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“It is conceivable - and may even in a way be more realistic - to allow for
cases where the individual is neither able to state which of two alterna-
tives he prefers nor that they are equally desirable.” von Neumann and
Morgenstern

“When you can measure what you are speaking about, and express it in
numbers, you know something about it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarcely, in your thoughts
advanced to the stage of science.” Lord Kelvin

“By measurement to knowledge.” — Heike Kamerlingh Onnes

1 Introduction

There are situations in which the inability of decision makers to state a clear pref-
erence is undeniable. For example, having to decide between two treatments of a
decease, one that is expected to expand your life span by 20 years at 70 percent
quality of life and another that is expected to expand your life span by 15 years at
90 percent quality of life, a decision maker might have difficulty expressing a clear
preference between the two treatments.1 Incompleteness of preferences is a prevalent
feature of actual choice behavior and to assume otherwise does not seem justified
on either positive or normative grounds. “Of all the axioms of utility theory, the
completeness axiom is perhaps the most questionable. Like others of the axioms, it
is inaccurate as a description of real life; but unlike them, we find it hard to accept
even from a normative viewpoint.” (Aumann [1962], p. 446).

During the last couple of decades, there has been growing appreciation of the
significance of incomplete preferences and recognition of the potential behavioral im-
plications thereof. As a result, there has been an increasing interest in the modeling,
analysis and economic applications of incomplete preferences.2 However, to the best
of our knowledge, measures that would allow comparisons of the incompleteness of
distinct preference relations have not yet been provided. In view of the role of mea-

1See Attema, Bleichrodt, l’Haridon, and Lipman (2020) for an experimental investigation.
2The study of the representation of incomplete preferences under risk and under uncertainty was

pioneerd by Aumann (1962) and Bewley (2002). More recently, the issue has been addressed in the
works of Dubra, Maccheroni and Ok (2004), Baucells and Shapley (2006), Nau (2006), Seidenfeld,
Schervish and Kadane (1995), Galaabaatar and Karni (2013), Ortoleva, Ok and Riella (2013),
Karni (2020a). For an analysis of the implications of incomplete beliefs for equilibrium in financial
markets see Rigotti and Shanon (2005).
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surement in scientific inquiry, the lack of measures of incompleteness is a significant
lacuna in decision theory.

In this paper we propose measures of incompleteness of preferences under risk
and under uncertainty. These include measures of incompleteness of beliefs, incom-
pleteness of risk attitudes, and overall incompleteness of preference relations under
uncertainty. When preferences have multi-prior subjective expected multi-utility
representations, we show how these measures of incompleteness capture the sets of
subjective probabilities and utilities that constitute the representations of decision
makers’ preferences. The local properties, or “incompleteness in the small,” are
investigated as well.

We proceed to introduce measures of comparative incompleteness. We define
what it means for one preference relation to be more incomplete than another, both in
terms of beliefs, risk attitudes, and overall. We also show how greater incompleteness
manifests itself in the representation of preferences.

We illustrate the behavioral implications of greater incompleteness in the context
of a simple portfolio choice model. The behavioral manifestations of incompleteness
include the range of unpredictability of the decision maker’s portfolio position and
the level of inertia exhibited in response to changes in security prices. We show that
greater incompleteness according to our measures corresponds to both greater inertia
and greater unpredictability.

Finally, we introduce incentive compatible mechanisms – modified scoring rules
– by which the proposed measures of incompleteness may be elicited.

A natural and intuitive idea is to regard one preference relation as displaying
greater incompleteness than another if all alternatives that are non-comparable ac-
cording to the latter are non-comparable according to the former, but not necessarily
vice versa. Our measures are consistent with this direct ranking of incompleteness.
However, this direct ranking does not fully capture the essence of comparative in-
completeness. To illustrate, consider a situation where one preference relation is
complete, while another relation is incomplete. Clearly, the complete relation will be
able to compare any two alternatives, and we can comfortably state that the complete
relation is less incomplete, even when the two decision makers are not necessarily
comparing the same alternatives. The only alternatives among which the complete
preferences may be indecisive (alternatives that are non-comparable) belong to the
same indifference class. There is no reason why the same alternatives should be
noncomparable according to the less complete preference relation.

The paper is structured as follows: Section 2 introduces our measures of incom-
pleteness, connects them to properties of multi-prior subjective expected multi-utility
representations, and investigates local behavior of the measures. Section 3 defines
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comparative incompleteness, shows how it manifests itself in the representation of
preferences, and illustrates its behavioral implications in the context of a simple
portfolio choice problem. Section 4 introduces incentive compatible mechanisms by
which the measures of incompleteness may be elicited. Concluding remarks apper in
Section 5 . The proofs are collected in the Appendix.

2 Measuring Incompleteness

2.1 Preliminaries

Let S be a finite set of states and denote by ∆X the set of simple probability
distributions, dubbed lotteries, on a set of outcomes, X.3 Although it is not always
necessary, to simplify the exposition we assume that X is the set of reals representing
monetary payoffs. Subsets of S are events and S is the universal event. Maps from S
to ∆X are acts . Constant acts are identified with corresponding elements of ∆X. We
denote by F the set of all acts. Denote by δx ∈ ∆X the constant act whose payoff is
the outcome x in every state. Henceforth, we identify x ∈ X with the constant act
δx . Hence, X ⊂ ∆X. A bet on an event E is the act xEy ∈ F such that (xEy)(s) =
x for all s ∈ E, and (xEy)(s) = y otherwise, where x > y. A lottery `(r;x, y) ∈ ∆X,
is a constant act that pays x with probability r and y with probability (1− r).

A strict preference relation is an asymmetric, irreflexive and transitive binary
relation � on F . We assume throughout that the strict preference relation is neither
negatively transitive nor is it empty. Define the induced incomparability relation �
on F as follows: For all f, g ∈ F,

f � g if ¬(f � g) and ¬(g � f). (1)

Then, � is symmetric, reflexive and intransitive.4

The strict preference relation is continuous if the upper and lower contour sets,
{f ∈ F | f � g} and {f ∈ F | g � f}, are open (in the topology of Rn) for all
g ∈ F. Note that if � is continuous then, for all g ∈ F, the non-comparable subsets,
{f ∈ F | f � g} are closed. We assume throughout that the strict preference
relation is continuous. We also assume that it is monotonic with respect to first-order
stochastic dominance: For all p, q ∈ ∆(X), if p first-order stochastically dominates
q, then p � q.5

3A simple probability distribution is a probability distribution with finite support.
4The intransitivity of � of F is an implication of � not being negatively transitive.
5The lottery p first-order stochastically dominates the lottery q if

∑
{z|z�x} p(z) ≥

∑
{z|z�x} q(z)

for all x ∈ X with strict inequality for some x ∈ X.
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An event E is null if ¬(xEy � y), for all x, y ∈ X such that x � y. An event E
is nonnull if it is not null. Thus, if there are x, y ∈ X for which xEy � y, then E is
nonnull.

The analysis that follows is based on the axiomatic characterizations of multi-
prior expected multi-utility (MPEMU) representations of incomplete preference re-
lations on the set of Anscombe-Aumann acts of Galaabaatar and Karni (2013). The
incomplete preference relation � on F has a MPEMU product representation if the
following holds: For all f, g ∈ F,

f � g ⇔ Σs∈SU(f(s))π(s) > Σs∈SU(g(s))π(s),∀(π, U) ∈ Π× U , (2)

where Π a unique closed convex set of subjective probability measures on S and U is
a set of real-valued, affine, functions on ∆X. This representation in (2) includes two
special cases: (a) Bewley’s (2020) Knightian uncertainty in which � on the subset
of constant acts (that is, on ∆X) is negatively transitive and, consequently, U is a
singleton set, and (b) the case of complete beliefs in which Π is a singleton set.

Incomplete preferences under uncertainty stem from two sources: incomplete
beliefs and incomplete tastes. The former source expresses the decision makers’ am-
biguous beliefs concerning the likelihoods of events. The latter source expresses the
decision makers’ indecisiveness regarding the appropriate criterion for the evaluation
of risky prospects. When both sources are present, they generally interact. Corre-
spondingly, we develop measures of the incompleteness of beliefs and of tastes as well
as measures of the overall degree of incompleteness.

2.2 Measure of belief incompleteness

Borel (1924), Ramsey (1931) and de Finetti (1937) were the first to propose the
idea that subjective probabilities may be inferred from the odds a decision maker
is just willing to offer when betting on events. To the extent that the subjective
probabilities reflect the decision makers’ beliefs about the likelihood of the events, the
corresponding betting odds measure these beliefs. In the case of incomplete beliefs
a decision maker may entertain a set of possible beliefs about the likelihood of an
event. Building on the aforementioned idea, we define a measure of incompleteness of
a decision maker’s beliefs of an event by the range of the odds she considers possible
when betting on the said event.

For each event, E ∈ 2S such that neither E nor its complement Ec = S\E are
null, and for any x, y ∈ X, define

R�(xEy) = {r ∈ [0, 1] | xEy � `(r;x, y)}. (3)

5



The elements of R�(xEy) are the winning probabilities of lotteries that, according
to �, are not comparable to a bet on the event E with the same stakes.

Since � is monotone with respect to first-order stochastic dominance and contin-
uous,

R�(xEy) = [r�(xEy), r̄�(xEy)],

where r�(xEy) = sup{r | xEy � `(r;x, y)} and r̄�(xEy) = inf{r | `(r;x, y) � xEy}.
That r�(xEy) and r̄�(xEy) exist is an implication of the boundedness (that is, r ∈
[0, 1]) and the fact that the sets are non-empty, (that is, 0 ∈ {r | xEy � `(r;x, y)}
and 1 ∈ {r | `(r;x, y) � xEy}). Hence, R�(xEy) is a compact interval.

Since � is irreflexive, we have that for every null E, R�(xEy) = {0} and for
every E, for which S\E is either null or empty, we have that R�(xEy) = {1}, for all
x, y ∈ X. For null events E, we thus define r�(xEy) = r̄�(xEy) = 0, and while for
events E for which S\E is null or empty, we define r�(xEy) = r̄�(xEy) = 1, for all
x, y ∈ X. With this in mind we make the following definition.

Definition 1 For every E ∈ 2S, and x, y ∈ X, the measure of belief incomplete-
ness of � at xEy is mb(xEy;�) = r̄�(xEy)− r�(xEy).

Definition 1 captures the preference relation’s incompleteness that arises from the
decision maker being unsure of how a subjective bet on event E compares to objective
lotteries. The payoffs of the bet, x and y, constitute a “measuring rod” of the incom-
pleteness of beliefs. If E is null or the empty set then mb(xEy;�) = 0. If � is nega-
tively transitive then mb(xEy;�) = 0 for all E. Clearly, mb(xEy;�) = mb(xECy;�),
for all E ∈ 2S and x, y ∈ X. Definition 1 does not rule out that the measure
mb(xEy;�) depends on the measuring rod being used. However, as we show in
Theorem 1 below, if the decision maker’s preferences admit MPEMU representation
then mb(xEy;�) is independent of the choice of x and y, or the “measuring rod”
being used, and of the decision maker’s risk attitudes.

Given � on F, let Π be the corresponding set of subjective priors that figure
in the representation (2). For each E ∈ 2S, let π̄(E) := maxπ∈Π π(E) and π(E) :=
minπ∈Π π(E). Then π̄(E)−π(E) represents the range of beliefs that, according to �,
the true state is in E.6 We show next that, for MPEMU preferences, the probability
measure of belief-incompleteness in Definition 1 is equal to the length of the interval
of subjective probabilities of E.

6That π̄(E) and π(E) exist is an implication of the compactness of Π(E) and the linearity of
the preference functional.
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Theorem 1 If an incomplete preference relation � on F has MPEMU representa-
tion, then the measure of belief incompleteness at E, mb(xEy;�), is independent of
the outcomes x and y and of the set of utility functions U in the representation.
Furthermore, mb(xEy;�) := mb(E;�) = π̄(E)− π(E).

The proof is in the Appendix. It worth underscoring that this result also holds
if instead of MPEMU preferences the decision maker’s preference relation displays
probabilistic sophistication a la Machina and Schmeidler (1995).

2.3 Measure of taste incompleteness

Consider next the measurement of incompleteness of preference relations under risk,7

by restricting � to ∆X. For every p ∈ ∆X, define

C�(p) = {c ∈ R | p � δc}. (4)

The elements of C�(p) are certain amounts that, according to �, are not comparable
to the lottery p. Then

C�(p) = [c� (p) , c̄� (p)] , (5)

where c̄� (p) = inf{c ∈ R | δc � p} and c� (p) = sup{c ∈ R | p � δc}. That c̄� (p) and
c� (p) exist is an implication of C�(p) being closed (it is the complement of an open
set), the support of p being finite and, hence, bounded, and the fact that � satisfies
first-order stochastic dominance. We use these notations to define a measure of taste
incompleteness (i.e. of the incompleteness of the decision maker’s risk attitudes).

Definition 2 For every lottery p ∈ ∆X, the measure of taste incompleteness of
� at p is mt(p;�) = c̄�(p)− c�(p).

The measure in Definition 2 captures the degree to which a decision maker is
unsure of how a lottery compares to certain amounts. In other words, it captures
the degree to which a decision maker is unable to evaluate the riskiness of p.

Let µ(p) denote the expected value, or mean, of p. Define

ξ̄� (p) := µ(p)− c�(p) (6)

and
ξ�(p) := µ(p)− c̄�(p), (7)

which are, respectively, the highest and lowest risk premiums of the lottery p accord-
ing to �. Then,

mt (p;�) = ξ̄� (p)− ξ� (p) . (8)
7See Dubra, Maccheroni and Ok (2004) and Baucells and Shapley (2006) for an axiomatic

characterization of expected utility representations with incomplete preferences under risk.
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2.4 Measure of overall incompleteness

The overall degree of incompleteness of a preference relation at E amalgamates the
incompleteness of beliefs and of tastes. A decision maker may be unsure of how
a subjective bet on E compares to objective lotteries, and also of how to assess
the risk represented by these lotteries. That is, for a subjective bet on E, there is
a set of non-comparable lotteries, and for each of these non-comparable lotteries,
there is a range of sure payoffs that are non-comparable to the lottery. Because
a bet on E corresponds to a set of non-comparable lotteries the question arises
how to incorporate the values of the certain payoffs into the measure of the overall
incompleteness of the preference relation at E.

To measure a decision maker’s degree of overall incompleteness at E, we invoke
the range of monetary outcomes that are non-comparable to a bet on E. For each
event, E ∈ 2S and x, y ∈ X, define

O�(xEy) = {c ∈ R | xEy � δc}. (9)

The elements of O�(xEy) are certain payoffs that, according to�, are not comparable
to the bet xEy. Then,

O�(xEy) = [c(xEy;�), c̄(xEy;�)],

where c̄(xEy;�) = inf{c ∈ R | δc � xEy} and c�(xEy;�) = sup{c ∈ R | xEy � δc}.
That c̄(xEy;�) and c(xEy;�) exist when neither E nor its complement is null follows
from the fact that, by first-order stochastic dominance {c ∈ R | δc � xEy} is non-
empty and bounded below by y and, similarly, {c ∈ R | xEy � δc} is non-empty and
bounded above by x. If E is the universal event define c̄(xEy;�) = c(xEy;�) = x
and if E is null define c̄(xEy;�) = c(xEy;�) = y. Using these notations we make
the following definition:

Definition 3 For every E ∈ 2S, the measure of overall incompleteness of � at
xEy is M(xEy;�) = c̄(xEy;�)− c(xEy;�).

The measure of overall incompleteness at xEy is illustrated in Figure 1.
If E is either a null event or the universal event then M(xEy;�) = 0 for all x, y.

If � is negatively transitive then, M(xEy;�) = 0 for all E and for all x, y. Unlike
the measure of incomplete beliefs, the measure of the overall incompleteness of a
preference relation at xEy depends on the “measuring rod”, that is, the payoffs x
and y that are used to construct it. This dependence is a consequence of the fact
that the magnitudes of the payoffs determine the riskiness of the bet. Because the
measure of overall incompleteness incorporates the decision maker’s risk attitudes,
it must be sensitive to the risk of the bet.
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Figure 1: Illustration of the Measure of Overall Incompleteness at xEy
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2.5 Measures of incompleteness in the small

Consider next the local version of our measures of incompleteness. This analysis
allows us to express the measures of incompleteness in terms of the properties of
the subjective probabilities and the utility functions that figure in the MPEMU
representation. Fix a probability r and consider a lottery `(r;x, y). Denote its mean
by µr(x, y) and its variance by σ2

r(x, y). Let u denote the Bernoulli utility function
corresponding to U , so that U(p) =

∑
x∈supp(p) p(x)u(x) for all p ∈ ∆(X).

We first consider our measure of taste incompleteness as x− y → 0 while keeping
the mean of the lottery constant. Theorem 2 shows that, locally around µr(x, y),
the measure of taste incompleteness is proportional to the largest difference in the
Arrow-Pratt measure of absolute risk-aversion evaluated at µr(x, y) displayed by the
utility functions that figure in the representation.

Theorem 2 For small x− y, the measure of taste incompleteness of � at `(r;x, y)
satisfies

mt(`(r;x, y);�) =

[
max
U∈U

(
−u

′′(µr(x, y))

u′(µr(x, y))

)
−min

U∈U

(
−u

′′(µr(x, y))

u′(µr(x, y))

)]
σ2
r(x, y)

2

+ o(σ2
r(x, y)).
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Recall that the measure of taste incompleteness captures the degree to which a
decision maker is unable to evaluate the riskiness of lotteries. Theorem 2 shows that
this inability is reflected in the range of risk attitudes the decision maker may have
at the mean of the lottery.

When preferences exhibit both taste and belief incompleteness, the mean of a bet
xEy is not uniquely defined, nor is the Arrow-Pratt coefficient of risk aversion. We
therefore consider what happens as y → x. Theorem 3 describes the local behavior
of the measure of overall incompleteness.

Theorem 3 For small x − y, the measure of overall incompleteness of � at xEy
satisfies

M(xEy;�) = (π̄(E)− π(E))(x− y)

+
1

2

[
max
U∈U

(
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

)
σ2
π(E)(x, y)−min

U∈U

(
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

)
σ2
π̄(E)(x, y)

]
+ o((x− y)2).

The first term in the square brackets is the variance of the bet according to the
DM’s belief assigning lowest probability to E times the largest Arrow-Pratt coefficient
of absolute risk aversion at the mean of the bet according to that belief. The second
term in the square brackets is the variance of the bet according to the belief assigning
highest probability to E times the smallest Arrow-Pratt coefficient of absolute risk
aversion at the mean of the bet according to that belief. Theorem 3 states that,
locally the measure of overall incompleteness can be decomposed into the difference
between these terms and the measure of belief incompleteness weighted by the stakes
of the bet. Formally, by Theorem 1,8 π̄(E)− π(E) = r̄�(E)− r�(E) and, by Pratt
(1964),

ξ̄�(`(r�(E);x, y))− ξ�(`(r̄�(E);x, y))

= max
U∈U

(
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

)
σ2
π(E)(x, y)

2
−min

U∈U

(
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

)
σ2
π̄(E)(x, y)

2
.

Hence, we have that

M(xEy;�) = (r̄�(E)− r�(E))(x− y) + (ξ̄�(`(r�(E);x, y))− ξ�(`(r̄�(E);x, y))).

In the case of complete beliefs, π�(E) = π̄�(E) and the term in the square
brackets in Theorem 3 equals the local measure of taste incompleteness in Theorem

8We have shown that when preferences hace MPEMU representation, mb(xEy,�) is independent
of x, y, therefore we can write r̄�(xEy) = r̄�(E) and r�(xEy) = r�(E).
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2 (times 2). When beliefs are incomplete and π�(E) 6= π̄�(E), the term in the
square brackets can be positive or negative depending on the local curvature of the
utility functions at the highest and lowest mean of the bet. Thus, while M(xEy;�)
measures the combined effect of incomplete beliefs and tastes, even locally and with
the measure of belief incompleteness weighted by the stakes of the bet, it is not
additive in the measures of belief and taste incompleteness. This is because the belief
and taste incompleteness interact. Taste incompleteness is defined at a particular
lottery, and belief incompleteness means that two different lotteries are evaluated.
The exact nature of the interaction is described in Theorem 3.

Theorem 4 shows that the derivative of the measure of overall incompleteness of
� at xEy, evaluated at y = x, equals the measure of belief incompleteness of � at
E. This is intuitive, since when the stakes of the bet are zero, the preference relation
displays risk neutrality and, consequently, the decision maker’s risk attitudes are
unambiguous. Consequently, in the limit the tastes are complete, and the only source
of incompleteness is the belief. Thus, in the limit the model reduces to Knightian
uncertainty.

Theorem 4 The derivative of the measure of overall incompleteness of � at xEy,
evaluated at y = x, equals the measure of belief incompleteness of � at E. That is,

lim
y→x

M(xEy;�)

x− y
= r̄�(E)− r�(E) = mb(E;�).

3 Comparative Incompleteness: Measurement and

Behavioral Manifestations

Corresponding to the measures of incompleteness of the preceding section, we define
binary relations “more incomplete than” on the set of preference relations. There
is a similarity between measuring risk aversion and measuring incompleteness. The
Arrow-Pratt measures of absolute and relative risk aversion are local (at every level
of wealth). Consequently, interpersonal comparisons of risk attitudes are defined
locally and if the local relationship “more risk averse” holds at every level of wealth,
then the comparison is global. Our measures of incompleteness are also defined lo-
cally. In the case of incomplete beliefs the measure is defined locally at events and in
the case of incomplete tastes it is defined locally at lotteries. Interpersonal compar-
isons of the degree of incompleteness are defined locally and if the local relationship
“more incomplete” holds at each event (for beliefs) or lottery (for tastes) then the
comparison is global.
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3.1 Comparative incompleteness: General measures

In this subsection, we introduce measures that can be applied generally in the sense
that the set of incomparable objects for one of the relations need not be a subset
of that for the other relation. Specifically, in Definition 4, we introduce a notion of
comparative belief incompleteness that applies to any two preference relations. The
“greater belief incompleteness at E” relation is itself a complete binary relation on
the set of preference relations on F .

Definition 4 Preference relation �1 displays greater (strictly greater) belief in-
completeness at E than preference relation �2 if mb(E;�1) ≥ (>) mb(E;�2).
It displays greater (strictly greater) belief incompleteness on F if it displays greater
(strictly greater) belief incompleteness at E for all nonnull E ∈ 2S \ S.

To motivate Definition 4, note that the property mb(E;�1) ≥ mb(E;�2) in the
definition is equivalent to the property that for any ε, if `(r + ε;x, y) �1 xEy, for
all r ∈ R�1(E), then `(r + ε;x, y) �2 xEy, for all r ∈ R�2(E). The intuition
behind the property is as follows: For a preference relation �i, i = 1, 2, a bet on
event E is non-comparable to lotteries with odds in R�i(E). However, if the odds
in the lottery are improved sufficiently, the lottery would become so attractive that
a strict preference would emerge in favour of the lottery and the decision maker
would no longer find the bet and the lottery incomparable. Now, consider any of the
lotteries that are incomparable to the bet according to the preference relation �1,
and consider an increase ε in the odds of winning, which is large enough to always
break incomparability for all r1 ∈ R�1(E). If the same increase in odds will also
always break incomparability for a preference relation �2, we conclude that �2 is
less incomplete than �1. In other words, it takes a smaller increase in odds for the
preference relation �2 to be able to compare the lottery and the bet and state a
strict preference between the two objects than it does for the preference relation �1.

Definition 4 applies to situations where the set of incomparable objects for one
decision maker is not necessarily a subset of that for the other decision maker. The
case where one preference relation �i is, in fact, complete, and consequently, the
R�i(E) is a singleton set, is a special case. Also, all preference relations exhibit
complete beliefs at S, the universal event, and at every event E that is null.

Corollary 1 below states that �1 displays greater belief incompleteness at E than
�2 if and only if the length of the interval of priors for �1 is greater than that for
�2.

Corollary 1 If preference relations �1 and �2 on F both admit MPEMU represen-
tations, then �1 displays greater belief incompleteness at E than �2 if and only if
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π̄1(E)− π1(E) ≥ π̄2(E)− π2(E). It displays strictly greater belief incompleteness at
E if and only if the inequality is strict.

The result is an immediate consequence of Definition 4 and Theorem 1.

Consider next the binary relation “greater taste incompleteness at p” on the set
of preference relations on ∆X.

Definition 5 On ∆X preference relation �1 displays greater (strictly greater) taste
incompleteness at p than preference relation �2 if mt(p;�1) ≥ (>) mt(p;�2). It
displays greater (strictly greater) taste incompleteness on ∆X if it displays greater
(strictly greater) taste incompleteness at all nondegenerate p ∈ ∆(X).

Definition 5 can be motivated as follows: If a decision maker is unable to compare
a lottery to a certain monetary payoff, there will in general be increases or decreases
in the certain payoff large enough that the decision maker is able to state a clear
preference between the two. The intuition behind “more incomplete than” in Defini-
tion 5 is as follows: if any change in the certain monetary payoff that is large enough
to break incomparability for preference relation �1 always breaks incomparability
for preference relation �2, then �1 is more incomplete than �2.

Theorem 5 below states that for low-variance lotteries p, �1 displays greater taste
incompleteness at p than �2 if and only if, when evaluated at the mean of p, the
largest difference in the Arrow-Pratt coefficient of risk aversion among the utility
functions representing �1 is greater than among the utility functions representing
�2.

Theorem 5 Suppose preference relations �1 and �2 on ∆X both admit expected
multi-utility representations. For low-variance lotteries p, �1 displays greater taste
incompleteness at p than �2 if and only if

max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
−min
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
≥ max

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
−min
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
.

It displays strictly greater taste incompleteness at p if and only if the inequality is
strict.

Theorem 5 highlights the intuition that greater taste incompleteness is reflected
in a larger range of risk attitudes.

Definition 6 below characterizes the binary relation “greater overall incomplete-
ness than” on the set of all preference relation on F.
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Definition 6 Preference relation �1 displays greater (strictly greater) overall in-
completeness at xEy than preference relation �2 if M(xEy;�1) ≥ (>)M(xEy;�2).
It displays greater (strictly greater) overall incompleteness at E if it displays greater
(strictly greater) overall incompleteness at xEy for all x, y ∈ X such that x > y. It
displays greater (strictly greater) overall incompleteness on F if it displays greater
(strictly greater) incompleteness at E for all nonnull E ∈ 2S \ S.

The motivation of Definition 6 is similar to that of Definition 5: If any change
in the certain monetary payoff that is large enough to break incomparability for
preference relation �1 always breaks incomparability for the preference relation �2,
then �1 is more incomplete than �2.

3.2 Comparative Incompleteness in the Strong Sense

We now turn our attention to comparison of preference relations for which every
lottery that is incomparable to a bet for one of the relations is also incomparable to
the bet for the other relation. This set-inclusion concept of “more incomplete than”
is a partial binary relation on the set of preference relations on F . Therefore, in
contrast to Definitions 4 through 6 it will not be able to rank all preference relations,
even locally. However, if two relations are comparable in this strong sense, it has
strong behavioral implications, as will be apparent in Section 3.3.

Definition 7 below states that one preference relation is “more belief incomplete
in the strong sense” than another at E if every lottery that is non-comparable to a
bet on E according to the latter is non-comparable to the same bet on E according
to the former. Unlike definitions 4-6, according to which greater incompleteness is
defined by the measures, in the definitions below are they are defined directly in
terms of the preference relations.

Definition 7 A preference relation �1 displays greater belief incompleteness
in the strong sense at E than preference relation �2 if xEy �2 `(r;x, y) implies
xEy �1 `(r;x, y), for all bets on E. It displays strictly greater belief-incompleteness
in the strong sense at E if it displays greater belief-incompleteness in the strong sense
and, in addition, for some `(r;x, y), xEy �1 `(r;x, y) and ¬(xEy �2 `(r;x, y)).

Applying the same idea to the preference relations on ∆(X), Definition 8 states
that one preference relation is “more taste incomplete in the strong sense” than
another at p if every certain amount that is non-comparable to p according to the
latter is non-comparable to p according to the former.
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Definition 8 On ∆X, a preference relation �1 displays greater taste incom-
pleteness in the strong sense at p than preference relation �2 if p �2 δc implies
p �1 δc. It displays strictly greater taste incompleteness in the strong sense at p if it
displays greater taste incompleteness in the strong sense and, in addition, for some
δc, p �1 δc and ¬(p �2 δc).

Similarly, one preference relation is “more incomplete overall in the strong sense”
than another at E if every certain amount that is non-comparable to a bet on E
according to the latter is non-comparable to the same bet on E according to the
former.

Definition 9 A preference relation �1 displays greater overall incompleteness
in the strong sense at E than preference relation �2 if xEy �2 δc implies xEy �1

δc for all x, y, such that x > y. It displays strictly greater overall incompleteness in
the strong sense at E if it displays greater overall incompleteness in the strong sense
at E and, in addition, for some δc, x, y such that x > y, xEy �1 δc and ¬(xEy �2 δc).

The following are immediate implications of Definitions 7, 8, and 9, respectively:

1. The preference relation �1 on F displays greater belief-incompleteness in the
strong sense at E than �2 if and only if R�2(E) ⊆ R�1(E).

2. The preference relation �1 displays greater taste incompleteness in the strong
sense at p than �2 if and only if C�2(p) ⊆ C�1(p).

3. The preference relation �1 displays greater overall incompleteness in the strong
sense than �2 at E if and only if O�2 (xEy) ⊆ O�1(xEy) for all x, y, such that
x > y.

As the names suggest, displaying greater incompleteness in the strong sense is
a special case of displaying greater incompleteness: If �1 displays greater belief
incompleteness in the strong sense at E than �2, as in Definition 7, then �1 displays
greater belief incompleteness at E than �2 in the general sense from Definition 4.
If �1 displays greater taste incompleteness in the strong sense at p than �2, as
in Definition 8, then �1 displays greater taste incompleteness at p than �2 in the
general sense from Definition 5. If �1 displays greater overall incompleteness in
the strong sense at E than �2, as in Definition 9, then �1 displays greater overall
incompleteness at E than �2 in the general sense from Definition 6. Furthermore,
we have the following result linking the measure of greater belief incompleteness in
the strong sense and the beliefs in the MPEMU representations:
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Corollary 2 Suppose preference relations �1 and �2 on F both admit MPEMU
representations. The preference relation �1 on F displays greater (strictly greater)
belief incompleteness in the strong sense at E than �2 if and only if [π2(E), π̄2(E)] ⊆
[π1(E), π̄1(E)].

According to Corollary 2, �1 displays greater belief incompleteness in the strong
sense than �2 if and only if the set of prior beliefs for �2 is a subset of the set of
prior beliefs for �1.

In general, one decision maker may display greater belief incompleteness but
smaller taste incompleteness than another or vice versa. This makes the comparison
of the overall incompleteness depend on the relative magnitudes of the incompleteness
of beliefs and tastes (or risk attitudes) of the decision makers being compared. If
one decision maker displays greater incompleteness of both beliefs and tastes in the
strong sense then, not surprisingly, she displays greater overall incompleteness in the
strong sense. Formally, we have the following result:

Theorem 6 If a preference relation �1 displays greater belief and taste incomplete-
ness in the strong sense than preference relation �2 then it displays greater overall
incompleteness in the strong sense.

Incomplete beliefs and tastes have distinct effects on the overall measure of in-
completeness. This can be easily grasped by observing that even if the tastes are
complete and the beliefs of two decision makers are incomplete to the same degree,
unless their Bernoulli utility functions belong to the same equivalence class for risk
attitudes, the overall measure of incompleteness may be different due to possible
distinct risk attitudes. For example, fix a bet xEy on E, and consider preference
relations �i, i = 1, 2 exhibiting Knightian uncertainty. Assume that Π1 = Π2 and
suppose that �1 displays greater absolute risk aversion at µ(π;x, y) and smaller ab-
solute risk aversion at µ(π̄;x, y) than �2 . Then, ξ(l(π̄;x, y);�1) < ξ(l(π̄;x, y);�2)
and ξ(l(π;x, y);�1) > ξ(l(π;x, y);�2). Thus, M(xEy;�1) > M(xEy;�2).

3.3 Portfolio choice

The main behavioral manifestations of incomplete preferences are inertia and un-
predictability. Loosely speaking, inertia means that to take an action, a decision
maker must be persuaded that the action dominates not taking it (i.e. sticking to
the status quo) according to all the possible values he may attribute to the outcomes
of the action and the beliefs he entertains about the likelihoods of these outcomes.
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Unpredictability means that when a decision maker decides that a change is called
for, it is impossible to predict which of a set of feasible actions he will take.

Invoking the definitions of comparative incompleteness in the strong sense, we
study the levels of inertia and unpredictability in the context of a simple portfolio
selection model. More specifically, we show that the strong measures of compara-
tive incompleteness characterize the level of unpredictability of a decision maker’s
portfolio choice behavior (that is, the size of the set of portfolio positions she may
choose) and the level of inertia she displays.

Let S = {1, 2}, then an act is depicted by the point in R2
+ whose coordinates are

the payoffs in the two states. Consider a decision maker whose preference relation
� on R2

+ is incomplete and has a multi-prior expected multi-utility representation.
With slight abuse of notation, let the decision maker’s set of priors be Π = {(π, 1−π) |
π ∈ [π, π̄]}, where [π, π̄] denotes the range of subjective probabilities of state 1, and
denote by U the set of Bernoulli utility functions corresponding to �. We assume
that the decision makers display risk aversion. Formally, assume that the elements
of U are monotonic increasing, concave, real-valued functions on R+.

Let there be two Arrow securities, a1 and a2, with as paying one dollar contingent
on the realization of state s ∈ {1, 2}. Denote by q the relative price of a1 in terms
of a2, (i.e., a2 is the numeraire Arrow security). Suppose that the decision maker’s
initial endowment consists of an equal number, w0, of the two Arrow securities and
denote the corresponding budget set {(w1,w2) ∈ R2 | qw1 + w2 ≤ qw0 + w0} by
B(w0,q).

The decision maker’s problem is to choose a portfolio (w∗1, w
∗
2) ∈ B(w0,q) of Arrow

securities such that, for no other (w1,w2) ∈ B(w0,q),

πu(w1) + (1− π)u(w2) > πu(w∗1) + (1− π)u(w∗2),∀(π, u) ∈ [π, π̄]× U . (10)

That is, there is no feasible portfolio that is strictly preferred to (w∗1, w
∗
2).

To find the set of portfolios that solve the decision maker’s problem, consider the
following: Given the budget set B(w0,q), there corresponds to each (π, u) ∈ Π × U
an optimal portfolio position given by the solution to(

w
(π,u)
1 (w0,q), w

(π,u)
2 (w0,q)

)
:= arg max

(w1,w2)∈B(w0,q)
[πu(w1) + (1− π)u(w2)] .

Denote the set of solutions by

W (w0,q) =
{(
w

(π,u)
1 (w0,q), w

(π,u)
2 (w0,q

)
) | (π, u) ∈ [π, π̄]× U

}
.

The set W (w0,q) captures the unpredictability corresponding to a decision maker
characterized by [π, π̄]× U .
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The necessary and sufficient condition for (w1, w2) ∈ W (w0,q) is:

πu′(w1)

(1− π)u′(w2)
= q

for some (π, u) ∈ [π, π̄] × U . Let (w̄1(w0,q), w2(w0,q)) and (w1(w0,q), w̄2(w0,q)) be
implicitly defined by the equations

π̄

1− π̄
sup
u∈U

u′(w̄1(w0,q))

u′(w2(w0,q))
= q

and
π

1− π
inf
u∈U

u′(w1(w0,q))

u′(w̄2(w0,q))
= q.

Thus, (w̄1(w0,q), w2(w0,q)) is the point on the budget line at which the decision
maker’s largest marginal rate of substitution equals the slope of the budget line.
Likewise, (w1(w0,q), w̄2(w0,q)) is the point on the budget line at which the decision
maker’s smallest marginal rate of substitution equals the slope of the budget line.
Therefore, given B(w0,q), (w̄1(w0,q), w2(w0,q)) and (w1(w0,q), w̄2(w0,q)) are the ex-
treme points of the set of portfolio positions in the set W (w0, q) that may be chosen
by a preference relation � with MPEMU representation [π, π̄]× U .

If π̄/(1− π̄) < q then w1 < w0 < w2, for all (w1, w2) ∈ W (w0, q) (that is, W (w0, q)
is contained in the cone above the certainty line). If π̄/(1− π̄) > q > π/(1− π) then
(w0, w0) ∈ W (w0, q). If π/(1 − π) > q then w1 > w0 > w2, for all (w1, w2) ∈
W (w0, q) (that is, W (w0, q) is contained in the cone below the certainty line). Figure
2 illustrates the unpredictability set for the case in which π̄/(1− π̄) > q > π/(1− π)
so that (w0, w0) ∈ W (w0, q).

Proposition 1 shows that the level of unpredictability is higher the more incom-
plete a preference relation is in the strong sense.

Proposition 1 If preference relation �1 on F displays greater belief and taste in-
completeness in the strong sense than preference relation �2 then W2(w0,q) ⊆ W1(w0,q),
for all (w0,q) ∈ R2

++.

Now consider the effect of a change in relative prices to q̂. Starting from (w∗1, w
∗
2),

the decision maker will change his portfolio position to some other (ŵ∗1, ŵ
∗
2) ∈

B(w∗1, w
∗
2, q̂) if and only if

πu(ŵ∗1) + (1− π)u(ŵ∗2) > πu(w∗1) + (1− π)u(w∗2),∀ (π, u) ∈ [π, π̄]× U .
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Figure 2: Illustration of the Unpredictability Set W (w0, q) when (w0, w0) ∈ W (w0, q)
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Let
ū′(w∗1)

ū′(w∗2)
:= sup

u∈U

{
u′(w∗1)

u′(w∗2)

}
and

u′(w∗1)

u′(w∗2)
:= inf

u∈U

{
u′(w∗1)

u′(w∗2)

}
.

It is easy to verify that if

q̂ ∈
[

π

1− π
u′(w∗1)

u′(w∗2)
,

π̄

1− π̄
ū′(w∗1)

ū′(w∗2)

]
(11)

then the decision maker will hold on to her position (w∗1, w
∗
2). To see this, note that

the left endpoint of the interval in (11) is the slope of the flattest of the decision
maker’s indifference curves through (w∗1, w

∗
2), while the right endpoint of the inter-

val is the slope of the steepest of the decision maker’s indifference curves through
(w∗1, w

∗
2). The decision maker will hold on to his portfolio (w∗1, w

∗
2) as long as the

slope of the budget line, given by q̂, falls within this range.
Define the measure of inertia for � at (w∗1, w

∗
2) by the interval of prices at which

the portfolio position is maintianed. Formally,

I�(w∗1, w
∗
2) =

[
π

1− π
u′(w∗1)

u′(w∗2)
,

π̄

1− π̄
ū′(w∗1)

ū′(w∗2)

]
.
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In particular, if the initial endowment (w0, w0) is the status quo, or default, portfolio
then the measure of inertia at (w0, w0) is:

I�(w0, w0) =

[
π

1− π
,

π̄

1− π̄

]
. (12)

With only two states, if E = {s1}, then EC = {s2}. Thus, if �1 displays greater
incompleteness than �2 at {s1} then it displays greater incompleteness. Therefore, in
this two-state economy the measure of inertia need not be indexed by the conditioning
event.

We now investigate the comparative statics properties of the measure of inertia
I�(w∗1, w

∗
2).

Proposition 2 Let �1 and �2 be preference relations on R2
+. If �1 displays greater

belief and taste incompleteness in the strong sense than �2 then I�1(w∗1, w
∗
2) ⊇

I�2(w∗1, w
∗
2), for all (w∗1, w

∗
2). Moreover, if I�1(w∗1, w

∗
2) ⊇ I�2(w∗1, w

∗
2) for all (w∗1, w

∗
2),

then �1 displays greater belief incompleteness in the strong sense than �2 .

Proposition 2 shows that a preference relation displaying greater belief and taste
incompleteness exhibits a higher level of inertia. Thus, the portfolio position of
a decision maker displaying greater belief and taste incomplete preferences is less
sensitive to price fluctuations. If a preference relation �1 displays either greater
belief incompleteness or greater taste incompleteness than �2, but not both, then
it is possible that �2 displays greater overall incompleteness than �1, and thus it
is possible for �2 to display greater inertia than �1. However, if �1 exhibits a
higher level of inertia than �2 at (w0, w0), then it must be the case that it displays
greater belief incompleteness. An immediate implication of Proposition 2 is that if
the preference relations �1 and �2 display the same level of belief-incompleteness,
then �1 exhibits greater taste-incompleteness than �2 if and only if I�1(w∗1, w

∗
2) ⊇

I�2(w∗1, w
∗
2), for all (w∗1, w

∗
2).

4 Elicitation

The elicitation of the measures of incomplete beliefs mb(E;�), incomplete tastes
mt(p;�), and overall incomplete preferences M(xEy;�) requires a formal model
depicting the process of choosing among non-comparable alternatives. The elicita-
tion mechanisms to be described and analyzed below presume that choice among
non-comparable alternatives is random. More specifically, imagine a decision maker
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facing a choice among non-comparable alternatives and suppose that, before choos-
ing, the decision maker receives a signal – a subconscious impulse or some exogenous
information – drawn at random from a distribution function whose support is [r, r̄]
in the case of incomplete beliefs and [c, c̄] in the case of incomplete tastes or overall
incomplete preferences. In either case the merits of the alternatives are reassessed
according to the value of the signal and the choice is made accordingly.9 In what
follows, we denote the signal’s cumulative distribution function by η. We begin with
a discussion of an elicitation mechanism of mb(E;�) invoking a scheme due to Karni
(2020b). We then extend this scheme to construct mechanisms for the elicitation of
M(xEy;�) and mt(p;�).

4.1 Elicitation under Knightian uncertainty

There is a substantial body of literature dealing with incentive compatible mecha-
nisms designed to elicit experts’ subjective probabilities of uncertain events. Begin-
ning with the work of Brier (1950) and Good (1952) it was followed by Savage (1971),
Kadane and Winkler (1988), Grether (1981), Karni (2009) and others.10 Underlying
all these mechanisms is the presumption that the experts’ beliefs are depicted by
a unique probability measure. Recently, however, incentive compatible mechanisms
designed to elicit sets of priors or posterior probabilities have been proposed. Karni
(2020b) proposed a modified proper scoring rule for the elicitation of the range, R(E),
of the probabilities of an event E. This mechanism allows a direct elicitation of the
range of the beliefs of any preference relation that admits MPEMU representation.

To see how this mechanism works, fix an event E and let [π(E), π̄(E)] denote
the range of the subjective probabilities representing a subject’s beliefs about the
likelihood of E. At time t = 0 the subject is asked to report two numbers, r, r̄ ∈ [0, 1]
with r < r̄. Then a random number, r, is drawn from a uniform distribution on [0, 1].
In the interim period, t = 1, the subject is awarded the bet xEy if r ≤ r and the
lottery `(r;x, y) if r ≥ r̄, where x > y. If r ∈ (r, r̄), then the subject is allowed
to choose between the bet (x − θ)E(y − θ) and the lottery `(r;x − θ, y − θ), where
θ > 0. In the last period, t = 2, after it is verified whether or not the event E
obtained and the outcome of the lottery is revealed, all payments are made. Denote
this mechanism Mb.

Karni (2020b) proved the following result:

9This idea was formalized and the existence of such random selection process was proved in
Karni and Safra (2016).

10For a recent review, see Chambers and Lambert (2017).
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Theorem Karni (2020b): Given the mechanism Mb, in the limit, as θ → 0, the
subject’s unique dominant strategy is to report r(E) = π(E) and r̄(E) = π̄ (E).

Theorem 1 implies that this scheme elicits the measure, mb(E;�), of incomplete-
ness of the subject’s beliefs. Moreover, the elicitation procedure does not depend on
the values of x and y or the decision maker’s utility function.

4.2 Elicitation of the measure of overall incompleteness

Fix a bet xEy on E, and recall that M(xEy;�) = c̄(xEy;�) − c(xEy;�). At time
t = 0, the subject is asked to report two numbers, z, z̄ ∈ [x, x̄] ⊃ [x, y] such that
z < z̄. Then a random number, z, is drawn from a uniform distribution on [x, x̄].
In the interim period, t = 1, the subject is awarded the bet xEy if z ≤ z and the
outcome z if z ≥ z̄. If z ∈ (z, z̄), then the subject is allowed to choose between the
bet (x−θ)E(y−θ) and the outcome z−θ, where θ > 0. In the last period, t = 2, after
it is verified whether or not the event E obtained, all payments are made. Denote
this mechanism Mo.

Theorem 7 Given Mo, in the limit, as θ → 0, the subject’s unique dominant strat-
egy is to report z = c(xEy;�) and z̄ = c̄(xEy;�).

4.3 Elicitation of the measure of incomplete risk attitudes

Given � on ∆X and p = (x1, p1; ..., xn, pn) ∈ ∆X, recall that mt(p,�) = c̄�(p) −
c�(p). The mechanism requires the subject to report, at time t = 0, two numbers,
z, z̄ ∈ [x, x̄] ⊃ {x1, ...xn} such that z ≤ z̄. A random number, z, is drawn from a
uniform distribution on [x, x̄]. In the interim period, t = 1, the subject is awarded
the lottery p if z ≤ z and the outcome z if z ≥ z̄. If z < z̄ and z ∈ (z, z̄), then the
subject is allowed to choose between the lottery p′ = (x1 − θ, p1; ..., xn − θ, pn) and
the outcome z − θ, where min{x1, ...xn} > θ > 0. In the last period, the outcome of
the lottery is revealed, and all payments are made. Denote this mechanism Mt.

Theorem 8 Given Mt, in the limit, as θ → 0, the subject’s unique dominant strat-
egy is to report z = c(p) and z̄ = c̄ (p).

The proof is by the same argument as the proof of the preceding theorem.
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5 Concluding Remarks

Whether it is belief, taste, or overall incompleteness, our characterizations of the
relation “more incomplete than” are preference-based. Invoking these measures, the
simple portfolio choice problem in Section 3.3 illustrates the usefulness of the strong
measures in deriving comparative statics implications. The behavioral implications of
the general greater incompleteness measures in subsection 3.1 are somewhat weaker.
For instance, in the case of portfolio selection, under Knightian uncertainty, the level
of inertia and unpredictability displayed by �1 exceeds that displayed by �2 but not
necessarily in response to the same price variations or over the same price range,
respectively. Similar observations apply to risk-attitude and overall incompleteness.
Greater incompleteness according to our general measures imply higher levels of
inertia and unpredictability, but not necessarily over the same price range. One
advantage of the general measures of comparative incompleteness is that, for a given
event, bet, or lottery, the general “more incomplete than” relation is itself a complete
relation, as opposed to the corresponding strong sense relation, which is incomplete.

An important question that is beyond the scope of this work is how information
affects the level of incompleteness. Here, the preference relations being compared
are the prior and posterior preference relations. Addressing this issue requires a
procedure of updating the set of priors. The example below illustrates that, updating
all the priors in the set using Bayes’ rule, becoming better informed about an event
E makes the beliefs at E more complete but may or may not make the beliefs at
some other event become more complete.

Example: An urn contains balls that come in three colors, blue, green, and yellow
denotedB, G, and Y , respectively. Consider a decision maker who displays Knightian
uncertainty and suppose that she holds the following set of beliefs: {(πB, πG, πY )|πB ∈
[1
3
, 2

3
], πG ∈ [0, 1

3
], πY ∈ [1

3
, 2

3
], πB + πG + πY = 1}. The measure of belief incomplete-

ness of the decision maker’s prior preferences at event B is mb(B,�) = 1
3
. Assume

that when she receives new information, the decision maker updates her beliefs prior
by prior, using Bayes’ rule.

Suppose now that the decision maker is informed that the urn contains no yellow
balls. Applying Bayesian updating, the posterior range of probabilities of the event
B is [1

2
, 1]. Hence, mb(B,�′) = 1

2
, where �′ denotes the updated beliefs given

the information ¬Y . If, instead the decision maker learns that the urn contains
no green balls, the range of her posterior probabilities that a ball is blue is [1

3
, 2

3
],

so mb(B,�′′) = 1
3
, where �′′ denotes the updated beliefs given the information

¬G. Hence, according to our measure of belief incompleteness, information that the
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ball is not yellow makes the decision maker’s beliefs more incomplete at B, while
information that the ball is not green does not change her belief incompleteness at
B. In either case, however, the information about an event makes the beliefs about
that event more complete.

As the example above and the asset market application in Section 3.3 show, both
the general and strong measures of comparative incompleteness have their merits.
Also, when preferences have MPEMU representations, our measures of incomplete-
ness have intuitive interpretations in terms of the decision makers’ beliefs and risk
attitudes. To the exent to which measurement paves the road to knowledge as ex-
pressed by Lord Kelvin, “When you can measure what you are speaking about, and
express it in numbers, you know something about it, when you cannot express it
in numbers, your knowledge is of a meager and unsatisfactory kind,” this paper, by
suggesting measures of incompleteness, is a contribution towards the analysis of a
variety of questions that have to do with the behavioral implications of incomplete
preferences in a manner analogous to the use of measures of risk aversion.

6 Appendix

6.1 Proof of Theorem 1:

Applied to bets and the constant lottery acts, the representation in (2) implies that,

xEy � `(r;x, y)

if and only if

U(δx)π(E) + U(δy)(1− π(E)) > U(δx)r + U(δy)(1− r),∀ (π, U) ∈ Π× U .

By definition of the set R�(E) in (3), it is the case that for any r ∈ R�(E),

∃ (π̃, U) ∈ Π× U such that (π̃(E)− r) [U(δx)− U(δy)] ≤ 0, (13)

and
∃ (π̂, U) ∈ Π× U such that (π̂(E)− r) [U(δx)− U(δy)] ≥ 0. (14)

But x > y. Hence, monotonicity with respect to first-order stochastic dominance
implies that U(δx)− U(δy) > 0. Thus, the expression in (13) is equivalent to

∃π̃ ∈ Π such that π̃(E) ≤ r, (15)

24



while the expression in (16) is equivalent to

∃π̂ ∈ Π such that π̂(E) ≥ r. (16)

Since (15) holds for all r ∈ R�(E), π(E) ≤ r�(E). Suppose π(E) < r�(E).
Then (π(E)− r�(E)) [U(δx)− U(δy)] < 0, for all U ∈ U . This contradicts that
xEy � `(r;x, y) for r < r�(E). It follows that π(E) = r�(E). A similar argument
shows that π̄(E) = r̄�(E). Therefore,

[π(E), π̄(E)] = [r�, r̄�]. (17)

It follows that mb(E;�) = π̄(E) − π(E). Since x, y, and U do not figure in this
expression, mb(E;�) is independent of x, y, and U . �

6.2 Proof of Theorem 2:

The proof follows the idea of Pratt (1964). Let Ũ be the utility function in U
associated with the smallest risk premium ξ�(`(r;x, y)) ≡ ξ�

r;x,y
and let ũ be the

corresponding Bernoulli utility function. For ease of notation, we suppress the de-
pendency of µr(x, y) on x and y in the intermediate steps below and simply write
µr. By definition of the risk premium,

Ũ(δµr−ξ�r;x,y
) = Ũ(δc̄�(`(r;x,y))) = Ũ(`(r;x, y)).

Written in terms of the Bernoulli utility function ũ, we have that

ũ(µr − ξ�r;x,y) = E`(r;x,y))[ũ(z)], (18)

where E`(r;x,y)) denotes the expectation w.r.t. the distribution `(r;x, y)). Expanding
the left-hand-side of (18) around µr gives

ũ
(
µr − ξ�r;x,y

)
= ũ(µr)− ũ′(µr)ξ�r;x,y +O((ξ�

r;x,y
)2) (19)

while expanding the right-hand-side of (18) around µr gives

E`(r;x,y))[ũ(z)] = E`(r;x,y))

[
ũ(µr) + ũ′(µr)(z − µr) +

1

2
ũ′′(µr)(z − µr)2

]
+ o(σ2

r(x, y))

(20)
By (18), the right-hand-sides of (19) and (20) are equal, which results in

ξ�(`(r;x, y)) = −1

2

ũ′′(µr(x, y))

ũ′(µr(x, y))
σ2
r(x, y) + o(σ2

r(x, y)) (21)
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Now, let Û be the utility function in U associated with the largest risk premium
ξ̄�(`(r;x, y)) and let û be the corresponding Bernoulli utility function. By steps
similar to those for ξ�(`(r;x, y)), we obtain

ξ̄�(`(r;x, y)) = −1

2

û′′(µr(x, y))

û′(µr(x, y))
σ2
r(x, y) + o(σ2

r(x, y)) (22)

Note that we must have that

Û = arg max
U∈U
−u

′′(µr(x, y))

u′(µr(x, y))
and Ũ = arg min

U∈U
−u

′′(µr(x, y))

u′(µr(x, y))
.

Hence, using the expressions in (21) and (22) the definition of mt(p;�) gives that
for small x− y, the measure of taste incompleteness of � at `(r;x, y) satisfies

mt(`(r;x, y);�) =

[
max
U∈U

{
−u

′′(µr(x, y))

u′(µr(x, y))

}
−min

U∈U

{
−u

′′(µr(x, y))

u′(µr(x, y))

}]
σ2
r(x, y)

2

+ o(σ2
r(x, y)).

�

6.3 Proof of Theorem 3:

By definition, c̄�(`(r;x, y) ≥ c�(`(r;x, y))) for any r ∈ [0, 1], and r̄�(E) ≥ r�(E) for
any E. By first order stochastic dominance, c̄�(`(r̄�(E);x, y)) ≥ c̄�(`(r�(E);x, y))
and c�(`(r̄�(E);x, y)) ≥ c�(`(r�(E);x, y)). Therefore, we must have that

c̄(xEy;�) = c̄�(`(r̄�(E);x, y))

and
c(xEy;�) = c�(`(r�(E);x, y)).

To ease notation in the derivations below, let µ = r�(E)x+(1−r�(E))y, that is,
the expected value of the bet according to the least favourable distribution in R�(E)
and let µ̄ = r̄�(E)x+ (1− r̄�(E))y, that is, the expected value of the bet according
to the most favourable distribution in R�(E).

Let Ũ be the utility function in U associated with the smallest risk premium at
`(r̄�(E);x, y)) and let ũ be the corresponding Bernoulli utility function. By definition
of the risk premium,

Ũ(δµ̄−ξ�
r̄�(E);x,y

) = Ũ(δc̄�(`(r̄�(E);x,y))) = Ũ(`(r̄�(E);x, y)).
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Similar to expression (18) in the proof of Theorem 2, we can rewrite the expression
in terms of ũ. Expanding around µ̄ and following the steps as in (19) through (21)
we obtain that

ξ�(`(r̄�(E);x, y)) = −1

2

ũ′′(µ̄)

ũ′(µ̄)
σ2
r̄�(E)(x, y) + o(σ2

r̄�(E)(x, y)) (23)

Now, let Û be the utility function in U associated with the largest risk premium
at `(r�(E);x, y)) and let û be the corresponding Bernoulli utility function. By
expanding around µ and equating terms as in the steps above, we obtain

ξ̄�(`(r�(E);x, y)) = −1

2

û′′(µ)

û′(µ)
σ2
r�(E)(x, y) + o(σ2

r�(E)(x, y)). (24)

Note that we must have that

Û = arg max
U∈U
−
u′′(µ)

u′(µ)
and Ũ = arg min

U∈U
−u

′′(µ̄)

u′(µ̄)
.

By definition,

M(xEy;�) = c̄(xEy;�)−c(xEy;�) = µ̄−µ+ ξ̄�(`(r�(E);x, y))−ξ�(`(r̄�(E);x, y)).

Note that σ2
r(x, y) = r(1− r)(x− y)2, so o(σ2

r(x, y)) = o((x− y)2).
By Theorem 1, π(E) = r�(E) and π̄(E) = r̄�(E). Hence, plugging in expressions

(23) and (24) gives that for small x− y, the measure of overall incompleteness of �
at xEy satisfies

M(xEy;�) = (π̄(E)− π(E))(x− y)

+
1

2

[
max
U∈U

{
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

}
σ2
π(E)(x, y)−min

U∈U

{
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

}
σ2
π̄(E)(x, y)

]
+ o((x− y)2). (25)

�
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6.4 Proof of Theorem 4:

For a lottery `(r;x, y), the variance σ2
r(x, y) = r(1 − r)(x − y)2. Plugging this into

(25) from the proof of Theorem 3 gives

M(xEy;�) = (π̄(E)− π(E))(x− y)

+
1

2

[
max
U∈U

{
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

}
π(E)(1− π(E))(x− y)2

− min
U∈U

{
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

}
π̄(E)(1− π̄(E))(x− y)2

]
+ o((x− y)2). (26)

Dividing by (x− y) on both sides of (26) and taking the limit as y → x gives that

lim
y→x

M(xEy;�)

x− y
= r̄�(E)− r�(E) = mb(E;�).

�

6.5 Proof of Theorem 5:

Observe that the proof of Theorem 2 does not hinge on the support of the lottery
being binary, with the understanding that for a general p the local requirement is
that we let all values in the support be close to the mean. We therefore have that

mt(p;�i) =

[
max
U∈Ui

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈Ui

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2
+ o(σ2(p)), (27)

for i = 1, 2. Suppose now that mt(p;�1) > mt(p;�2). By (27),[
max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2

−
[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2

= mt(p;�1)−mt(p;�2) + o(σ2(p)) (28)

Therefore, for any positive value of mt(p;�1) − mt(p;�2), there exists ε > 0 such
that for all 0 < σ2(p) < ε, o(σ2(p)) < mt(p;�1)−mt(p;�2). Then (28) implies that[[

max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
−
[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]]
σ2(p)

2
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is also positive. Since σ2(p) > 0, it then follows that[
max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
>

[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]
.

A similar argument can be used to show the other direction as well. �

6.6 Proof of Theorem 6:

Consider a bet xEy. Since �1 displays greater belief incompleteness in the strong
sense than �2, we have that for any E, [π2(E), π̄2(E)] ⊆ [π1(E), π̄1(E)]. Since �1

displays greater taste incompleteness in the strong sense than �2, we have that for
any p, [c�2(p), c̄�2(p)] ⊆ [c�1(p), c̄�1(p)]. It follows that

c̄�1(π̄1(E)) ≥ c�2(π2(E)). (29)

As argued in the beginning of the proof of Theorem 3, it must be that for any �,

c̄(xEy;�) = c̄�(`(r̄�(E);x, y))

and
c(xEy;�) = c�(`(r�(E);x, y)).

The result then follows from (29). �

6.7 Proof of Proposition 1:

Suppose that a preference relation �1 displays greater belief and taste incompleteness
in the strong sense than preference relation �2. Greater belief incompleteness in the
strong sense is equivalent to Π2 ⊆ Π1. Therefore,

π1 ≤ π2 ≤ π̄2 ≤ π̄1. (30)

For i = 1, 2, define ūi and ui, respectively by

arg max
u∈Ui

π̄i
1− π̄i

u′(w̄i1(w0,q))

u′(wi2(w0,q))
(31)

and

arg min
u∈Ui

πi
1− πi

u′(wi1(w0,q))

u′(w̄i2(w0,q))
. (32)
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Greater taste incompleteness in the strong sense implies that C�2(p) ⊆ C�1(p),
for all p ∈ ∆(X). Therefore, c�1(p) ≤ c�2(p) ≤ c̄�2(p) ≤ c̄�1(p) for all p ∈ ∆(X).
Thus, by definition, ξ�1(p) ≤ ξ�2(p) and ξ̄�2(p) ≤ ξ̄�1(p) for all p ∈ ∆(X). By
Theorem 1 in Pratt (1964), there exist monotonic increasing and concave functions
T̄ and T such that ū2 = T̄ ◦ ū1 and u1 = T ◦ u2.

Note that if w̄i1(w0,q) ≥ wi2(w0,q), then (w̄i1(w0,q), w
i
2(w0,q)) is a bet on state 1 and

c̄(w̄i1(w0,q)Ew
i
2(w0,q);�i) = c̄(π̄i;�i), while c(w̄i1(w0,q)Ew

i
2(w0,q);�i) = c(πi;�i).

By definition of (w̄i1(w0,q)), w
i
2(w0,q))), the expression in (31) equals q for i = 1, 2.

Using this and that ū2 = T̄ ◦ ū1, we have

π̄1

1− π̄1

ū′1(w̄1
1(w0,q))

ū′1(w1
2(w0,q))

=
π̄2

1− π̄2

ū′2(w̄2
1(w0,q))

ū′2(w2
2(w0,q))

=
π̄2

1− π̄2

T̄ ′(ū1(w̄2
1(w0,q)))ū

′
1(w̄2

1(w0,q))

T̄ ′(ū1(w2
2(w0,q)))ū′1(w2

2(w0,q))
.

(33)
By (30), π̄2

1−π̄2
≤ π̄1

1−π̄1
. If w̄2

1(w0,q) ≥ w2
2(w0,q), then the monotonicity of u1

and the concavity of T̄ imply that T̄ ′(ū1(w̄2
1(w0,q))) ≤ T ′(ū1(w2

2(w0,q))). Hence, the
equality in (33) implies that

ū′1(w̄1
1(w0,q))

ū′1(w1
2(w0,q))

≤ ū′1(w̄2
1(w0,q))

ū′1(w2
2(w0,q))

.

That is, the marginal rate of substitution corresponding to ū1 is larger at (w̄2
1(w0,q), w

2
2(w0,q))

than it is at (w̄1
1(w0,q), w

1
2(w0,q)). Hence, w̄1

1(w0,q) ≥ w̄2
1(w0,q) and w1

2(w0,q) ≤
w2

2(w0,q).
By definition of (wi1(w0,q), w̄

i
2(w0,q)), the expression in (32) equals q for i = 1, 2.

Using this and that u1 = T ◦ u2, we have

π2

1− π2

u′2(w2
1(w0,q))

u′2(w̄2
2(w0,q))

=
π1

1− π1

u′1(w1
1(w0,q))

u′1(w̄1
2(w0,q))

=
π1

1− π1

T ′(u2(w1
1(w0,q)))u

′
2(w1

1(w0,q))

T ′(u2(w̄1
2(w0,q)))u′2(w̄1

2(w0,q))
.

(34)
By (30),

π2

1−π2
≥ π1

1−π1
. If w̄1

2(w0,q) ≤ w1
1(w0,q), then the monotonicity of and the

concavity of T imply that T ′(u2(w1
1(w0,q))) ≤ T ′(u2(w̄1

2(w0,q))). Hence, equality in
(34) implies that

u′2(w2
1(w0,q))

u′2(w̄2
2(w0,q))

≤ u′2(w1
1(w0,q))

u′2(w̄1
2(w0,q))

.

That is, the marginal rate of substitution corresponding to ū1 is larger at (w1
1(w0,q), w̄

1
2(w0,q))

than at (w2
1(w0,q), w̄

2
2(w0,q)). It follows that w1

1(w0,q) ≤ w2
1(w0,q) and w̄1

2(w0,q) ≥
w̄2

2(w0,q).
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Apply the same logic to the case in which w2
1(w0,q) ≤ w̄2

2(w0,q) and w1
2(w0,q) ≥

w̄1
1(w0,q), and use that if w̄i1(w0,q) ≤ wi2(w0,q), then (w̄i1(w0,q), w

i
2(w0,q)) is a bet on

state 2 so c̄(w̄i1(w0,q)Ew
i
2(w0,q);�i) = c̄(1−πi;�i), while c(w̄i1(w0,q)Ew

i
2(w0,q);�i) =

c(1− π̄i;�i). Then we get w1
1(w0,q) ≥ w2

1(w0,q) and w̄1
1(w0,q) ≥ w̄2

1(w0,q). �

6.8 Proof of proposition 2:

Suppose that �1 displays greater incompleteness in the strong sense than �2 . Let
ūi and ui be given by (31) and (32), respectively, for i = 1, 2. By greater belief
incompleteness in the strong sense, (30) holds.

Assume that w∗1 > w∗2. Greater taste incompleteness in the strong sense implies
that C�2(p) ⊆ C�1(p), for all p ∈ ∆(X). Thus, c�1(p) ≤ c�2(p) ≤ c̄�2(p) ≤ c̄�1(p),
for all p ∈ ∆(X). Hence, by definition, ξ�1(p) ≤ ξ�2(p) and ξ̄�2(p) ≤ ξ̄�1(p), for
all p ∈ ∆(X). Therefore, by Theorem 1 in Pratt (1964), there exist monotonic
increasing and concave functions T̄ and T such that ū2 = T̄ ◦ ū1 and u1 = T ◦ u2.
Therefore,

π̄2

1− π̄2

ū′2(w∗1)

ū′2(w∗2)
=

π̄2

1− π̄2

T̄ ′(ū1(w∗1)ū′1(w∗1)

T̄ ′(ū1(w∗2))ū′1(w∗2)
≤ π̄1

1− π̄1

ū′1(w∗1)

u′1(w∗2))
. (35)

and
π1

1− π1

u′1(w∗1)

u′1(w∗2)
=

π1

1− π1

T ′(u2(w∗1))u′2(w∗1)

T ′(u2(w̄∗2))u′2(w̄∗2)
≤ π2

1− π2

u′2(w∗1)

u′2(w̄∗2)
, (36)

where concavity of T̄ and T is used to conclude that
T ′(u2(w∗1))

T ′(u2(w̄∗2))
≤ 1 and

T̄ ′(ū1(w∗1)

T̄ ′(ū1(w∗2))
≤ 1

and using the relationships in (30). It follows from (35) and (36) that I�1(w∗1, w
∗
2) ⊇

I�2(w∗1, w
∗
2).

The proof for the case in which w∗1 ≤ w∗2 is by a similar argument, noting that
when w∗1 ≤ w∗2, we are considering a bet on state 2.

To show that if I�1(w∗1, w
∗
2) ⊇ I�2(w∗1, w

∗
2) for all (w∗1, w

∗
2) then �1 displays

greater belief incompleteness in the strong sense than �2, suffices it to observe

that I�i
(w0, w0) =

[
πi

1−πi
, π̄i

1−π̄i

]
for i = 1, 2. Thus, if (w∗1, w

∗
2) = (w0, w0), then

¬
([

π2

1−π2
, π̄2

1−π̄2

]
⊆
[

π1

1−π1
, π̄1

1−π̄1

])
implies ¬ (I�1(w0, w0) ⊇ I�2(w0, w0)) . �

6.9 Proof of Theorem 7

Given xEy and θ > 0, suppose that the subject reports z̄ > c̄ (xEy;�) . If r ≤
c (xEy;�) or r ≥ z̄ then the subject’s payoffs are the same regardless of whether
he reports z̄ or c̄ (xEy;�). If r ∈ (c̄ (xEy;�) , z̄), the subject’s payoff is a choice
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between the bet (x− θ)E (y − θ) and the outcome r − θ; had he reported c̄ (xEy;�)
instead of z̄ his payoff would have been r. But r > r − θ implies that δr � δr−θ and,
since r > c̄ (xEy;�) , implies δr � xEy � (x− θ)E (y − θ) , the subject is worse off
reporting z̄ instead of c̄ (xEy;�) .

Suppose that the subject reports z < c (xEy;�) . If r ≤ z or r ≥ c (xEy;�) the
subject’s payoffs are the same regardless of whether he reports z or c (xEy;�). If
r ∈ (z, c (xEy;�)), the subject’s payoff is a choice between (x− θ)E (y − θ) and the
outcome r − θ; had he reported c (xEy;�) instead of z his payoff would have been
xEy. By stochastic dominance, xEy � (x− θ)E (y − θ) , and r < c (xEy;�) implies
that xEy � δr � δr−θ. Thus the subject is worse off reporting z instead of c (xEy;�) .

Suppose that the subject reports z̄ ∈ (c (xEy;�) , c̄ (xEy;�)). If r ∈ [z̄, c̄ (xEy;�)],
the subject’s payoff is r, whereas had he reported c̄ (xEy;�) he would have the op-
portunity to choose between the bet (x− θ)E (y − θ) and the outcome r − θ. If the
signal, c, indicates that (x− θ)E (y − θ) ≺ δc , where c ≤ r − θ, the subject would
choose the outcome r − θ and if the signal indicates that (x− θ)E (y − θ) � δc,
c ≥ r − θ, indicating that the value of the bet (x− θ)E (y − θ) exceeds r − θ, the
subject would choose the bet. Thus, in the limit as θ → 0, the subject’s subjective
expected utility is:

η(r)u(r) +

c̄(xEy;�)∫
r

u (c) dη (c) > u (r) .

Thus, reporting z̄ < c̄ (xEy;�) is dominated by reporting truthfully, z̄ = c̄ (xEy;�) .
By similar argument, z ≯ c (xEy;�) . Hence, the dominant strategy is to report
truthfully, that is, z = c (xEy;�). �
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