2013) , define the weak preference relation � on F as follows: For all f, g ∈ F , 

f � g if h � f implies h � g. 

Define also the indifference relation: 7 For all f, g ∈ F , 

f ≈ g if f � g and g � f . 

Finally, define the noncomparable relation: For all f, g ∈ F , 

f �� g if f � g and ¬ ( g ≈ f ) . 

The strict preference relation is continuous if the upper and lower contour sets, { f ∈ F | f � g} and { f ∈ F | g � f } , are

open for all g ∈ F . Note that if � is continuous then, for all g ∈ F , the indecisiveness subsets, { f ∈ F | f � g} are closed. We

assume throughout that the strict preference relation is continuous. We also assume that it is monotonic with respect to 

first-order stochastic dominance: For all p, q ∈ �(R ) , if p first-order stochastically dominates q , then p � q . 8 

An event E is null if ¬ (x E y � y ) , for all x, y ∈ R such that x � y . An event E is nonnull if it is not null. Thus, if there are

x, y ∈ R for which x E y � y, then E is nonnull. 

Incomplete preferences under uncertainty stem from two sources: incomplete beliefs and incomplete tastes. The former 

source expresses the decision makers’ ambiguous beliefs concerning the likelihoods of events. The latter source expresses 

the decision makers’ indecisiveness regarding the appropriate criterion for the evaluation of risky prospects. When both 

sources are present, they generally interact. Correspondingly, we develop measures of the incompleteness of beliefs and of 

tastes as well as measures of the overall degree of incompleteness. 

2.2. Measure of belief incompleteness 

Borel (1924) , Ramsey (1931) and de Finetti (1937) were the first to propose the idea that subjective probabilities may be

inferred from the odds a decision maker is just willing to offer when betting on events. To the extent that the subjective

probabilities reflect the decision makers’ beliefs about the likelihood of the events, the corresponding betting odds measure 

these beliefs. In the case of incomplete beliefs a decision maker may entertain a set of possible beliefs about the likelihood

of an event. 

Building on this idea, Smith (1961) explored the representation of beliefs by the betting odds. Allowing for the possibility 

that a decision maker’s betting behavior exhibits distinct acceptable lower and upper odds of betting on an event, Smith 

proposes that incomplete beliefs are representable by a set of priors, dubbed “medial personal probabilities,” derived from 

the betting odds. The probabilities so derived obey the classical laws of probability and are contained in specified intervals 

whose endpoints correspond to the upper and lower acceptable odds. The range of the betting odds and the corresponding 

set of probabilities is a measure of a person’s confidence in the correctness of his beliefs about the truth of a proposition or

the occurrence of an event. 

Walley ’s (1991) exploration of statistical reasoning with imprecise probabilities introduced the notion of lower prevision 

(i.e., a real-valued function, defined on a class of gambles whose payoffs are expressed in units of utility, representing the

supremum of the buying price, expressed in the same utility units, the decision maker is willing to pay for the gamble).

The upper prevision is similarly defined as the infimum selling price of a gamble. Applied to bets on events, (i.e., bets that

pay one utility unit on an event and zero utility units on the complementary event), the lower and upper previsions define

lower an upper probabilities of the event. The difference between the upper and lower probability of an event is a measure

of imprecision of the probability of the event. 

Building on the same idea, we define a measure of incompleteness of a decision maker’s beliefs about an event by the

range of the odds she considers possible when betting on the said event. The novelty of our approach is that we capture

the odds by the range of noncomparable bets, with the same payoffs, on events that have objective probabilities (i.e., the

set of lotteries, with the same payoffs, that are noncomparable to the bet). Unlike ( Walley, 1991 ) who defined the payoff of

the gambles in units of utility, our approach admits any prizes which, as we shall see, is an advantage when it comes to the

elicitation of the measure of belief incompleteness. 

Formally, for each E ∈ 2 S such that neither E nor its complement E c = S\ E are null events, and for any x, y ∈ R , define 

R 

�(x E y ) = { r ∈ [0 , 1] | x E y � � (r; x, y ) } . (2)
definition of the weak preference relation as the negation of the strict preference relation. Taking the strict preference relation as primitive and invoking 

the weak preference relation a la Galaabaatar and Karni (2013) , the weak order relation may be continuous in both senses and yet incomplete. 
6 The intransitivity of � of F is an implication of � not being negatively transitive. 
7 This definition is equivalent to Eliaz and Ok (2006) . 
8 The lottery p first-order stochastically dominates the lottery q if, for all x ∈ X, 

∑ 

z≤x p(z) ≤ ∑ 

z≤x q (z) with strict inequality for some x ∈ X . 
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The elements of R �(x E y ) are the winning probabilities of lotteries for which � is indecisive between the lottery and a bet

on the event E with the same stakes. 

Since � is monotone with respect to first-order stochastic dominance and continuous, 

R 

�(x E y ) = [ r �(x E y ) , ̄r 
�(x E y )] , 

where r �(x E y ) = sup { r | x E y � � (r; x, y ) } and r̄ �(x E y ) = inf { r | � (r; x, y ) � x E y } . That r �(x E y ) and r̄ �(x E y ) exist is an implica-

tion of the boundedness (that is, r ∈ [0 , 1] ) and the fact that the sets are non-empty, (that is, 0 ∈ { r | x E y � � (r; x, y ) } and

1 ∈ { r | � (r; x, y ) � x E y } ). Hence, R �(x E y ) is a compact interval. 

Since � is irreflexive, we have that for every null E, R �(x E y ) = { 0 } and for every E, for which S\ E is either null or empty,

we have that R �(x E y ) = { 1 } , for all x, y ∈ R . For null events E, we thus define r �(x E y ) = r̄ �(x E y ) = 0 , while for events E for

which S\ E is null or empty, we define r �(x E y ) = r̄ �(x E y ) = 1 , for all x, y ∈ R . With this in mind we make the following

definition. 

Definition 1. For every E ∈ 2 S , and x, y ∈ R , the measure of belief incompleteness of � at x E y is m b (x E y ; �) = r̄ �(x E y ) −
r �(x E y ) . 

Definition 1 captures the preference relation’s incompleteness that arises from the decision maker being unsure of how 

a subjective bet on event E compares to objective lotteries. 9 Hence the name “belief incompleteness” is natural. The payoffs 

of the bet, x and y , constitute a “measuring rod” of the incompleteness of beliefs. 10 If E is null or the empty set then

m b (x E y ; �) = 0 . If � is negatively transitive then m b (x E y ;�) = 0 for all E. Clearly, m b (x E y ; �) = m b (x E C y ; �) , for all E ∈ 2 S 

and x, y ∈ R . 

2.3. Measure of taste incompleteness 

Consider next the measurement of incompleteness of preference relations under risk, 11 by restricting � to �R . For every 

p ∈ �R , define 

C �(p) = { c ∈ R | p � δc } . (3) 

The elements of C �(p) are certain amounts for which � is indecisive between the amount and the lottery p. Then 

C �(p) = [ c �(p) , ̄c �(p) ] , (4) 

where c̄ �(p) = inf { c ∈ R | δc � p} and c �(p) = sup { c ∈ R | p � δc } . That c̄ �(p) and c �(p) exist is an implication of C �(p) be-

ing closed (it is the complement of an open set), the support of p being finite and, hence, bounded, and the fact that �
satisfies first-order stochastic dominance. We use these notations to define a measure of taste incompleteness (i.e. of the 

incompleteness of the decision maker’s risk attitudes). 

Definition 2. For every lottery p ∈ �R , the measure of taste incompleteness of � at p is m t (p; �) = c̄ �(p) − c �(p) . 

The measure in Definition 2 captures the degree to which a decision maker is unsure of how a lottery compares to certain

amounts. 12 In other words, it captures the degree to which a decision maker is unable to evaluate the riskiness of p. Since

no subjective uncertainty is involved for the objects under comparison, we view it as a measure of taste incompleteness. 

Let μ(p) denote the expected value, or mean, of p. Define 

ξ̄�(p) := μ(p) − c �(p) (5) 

and 

ξ�
(p) := μ(p) − c̄ �(p) , (6) 

which are, respectively, the highest and lowest risk premiums of the lottery p according to �. Then, 

m t ( p;�) = ξ̄�(p) − ξ�
(p) . (7) 
9 In an experimental setting, Cettolin and Riedl (2019) asked subjects to choose between a bet and lotteries with the same payoffs and varying proba- 

bilities of winning. For each lottery, the subject could also choose “option mix”, which is a 50-50 probability mixture of the bet and the lottery. Subjects 

that chose the mix option multiple times but refused, in some instances, to pay for the option to keep the mixture are said to exhibit choice behavior 

consistent with preference incompleteness. About half of the subjects in the experiment displayed this behavior. 
10 Having R being the domain of the payoffs x and y is not necessary for measuring incomplete beliefs. Any payoffs x, y that are ranked x � y will 

constitute a measuring rod. This is not the case for the measure of taste incompleteness that will be defined below. For that measure, we are using 

certainty equivalents as a measuring rod. In order for certainty equivalents to be well-defined, we need to have a continuum of outcomes. Furthermore, the 

outcomes need to be ranked the same way by all decision makers that are to be compared. 
11 See Dubra et al. (2004) and Baucells and Shapley (2008) for axiomatic characterizations of expected utility representations with incomplete preferences 

under risk. 
12 Danan and Ziegelmeyer (2006) use binary lotteries, l ( ̄z , z ) with two prizes, z̄ > z to define the measure of incompleteness under risk as follows: 

v = ( ̄c �(l) − c �(l) ) / ( ̄z − z ) . 

426 



E. Karni and M.-L. Vierø Journal of Economic Behavior and Organization 205 (2023) 423–442 

Fig. 1. Illustration of the Measure of Overall Incompleteness at x E y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Measure of overall incompleteness 

The overall degree of incompleteness of a preference relation at E amalgamates the incompleteness of beliefs and of 

tastes. A decision maker may be unsure of how a subjective bet on E compares to objective lotteries, and also of how to

assess the risk represented by these lotteries. That is, for a subjective bet on E, there is a set of non-comparable lotteries,

and for each of these non-comparable lotteries, there is a range of sure payoffs that are non-comparable to the lottery.

Because a bet on E corresponds to a set of non-comparable lotteries, the question arises how to incorporate the values of

the certain payoffs into the measure of the overall incompleteness of the preference relation at E. 

For each event, E ∈ 2 S and x, y ∈ R , define 

O 

�(x E y ) = { c ∈ R | x E y � δc } . (8) 

The elements of O 

�(x E y ) are certain payoffs for which � is indecisive between the payoff and the bet x E y . Then, 

O 

�(x E y ) = [ c (x E y ;�) , ̄c (x E y ;�)] , 

where c̄ (x E y ;�) = inf { c ∈ R | δc � x E y } and c �(x E y ;�) = sup { c ∈ R | x E y � δc } . That c̄ (x E y ; �) and c (x E y ;�) exist when nei-

ther E nor its complement is null follows from the fact that, by first-order stochastic dominance { c ∈ R | δc � x E y } is non-

empty and bounded below by y and, similarly, { c ∈ R | x E y � δc } is non-empty and bounded above by x. If E is the universal

event, define c̄ (x E y ; �) = c (x E y ; �) = x , and if E is null, define c̄ (x E y ;�) = c (x E y ;�) = y. Using these notations we make the

following definition: 

Definition 3. For every E ∈ 2 S , the measure of overall incompleteness of � at x E y is M(x E y ; �) = c̄ (x E y ; �) − c (x E y ; �) . 

The measure of overall incompleteness at x E y is illustrated in Fig. 1 . The point (x, y ) is the particular bet on E under con-

sideration. The two curves through the point are the boundaries of the set of bets on or against E that are non-comparable

to (x E y ) . In other words, every bet on and between the curves is non-comparable to (x E y ) . Points on the 45-degree line are

certain payoffs, since they pay the same in E and ¬ E. 

If E is either a null event or the universal event then M(x E y ; �) = 0 for all x, y . If � is negatively transitive then,

M(x E y ; �) = 0 for all E and for all x, y . 

2.5. Manifestations in the representation of preferences 

If preferences have a multi-prior expected multi-utility (MPEMU) representation, axiomatized in Galaabaatar and 

Karni (2013) , our measures of incompleteness have specific manifestations in the representation. The incomplete preference 

relation � on F has a MPEMU product representation if the following holds: For all f, g ∈ F , 

f � g ⇔ �s ∈ S U( f (s )) π(s ) > �s ∈ S U(g(s )) π(s ) , ∀ (π, U) ∈ � × U , (9)
427 
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where � a unique closed convex set of subjective probability measures on S and U is a set of real-valued, affine, functions 

on �R . Without loss of generality, we assume henceforth that the set U is convex. 13 The representation in (9) includes

two special cases: (a) Bewley ’s (2002) Knightian uncertainty in which � on the subset of constant acts (that is, on �R ) is

negatively transitive and, consequently, U is a singleton set, and (b) the case of complete beliefs in which � is a singleton

set. 

Definition 1 does not rule out that the measure m b (x E y ; �) depends on the “measuring rod” being used, that is, on the

payoffs x and y . However, as we show in Theorem 1 below, if the decision maker’s preferences admit MPEMU representation

then m b (x E y ; �) is independent of the choice of x and y , and of the decision maker’s risk attitudes. 

For each E ∈ 2 S , let π̄ (E) := max π∈ � π(E) and π(E) := min π∈ � π(E) . Then π̄ (E) − π(E) represents the range of beliefs

that, according to �, the true state is in E. 14 We show next that, for MPEMU preferences, the probability measure of belief-

incompleteness in Definition 1 is equal to the length of the interval of subjective probabilities of E. 

Theorem 1. If an incomplete preference relation � on F has MPEMU representation, then the measure of belief incompleteness 

at E, m b (x E y ;�) , is independent of the outcomes x and y and of the set of utility functions U in the representation. Furthermore,

m b (x E y ; �) := m b (E; �) = π̄ (E) − π(E) . 

The proof is in the Appendix. It is worth underscoring that this result also holds if instead of MPEMU preferences the

decision maker’s preference relation displays probabilistic sophistication a la ( Machina and Schmeidler, 1995 ). 15 

Unlike the measure of incomplete beliefs, the measure of the overall incompleteness of a preference relation at x E y de-

pends on the “measuring rod”, that is, the payoffs x and y that are used to construct it. This dependence is a consequence

of the fact that the magnitudes of the payoffs determine the riskiness of the bet. Because the measure of overall incom-

pleteness incorporates the decision maker’s risk attitudes, it must be sensitive to the risk of the bet. 

2.6. Measures of incompleteness in the small 

Consider next the local version of our measures of incompleteness. This analysis allows us to express the measures of 

incompleteness in terms of the properties of the subjective probabilities and the utility functions that figure in the MPEMU 

representation. Fix a probability r and consider a lottery � (r; x, y ) . Denote its mean by μr (x, y ) and its variance by σ 2 
r (x, y ) .

Let u denote the Bernoulli utility function corresponding to U , so that U(p) = 

∑ 

x ∈ supp (p) p(x ) u (x ) , for all p ∈ �(R ) . We

assume that the functions u are twice differentiable. 

We first consider our measure of taste incompleteness as σ 2 
r (x, y ) → 0 while keeping the mean of the lottery constant.

We show that, locally around μr (x, y ) , the measure of taste incompleteness is proportional to the largest difference in the

Arrow-Pratt measure of absolute risk-aversion, evaluated at μr (x, y ) , displayed by the utility functions that figure in the

representation. Formally, 

Proposition 1. The measure of taste incompleteness of � at � (r; x, y ) satisfies 

m t (� (r; x, y ) ;�) = 

[
max 
U∈U 

(
−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 

)
− min 

U∈U 

(
−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 

)]
σ 2 

r (x, y ) 

2 

+ o(σ 2 
r (x, y )) . 

Note that σ 2 
r (x, y ) = r(1 − r)(x − y ) 2 . Hence, o(σ 2 

r (x, y )) = o((x − y ) 2 ) . Therefore, the difference in the Arrow-Pratt mea-

sure between the utility functions in the representation is a good approximation of taste incompleteness for low-variance 

lotteries. 

Recall that the measure of taste incompleteness captures the degree to which a decision maker is unable to evaluate the

riskiness of lotteries. Proposition 1 shows that this inability is reflected in the range of risk attitudes the decision maker

may have at the mean of the lottery. 

When preferences exhibit both taste and belief incompleteness, the mean of a bet x E y is not uniquely defined, nor is the

Arrow-Pratt coefficient of risk aversion. Proposition 2 below shows that the measure of overall incompleteness can still be 

approximated by well-known measures for small stake bets on E. 

Proposition 2. The measure of overall incompleteness of � at x E y satisfies 

M(x E y ;�) = ( ̄π(E) − π(E))(x − y ) 

+ 

1 

2 

[
max 
U∈U 

(
−u 

′′ (μπ(E) (x, y )) 

u 

′ (μπ(E) (x, y )) 

)
σ 2 

π(E) (x, y ) − min 

U∈U 

(
−u 

′′ (μπ̄(E) (x, y )) 

u 

′ (μπ̄(E) (x, y )) 

)
σ 2 

π̄ (E) (x, y ) 

]
+ o((x − y ) 2 ) . 
13 To see that this is without loss of generality, note that for any U, ̂  U ∈ U , �s ∈ S U( f (s )) π(s ) > �s ∈ S U(g(s )) and �s ∈ S ̂  U ( f (s )) π(s ) > �s ∈ S ̂  U (g(s )) if and only 

if �s ∈ S αU( f (s )) + (1 − α) ̂ U ( f (s )) π(s ) > �s ∈ S αU(g(s )) + (1 − α) ̂ U (g(s )) π(s ) for all α ∈ [0 , 1] . Thus, a set of utility functions represents the same prefer- 

ences as the convex hull of the set of utility functions represents. 
14 That π̄ (E) and π(E) exist is an implication of the compactness of �(E) and the linearity of the preference functional. 
15 In other words, if the preference relation satisfies the axioms of Machina and Schmeidler (1995) , except the completeness axiom, then the proba- 

bilistic sophisticated representation involves a set of priors � and a set, V, of utility functions (see Karni, 2020a ). The corresponding measure of belief 

incompleteness, m b (E; �) , is independent of the outcomes used for the elicitation and the utility functions in V. 
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The first term in the square brackets is the variance of the bet according to the DM’s belief assigning lowest probability

to E times the largest Arrow-Pratt coefficient of absolute risk aversion at the mean of the bet according to that belief.

The second term in the square brackets is the variance of the bet according to the belief assigning highest probability

to E times the smallest Arrow-Pratt coefficient of absolute risk aversion at the mean of the bet according to that belief.

Proposition 2 states that, locally the measure of overall incompleteness can be decomposed into the difference between 

these terms and the measure of belief incompleteness weighted by the stakes of the bet. Formally, by Theorem 1, 16 π̄ (E) −
π(E) = r̄ �(E) − r �(E) and, by Pratt (1964) , 

ξ̄�(� ( r �(E) ; x, y )) − ξ�(� ( ̄r �(E) ; x, y )) = max 
U∈U 

(
− u ′′ (μπ(E) (x, y )) 

u ′ (μπ(E) (x, y )) 

)
σ 2 

π(E) 
(x, y ) 

2 
− min 

U∈U 

(
− u ′′ (μπ̄(E) (x, y )) 

u ′ (μπ̄(E) (x, y )) 

)
σ 2 

π̄ (E) 
(x, y ) 

2 
. 

Hence, we have that 

M(x E y ;�) = ( ̄r �(E) − r �(E))(x − y ) + ( ̄ξ�(� ( r �(E) ; x, y )) − ξ�
(� ( ̄r �(E) ; x, y ))) . 

That is, the measure of overall incompleteness at a bet is given by the dispersion of the beliefs weighted by the stakes of the

bet and the difference between the highest risk-premium of the lottery corresponding to the lowest beliefs and the smallest 

risk-premium of the lottery corresponding to the highest beliefs. 

In the case of complete beliefs, π(E) = π̄ (E) and σ 2 
π(E) 

(x, y ) = σ 2 
π̄ (E) 

(x, y ) . Hence, the term in the square brackets

in Proposition 2 equals the local measure of taste incompleteness in Proposition 1 . When beliefs are incomplete and

π�(E) 
 = π̄�(E) , the term in the square brackets can be positive or negative depending on the local curvature of the util-

ity functions at the highest and lowest mean of the bet. Thus, while M(x E y ; �) measures the combined effect of incomplete

beliefs and tastes, even locally and with the measure of belief incompleteness weighted by the stakes of the bet, it is not ad-

ditive in the measures of belief and taste incompleteness. This is because the belief and taste incompleteness interact. Taste 

incompleteness is defined at a particular lottery, and belief incompleteness means that two different lotteries are evaluated. 

The exact nature of the interaction is described in Proposition 2 . 

We have the following corollary of Proposition 2 : 

Corollary 1. The derivative of the measure of overall incompleteness of � at x E y , evaluated at y = x , equals the measure of belief

incompleteness of � at E. That is, 

lim 

y → x 

M(x E y ;�) 

x − y 
= r̄ �(E) − r �(E) = m b (E;�) . 

The result in Corollary 1 is intuitive, since when the stakes of the bet are zero, the preference relation displays risk

neutrality and, consequently, the decision maker’s risk attitudes are unambiguous. Consequently, in the limit the tastes are 

complete, and the only source of incompleteness is the belief. Thus, in the limit the model reduces to Knightian uncer-

tainty. 17 

3. Comparative incompleteness: Measurement and behavioral manifestations 

We now return to general (model free) incomplete preference relations and define binary relations “more incomplete 

than” on the set of preference relations. There is a similarity between measuring risk aversion and measuring incomplete- 

ness. The Arrow-Pratt measures of absolute and relative risk aversion are local (at every level of wealth). Consequently, 

interpersonal comparisons of risk attitudes are defined locally and if the local relationship “more risk averse” holds at ev- 

ery level of wealth, then the comparison is global. Our measures of incompleteness are also defined locally. In the case

of incomplete beliefs the measure is defined locally at events and in the case of incomplete tastes it is defined locally at

lotteries. Interpersonal comparisons of the degree of incompleteness are defined locally and if the local relationship “more 

incomplete” holds at each event (for beliefs) or lottery (for tastes) then the comparison is global. 

3.1. Definitions of comparative incompleteness 

The comparative measures that we introduce here are set-inclusion concepts of “more incomplete than.” They are par- 

tial binary relations on the set of preference relations on F , and consequently do not rank all preference relations, even

locally. However, if two relations are comparable according to these measures, it has clear behavioral implications, which 

we illustrate in Section 3.2 . 

Definition 4 below states that one preference relation is “more belief incomplete” than another at E if for every lottery 

for which the latter is indecisive between the lottery and a bet on E, the former is also indecisive between the lottery and

the same bet on E. We later relate comparative incompleteness to our measures of incompleteness. 
16 We have shown that when preferences have MPEMU representation, m b (x E y, �) is independent of x, y , therefore we can write r̄ �(x E y ) = ̄r �(E) and 

r �(x E y ) = r �(E) . 
17 This result is obtained by dividing by (x − y ) on both sides of the equation in Propositon 2 and taking the limit as y → x . 

429 



E. Karni and M.-L. Vierø Journal of Economic Behavior and Organization 205 (2023) 423–442 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 4. A preference relation �1 displays greater belief incompleteness at E than preference relation �2 if x E y �2 

� (r; x, y ) implies x E y �1 � (r; x, y ) , for all bets on E. It displays strictly greater belief-incompleteness at E if it displays

greater belief-incompleteness and, in addition, for some � (r; x, y ) , x E y �1 � (r; x, y ) and ¬ (x E y �2 � (r; x, y )) . It displays greater

(strictly greater) belief incompleteness on F if it displays greater (strictly greater) belief incompleteness at E for all nonnull 

E ∈ 2 S \ S. 
Applying the same idea to the preference relations on �(R ) , Definition 5 states that one preference relation is “more

taste incomplete” than another at p if every certain amount for which the latter is indecisive between the amount and p, 

the former is also indecisive between the amount and p. 

Definition 5. On �R , a preference relation �1 displays greater taste incompleteness at p than preference relation �2 

if p �2 δc implies p �1 δc . It displays strictly greater taste incompleteness at p if it displays greater taste incompleteness 

and, in addition, for some δc , p �1 δc and ¬ (p �2 δc ) . It displays greater (strictly greater) taste incompleteness on �R if it

displays greater (strictly greater) taste incompleteness at all nondegenerate p ∈ �R . 

Similarly, one preference relation is “more incomplete overall” than another at E if every certain amount for which the 

latter is indecisive between the amount and a bet on E, the former is also indecisive between the amount and the same bet

on E. 

Definition 6. A preference relation �1 displays greater overall incompleteness at E than preference relation �2 if x E y �2 δc 

implies x E y �1 δc for all x, y , such that x > y . It displays strictly greater overall incompleteness at E if it displays greater

overall incompleteness at E and, in addition, for some δc , x, y such that x > y , x E y �1 δc and ¬ (x E y �2 δc ) . It displays greater

(strictly greater) overall incompleteness on F if it displays greater (strictly greater) incompleteness at E for all nonnull E ∈
2 S \ S. 

The following are immediate implications of Definitions 4, 5 , and 6 , respectively: 

1. The preference relation �1 on F displays greater belief-incompleteness at E than �2 if and only if R �2 (E ) ⊆ R �1 (E) . 

2. The preference relation �1 displays greater taste incompleteness at p than �2 if and only if C �2 (p) ⊆ C �1 (p) . 

3. The preference relation �1 displays greater overall incompleteness than �2 at E if and only if O 

�2 ( x E y ) ⊆ O 

�1 (x E y ) for

all x, y , such that x > y . 

The notions of comparative incompleteness defined above therefore translate to our measures of incompleteness as de- 

scribed in Corollary 2 . 

Corollary 2. The following relations hold: 

1. If the preference relation �1 on F displays greater belief-incompleteness at E than �2 , then m b (x E y ; �1 ) ≥ m b (x E y ; �2 ) for all

x, y such that x > y . 

2. If the preference relation �1 displays greater taste incompleteness at p than �2 , then m t (p; �1 ) ≥ m t (p; �2 ) . 

3. If the preference relation �1 displays greater overall incompleteness than �2 at E, then M(x E y ; �1 ) ≥ M(x E y ;�2 ) for all x, y

such that x > y . 

As Corollary 2 shows, the implications go in one direction. This is because the comparative incompleteness relations as 

defined above are themselves incomplete relations. 

In general, one decision maker may display greater belief incompleteness but smaller taste incompleteness than another 

or vice versa. This makes the comparison of the overall incompleteness depend on the relative magnitudes of the incom- 

pleteness of beliefs and tastes (or risk attitudes) of the decision makers being compared. If one decision maker displays

greater incompleteness of both beliefs and tastes then, not surprisingly, she displays greater overall incompleteness. For- 

mally, we have the following result: 

Proposition 3. If a preference relation �1 displays greater belief and taste incompleteness than preference relation �2 then it 

displays greater overall incompleteness. 

The following result links the measure of greater belief incompleteness and the beliefs in the MPEMU representations: 

Corollary 3. Suppose preference relations �1 and �2 on F both admit MPEMU representations. The preference relation �1 on F 

displays greater (strictly greater) belief incompleteness at E than �2 if and only if [ π2 (E) , π̄2 (E)] ⊆ [ π1 (E) , π̄1 (E)] . 

According to Corollary 3 , �1 displays greater belief incompleteness than �2 if and only if the set of prior beliefs for �2 

is a subset of the set of prior beliefs for �1 . 

Incomplete beliefs and tastes have distinct effects on the overall measure of incompleteness. This can be easily grasped 

by considering two decision makers with MPEMU preferences and complete tastes. Even if the beliefs of the two decision 

makers are incomplete to the same degree, unless their Bernoulli utility functions belong to the same equivalence class 

(i.e., display the same risk attitudes), the overall measure of incompleteness may be different due to possible distinct risk 

attitudes. For example, fix a bet x E y on E, and consider preference relations �i , i = 1 , 2 exhibiting Knightian uncertainty.

Assume that �1 = �2 and suppose that �1 displays greater absolute risk aversion at μ( π ; x, y ) and smaller absolute risk

aversion at μ( ̄π ; x, y ) than � . Then, ξ (� ( ̄π ; x, y ) ; � ) < ξ (� ( ̄π ; x, y ) ; � ) and ξ (� ( π ; x, y ) ; � ) > ξ (� ( π ; x, y ) ; � ) . 
2 1 2 1 2 
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3.2. Portfolio choice 

The behavioral manifestations of incomplete preferences are inertia and unpredictability. Loosely speaking, inertia means 

that to take an action, a decision maker must be persuaded that the action dominates not taking it (i.e. sticking to the status

quo) according to all the possible values he may attribute to the outcomes of the action and the beliefs he entertains about

the likelihoods of these outcomes. Unpredictability means that when a decision maker decides that a change is called for, it

is impossible to predict which of a set of feasible actions he will take. 

Invoking the definitions of comparative incompleteness in Section 3.1 , we study the levels of inertia and unpredictability 

in the context of a simple portfolio selection model. More specifically, we show how comparative incompleteness trans- 

lates to the level of unpredictability of a decision maker’s portfolio choice behavior (that is, the size of the set of portfolio

positions she may choose) and the level of inertia she displays. 

Let S = { 1 , 2 } , then an act is depicted by the point in R 

2 + whose coordinates are the payoffs in the two states. Consider a

decision maker whose preference relation � on R 

2 + is incomplete and has a multi-prior expected multi-utility representation. 

With slight abuse of notation, let the decision maker’s set of priors be � = { (π, 1 − π) | π ∈ [ π, π̄ ] } , where [ π, π̄ ] denotes

the range of subjective probabilities of state 1, and denote by U the set of Bernoulli utility functions corresponding to �. We

assume that the decision maker displays risk aversion. Formally, assume that the elements of U are monotonic increasing, 

concave, real-valued functions on R + . 
Let there be two Arrow securities, a 1 and a 2 , with a s paying one dollar contingent on the realization of state s ∈ { 1 , 2 } .

Denote by q the relative price of a 1 in terms of a 2 , (i.e., a 2 is the numeraire Arrow security). Suppose that the decision

maker’s initial endowment consists of an equal number, w 0 , of the two Arrow securities and denote the corresponding

budget set { (w 1 , w 2 ) ∈ R 2 | qw 1 + w 2 ≤ qw 0 + w 0 } by B (w 0 , q ) . 

The decision maker’s problem is to choose a portfolio (w 

∗
1 
, w 

∗
2 
) ∈ B (w 0 , q ) of Arrow securities such that, for no other

(w 1 , w 2 ) ∈ B (w 0 , q ) , 

πu (w 1 ) + (1 − π) u (w 2 ) > πu (w 

∗
1 ) + (1 − π) u (w 

∗
2 ) , ∀ (π, u ) ∈ [ π, π̄ ] × U . (10)

That is, there is no feasible portfolio that is strictly preferred to (w 

∗
1 
, w 

∗
2 
) . 

To find the set of portfolios that solve the decision maker’s problem, consider the following: Given the budget set 

B (w 0 , q ) , there corresponds to each (π, u ) ∈ � × U an optimal portfolio position given by the solution to (
w 

(π,u ) 
1 

(w 0 , q ) , w 

(π,u ) 
2 

(w 0 , q ) 
)

:= arg max 
(w 1 , w 2 ) ∈ B (w 0 , q ) 

[ πu (w 1 ) + (1 − π) u (w 2 ) ] . 

Denote the set of solutions by 

W (w 0 , q ) = 

{(
w 

(π,u ) 
1 

(w 0 , q ) , w 

(π,u ) 
2 

(w 0 , q 
)
) | (π, u ) ∈ [ π, π̄ ] × U 

}
. 

The set W (w 0 , q ) captures the unpredictability corresponding to a decision maker characterized by [ π, π̄ ] × U . 

The necessary and sufficient condition for (w 1 , w 2 ) ∈ W (w 0 , q ) is: 

πu 

′ (w 1 ) 

(1 − π) u 

′ (w 2 ) 
= q 

for some (π, u ) ∈ [ π, π̄ ] × U . Let ( ̄w 1 (w 0 , q ) , w 2 (w 0 , q )) and ( w 1 (w 0 , q ) , w̄ 2 (w 0 , q )) be implicitly defined by the equations 

π̄

1 − π̄
sup 

u ∈U 

u 

′ ( w̄ 1 (w 0 , q )) 

u 

′ ( w 2 (w 0 , q )) 
= q 

and 

π

1 − π
inf 
u ∈U 

u 

′ ( w 1 (w 0 , q )) 

u 

′ ( w̄ 2 (w 0 , q )) 
= q. 

Thus, ( ̄w 1 (w 0 , q ) , w 2 (w 0 , q )) is the point on the budget line at which the decision maker’s largest marginal rate of sub- 

stitution equals the slope of the budget line. Likewise, ( w 1 (w 0 , q ) , w̄ 2 (w 0 , q )) is the point on the budget line at which

the decision maker’s smallest marginal rate of substitution equals the slope of the budget line. Therefore, given B (w 0 , q ) ,

( ̄w 1 (w 0 , q ) , w 2 (w 0 , q )) and ( w 1 (w 0 , q ) , w̄ 2 (w 0 , q )) are the extreme points of the set of portfolio positions in the set W (w 0 , q )

that may be chosen by a preference relation � with MPEMU representation [ π, π̄ ] × U . 

If π̄/ (1 − π̄ ) < q then w 1 < w 0 < w 2 , for all (w 1 , w 2 ) ∈ W (w 0 , q ) (that is, W (w 0 , q ) is contained in the cone above

the certainty line). If π̄/ (1 − π̄ ) > q > π/ (1 − π) then (w 0 , w 0 ) ∈ W (w 0 , q ) . If π/ (1 − π) > q then w 1 > w 0 > w 2 , for all

(w 1 , w 2 ) ∈ W (w 0 , q ) (that is, W (w 0 , q ) is contained in the cone below the certainty line). Figure 2 illustrates the unpre-

dictability set for the case in which π̄/ (1 − π̄ ) > q > π/ (1 − π) so that (w 0 , w 0 ) ∈ W (w 0 , q ) . 

Proposition 4 shows that the level of unpredictability is higher the more incomplete a preference relation is. 18 
18 Chambers and Melkonyan (2020) show that when incompleteness gives rise to individuals having a continuum of allocations that they do not have a 

strict ranking of, trade among identical agents can arise. 
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Fig. 2. Illustration of the Unpredictability Set W (w 0 , q ) when (w 0 , w 0 ) ∈ W (w 0 , q ) . 
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Proposition 4. If preference relation �1 on F displays greater belief and taste incompleteness than preference relation �2 then 

 2 (w 0 , q ) ⊆ W 1 (w 0 , q ) , for all (w 0 , q ) ∈ R 2 ++ . 

Now consider the effect of a change in relative prices to ˆ q . Starting from (w 

∗
1 
, w 

∗
2 
) , the decision maker will change his

portfolio position to some other ( ̂  w 

∗
1 
, ˆ w 

∗
2 
) ∈ B (w 

∗
1 
, w 

∗
2 
, ̂  q ) if and only if 

πu ( ̂  w 

∗
1 ) + (1 − π) u ( ̂  w 

∗
2 ) > πu (w 

∗
1 ) + (1 − π) u (w 

∗
2 ) , ∀ ( π, u ) ∈ [ π, π̄ ] × U . 

Let 

ū 

′ (w 

∗
1 ) 

ū 

′ (w 

∗
2 
) 

:= sup 

u ∈U 

{
u 

′ (w 

∗
1 ) 

u 

′ (w 

∗
2 
) 

}
and 

u 

′ (w 

∗
1 ) 

u 

′ (w 

∗
2 
) 

:= inf 
u ∈U 

{
u 

′ (w 

∗
1 ) 

u 

′ (w 

∗
2 
) 

}
. 

It is easy to verify that if 

ˆ q ∈ 

[
π

1 − π

u 

′ (w 

∗
1 ) 

u 

′ (w 

∗
2 
) 
, 

π̄

1 − π̄

ū 

′ (w 

∗
1 ) 

ū 

′ (w 

∗
2 
) 

]
(11) 

then the decision maker will hold on to her position (w 

∗
1 
, w 

∗
2 
) . To see this, note that the left endpoint of the interval in

(11) is the slope of the flattest of the decision maker’s indifference curves through (w 

∗
1 
, w 

∗
2 
) , while the right endpoint of the

interval is the slope of the steepest of the decision maker’s indifference curves through (w 

∗
1 , w 

∗
2 ) . The decision maker will

hold on to his portfolio (w 

∗
1 
, w 

∗
2 
) as long as the slope of the budget line, given by ˆ q , falls within this range. 

Define the measure of inertia for � at (w 

∗
1 
, w 

∗
2 
) by the interval of prices at which the portfolio position is maintained.

Formally, 

I �(w 

∗
1 , w 

∗
2 ) = 

[
π

1 − π

u 

′ (w 

∗
1 ) 

u 

′ (w 

∗
2 
) 
, 

π̄

1 − π̄

ū 

′ (w 

∗
1 ) 

ū 

′ (w 

∗
2 
) 

]
. 

In particular, if the initial endowment (w 0 , w 0 ) is the status quo, or default, portfolio then the measure of inertia at (w 0 , w 0 )

is: 

I �(w 0 , w 0 ) = 

[
π

1 − π
, 

π̄

1 − π̄

]
. (12) 

With only two states, if E = { s 1 } , then E C = { s 2 } . Thus, if �1 displays greater incompleteness than �2 at { s 1 } then it

displays greater incompleteness. Therefore, in this two-state economy the measure of inertia need not be indexed by the 

conditioning event. 

We now investigate the comparative statics properties of the measure of inertia I �(w 

∗
1 
, w 

∗
2 
) . 

Proposition 5. Let �1 and �2 be preference relations on R 2 + . If �1 displays greater belief and taste incompleteness than �2 then 

I �1 
(w 

∗
1 , w 

∗
2 ) ⊇ I �2 

(w 

∗
1 , w 

∗
2 ) , for all (w 

∗
1 , w 

∗
2 ) . Moreover, if I �1 

(w 

∗
1 , w 

∗
2 ) ⊇ I �2 

(w 

∗
1 , w 

∗
2 ) for all (w 

∗
1 , w 

∗
2 ) , then �1 displays greater

belief incompleteness than �2 . 

Proposition 5 shows that a preference relation displaying greater belief and taste incompleteness exhibits a higher level 

of inertia. Thus, the portfolio position of a decision maker displaying greater belief and taste incomplete preferences is less 
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sensitive to price fluctuations. If a preference relation �1 displays either greater belief incompleteness or greater taste in- 

completeness than �2 , but not both, then it is possible that �2 displays greater overall incompleteness than �1 , and thus it is

possible for �2 to display greater inertia than �1 . However, if �1 exhibits a higher level of inertia than �2 at (w 0 , w 0 ) , then it

must be the case that it displays greater belief incompleteness. An immediate implication of Proposition 5 is that if the pref-

erence relations �1 and �2 display the same level of belief-incompleteness, then �1 exhibits greater taste-incompleteness 

than �2 if and only if I �1 
(w 

∗
1 
, w 

∗
2 
) ⊇ I �2 

(w 

∗
1 
, w 

∗
2 
) , for all (w 

∗
1 
, w 

∗
2 
) . 

Remark: The analysis of portfolio choice bears some similarities to that of Dow and Werlang ’s (1992) analysis of portfolio

choice under Gilboa and Schmeidler ’s (1989) maxmin preferences. However, as they note, while the empirical implications 

of the Gilboa-Schmeidler model are broadly similar to those of Bewley’s Knightian uncertainty model, there is an impor- 

tant difference. For the incomplete preferences there is a “tendency not to trade, whereas in Gilboa-Schmeidler there is a 

tendency not to hold a position.” ( Dow and Werlang (1992) p. 198.) Put differently, whereas the maxmin preferences are

complete and display inertia on the certainty line, i.e. at the switching points of the ranking of the payoffs, in the gen-

eral case of incomplete preferences, and in the particular case of Knightian uncertainty, the inertia, or “status quo bias” is 

displayed everywhere. 

3.3. Completing the comparative incompleteness relations 

Since our measures of incompleteness in Section 2 quantify incompleteness, they can be applied to rank the incomplete- 

ness of any two preference relations regardless of whether the noncomparable sets are ranked by set inclusion. The resulting 

“greater quantitative belief incompleteness” relations are themselves complete binary relations on the set of preference re- 

lations on F . Formally, we have the following definition: 19 

Definition 7. 

1. The preference relation �1 displays greater quantitative belief incompleteness at E than the preference relation �2 if 

m b (E; �1 ) ≥ m b (E; �2 ) . 

2. On �R , the preference relation �1 displays greater quantitative taste incompleteness at p than the preference relation �2 

if m t (p; �1 ) ≥ m t (p; �2 ) . 

3. The preference relation �1 displays greater quantitative overall incompleteness at x E y than the preference relation �2 if 

M(x E y ; �1 ) ≥ M(x E y ; �2 ) . 

The comparative measure in part 1 of Definition 7 has the following intuitive interpretation: For a preference relation 

�i , i = 1 , 2 , a bet on event E is non-comparable to lotteries with odds in R �i (E) . However, if the odds in the lottery are

improved sufficiently, the lottery would become so attractive that a strict preference would emerge in favour of the lottery 

and the decision maker would no longer find the bet and the lottery incomparable. Now, consider any of the lotteries that

are incomparable to the bet according to the preference relation �1 , and consider an increase ε in the odds of winning,

which is large enough to always break incomparability for all r 1 ∈ R �1 (E) . If the same increase in odds will also always

break incomparability for a preference relation �2 , we conclude that �2 is less incomplete than �1 . In other words, it takes

a smaller increase in odds for the preference relation �2 to be able to compare the lottery and the bet and state a strict

preference between the two objects than it does for the preference relation �1 . The intuition behind parts 2 and 3 is similar:

if any change in the certain monetary payoff that is large enough to break incomparability for preference relation �1 always 

breaks incomparability for preference relation �2 , then �1 is more incomplete than �2 . 

Clearly, if a preference relation is more incomplete than another according to a set-inclusion definition of comparative 

incompleteness, it is also more incomplete according to the corresponding quantitative definition. 

An immediate consequence of Definition 7 and Theorem 1 is that if preference relations �1 and �2 on F both admit

MPEMU representations, then �1 displays greater quantitative belief incompleteness at E than �2 if and only if π̄1 (E) −
π1 (E) ≥ π̄2 (E) − π2 (E) . It displays strictly greater quantitative belief incompleteness at E if and only if the inequality is

strict. 

Theorem 2 below states that for low-variance lotteries p, �1 displays greater quantitative taste incompleteness at p than 

�2 if and only if, when evaluated at the mean of p, the largest difference in the Arrow-Pratt coefficient of risk aversion

among the utility functions representing �1 is greater than among the utility functions representing �2 . 

Theorem 2. Suppose preference relations �1 and �2 on �R both admit expected multi-utility representations. Then there exists 

ε > 0 such that if σ 2 (p) ∈ ( 0 , ε) , then �1 displays greater quantitative taste incompleteness at p than �2 if and only if 

max 
U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
≥ max 

U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
. 

It displays strictly greater quantitative taste incompleteness at p if and only if the inequality is strict. 

Theorem 2 highlights the intuition that greater taste incompleteness is reflected in a larger range of risk attitudes. 
19 The definitions of “strictly greater” incompleteness in this subsection are analogous to those in Section 3.1 and thus omitted. 
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4. Elicitation 

The elicitation of the measures of incomplete beliefs m b (E; �) , incomplete tastes m t (p; �) , and overall incompleteness

of preferences M(x E y ; �) requires a formal model depicting the process of choosing among non-comparable alternatives. 

The elicitation mechanisms to be described and analyzed below presume that choice among non-comparable alternatives is 

random. More specifically, imagine a decision maker facing a choice among non-comparable alternatives and suppose that, 

before choosing, the decision maker receives a signal – a subconscious impulse or some exogenous information – drawn 

at random from a distribution function whose support is [ r , ̄r ] in the case of incomplete beliefs and [ c , ̄c ] in the case of

incomplete tastes or overall incomplete preferences. In either case the merits of the alternatives are reassessed according to 

the value of the signal and the choice is made accordingly. 20 In what follows, we denote the signal’s cumulative distribution

function by η. We begin with a discussion of an elicitation mechanism of m b (E; �) invoking a scheme due to Karni (2020b) .

We then extend this scheme to construct mechanisms for the elicitation of M(x E y ; �) and m t (p; �) . 

4.1. Elicitation under Knightian uncertainty 

There is a substantial body of literature dealing with incentive compatible mechanisms designed to elicit experts’ subjec- 

tive probabilities of uncertain events. Beginning with the work of Brier (1950) and Good (1952) it was followed by Savage

(1971), Kadane and Winkler (1988) , Grether (1981) , Karni (2009) and others. 21 Underlying all these mechanisms is the pre-

sumption that the experts’ beliefs are depicted by a unique probability measure. Recently, however, incentive compatible 

mechanisms designed to elicit sets of priors or posterior probabilities have been proposed. Karni (2020b) proposed a mod- 

ified proper scoring rule for the elicitation of the range, R (E) , of the probabilities of an event E. This mechanism allows a

direct elicitation of the range of the beliefs of any preference relation that admits MPEMU representation. 

To see how this mechanism works, fix an event E and let [ π(E) , π̄ (E)] denote the range of the subjective probabilities 

representing a subject’s beliefs about the likelihood of E. Consider the following mechanism denoted M b : At time t = 0 the

subject is instructed to report two numbers, r , ̄r ∈ [0 , 1] with r ≤ r̄ . The subject is also given the following instructions about

the payment scheme of the mechanism: 

• In the interim period, t = 1 , a random number, r, will be drawn from a uniform distribution on [0 , 1] . 

• The subject is awarded the bet x E y if r ≤ r and the lottery � (r; x, y ) if r ≥ r̄ , where x > y. 

• If r ∈ ( r , ̄r ) , then the subject is allowed to choose between the bet (x − θ ) E (y − θ ) and the lottery � (r; x − θ, y − θ ) , where

θ > 0 . 

In the last period, t = 2 , after it is verified whether or not the event E occurred and the outcome of the lottery is

revealed, all payments are made. 

Karni (2020b) proves an elicitation theorem that implies the following result: 

Theorem 3. Given the mechanism M b , there is ε > 0 such that, for all θ ∈ [0 , ε) , the subject’s unique dominant strategy is to

report r (E) = π(E) and r̄ (E) = π̄ ( E ) . 

Theorem 3 implies that the mechanism M b elicits the measure, m b (E; �) , of incompleteness of the subject’s beliefs.

Moreover, the elicitation procedure does not depend on the values of x and y or the decision maker’s utility function. 22 

A natural question is how robust the proposed elicitation mechanism is to other manifestations of incompleteness, e.g., 

to how the incomplete preferences are assumed completed in choices. Consider, for instance, the completion implied by the 

maxmin expected utility of Gilboa and Schmeidler (1989) . A bet x E y is valued by U(x E y ) = πu (x ) + (1 − π) u (y ) , where π
is the largest lower bound of the set of probabilities of the event E. Under the mechanism M b , procrastination is costly,

and the subjects can assure themselves a payoff of U(x E y ) by choosing r̄ = r = π , This is indeed the subject’s dominant

strategy in the game induced by the mechanism. Similar considerations apply to incompleteness that is due to tastes. Thus, 

no multi-prior model of behavior that also includes a completion will result in postponement of the decision. 

Consider next the case in which the bet x E y constitutes the status quo and as such is chosen by default against any

lottery � (r; x, y ) that is non-comparable to the bet. Let ˆ r = inf { r ∈ [0 , 1] | � (r; x, y ) � x E y } . Again, there is a cost of delaying

the decision: instead of getting the default bet x E y , the subjects receive the bet (x − θ ) E (y − θ ) . The subjects can avoid
20 This idea was formalized and the existence of such random selection process was proved in Karni and Safra (2016) . The experiment of Cettolin and 

Riedl (2019) described in footnote 9, provides behavioral evidence for “signal-based” choice in the face of incompleteness. In particular, one interpretation 

of choosing a the mix option is that the subject is choosing to let the decision be determined by a signal produced by the random device used in the 

mixture operation. Danan (2010) models a two-stage decision-making process according to which, in the first stage, any two alternatives are either strictly 

ranked or judged as being equally valuable. If no judgment is rendered comparing their values, the two alternatives are determined to be noncomparable 

and one of them is chosen either by deliberate randomization or selectively. The resulting random choice behavior is based on a signal produced be a 

randomization device. 
21 For a recent review, see Chambers and Lambert (2017) . 
22 Hill et al. (2021) provide a probability matching mechanism for eliciting multiple priors in the context of ambiguity aversion. Their elicitation schemes 

relies on the completeness of the preference relation. It does not include Bewley’s Knightian uncertainty, or Machina and Schmeidler’s probabilistic sophis- 

tication with incomplete preferences. 
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bearing the cost of delaying by choosing numbers r̄ = r = ̂  r ∈ �(R ) , thereby making sure that they are awarded the bet

whenever it is not inferior to the lottery with winning probability ˆ r . 

In conclusion, the proposed mechanism is robust to several different com pletions of the incomplete preferences. Choice 

of lotteries that may result in delayed choices will not be observed when the incomplete preferences are completed by 

signal-based random choice or maxmin expected utility, or when choice of the status quo by default governs the subject’s 

choice behavior. 

4.2. Elicitation of the measure of overall incompleteness 

Fix a bet x E y on E, and recall that M(x E y ; �) = c̄ (x E y ; �) − c (x E y ;�) . Consider the following mechanism denoted M o :

At time t = 0 , the subject is asked to report two numbers, z , ̄z ∈ [ x , ̄x ] ⊃ [ x, y ] such that z ≤ z̄ . The subject is also given the

following instructions about the payment scheme of the mechanism: 

• In the interim period, t = 1 , a random number, z, will be drawn from a uniform distribution on [ x , ̄x ] . 

• The subject is awarded the bet x E y if z ≤ z and the outcome z if z ≥ z̄ . 

• If z ∈ ( z , ̄z ) , then the subject is allowed to choose between the bet (x − θ ) E (y − θ ) and the outcome z − θ, where θ > 0 . 

In the last period, t = 2 , after it is verified whether or not the event E obtained, all payments are made. 

Theorem 4. Given M o , there is ε > 0 such that, for all θ ∈ [0 , ε) , the subject’s unique dominant strategy is to report z = c (x E y ; �)

and z̄ = c̄ (x E y ; �) . 

4.3. Elicitation of the measure of incomplete risk attitudes 

Given � on �R and p = (x 1 , p 1 ; . . . , x n , p n ) ∈ �R , recall that m t (p, �) = c̄ �(p) − c �(p) . Consider the following mechanism

denoted M t : At time t = 0 , the subject is asked to report two numbers, z , ̄z ∈ [ x , ̄x ] ⊃ { x 1 , . . . x n } such that z ≤ z̄ . The subject

is also given the following instructions about the payment scheme of the mechanism: 

• In the interim period, t = 1 , a random number, z, will be drawn from a uniform distribution on [ x , ̄x ] . 

• The subject is awarded the lottery p if z ≤ z and the outcome z if z ≥ z̄ . 

• If z < z̄ and z ∈ ( z , ̄z ) , then the subject is allowed to choose between the lottery p ′ = (x 1 − θ, p 1 ; . . . , x n − θ, p n ) and the

outcome z − θ , where min { x 1 , . . . x n } > θ > 0 . 

In the last period, the outcome of the lottery is revealed, and all payments are made. 

Theorem 5. Given M t , there is ε > 0 such that, for all θ ∈ [0 , ε) , the subject’s unique dominant strategy is to report z = c (p)

and z̄ = c̄ ( p ) . 

The proof is by the same argument as the proof of the preceding theorem. 23 

5. Concluding remarks 

Whether it is belief, taste, or overall incompleteness, our characterizations of the relation “more incomplete than” are 

preference-based. Indecision due to tastes is a reflection of incompleteness of risk attitudes. To grasp this, consider two 

preference relations, �i , i = 1 , 2 , displaying incomplete risk attitudes. Let w denote the level of wealth, and denote the sets of

utility functions that figure in the representations of the two preference relations by U 1 = { w, −e −γ1 w } and U 2 = { w, −e −γ2 w } ,
where 0 < γ2 < γ1 . Note that each of the two representations involves exactly two utility functions, one displaying risk

neutrality and the other risk aversion, and that the two relations are distinguished by the most risk averse of their risk

attitudes. 24 Since γ1 > γ2 , the preference relation �1 displays greater taste incompleteness than �2 . Formally, p �2 δc if 

and only if 
∑ 

w ∈ suppp p(w ) w ≥ c and 

∑ 

w ∈ suppp p(w )(−e −γ2 w ) ≤ −e −γ2 c . These inequalities imply that 
∑ 

w ∈ suppp p(w ) w ≥ c and∑ 

w ∈ suppp p(w )(−e −γ1 w ) ≤ −e −γ1 c , which is equivalent to p �1 δc . Hence, p �2 δc implies that p �1 δc . In other words, a lottery

p that is noncomparable to the certain amount c according to �2 is also noncomparable according to �1 , but not vice versa.

The degree of incompleteness is a property of the preference relation. Hence, it is the range of noncomparable risk attitudes

and not the number of functions in the set that represents them that is the measure of taste incompleteness. Recall that a

representation with the set of utility functions in U 1 characterizes the same preferences and incompleteness of risk attitudes 

as a representation with a set of utility functions given by the convex hull of U 1 . 
Invoking our measures of incompleteness, the simple portfolio choice problem in Section 3.2 illustrates the usefulness 

of the measures in deriving comparative statics implications. The behavioral implications of the greater quantitative incom- 

pleteness measures in Section 3.3 are somewhat weaker. For instance, in the case of portfolio selection, under Knightian 
23 Danan and Ziegelmeyer (2006) conducted an experiment to test whether the subjects’ preferences under risk display incompleteness. In their experi- 

mental design, subjects are allowed to choose between a lottery, a sure monetary payoff, and the flexibility to make their choice at a later date, in which 

case they pay a small penalty. The majority of the subjects chose the third option, thereby exhibiting incompleteness. 
24 Here, we depart briefly from the assumption that U is a convex set, with the purpose of illustrating a point related to that. 
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uncertainty, the level of inertia and unpredictability displayed by �1 exceeds that displayed by �2 but not necessarily in 

response to the same price variations or over the same price range, respectively. Similar observations apply to risk-attitude 

and overall incompleteness. Greater incompleteness according to our quantitative measures imply higher levels of inertia 

and unpredictability, but not necessarily over the same price range. One advantage of the quantitative measures of compar- 

ative incompleteness is that, for a given event, bet, or lottery, the quantitative “more incomplete than” relation is itself a 

complete relation, as opposed to the corresponding set inclusion relation, which is incomplete. 

Let ϒ1 and ϒ2 be two sets of priors representing the incompleteness of preference relations �1 and �2 , respectively. 

It is worth emphasizing that our definition of the degree of belief incompleteness does not imply that if �1 and �2 dis-

play equal degrees of belief incompleteness then ϒ1 = ϒ2 . To see this, consider the following example of Amarante and

Maccheroni (2006) . Let ϒ1 = co{ ( 1 
2 , 

1 
2 , 0 

)
, 
(

4 
6 , 

1 
6 , 

1 
6 

)} and ϒ2 = { ( 3+ t 
6 , 3 −t−s 

6 , s 
6 

) | s, t ∈ [ 0 , 1 ] } . Then, it is easy to verify that

π̄1 (E) − π1 (E) = π̄2 (E) − π2 (E) for all E ∈ 2 S . Thus, according to our definition, the two preference relations display the

same degree of belief incompleteness and yet ϒ1 
 = ϒ2 . 

In recent work, Chambers et al. (2021) also consider incomplete preferences over uncertain outcomes. They define func- 

tions of two acts that measure the decision-maker’s willingness to pay for, respectively accept, a switch between the two 

acts. For incomplete preferences, the willingness to pay in one direction is potentially different from the willingness to 

accept in the other direction. The functions characterize preferences and can be used to determine whether two acts are 

non-comparable, and whether preferences are complete. 

An important question that is beyond the scope of this work is how information affects the level of incompleteness. Here,

the preference relations being compared are the prior and posterior preference relations. Addressing this issue requires a 

procedure for updating the set of priors. The example below illustrates that, updating all the priors in the set using Bayes’

rule, becoming better informed about an event E makes the beliefs at E more complete but may or may not make the

beliefs at some other event become more complete. 

Example 

An urn contains balls that come in three colors, blue, green, and yellow denoted B, G , and Y , respectively. Consider a de-

cision maker who displays Knightian uncertainty and suppose that she holds the following set of beliefs: { (πB , πG , πY ) | πB ∈
[ 1 3 , 

2 
3 ] , πG ∈ [0 , 1 3 ] , πY ∈ [ 1 3 , 

2 
3 ] , πB + πG + πY = 1 } . The measure of belief incompleteness of the decision maker’s prior prefer-

ences at event B is m b (B, �) = 

1 
3 . Assume that when she receives new information, the decision maker updates her beliefs

prior by prior, using Bayes’ rule. 

Suppose now that the decision maker is informed that the urn contains no yellow balls. Applying Bayesian updating, 

the posterior range of probabilities of the event B is [ 1 2 , 1] . Hence, m b (B, �′ ) = 

1 
2 , where �′ denotes the updated prefer-

ences given the information ¬ Y . If, instead the decision maker learns that the urn contains no green balls, the range of her

posterior probabilities that a ball is blue is [ 1 3 , 
2 
3 ] , so m b (B, �′′ ) = 

1 
3 , where �′′ denotes the updated preferences given the

information ¬ G . Hence, according to our quantitative measure of belief incompleteness, information that the ball is not yel-

low makes the decision maker’s beliefs more incomplete at B , while information that the ball is not green does not change

her belief incompleteness at B . In either case, however, the information about an event makes the beliefs about that event

more complete. 

As the example above and the asset market application in Section 3.2 show, both the set inclusion and quantitative mea-

sures of comparative incompleteness have their merits. Also, when preferences have MPEMU representations, our measures 

of incompleteness have intuitive interpretations in terms of the decision makers’ beliefs and risk attitudes. To the extent 

to which measurement paves the road to knowledge as expressed by Lord Kelvin, “When you can measure what you are

speaking about, and express it in numbers, you know something about it, when you cannot express it in numbers, your

knowledge is of a meager and unsatisfactory kind,” this paper, by suggesting measures of incompleteness, is a contribution 

towards the analysis of a variety of questions that have to do with the behavioral implications of incomplete preferences in

a manner analogous to the use of measures of risk aversion. 
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Appendix A. Appendix 

A1. Proof of Theorem 1 

Applied to bets and the constant lottery acts, the representation in (9) implies that, 

x E y � � (r; x, y ) 
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if and only if 

U(δx ) π(E) + U(δy )(1 − π(E)) > U(δx ) r + U(δy )(1 − r) , ∀ ( π, U ) ∈ � × U . 

By definition of the set R �(E) in (2) , it is the case that for any r ∈ R �(E) , 

∃ ( ̃  π, U ) ∈ � × U such that ( ̃  π(E) − r ) [ U(δx ) − U(δy ) ] ≤ 0 , (A.1) 

and 

∃ 

(
ˆ π, U 

)
∈ � × U such that 

(
ˆ π(E) − r 

)
[ U(δx ) − U(δy ) ] ≥ 0 . (A.2) 

But x > y . Hence, monotonicity with respect to first-order stochastic dominance implies that U(δx ) − U(δy ) > 0 . Thus, the

expression in (A.1) is equivalent to 

∃ ̃  π ∈ � such that ˜ π(E) ≤ r, (A.3) 

while the expression in (A.4) is equivalent to 

∃ ̂  π ∈ � such that ˆ π(E) ≥ r. (A.4) 

Since (A.3) holds for all r ∈ R �(E) , π(E) ≤ r �(E) . Suppose π(E) < r �(E) . Then ( π(E) − r �(E) ) [ U( δx ) − U(δy ) ] < 0 , for all

 ∈ U . This contradicts that x E y � � (r; x, y ) for r < r �(E) . It follows that π(E) = r �(E) . A similar argument shows that π̄ (E) =
r̄ �(E) . Therefore, 

[ π(E) , π̄ (E)] = [ r �, ̄r �] . (A.5) 

It follows that m b (E; �) = π̄ (E) − π(E) . Since x , y , and U do not figure in this expression, m b (E; �) is independent of x , y ,

and U . 

A2. Proof of Proposition 1 

The proof follows the idea of Pratt (1964) . Let ˜ U be the utility function in U associated with the smallest risk premium

ξ�(� (r; x, y )) ≡ ξ�
r;x,y 

and let ˜ u be the corresponding Bernoulli utility function. For ease of notation, we suppress the de- 

pendency of μr (x, y ) on x and y in the intermediate steps below and simply write μr . By definition of the risk premium,

˜ U (δμr −ξ�
r;x,y 

) = 

˜ U (δc̄ �(� (r;x,y )) ) = 

˜ U (� (r; x, y )) . 

Written in terms of the Bernoulli utility function ˜ u , we have that 

˜ u (μr − ξ�
r;x,y 

) = E � (r;x,y )) [ ̃  u (z)] , (A.6) 

where E � (r;x,y )) denotes the expectation w.r.t. the distribution � (r; x, y )) . Expanding the left-hand-side of (A.6) around μr 

gives 

˜ u 

(
μr − ξ�

r;x,y 

)
= 

˜ u (μr ) − ˜ u 

′ (μr ) ξ
�
r;x,y 

+ O (( ξ�
r;x,y 

) 2 ) (A.7) 

while expanding the right-hand-side of (A.6) around μr gives 

E � (r;x,y )) [ ̃  u (z)] = E � (r;x,y )) 

[ 
˜ u (μr ) + 

˜ u 

′ (μr )(z − μr ) + 

1 

2 

˜ u 

′′ (μr )(z − μr ) 
2 
] 

+ o(σ 2 
r (x, y )) (A.8) 

By (A.6) , the right-hand-sides of (A.7) and (A.8) are equal, which results in 

ξ�
(� (r; x, y )) = −1 

2 

˜ u 

′′ (μr (x, y )) 

˜ u 

′ (μr (x, y )) 
σ 2 

r (x, y ) + o(σ 2 
r (x, y )) (A.9) 

Now, let ˆ U be the utility function in U associated with the largest risk premium ξ̄�(� (r; x, y )) and let ˆ u be the corre-

sponding Bernoulli utility function. By steps similar to those for ξ�(� (r; x, y )) , we obtain 

ξ̄�(� (r; x, y )) = −1 

2 

ˆ u 

′′ (μr (x, y )) 

ˆ u 

′ (μr (x, y )) 
σ 2 

r (x, y ) + o(σ 2 
r (x, y )) (A.10) 

Note that we must have that 

ˆ U = arg max 
U∈U 

−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 
and 

˜ U = arg min 

U∈U 
−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 
. 

Hence, using the expressions in (A.9) and (A.10) the definition of m t (p; �) gives that for small x − y , the measure of taste

incompleteness of � at � (r; x, y ) satisfies 

m t (� (r; x, y ) ;�) = 

[
sup 

U∈U 

{
−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 

}
− inf 

U∈U 

{
−u 

′′ (μr (x, y )) 

u 

′ (μr (x, y )) 

}]
σ 2 

r (x, y ) 

2 
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+ o(σ 2 
r (x, y )) . 

Claim: max 

(
− u ′′ (μr (x,y )) 

u ′ (μr (x,y )) 
∈ R | U ∈ U 

)
and min 

(
− u ′′ (μr (x,y )) 

u ′ (μr (x,y )) 
∈ R | U ∈ U 

)
exist. 

Proof of claim: Fix μr (x, y ) = w , then for any U ∈ U , 

−u 

′′ (w ) /u 

′ (w ) = 2 ξ u (l(r; x, y )) /σ 2 
r (x, y ) + o(σ 2 

r (x, y )) . 

By monotonicity of preferences, ξ u (l(r; x, y )) = w − c r (x, y ) ∈ [ y − x, x − y ] , for all U ∈ U . Thus, {−u ′′ (w ) /u ′ (w ) | U ∈ U} is a

bounded nonempty subset of R . Hence, sup {−u ′′ (w ) /u ′ (w ) | U ∈ U} and inf {−u ′′ (w ) /u ′ (w ) | U ∈ U} exist. 

To show that the sup is attained, we begin by showing that p � q if and only if there is U ∈ U such that u (p − q ) = 0 .

Suppose that p � q then, by the representation there are Ū and U in U such that Ū ( p ) ≥ Ū ( q ) and U ( p ) ≤ U ( q ) . If any of

these weak inequalities is an equality then we are done. Assume therefore that Ū ( p ) > Ū ( q ) and U ( p ) < U ( q ) then there 

exists λ ∈ ( 0 , 1 ) such that 

U λ(p) := λŪ (p) + (1 − λ) U (p) = λŪ ( q ) + (1 − λ) U (q ) := U λ(q ) 

Hence, u λ(p − q ) = 0 and, by the convexity of U , U λ ∈ U . 
To show the other direction, suppose that there is a function 

ˆ U ∈ U such that ˆ u (p − q ) = 0 . Then, it follows directly that

neither U(p) > U(q ) nor U(p) < U(q ) , for all U ∈ U . Hence, by the representation ¬ (p � q ) and ¬ (q � p) and, by definition,

p � q. 

Next we show that the set U is closed. Let U be a limit point of U . Fix p ∈ �R 

m . Then, by the above argument, for

all q ∈ �R 

m , q � p implies that there exists ˆ U ∈ U such that for the corresponding Bernoulli utility function, ˆ u (p − q ) = 0 .

Consider a sequence (q n ) ⊂ �R 

m such that q n � p for all n , that converges to q, where q 
 = p. By the above argument, there

exists a sequence of utility functions (U 

n ) ⊂ U such that u n (p − q n ) = 0 . Since weak inequalities are preserved in the limit,

lim n →∞ 

u n (p − q n ) = 0 . Also, whenever (U 

n ) is a convergent sequence, lim n →∞ 

u n (p − q n ) = u (p − q ) = 0 . Hence, any limit

point U ∈ U . Since the sequence was chosen arbitrarily, U includes all its limit points and therefore it is closed. Hence,

{−u ′′ ( w ) /u ′ ( w ) | U ∈ U} is closed. Thus, the sup {−u ′′ ( w ) /u ′ ( w ) | U ∈ U} = max {−u ′′ ( w ) /u ′ ( w ) | U ∈ U} . 
By the same argument the min also exists. 

A3. Proof of Proposition 2 

By definition, c̄ �(� (r; x, y ) ≥ c �(� (r; x, y ))) for any r ∈ [0 , 1] , and r̄ �(E) ≥ r �(E) for any E. By first order stochastic domi-

nance, c̄ �(� ( ̄r �(E) ; x, y )) ≥ c̄ �(� ( r �(E) ; x, y )) and c �(� ( ̄r �(E) ; x, y )) ≥ c �(� ( r �(E) ; x, y )) . Therefore, we must have that 

c̄ (x E y ;�) = c̄ �(� ( ̄r �(E) ; x, y )) 

and 

c (x E y ;�) = c �(� ( r �(E) ; x, y )) . 

To ease notation in the derivations below, let μ = r �(E) x + (1 − r �(E)) y , that is, the expected value of the bet according

to the least favorable distribution in R �(E) and let μ̄ = r̄ �(E) x + (1 − r̄ �(E)) y , that is, the expected value of the bet according

to the most favorable distribution in R �(E) . 

Let ˜ U be the utility function in U associated with the smallest risk premium at � ( ̄r �(E) ; x, y )) and let ˜ u be the corre-

sponding Bernoulli utility function. By definition of the risk premium, 

˜ U (δμ̄−ξ�
r̄ � (E) ;x,y 

) = 

˜ U (δc̄ �(� ( ̄r �(E) ;x,y )) ) = 

˜ U (� ( ̄r �(E) ; x, y )) . 

Similar to expression (A.6) in the proof of Proposition1, we can rewrite the expression in terms of ˜ u . Expanding around μ̄
and following the steps as in (A.7) through (A.9) we obtain that 

ξ�
(� ( ̄r �(E) ; x, y )) = −1 

2 

˜ u 

′′ ( ̄μ) 

˜ u 

′ ( ̄μ) 
σ 2 

r̄ �(E) (x, y ) + o(σ 2 
r̄ �(E) (x, y )) (A.11) 

Now, let ˆ U be the utility function in U associated with the largest risk premium at � ( r �(E) ; x, y )) and let ˆ u be the

corresponding Bernoulli utility function. By expanding around μ and equating terms as in the steps above, we obtain 

ξ̄�(� ( r �(E) ; x, y )) = −1 

2 

ˆ u 

′′ ( μ) 

ˆ u 

′ ( μ) 
σ 2 

r �(E) (x, y ) + o(σ 2 
r �(E) (x, y )) . (A.12) 

Note that we must have that 

ˆ U = arg max 
U∈U 

−u 

′′ ( μ) 

u 

′ ( μ) 
and ˜ U = arg min 

U∈U 
−u 

′′ ( ̄μ) 

u 

′ ( ̄μ) 
. 

By definition, 

M(x E y ;�) = c̄ (x E y ;�) − c (x E y ;�) = μ̄ − μ + ξ̄�(� ( r �(E) ; x, y )) − ξ�
(� ( ̄r �(E) ; x, y )) . 

Note that σ 2 
r (x, y ) = r(1 − r)(x − y ) 2 , so o(σ 2 

r (x, y )) = o((x − y ) 2 ) . 
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By Theorem 1 , π(E) = r �(E) and π̄ (E) = r̄ �(E) . Hence, plugging in expressions (A.11) and (A.12) gives that for small

x − y , the measure of overall incompleteness of � at x E y satisfies 

M(x E y ;�) = ( ̄π(E) − π(E))(x − y ) 

+ 

1 

2 

[
max 
U∈U 

{
−u 

′′ (μπ(E) (x, y )) 

u 

′ (μπ(E) (x, y )) 

}
σ 2 

π(E) (x, y ) − min 

U∈U 

{
−u 

′′ (μπ̄(E) (x, y )) 

u 

′ (μπ̄(E) (x, y )) 

}
σ 2 

π̄ (E) (x, y ) 

]

+ o((x − y ) 2 ) . (A.13) 

A4. Proof of Proposition 3 

Consider a bet x E y . Since �1 displays greater belief incompleteness than �2 , we have that for any E , [ π2 (E ) , π̄2 (E )] ⊆
[ π1 (E) , π̄1 (E)] . Since �1 displays greater taste incompleteness than �2 , we have that for any p, [ c �2 (p) , ̄c �2 (p)] ⊆
[ c �1 (p) , ̄c �1 (p)] . It follows that 

c̄ �1 ( ̄π1 (E)) ≥ c �2 ( π2 (E)) . (A.14) 

As argued in the beginning of the proof of Proposition 2 , it must be that for any �, 

c̄ (x E y ;�) = c̄ �(� ( ̄r �(E) ; x, y )) 

and 

c (x E y ;�) = c �(� ( r �(E) ; x, y )) . 

Thus, O 

�2 (x E y ) ⊆ O 

�1 (x E y ) . 

A5. Proof of Proposition 4 

Suppose that a preference relation �1 displays greater belief and taste incompleteness than preference relation �2 . 

Greater belief incompleteness is equivalent to �2 ⊆ �1 . Therefore, 

π1 ≤ π2 ≤ π̄2 ≤ π̄1 . (A.15) 

For i = 1 , 2 , define ū i and u i , respectively, by 

ū i ≡ arg max 
u ∈U i 

π̄i 

1 − π̄i 

u 

′ ( w̄ 

i 
1 (w 0 , q )) 

u 

′ ( w 

i 
2 
(w 0 , q )) 

(A.16) 

and 

u i ≡ arg min 

u ∈U i 
π i 

1 − π i 

u 

′ ( w 

i 
1 (w 0 , q )) 

u 

′ ( w̄ 

i 
2 
(w 0 , q )) 

. (A.17) 

Note that the utility functions defined in (A.16) and (A.17) are independent of the values of π̄ and π. Normalize ū i , i = 1 , 2 ,

so that ū 1 ( ̄w 1 (w 0 , q )) = ū 2 ( ̄w 1 (w 0 , q )) and ū 1 ( w 2 (w 0 , q )) = ū 2 ( w 2 (w 0 , q )) , which can be done since the utility functions are

unique up to positive affine transformations. 

Greater taste incompleteness implies that C �2 (p) ⊆ C �1 (p) , for all p ∈ �(X ) . Therefore, c �1 (p) ≤ c �2 (p) ≤ c̄ �2 (p) ≤
c̄ �1 (p) , for all p ∈ �(R ) . Thus, by definition, ξ�1 (p) ≤ ξ�2 (p) and ξ̄�2 (p) ≤ ξ̄�1 (p) , for all p ∈ �R . In particu-

lar, c̄ �1 ( � ( π ; w̄ 1 (w 0 , q ) , w 2 (w 0 , q ) ) ) ≥ c̄ �2 ( � ( π ; w̄ 1 (w 0 , q ) , w 2 (w 0 , q ) ) ) , for all π ∈ [0 , 1] . Note that for all π ∈ [0 , 1] , 

c̄ �i ( � ( π ; w̄ 1 (w 0 , q ) , w 2 (w 0 , q ) ) ) is the certainty equivalent associated with the utility function ū i . 

Since the utility functions ū 1 and ū 2 intersect at both w̄ 1 (w 0 , q ) and w 2 (w 0 , q ) , the fact that

 

�2 (� (π ; w̄ 1 (w 0 , q ) , w 2 (w 0 , q )) ⊆ C �1 (� (π ; w̄ 1 (w 0 , q ) , w 2 (w 0 , q )) , implies, by Theorem 1 of Pratt (1964) , that there is a

monotonic increasing and concave function, T̄ such that ū 2 = T̄ ◦ ū 1 . 

Moreover, since c �1 ( � ( π ; w 1 (w 0 , q ) , w̄ 2 (w 0 , q ) ) ) ≤ c �2 ( � ( π ; w 1 (w 0 , q ) , w̄ 2 (w 0 , q ) ) ) , by the same argument there is a 

monotonic increasing and concave function, T , such that u 1 = T ◦ u 2 . 

Note that if w̄ 

i 
1 
(w 0 , q ) ≥ w 

i 
2 
(w 0 , q ) , then ( ̄w 

i 
1 
(w 0 , q ) , w 

i 
2 
(w 0 , q )) is a bet on state 1 and c̄ ( ̄w 

i 
1 
(w 0 , q ) E w 

i 
2 
(w 0 , q ) ; �i ) = c̄ ( ̄πi ; �i 

) , while c ( ̄w 

i 
1 
(w 0 , q ) E w 

i 
2 
(w 0 , q ) ;�i ) = c ( π i ; �i ) . 

By definition of ( ̄w 

i 
1 
(w 0 , q )) , w 

i 
2 
(w 0 , q ))) , the expression in (A.16) equals q for i = 1 , 2 . Using this and that ū 2 = T̄ ◦ ū 1 , we

have 

π̄1 

1 − π̄1 

ū 

′ 
1 ( w̄ 

1 
1 (w 0 , q )) 

ū 

′ 
1 
( w 

1 
2 
(w 0 , q )) 

= 

π̄2 

1 − π̄2 

ū 

′ 
2 ( w̄ 

2 
1 (w 0 , q )) 

ū 

′ 
2 
( w 

2 
2 
(w 0 , q )) 

= 

π̄2 

1 − π̄2 

T̄ ′ ( ̄u 1 ( w̄ 

2 
1 (w 0 , q ))) ̄u 

′ 
1 ( w̄ 

2 
1 (w 0 , q )) 

T̄ ′ ( ̄u 1 ( w 

2 
2 
(w 0 , q ))) ̄u 

′ 
1 
( w 

2 
2 
(w 0 , q )) 

. (A.18) 

By (A.15) , 
π̄2 

1 −π̄2 
≤ π̄1 

1 −π̄1 
. If w̄ 

2 
1 (w 0 , q ) ≥ w 

2 
2 (w 0 , q ) , then the monotonicity of u 1 and the concavity of T̄ imply that

T̄ ′ ( ̄u 1 ( ̄w 

2 
1 (w 0 , q ))) ≤ T ′ ( ̄u 1 ( w 

2 
2 (w 0 , q ))) . Hence, the equality in (A.18) implies that 

ū 

′ 
1 ( w̄ 

1 
1 (w 0 , q )) 

ū 

′ ( w 

1 (w 0 , q )) 
≤ ū 

′ 
1 ( w̄ 

2 
1 (w 0 , q )) 

ū 

′ ( w 

2 (w 0 , q )) 
. 
1 2 1 2 
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That is, the marginal rate of substitution corresponding to ū 1 is larger at ( ̄w 

2 
1 (w 0 , q ) , w 

2 
2 (w 0 , q )) than it is at

( ̄w 

1 
1 (w 0 , q ) , w 

1 
2 (w 0 , q )) . Hence, w̄ 

1 
1 (w 0 , q ) ≥ w̄ 

2 
1 (w 0 , q ) and w 

1 
2 (w 0 , q ) ≤ w 

2 
2 (w 0 , q ) . 

By definition of ( w 

i 
1 
(w 0 , q ) , w̄ 

i 
2 
(w 0 , q )) , the expression in (A.17) equals q for i = 1 , 2 . Using this and that u 1 = T ◦ u 2 , we

have 

π2 

1 − π2 

u 

′ 
2 ( w 

2 
1 (w 0 , q )) 

u 

′ 
2 
( w̄ 

2 
2 
(w 0 , q )) 

= 

π1 

1 − π1 

u 

′ 
1 ( w 

1 
1 (w 0 , q )) 

u 

′ 
1 
( w̄ 

1 
2 
(w 0 , q )) 

= 

π1 

1 − π1 

T ′ ( u 2 ( w 

1 
1 (w 0 , q ))) u 

′ 
2 ( w 

1 
1 (w 0 , q )) 

T ′ ( u 2 ( w̄ 

1 
2 
(w 0 , q ))) u 

′ 
2 
( w̄ 

1 
2 
(w 0 , q )) 

. (A.19) 

By (A.15) , 
π2 

1 −π2 
≥ π1 

1 −π1 
. If w̄ 

1 
2 
(w 0 , q ) ≤ w 

1 
1 
(w 0 , q ) , then the monotonicity of and the concavity of T imply that

T ′ ( u 2 ( w 

1 
1 
(w 0 , q ))) ≤ T ′ ( u 2 ( ̄w 

1 
2 
(w 0 , q ))) . Hence, equality in (A.19) implies that 

u 

′ 
2 ( w 

2 
1 (w 0 , q )) 

u 

′ 
2 
( w̄ 

2 
2 
(w 0 , q )) 

≤ u 

′ 
2 ( w 

1 
1 (w 0 , q )) 

u 

′ 
2 
( w̄ 

1 
2 
(w 0 , q )) 

. 

That is, the marginal rate of substitution corresponding to ū 1 is larger at ( w 

1 
1 
(w 0 , q ) , w̄ 

1 
2 
(w 0 , q )) than at ( w 

2 
1 
(w 0 , q ) , w̄ 

2 
2 
(w 0 , q )) .

It follows that w 

1 
1 
(w 0 , q ) ≤ w 

2 
1 
(w 0 , q ) and w̄ 

1 
2 
(w 0 , q ) ≥ w̄ 

2 
2 
(w 0 , q ) . 

Apply the same logic to the case in which w 

2 
1 (w 0 , q ) ≤ w̄ 

2 
2 (w 0 , q ) and w 

1 
2 (w 0 , q ) ≥ w̄ 

1 
1 (w 0 , q ) , and use that if

w̄ 

i 
1 
(w 0 , q ) ≤ w 

i 
2 
(w 0 , q ) , then ( ̄w 

i 
1 
(w 0 , q ) , w 

i 
2 
(w 0 , q )) is a bet on state 2 so c̄ ( ̄w 

i 
1 
(w 0 , q ) E w 

i 
2 
(w 0 , q ) ;�i ) = c̄ (1 − π i ; �i ) , while

c ( ̄w 

i 
1 
(w 0 , q ) E w 

i 
2 
(w 0 , q ) ;�i ) = c (1 − π̄i ;�i ) . Then we get w 

1 
1 (w 0 , q ) ≥ w 

2 
1 (w 0 , q ) and w̄ 

1 
1 (w 0 , q ) ≥ w̄ 

2 
1 (w 0 , q ) . 

A6. Proof of proposition 5 

Suppose that �1 displays greater incompleteness than �2 . Let ū i and u i be given by (A.16) and (A.17) , respectively, for 

i = 1 , 2 . By greater belief incompleteness, (A.15) holds. 

Assume that w 

∗
1 

> w 

∗
2 
. Greater taste incompleteness implies that C �2 (p) ⊆ C �1 (p) , for all p ∈ �R . Thus, c �1 (p) ≤ c �2 (p) ≤

c̄ �2 (p) ≤ c̄ �1 (p) , for all p ∈ �R . Hence, by definition, ξ�1 (p) ≤ ξ�2 (p) and ξ̄�2 (p) ≤ ξ̄�1 (p) , for all p ∈ �(R ) . Therefore,

by Theorem 1 in Pratt (1964) , there exist monotonic increasing and concave functions T̄ and T such that ū 2 = T̄ ◦ ū 1 and

u 1 = T ◦ u 2 . Therefore, 

π̄2 

1 − π̄2 

ū 

′ 
2 (w 

∗
1 ) 

ū 

′ 
2 
(w 

∗
2 
) 

= 

π̄2 

1 − π̄2 

T̄ ′ ( ̄u 1 (w 

∗
1 ) ̄u 

′ 
1 (w 

∗
1 ) 

T̄ ′ ( ̄u 1 (w 

∗
2 
)) ̄u 

′ 
1 
(w 

∗
2 
) 

≤ π̄1 

1 − π̄1 

ū 

′ 
1 (w 

∗
1 ) 

u 

′ 
1 
(w 

∗
2 
)) 

. (A.20) 

and 

π1 

1 − π1 

u 

′ 
1 (w 

∗
1 ) 

u 

′ 
1 
(w 

∗
2 
) 

= 

π1 

1 − π1 

T ′ ( u 2 (w 

∗
1 )) u 

′ 
2 (w 

∗
1 ) 

T ′ ( u 2 ( w̄ 

∗
2 
)) u 

′ 
2 
( w̄ 

∗
2 
) 

≤ π2 

1 − π2 

u 

′ 
2 (w 

∗
1 ) 

u 

′ 
2 
( w̄ 

∗
2 
) 
, (A.21) 

where concavity of T̄ and T is used to conclude that 
T ′ ( u 2 (w 

∗
1 
)) 

T ′ ( u 2 ( ̄w 

∗
2 
)) 

≤ 1 and 

T̄ ′ ( ̄u 1 (w 

∗
1 
) 

T̄ ′ ( ̄u 1 (w 

∗
2 
)) 

≤ 1 and using the relationships in (A.15) .

It follows from (A.20) and (A.21) that I �1 
(w 

∗
1 
, w 

∗
2 
) ⊇ I �2 

(w 

∗
1 
, w 

∗
2 
) . 

The proof for the case in which w 

∗
1 ≤ w 

∗
2 is by a similar argument, noting that when w 

∗
1 ≤ w 

∗
2 , we are considering a bet

on state 2. 

To show that if I �1 
(w 

∗
1 
, w 

∗
2 
) ⊇ I �2 

(w 

∗
1 
, w 

∗
2 
) for all (w 

∗
1 
, w 

∗
2 
) then �1 displays greater belief incompleteness

than �2 , suffices it to observe that I �i 
(w 0 , w 0 ) = 

[ 
π i 

1 −π i 
, 

π̄i 
1 −π̄i 

] 
for i = 1 , 2 . Thus, if (w 

∗
1 , w 

∗
2 ) = (w 0 , w 0 ) , then

¬ 

([ 
π2 

1 −π2 
, 

π̄2 
1 −π̄2 

] 
⊆

[ 
π1 

1 −π1 
, 

π̄1 
1 −π̄1 

] )
implies ¬ 

(
I �1 

(w 0 , w 0 ) ⊇ I �2 
(w 0 , w 0 ) 

)
. 

A7. Proof of Theorem 2 

Observe that the proof of Proposition 1 does not hinge on the support of the lottery being binary, with the understanding

that for a general p the local requirement is that we let all values in the support be close to the mean. We therefore have

that 

m t (p;�i ) = 

[
max 
U∈U i 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U i 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
σ 2 (p) 

2 

+ o(σ 2 (p)) , (A.22) 

for i = 1 , 2 . Suppose now that m t (p; �1 ) > m t (p; �2 ) . By (A.22) , [
max 
U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
σ 2 (p) 

2 

−
[

max 
U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
σ 2 (p) 

2 

= m t (p;�1 ) − m t (p;�2 ) + o(σ 2 (p)) (A.23) 
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Therefore, for any positive value of m t (p; �1 ) − m t (p; �2 ) , there exists ε > 0 such that for all 0 < σ 2 (p) < ε, o(σ 2 (p)) <

m t (p; �1 ) − m t (p; �2 ) . Then (A.23) implies that [[
max 
U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
−

[
max 
U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]]
σ 2 (p) 

2 

is also positive. Since σ 2 (p) > 0 , it then follows that [
max 
U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 1 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
> 

[
max 
U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}
− min 

U∈U 2 

{
−u 

′′ (μ(p)) 

u 

′ (μ(p)) 

}]
. 

A similar argument can be used to show the other direction as well. 

A8. Proof of Theorem 4 

Given x E y and θ > 0 , suppose that the subject reports z̄ > c̄ (x E y ;�) . If z ≤ c (x E y ; �) or z ≥ z̄ then the subject’s payoffs

are the same regardless of whether he reports z̄ or c̄ (x E y ; �) . If z ∈ ( ̄c (x E y ;�) , ̄z ) , the subject’s payoff is a choice between

the bet (x − θ ) E (y − θ ) and the outcome z − θ ; had he reported c̄ (x E y ; �) instead of z̄ his payoff would have been z. But

z > z − θ implies that δz � δz−θ and, since z > c̄ (x E y ; �) , implies δz � x E y � (x − θ ) E (y − θ ) , the subject is worse off reporting

z̄ instead of c̄ (x E y ; �) . 

Suppose that the subject reports z < c (x E y ; �) . If z ≤ z or z ≥ c (x E y ; �) the subject’s payoffs are the same regardless of

whether he reports z or c (x E y ; �) . If r ∈ ( z , c (x E y ;�)) , the subject’s payoff is a choice between (x − θ ) E (y − θ ) and the

outcome r − θ ; had he reported c (x E y ;�) instead of z his payoff would have been x E y. By stochastic dominance, x E y �
(x − θ ) E (y − θ ) , and r < c (x E y ; �) implies that x E y � δr � δr−θ . Thus the subject is worse off reporting z instead of c (x E y ;�) .

Suppose that the subject reports z̄ ∈ ( c (x E y ; �) , ̄c (x E y ; �)) . If r ∈ [ ̄z , ̄c (x E y ; �)] , the subject’s payoff is r, whereas had he

reported c̄ (x E y ; �) he would have the opportunity to choose between the bet (x − θ ) E (y − θ ) and the outcome r − θ. If the

signal, c, indicates that (x − θ ) E (y − θ ) ≺ δc , where c ≤ r − θ, the subject would choose the outcome r − θ and if the signal

indicates that (x − θ ) E (y − θ ) � δc , c ≥ r − θ , indicating that the value of the bet (x − θ ) E (y − θ ) exceeds r − θ, the subject

would choose the bet. Thus, the subject’s payoff is 

�(θ ) := η(r − θ ) u (r − θ ) + 

c̄ (x E y ;�) ∫ 
r−θ

u (c) dη(c) . 

But 

η(r) u (r) + 

c̄ (x E y ;�) ∫ 
r 

u (c) dη(c) > u (r) . 

Hence, by continuity of �(θ ) , there is ε > 0 such that, for all θ ∈ [0 , ε) , �(θ ) > u (r) . Thus, reporting z̄ < c̄ (x E y ;�) is dom-

inated by reporting truthfully, z̄ = c̄ (x E y ; �) . By similar argument, z ≯ c (x E y ; �) . Hence, the dominant strategy is to report

truthfully, that is, z = c (x E y ; �) . 

References 

Amarante, M., Maccheroni, F., 2006. When an event makes a difference. Theory Decis. 60, 119–126 . 

Attema, A.E., Bleichrodt, H., l’Haridon, O., Lipman, S.A., 2020. A comparison of individual and collective decision making for standard gamble and time
trade-off. Eur. J. Health Econ. 21, 465–473 . 

Aumann, R.J., 1962. Utility theory without the completeness axiom. Econometrica 30, 445–462 . 

Baucells, M., Shapley, L., 2008. Multiperson utility. Games Econ. Behav. 62, 329–347 . 
Bewley, T.F., 2002. Knightian decision theory: Part I. Decis. Econ. Finance 25, 79–110 . 

Borel, E., 1924. A propos d’un traité de probabilités. Revue Philosophique 98, 321–336 . (Translated into English as “Apropos of a Treatise on Probability.”
Reprinted in Studies in Subjective Probability,Henry E. Kyburg Jr. & Howard E. Smokler (eds.) (1964), Wiley, New York.) 

Brier, G.W., 1950. Verification of forecasts expressed in terms of probabilities. Mon. Weather Rev. 78, 1–3 . 
Cettolin, E., Riedl, A., 2019. Revealed preference under uncertainty: incomplete preferences and preference for randomization. J. Econ. Theory 181, 547–585 .

Chambers, C. P., Lambert, N. S., 2017. Dynamic belief elicitation. Unpublished manuscript. 

Chambers, R.G., Melkonyan, T., 2020. Incomplete preferences and equilibrium in contingent markets. Economica 87, 108–131 . 
Chambers, R.G., Melkonyan, T., Quiggin, J., 2021. Incomplete preferences, willingness to pay, and willingness to accept. Econ. Theory . 

Danan, E., 2010. Randomization vs. selection: how to choose in the absence of preference? Manage. Sci. 56, 503–518 . 
Danan, E., Ziegelmeyer, A., 2006. Are Preference Complete? An Experimental Measurement of Indecisiveness Under Risk. Discussion Papers on Strategic 

Interaction 23–2004 . 
Dow, J., Werlang, S.R., 1992. Uncertainty aversion, risk aversion and the optimal choice of portfolio. Econometrica 60, 197–204 . 

Dubra, J., Maccheroni, F., Ok, E.A., 2004. Expected utility theory without the completeness axiom. J. Econ. Theory 115, 118–133 . 

Eliaz, K., Ok, E.A., 2006. Indifference or indecisiveness? Choice theoretic foundations of incomplete preferences. Games Econ. Behav. 56, 61–86 . 
de Finetti, B., 1937. La pervision: ses lois logique, ses sources subjectives. Annals de l’Institut Henri Poincare, 7, 1–68 . 

Galaabaatar, T., Karni, E., 2013. Subjective expected utility theory with incomplete preferences. Econometrica 81, 255–284 . 
Ghirardato, P., Maccheroni, F., Marinacci, M., 2004. Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 . 

Gilboa, I., Schmeidler, D., 1989. Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 . 
Good, I.J., 1952. Rational decisions. J. R. Stat. Soc. Ser. B (Methodological) 14, 107–114 . 
441 

http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0001
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0002
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0003
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0004
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0005
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0006
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0006
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0007
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0008
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0011
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0012
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0013
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0014
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0015
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0016
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0017
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0019
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0020
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0021
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0022
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0023


E. Karni and M.-L. Vierø Journal of Economic Behavior and Organization 205 (2023) 423–442 
Grether, D.M., 1981. Financial Incentive Effects and Individual Decision Making. Cal Tech, Social Science Working Paper 401 . 
Hill, B., Abdellaoui, M., Colo, P., 2021. Eliciting Multiple Prior Beliefs. Working Paper, HAL Id: hal-03503996 . 

Kadane, J.B., Winkler, R.L., 1988. Separating probability elicitation from utility. J. Am. Stat. Ass. 83, 357–363 . 
Karni, E., 2009. A mechanism design for probability elicitation. Econometrica 77, 603–606 . 

Karni, E., 2011. Continuity, completeness, and the definition of weak preferences. Math. Soc. Sci. 62, 123–125 . 
Karni, E., 2020a. Probabilistic sophistication without completeness. J. Math. Econ. 89, 8–13 . 

Karni, E., 2020b. A mechanism for the elicitation of second-order beliefs and subjective information structures. Econ. Theory 69, 217–232 . 

Karni, E., Safra, Z., 2016. A theory of stochastic choice under uncertainty. J. Math. Econ. 63, 164–173 . 
Machina, M., Schmeidler, D., 1995. Bayes without bernoulli: simple conditions for probabilistically sophisticated choice. J. Econ. Theory 67, 106–128 . 

Nau, R., 2006. The shape of incomplete preferences. Ann. Stat. 34, 2430–2448 . 
Ok, E.A., Ortoleva, P., Riella, G., 2013. Incomplete preferences under uncertainty: indecisiveness in beliefs vs. tastes. Econometrica 77, 1791–1808 . 

Pratt, J.W., 1964. Risk aversion in the small and in the large. Econometrica 32, 122–136 . 
Ramsey, F., 1931. Truth and probabilities. Foundations of Mathematics and Other Logical Essays. Harcourt Brace, New York . 

Riella, G., 2015. On the representation of incomplete preferences under uncertainty with indecisiveness in tastes and beliefs. Econ. Theory 58, 571–600 . 
Rigotti, L., Shannon, C., 2005. Uncertainty and risk in financial markets. Econometrica 73, 203–243 . 

Schmeidler, D., 1971. A condition for the completeness of partial preference relations. Econometrica 39, 403–404 . 

Seidenfeld, T., Schervish, M.J., Kadane, J.B., 1995. A representation of partially ordered preferences. Ann. Stat. 23, 2168–2217 . 
Smith, C.A.B., 1961. Consistency in statistical inference and decision. J. R. Stat. Soc. Ser. B (Methodological) 23, 1–37 . 

Walley, P., 1991. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London . 
Yaari, M.E., 1969. Some remarks on measures of risk aversion and on their uses. J. Econ. Theory 1, 315–329 . 
442 

http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0024
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0025
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0026
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0027
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0028
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0029
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0030
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0031
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0033
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0034
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0035
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0036
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0037
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0038
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0039
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0040
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0041
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0042
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0043
http://refhub.elsevier.com/S0167-2681(22)00420-6/sbref0044

	Comparative incompleteness: Measurement, behavioral manifestations and elicitation
	1 Introduction
	2 Measuring incompleteness
	2.1 Preliminaries
	2.2 Measure of belief incompleteness
	2.3 Measure of taste incompleteness
	2.4 Measure of overall incompleteness
	2.5 Manifestations in the representation of preferences
	2.6 Measures of incompleteness in the small

	3 Comparative incompleteness: Measurement and behavioral manifestations
	3.1 Definitions of comparative incompleteness
	3.2 Portfolio choice
	3.3 Completing the comparative incompleteness relations

	4 Elicitation
	4.1 Elicitation under Knightian uncertainty
	4.2 Elicitation of the measure of overall incompleteness
	4.3 Elicitation of the measure of incomplete risk attitudes

	5 Concluding remarks
	Declaration of Competing Interest
	Appendix A Appendix
	A1 Proof of Theorem 1
	A2 Proof of Proposition 1
	A3 Proof of Proposition 2
	A4 Proof of Proposition 3
	A5 Proof of Proposition 4
	A6 Proof of proposition 5
	A7 Proof of Theorem 2
	A8 Proof of Theorem 4

	References


