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Abstract

Departing from the reduction of compound lotteries axiom on multi-stage lotteries,

this paper proposes a new hybrid model to analyze decision trees. Applied to multi-

stage decision trees induced by experiments, Blackwell’s (1953) definition of the relation

“more informative” on the set of information structures is equivalent to experiments

being more valuable to a class of non-expected utility preferences. This result extends

Blackwell’s theorem and provides new insights regarding the evaluation of information

produced by experiments.

Keyword: Blackwell’s theorem; comparison of experiments; reduction of com-

pound lotteries; value of information; hybrid decision analysis.
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1 Introduction

From a decision making point of view, experimentation is valuable because it provides

information that helps decision makers choose courses of actions whose payoffs are higher

in the states that are more likely to obtain. Blackwell (1953) formalized this perception

as a binary relation: “more informative than” on the set of experiments. According to

Blackwell, one experiment is more informative than another if, for every set of feasible

actions, it yields a richer menu of experiment-wise expected payoffs (i.e., expected-loss

vectors) each of which corresponds to an action taken contingent on the experimental

observations. Blackwell characterized this relation by proving that one experiment is more

informative than another if and only if the information content of the latter is obtained

by garbling the information content of the former. Equivalently, an experiment is more

informative if it allows choices that have higher expected utility. We refer to this equivalence

as Blackwell’s theorem.1

∗Useful comments by Edward Schlee and an anonymous refree are gratefully acknowledged.
†Johns Hopkins University, Department of Economics, e-mail: karni@jhu.edu
‡Warwick Business School, University of Warwick, e-mail: zvi.safra@wbs.ac.uk
1Cremer (1982), Leshno and Spector (1992), and de Oliviera (2018) provide simple proofs of Blackwell’s

theorem.
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Seen in this way, being better informed seems unambiguously beneficial. Thus, the

equivalence between ranking experiments by their information content and their ranking

by the expected utility criterion seems oddly restrictive. This equivalence is particularly

disconcerting in view of experimental evidence suggesting that subjects systematically vi-

olate the tenets of expected utility theory — the sure thing principle and the independence

axiom — and the proliferation, over the last 40 years, of non-expected utility models of

decision making under risk and under uncertainty.

To grasp the issue, consider a decision maker facing a choice among feasible actions

whose consequences depend on the realization of some underlying states. Suppose that

the likelihood of the various states materializing is quantified by a (prior) probability

distribution function. Before choosing an action, the decision maker receives a signal (i.e.,

an observation), produced by an experiment, that informs him about the likely realization

of the states. Upon receiving such signal, the decision maker invokes Bayes’ rule to update

the prior state probabilities and then proceeds to choose an action from the feasible set.

This process may be thought of as two-stage compound lottery. In the first stage, the

experiment produces a signal, according to some probability distribution on the set of

signals, following which the decision maker chooses an action. In the second stage, a state

is selected (according to the posterior distribution) and the decision maker is awarded the

prize that corresponds to the image of the selected state under the chosen action.2 The

question is how decision makers perceive this two-stage lottery.

We argue that the critical aspect of the expected utility model that underlies Blackwell’s

theorem is the way these compound lotteries are handled. The standard way of handling

compound lotteries is to apply the reduction of compound lotteries axiom (henceforth,

RCLA). This axiom asserts that a multi-stage lottery is reduced to a single-stage lottery

by attributing to each ultimate payoff a probability equal to the product of the probabilities

on the events that lead to it. In the context of the choice of experiments, the RCLA assigns

the ultimate outcome the probability of the signal multiplied by the posterior probabilities

of the states to which the chosen course of action assigns that outcome.

Analysis that treats the two-stage process as equivalent to its one-stage reduction runs

the risk of ignoring subtleties that beset the extensive form decision process. Wakker (1988)

and Safra and Sulganik (1995) showed that departing from the independence axiom and

maintaining the RCLA implies a widespread and robust aversion towards information.

An alternative procedure of handling compound lotteries is to use the certainty-equivalent

reduction. In this procedure, multi-stage lotteries are reduced to single-stage lotteries by

folding back the lottery tree, replacing the lotteries along the branches by their certainty

equivalents. Schlee (1990) and Safra and Sulganik (1995) showed that in non-expected

utility theories, this procedure implies that information is not always valuable.

We propose a hybrid decision model that invokes the RCLA in the second stage of

2 If the prize itself is a lottery ticket then the procedure described above amounts to three-stage lottery

in which, in the third and final stage, the lottery corresponding to the image of the selected state under

the chosen action is played out to determine the prizes.
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the decision-making process and a procedure analogous to certainty-equivalent reduction

in the first stage. Application of the RCLA, which seems compelling when the transition

between the stages is automatic, seems less so when the two stages are separated by an

intermediate decision.

To formalize this idea, we propose a new model, dubbed the hybrid model, and show that

it identifies a class of preferences that unambiguously value one experiment over another if

and only if the information content of the latter is obtained by garbling that of the former.

The expected utility model is a special case of this class. In fact, it is the only hybrid

model that is consistent with the RCLA. Application of the hybrid model provides new

insight into the manner in which information is evaluated. While admitting the possibility

that some decision makers may not consider information to be unambiguously beneficial,

it maintains that, in Blackwell’s analytical framework, such behavior is unreasonable.

The surprising (difficult) aspect of Blackwell’s theorem is that a more informative ex-

periment (that is, one that affords better decisions by the expected utility criterion) implies

clearer signals. In this paper, informativeness corresponds to an experiment being more

valuable in the sense of affording better decisions for a broader set of preferences, including

expected utility preferences. Consequently, this direction of the proof relies on Blackwell’s

theorem. The novelty of this paper is the observation that the full power of expected

utility — in particular, the RCLA — is not needed for Blackwell’s result. To the best of our

knowledge, ours is the only nontrivial model in which a large class of non-expected utility

preferences can satisfy this direction of Blackwell’s theorem.3

The rest of the paper is organized as follows. The next section provides a brief review

of Blackwell’s (1953) theorem. Section 3 reviews the reduction procedures. Section 4

introduces and characterizes the hybrid decision model. Section 5 extends Blackwell’s

theorem. Section 6 discusses the value of information and reviews the related literature.

2 The Analytical Framework and Blackwell’s Theorem

2.1 The analytical framework

Let  = {1  } be a finite set of states, and denote by ∆ () the simplex in R. Let 

be a set of outcomes, and denote by ∆ () the set of simple probability distributions on 

referred to as lotteries.4 For all   ∈ ∆ () and  ∈ [0 1] define +(1− )  ∈ ∆ () by
(+ (1− ) ) () =  () + (1− )  ()  for all  ∈  Mappings from  to ∆ () are

referred to as acts Acts represent potential courses of action. The set of all acts is denoted

by H. For all   ∈ H and  ∈ [0 1] define  + (1− )  ∈ H by ( + (1− ) ) () =

 () + (1− )  ()  for all  ∈  Constant acts (i.e., acts that assign the same image

to every state) are identified with elements of ∆ ()  Thus, ∆ () ⊂ H Throughout, we
3Li and Zhou (2016) carried out an analysis with commitment, in which decision makers are not allowed

to change their choices when information is revealed (and in the context of ambiguity).
4Simple probability distributions are probability distribution functions with finite supports.
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denote by  the distribution function that assigns  ∈  the unit probability mass and

∆ (∆ ()) denotes the set of simple probability distributions with supports in ∆ () 

Let Y be a finite set whose generic element,  is a signal. An experiment, e, also
called an information structure, is identified with a conditional probability distribution

 on Y ×  such that, for all  ∈   ( | ) is the conditional probability of  ∈ Y
given . Let Y denote the set of all experiments. The image of ̃ ∈ Y is the set  =

{ ∈ Y | ∃ ∈  :  ( | )  0} of all potentially realized signals under ̃. The experimente can be identified with the || × | | right-stochastic matrix,  (̃), whose generic element
is  ( | )  For a given prior  ∈ ∆ ()  denote  () = Σ∈ ( | ) () 

2.2 Blackwell’s theorem

Consider an expected utility-maximizing decision maker characterized by a utility function

 in U , the set of all real-valued functions on . Consider a probability distribution

 ∈ ∆ () and a non-empty, compact set  ⊆ H of feasible acts. Assume that  is strictly

positive (i.e.,  ()  0 for all  ∈ ) and that, before choosing an act from , the decision

maker observes the signal  generated by an experiment ̃ ∈ Y, and updates the prior
distribution  according to Bayes’ rule to obtain the posterior probability distribution

 ( | ) =  ( | ) ()  ()  for all  ∈  The decision maker’s ex post problem is:

max
∈

Σ∈ ( | )Σ∈ ()  () ()  (1)

Denoting the maximal value by  (  (· | )  ), the expected utility associated with the
experiment ̃ is given by:

̂ (̃; ) := Σ∈  () (  (· | )  )  (2)

Definition 1: An experiment ̃ is more informative than another experiment ̃0 if, for
all () ∈ U × 2H\∅

̂ (̃; ) ≥ ̂
¡
̃0; 

¢


Let M be the set of | | × | 0| right-stochastic matrices dubbed garbling matrices. If
there exists a garbling matrix  ∈ M such that  (̃) =  0 (̃0)  then  introduces

noise that blurs the information in  (̃). That is, for each entry 0 (0 | ) of  0 (̃0) 
0 (0 | ) = Σ∈  ( | ) (where Σ{|∈ 0} = 1 for all { |  ∈  }).

Definition 2: An experiment ̃ is sufficient for ̃0 if the corresponding information
structures satisfy  (̃) =  0 (̃0)  for some  ∈M

With these definitions in mind Blackwell’s theorem is stated as follows:

Blackwell’s Theorem: An experiment ̃ is more informative than another experiment

̃0 if and only if ̃ is sufficient for ̃0.
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That is, the relation “being sufficient” is equivalent to being ranked higher by all

preference relations that admit expected utility representations.

3 Informative Signals and Reduction Procedures

3.1 Signals

According to Blackwell’s theorem more, informative experiments produce clearer signals

in the following sense: When comparing two experiments, every posterior distribution pro-

duced by the less informative experiment is a weighted average of the posterior distributions

produced by the more informative experiment (i.e., the sufficient experiment). Formally,

let ̃,̃0 ∈ Y with images  and  0 respectively. Suppose that ̃ is sufficient for ̃0 hence
there exists  ∈M such that  (̃) =  0 (̃0). Observe that the equalities

0
¡
0 | 

¢
= Σ{|∈ } ( | ) (3)

for all 0 ∈  0  ∈  and  ∈  imply

0
¡
0
¢
= Σ{|∈ } () (4)

Therefore, by Bayes’ rule,


¡
 | 0

¢
=

 ()0 (0 | )
Σ0∈ (0)0 (0 | 0)

=
 ()Σ{|∈ } ( | )

0 (0)
(5)

=
Σ{|∈ } () ( | )

0 (0)
=
Σ{|∈ }

()

()
 () ( | )

0 (0)

=
Σ{|∈ } ()( | )

0 (0)
= Σ{|∈ }

 ()

0 (0)
 ( | ) 

and the posterior distributions satisfy,


¡· | 0¢ = Σ{|∈ } ()

0 (0)
 (· | ) 

Consequently, for each act-posterior probability pair (  (· | 0)) ∈ H × ∆ () that is
feasible under the less informative experiment, corresponds a set {(  (· | )) |  ∈  } ⊂
H×∆ () of act-posterior probability pairs of the more informative experiment. Thus, from
the ex ante viewpoint, the more informative experiment offers a richer set of opportunities

to match feasible acts to the perceived likelihood of the states depicted by their posterior

probabilities.
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3.2 Reduction procedures

Consider a pair ( ) ∈ H×∆ () of an act and a probability distribution on . The pair

may be regarded as a two-stage lottery in ∆ (∆ ()) in which, in the first stage, a state

 ∈  is drawn at random according to the distribution  and, in the second stage, an

outcome  ∈  is determined by the lottery  () ∈ ∆ () 
The most common way to reduce such a two-stage lottery to a one-stage lottery in

∆ () is the reduction of compound lotteries axiom (RCLA). This reduction procedure

identifies ( ) with the one-stage mixture lottery Σ∈ ()  () ∈ ∆ ()  The axiomatic
structure underlying expected utility theory implicitly utilizes RCLA.

Another way to reduce two-stage lotteries is the certainty-equivalent reduction.5 This

reduction procedure assumes that the decision maker possesses a preference relation over

∆ () and that, for every lottery  () ∈ ∆ ()  there exists an element  ( ()) ∈ , the

certainty equivalent of  ()  such that the decision maker is indifferent between  () and

(()).
6 The certainty-equivalent reduction identifies ( ) with the one-stage mixture

lottery Σ∈ () (()) ∈ ∆ ()  Like RCLA, this reduction is implicit in expected utility
theory.

In general the resulting one-stage lotteries Σ∈ ()  () and Σ∈ () (()) are not
equivalent. However, under expected utility they, are closely related in the sense that the

decision maker is always indifferent between them.

To see how these reductions affect the evaluation of experiments, let a probability

distribution  ∈ ∆ () and a nonempty set  ⊆ H of feasible acts be given, and consider

a decision maker facing an experiment ̃ ∈ Y. From the decision maker’s viewpoint,

this decision problem requires choosing acts in  contingent on the realization of signals

produced by ̃ This problem can be described as a three-stage compound lottery. In the

first stage, a signal  ∈  is drawn according to the distribution  Contingent on the signal

and the corresponding posterior distribution  (· | )  an act ∗ ( (· | )) ∈  is chosen. In

the second stage, a state  is selected according to the posterior distribution  (· | )  and
the lottery ∗ ( (· | )) () ∈ ∆ () is awarded as a prize. In the third and final stage, the
lottery ∗ ( (· | )) () determines the final outcome  ∈  Using the previous notation,

for each  the pair (∗ ( (· | ))   (· | )) ∈ H×∆ () describes the final two stages.
It is worth underscoring that the sequence of events described above is depicted, as

it should be, from the point of view of the decision maker who receives the signal and

must act upon the information it provides. The problem may be reformulated so that

the state is drawn first according to the prior  ∈ ∆ ()  followed by a signal drawn from
Y according to the conditional distribution  (· | ). Because the state is not observable,
however, the decision maker may not be able to distinguish between nodes resulting from

different states that potentially yield the signal (while he must act solely on the basis of

the information produced by the signal). Consequently, from the decision maker’s point

5For more detailed discusssion and application of certainty equivalent reduction, see Segal (1987).
6The existence of certainty equivalents depends on the richness of the set of outcomes .
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of view, reformulating the problem so that the state is selected in the first stage followed

by the draw of a signal is substantively equivalent to the formulation above but would

complicate the notations and clutter the exposition.

Applying the RCLA to the second stage reduces the pairs (∗ ( (· | ))   (· | )) to the
one-stage lotteries Σ∈ ( | ) ∗ ( (· | )) () ∈ ∆ (). Applying the RCLA again, this
time to the first stage, further simplifies the three-stage compound lottery and reduces it

to the one-stage mixture lotteryX
∈

 ()
X
∈

 ( | ) ∗ ( (· | )) ()  (6)

The process under which RCLA is applied twice is called the RCLA procedure; it is com-

monly used, in conjunction with consequentialism, to analyze behavior of non-expected

utility decision makers. The procedure implies a widespread and robust aversion to infor-

mation. The reason for this aversion is that the RCLA, in conjunction with consequen-

tialism, imply that preference relations display dynamic consistency (that is, the optimal

continuation of the sequential choice process as of any decision node agrees with the op-

timal contingent plan, made at the outset of the process, for that node) if and only if it

satisfies the independence axiom of expected utility theory.

To grasp this assertion, consider the following simple example. A decision maker faces a

choice between a lottery  and an equal chance of receiving another lottery,  or a choice

between two lotteries,  and  (all lotteries are in ∆ ()). At the initial decision node, the

decision maker must choose between  and two contingent plans, one calling for the choice

of  and the other the choice of  in case he finds himself at the second decision node.

Under the RCLA, the former contingent plan induces the lottery 05 + 05 and the

latter the lottery 05+05 If the preference relation does not satisfy the independence

axiom, there are always lotteries  and  such that  Â  and 05 + 05 Â 05 +

05 Suppose further that, 05 + 05 Â  Â 05 + 05 Then the decision maker

rejects lottery  in favor of pursuing the contingent plan that call for the choice of 

in the second decision node. However, if he happens to find himself at that node and is

satisfying consequentialism, he will choose  thereby displaying dynamic inconsistency.

Furthermore, realizing this dynamic inconsistency, the decision maker would prefer  over

the contingent plan that yields 05 + 05.7 Consequently, in our case, evaluating the

optimal acts ∗ ( (· | )) from an ex ante point of view, by looking at the one-stage lottery
(6), the decision maker who does not abide by the independence axiom may find out that

he prefers to replace some of these ex post optimal acts by others. However, when he finds

himself at the second stage, optimality dictates that he choose the acts ∗ ( (· | )).
Certainty-equivalent reduction can be applied twice to yield the one-stage mixture

lottery X
∈

 () 
(Σ∈(|)(∗((·|))())) (7)

7For a detailed analysis see Karni and Schmeidler (1991), and Karni and Safra (1989).
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Under this certainty-equivalent reduction procedure, information is not always valuable

for non-expected utility decision makers. Unlike the RCLA, however, the reason here

is not dynamic inconsistency (it is easy to verify that, viewing the one-stage lottery (7)

ex ante, the decision maker is always in agreement with his planned ex post optimal acts

∗ ( (· | ))). It is that the mixture and certainty-equivalent operators are not commutative
for non-expected utility decision makers. Thus, having larger sets of options under a

sufficient experiment does not necessarily translate to being in a preferable situation.

An alternative procedure, which we propose and study in this paper, applies the RCLA

to the second stage and a reduction analogous to the certainty equivalent to the first stage.8

Under this hybrid procedure, which is characterized in the next section, for each signal ,

the second-stage reduction induces a set of one-stage lotteries {Σ∈ ( | )  () |  ∈ }.
Assuming that these lotteries are evaluated by some utility functional  (see next section),

let ∗ be a maximizer of  over this set (that is, ∗ ∈ argmax∈  (Σ∈ ( | )  ())).
Then the value of the experiment ̃ is given byX

∈
 () 

¡
∗
¢


The justification for applying distinct procedures to the different stages is the nature

of the uncertainties involved. In the second stage, given the act and the (updated) state

probabilities, the outcome is selected “algorithmically” without interference by the decision

maker. By contrast, after the first stage, corresponding to each signal there is an interim

step at which the decision maker interferes by updating the state probabilities and choosing

an act. This aspect of the dynamic process suggests that decision makers may regard the

first stage as qualitatively distinct from the later stages and, consequently, treat them dif-

ferently. Specifically, according to the hybrid procedure, assessing the value of experiments,

decision makers envision the acts they would choose contingent on the signals, assign these

acts utility values, and take the mean utility values as the value of the experiment.

4 Characterization of the Hybrid Representation

Assume that  is a compact topological space and consider a probability distribution

 ∈ ∆ (), a nonempty compact set  ⊆ H, and an experiment ̃ ∈ Y. As above, the ex-
periment can be identified with a two-stage decision tree in which a signal  ∈  is realized

in the first stage and, in the second stage, at the decision node associated with  the deci-

sion maker chooses an act  ∈  so as to maximize his ex post preferences. We assume that

in the second stage the RCLA is applied. Formally, for all  ∈ H,  ∼ Σ∈ ( | )  ().
Consequently, by choosing an act ∗ ∈  the decision maker is faced with the reduced

lottery Σ∈ ( | ) ∗ () ∈ ∆ (). From an ex ante viewpoint, the ex post choices are

seen as the | | + 1 tuple ( ¡∗ ¢∈ ) ∈ ∆ (Y)×∆ ()|Y|  and the whole experiment can
8The analogous reduction does not require the existence of certainty equivalents.
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be identified with a subset of all |Y| + 1 tuples ¡ ¡1  |Y|¢¢ ∈ ∆ ( )×∆ ()|Y|. To
analyze all possible experiments, assume that the cardinality of Y (the set of all signals)
is  ( ∞), and consider the set of all  + 1 tuples ( ( ())∈Y) ∈ ∆ (Y)×∆ () . A
decision maker is characterized by two complete and transitive, preference relations: ()

an ex ante preference relation < on ∆ (Y)×∆ () , which ranks decision trees, and ()
an ex post preference relation <∗ on ∆ (), that is used to choose optimal acts at the
realized decision nodes. Note that for the preference relation < to have the domain indi-

cated above, it is implicitly assumed that the decision maker is able to express preferences

over all conceivable information structures, so that every conceivable distribution on Y is
attainable.

Continuity: (of< and<∗ with respect to the corresponding Euclidean topology) The sets
{(0 (0 ())∈Y ∈ ∆ (Y)×∆ () | ( ( ())∈Y < (0 (0 ())∈Y)} and {(0 (0 ())∈Y ∈
∆ (Y)×∆ () | (0 (0 ())∈Y < ( ( ())∈Y)} are closed for all

³
 ( ())∈Y

´
∈

∆ (Y)×∆ ()  and the sets { ∈ ∆ () |  <∗ }, { ∈ ∆ () |  <∗ } are closed
for all  ∈ ∆ ().

Henceforth we assume that both < and <∗ are continuous binary relations. To capture
consequentialism, we assume that the ex post preference relation <∗ is independent of the
realized signal  and of the probability distribution .

The next axiom asserts that if a signal  is certain to obtain, then the ex ante ranking

of any two lotteries agrees with their ex post ranking. Formally, define p = ( ())∈Y ∈
∆ () , then

Consistency: For all pq ∈ ∆ () and  ∈ Y (p) < (q) if and only if  () <∗
 () 

The next axiom asserts that independence applies to the first stage of the decision-

making process. To formalize this idea we introduce the partial mixture operation on

∆ (Y)×∆ () : For all (p), (p) ∈ ∆ (Y)×∆ () and  ∈ [0 1], define  (p) +
(1− ) (p) = (+ (1− )p)  The mixture  + (1− )  ∈ ∆ (Y) depicts a poten-
tial distribution on the signals space induced by an experiment. Alternatively, it can be

interpreted as a choice between two experiments that is decided by a coin flip.

Consider a decision maker who is indifferent between the alternatives (p) and (0q)
and prefers the alternative (p) over (0q). Suppose that, facing a choice between the
decision trees  = (+ (1− )p) and  = (0 + (1− )0q) he reasons that if the
event whose probability is  obtains and he has chosen  he is faced with the alternative

(p) ; if he has chosen  he faces the alternative (0q)  Conditional on the realization
of this event, he is indifferent between  and  By the same logic, he would prefer  over
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 conditional on the realization of the complementary event whose probability is 1 − 

Consequently, he prefers  over  unconditionally.9 Formally,

First-Stage Independence: For all (p), (p),(0q), (0q) in ∆ (Y)×∆ () and

 ∈ [0 1] if (p) ∼ (0q) then (p) < (0q) if and only if (+ (1− )p) <
(0 + (1− ) 0q) 

The next theorem provides the hybrid representation. It shows that an ex ante pref-

erence relation satisfying consistency (with respect to an ex post preference relation) and

first-stage independence is representable as a weighted sum of the ex post utilities.

Theorem 1: Let < and <∗binary relations on ∆ (Y)×∆ () and ∆ (), respectively,

such that Â∗ 6= ∅ Then the following conditions are equivalent:

(a) < and <∗ are complete, transitive, and continuous, jointly they satisfy consis-
tency and < satisfies first-stage independence.

(b) There exist continuous non-constant functions  : ∆ (Y)×∆ () → R and

 : ∆ () → R such that  represents <  represents <∗ and, for all

(p) ∈ ∆ (Y)×∆ () 

 (p) =
X
∈Y

 () ( ()) (8)

Moreover, if there are functions ̄ : ∆ (Y)×∆ () → R and ̄ : ∆ ()→ R such
that ̄ represents < ̄ represents <∗ and ̄ (p) =

P
∈Y  () ̄( ()) then

̄ =  +    0.

Proof : The proof is omitted, as it is identical to that of Theorem 1 of Karni and Safra

(2000), with the additional assumption that the ex post preference relation <∗ is signal-
independent.

Remark: The behavior of a decision maker with such a pair of ex ante and ex post

preference relations displays dynamic consistency. Formally, if p and q differ only when

signal  occurs and  ()  0,  () is preferred to  () ex post if and only if p is preferred

to q ex ante.

The case in which the ex post preferences satisfy the independence axiom is of special

interest. Let  () = Σ∈ ()  () be an expected utility representation of <∗. Then,
by Theorem 1, the ex ante preferences < are represented by

 (p) =
X
∈Y

 () (( ()))  (9)

9This axiom is analogous to the constrained independence axiom defined in Karni and Safra (2000).
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where  is strictly increasing. This representation is more general than expected utility

(for <) and is reduced to it when  is affine.10 It resembles the class of non-expected

utility models that have representations known as smooth ambiguity attitudes.11 Note,

however, that ambiguity aversion requires that the function  be concave. In the present

context, a concave  implies aversion to the spread of signal-contingent payoffs that more

informative experiments afford. See further discussion of this issue at the end of the next

section.

5 Blackwell’s Theorem Extended

Consider all pairs (<<∗) of ex ante and ex post preferences satisfying the requirements of
Theorem 1(). Let V be the set of all pairs ( ) satisfying (8), and let V ⊂ V consist of
all pairs in which  is convex (the need for convexity will be clarified in the next theorem).

As above, for given  ∈ ∆ ()   ⊆ 2H\∅ and ̃ ∈ Y, let

∗ ∈ argmax
∈

 (Σ∈ ( | )  ()) (10)

be the one-stage reduced lottery that maximizes the ex post utility  at the decision node

associated with . As the ex ante preferences < admit the hybrid representation and are dy-
namically consistent, the ex ante value of ̃ is given by  (

¡
∗
¢
∈ ) =

P
∈  () (∗ ).

For every (( )  ) ∈ V × 2H\∅ the value of an experiment ̃ ∈ Y with image  is

defined by:

̂ (̃; ( )  ) :=
X
∈

 () 
¡
∗
¢
 (11)

Definition 3: An experiment ̃ is more hybrid-valuable than another experiment ̃0 if,
for all (( )  ) ∈ V × 2H\∅,

̂ (̃; ( )  ) ≥ ̂
¡
̃0; ( )  

¢


The next theorem extends Blackwell’s (1953) theorem.

Theorem 2: An experiment ̃ is more hybrid-valuable than another experiment ̃0 if and
only if ̃ is sufficient for ̃0.

10 In the social choice framework, Grant et. al (2010) provide an axiomatization of such preferences.
11See Klibanoff, Marinacci and Mukerji (2005) and Seo (2009).
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The proof below rests on two properties of Blackwell’s result: () that the expected

utility under the sufficient experiment is larger and () that the set of expected utility

payoffs generated by the sufficient experiment constitutes a larger “spread” of expected

utility values. With  monotonic increasing and convex, these properties make the expected

value of  larger for the sufficient experiment.

Proof: (Sufficiency) Suppose that ̃ is sufficient for ̃0. Let  and  0 denote the images
of ̃ and ̃0 respectively. Fix (( )  ) ∈ V × 2H\∅ Then,

̂
¡
̃0; ( )  

¢
=

X
{|0∈ 0}

0
¡
0
¢


ÃX
∈

∗0 ()
¡
 | 0

¢!
(12)

=
X

{|0∈ 0}
0
¡
0
¢


⎛⎝X
∈

∗0 ()

⎡⎣ X
{|∈ }

 ()

0 (0)
 ( | )

⎤⎦⎞⎠
=

X
{|0∈ 0}

0
¡
0
¢


⎛⎝ X
{|∈ }

 ()

0 (0)

"X
∈

∗0 () ( | )
#⎞⎠

≤
X

{|0∈ 0}
0
¡
0
¢ X
{|∈ }

 ()

0 (0)


ÃX
∈

∗0 () ( | )
!

=
X

{|0∈ 0}

X
{|∈ }

 ()

ÃX
∈

∗0 () ( | )
!

≤
X

{|0∈ 0}

X
{|∈ }

 ()

ÃX
∈

∗ () ( | )
!

=
X

{|∈ }
 () 

ÃX
∈

∗ () ( | )
! X
{|0∈ 0}



= ̂ (̃; ( )  )

where the second equality follows from (5); the first inequality holds as  is convex; the sec-

ond inequality holds since, by definition, (Σ∈∗0 () ( | )) ≤ (Σ∈∗ () ( | )),
and last equality holds as Σ{|∈ 0} = 1

(Necessity) If  is affine, then the expected utility representations are a subset of the set

of preference relations that have hybrid representations with ( ) ∈ V. Hence, necessity
is implied by the necessity part of Blackwell’s theorem. ♠

The ingredients of the representation of the hybrid model for affine  in (9) are similar

to those of the class of non-expected utility models known as smooth ambiguity models.
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Smooth ambiguity aversion requires that the analogue of the function  be concave. By

contrast, our extension of Blackwell’s theorem requires that decision makers exhibit infor-

mation proclivity, an attitude captured by the convexity of the function . This difference

between the two models may be explained by the fact that more informative experiments

offer larger spreads of expected utility payoffs to choose from. Consequently, in addition to

the unambiguous advantage of allowing decision makers to choose acts whose payoffs are

higher in the states that are more likely to obtain, information affects the decision-making

process through the decision makers’ attitudes toward wider spread of expected payoffs.

We showed that the value of information increases if the decision maker displays informa-

tion proclivity (that is, prefers a wider spread of expected payoffs). Information may be

less valuable if the decision maker displays payoff-spread aversion, which is captured by

concave . The case of expected utility-maximizing behavior (i.e., the function  is linear)

exhibits neutrality toward the payoffs spread.

Ambiguity aversion in smooth ambiguity models seems justifiable because decision mak-

ers are confronted with a spread of the priors that introduce payoff variations that they

cannot exploit. By the same token, information proclivity is justifiable because decision

makers value the opportunity to choose from, and thereby exploit, the wider spread of

expected payoffs afforded by the more informative experiments.12

To grasp this point, let  = {1 2}   = {1 2}   =
¡
1
2
 1
2

¢
 and assume that  is

strictly convex. Choose   ∈ ∆ () such that  ¡1
2
+ 1

2

¢
 1

2
 ()+ 1

2
 ()  and consider

 = {} where  (1) =  and  (2) = . Let ̃ be the fully informative experiment (that is,

 ( | ) = 1  = 1 2) and ̃0 be the totally uninformative experiment ( (· | ) =  (·) 
 = 1 2). Clearly, ̃ is sufficient for ̃0 Then,

̂ (̃; ( )  ) =
1

2
 () +

1

2
 ()  

µ
1

2
+

1

2


¶
= ̂

¡
̃0; ( )  

¢
In addition to affording better choice of acts, information thus has intrinsic value in the

sense that, ex ante, the decision maker prefers a wider spread of expected payoffs, even if

their expectations is the same.

This example can be used to demonstrate the necessity of the convexity of . Assume

that  is not convex, and choose   ∈ ∆ () such that  ¡1
2
+ 1

2

¢
 1

2
 () + 1

2
 () 

Then

̂ (̃; ( )  ) =
1

2
 () +

1

2
 ()  

µ
1

2
+

1

2


¶
= ̂

¡
̃0; ( )  

¢
and ̃, the fully informative experiment, becomes less hybrid-valuable than the totally

uninformative experiment ̃0.
12Gensbittel, Renou and Tomala (2015) analyzed the amiguity case and provided conditions under which

information is desirable within the maxmin model. Our main result does the same for the smooth ambiguity

model. In both their paper and ours, the decision maker cannot commit ex ante to executing ex post choices.
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Finally, the following example demonstrates the necessity of the first-stage indepen-

dence axiom.

Example: Let  = {1 2}   = {1 2} and  =
¡
1
2
 1
2

¢
 Assume that  is a rank

dependent utility functional defined by  () =
R
∈ d ( ())  where  denotes the

cumulative distribution functions of  and  : [0 1] → [0 1] is increasing and onto. For a

two-outcome lottery  = +(1− )  (  )  () =  ()+(1−  ()) . It is known

that  is convex if and only if  is concave.13 Choose  to be the concave piecewise linear

function

 () =

½
(2− )    05

1−  +   > 05
(  1) and consider  = {} where  (1) = 1 and  (2) = 2. Let ̃ be the fully

informative experiment and ̃0 be the less informative experiment satisfying 0 (1 | 1) = 1,
0 (2 | 1) = 0, 0 (1 | 2) = , 0 (2 | 2) = 1−, where  ∈ (0 1). Note that 0 (1) = 1+

2

and 0 (1) = 1−
2
. Clearly, ̃ is sufficient for ̃0

Assume that instead of using representation (8) of Theorem 1, we apply the rank-

dependent utility  to the first-stage, too. Doing so is equivalent to using the certainty-

equivalent reduction twice. Denoting the resulting value of experiments by ̌ and noting

that  (1) = 1 and  (2) = 2, yields

̌ (̃; ( )  ) = 

µ
1

2

¶
 (1) +

µ
1− 

µ
1

2

¶¶
 (2) = 2− 

µ
1

2

¶
= 1 +



2


Similarly,

̌
¡
̃0; ( )  

¢
= 

µ
1 + 

2

¶


µ
1

1 + 
1 +



1 + 
2

¶
+

µ
1− 

µ
1 + 

2

¶¶
 (2)

= 

µ
1 + 

2

¶ ∙


µ
1

1 + 

¶
+

µ
1− 

µ
1

1 + 

¶¶
2

¸
+

µ
1− 

µ
1 + 

2

¶¶
2

= 2− 

µ
1 + 

2

¶


µ
1

1 + 

¶
= 2−

µ
1−  + 

1 + 

2

¶µ
1−  + 

1

1 + 

¶


13Note that, by integration by parts,  () =

∈ d ( ()) = max −


∈  ( ()) d. Hence, for a

1
2
: 1
2
mixture and concave ,




1

2
+

1

2



= max −






 1
2
+ 1

2
 ()


d = max −







1

2
 () +

1

2
 ()


d

6 max −




1

2
 ( ()) +

1

2
 ( ())


d

=
1

2


max −




 ( ()) d


+
1

2


max −




 ( ()) d


=

1

2
 () +

1

2
 ()

The converse is similarly proved.
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For  = 02 and  = 01 we get

̌ (̃; ( )  ) = 11  1106 = ̌
¡
̃0; ( )  

¢


Hence, information may have negative value when first-stage independence is not assumed.

This example also demonstrates that employing the certainty-equivalent reduction twice

does not eliminate aversion to information even if  is convex.

6 Concluding Remarks

6.1 The value of information

Lurking in the background of Blackwell’s theorem are two tacit properties of expected

utility theory: consequentialism and reduction of compound lotteries. The former main-

tains that, facing sequential decisions involving risky choices, decision makers are “forward

looking” in the sense that, at every decision node, their preferences are unaffected by out-

comes that did not materialize, (“roads not taken”) along the decision-making path. The

latter asserts that decision makers evaluate acts solely based on the ultimate probability

distributions they induce on outcomes, regardless of whether the outcome is drawn, in a

single step, from a known distribution by more convoluted trajectory that includes chance

and decision nodes.

Wakker (1988) showed that departing from the independence axiom while maintaining

consequentialism and reduction of compound lotteries (at all stages) and assuming quasi-

convexity necessarily results in situations in which decision makers refuse free information

related to finer partitions. Safra and Sulganik (1995) demonstrated that, maintaining

consequentialism and reduction of compound lotteries throughout, violations of the relation

of being more informative experiment à la Blackwell are quite robust. More specifically,

for almost all pairs of experiments ̃ and ̃0 satisfying that ̃ is sufficient for ̃0, there exists
a non-expected utility preference that strictly prefers the latter.

Replacing the RCLA by the certainty-equivalent reduction at all stages of the decision

problem is not sufficient to derive an analogue of Blackwell’s theorem (see Schlee, [1990]

and Safra and Sulganik [1995]). This and the previous observations clarify the need for

hybrid models.

6.2 Related literature

Segal (1990) was the first to propose a model of decision making under risk that replaces

the reduction of compound lotteries with certainty equivalent reduction. Seo (2009) ob-

tained smooth ambiguity averse representations of choice under uncertainty that departs

from the reduction of compound lotteries axiom. Halevy (2007) presented experimental
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evidence suggesting that subjects whose behavior violates the reduction of compound lot-

teries under risk are more likely to exhibit ambiguity aversion when facing decision making

under uncertainty.

This paper argues that departing from the independence axiom of expected utility

theory while maintaining dynamic consistency and the intuitive presumption that being

better informed is unambiguously desirable justifies the departure from the RCLA in se-

quential decision situations in which, at the interim stages, information may be exploited

by choosing acts that better match the underlying data.
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